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Abstract

This paper discusses the dispersive properties of dielectric materials both in
the time and the frequency domains. Special emphasis is on the treatment
of heterogeneous materials, in particular two-phase mixtures. A time do-
main Maxwell Garnett rule is derived which differs from the corresponding
frequency domain formula in the respect that it is expressed in terms of con-
volutions and inverse operators of the susceptibility kernels of the materials.
Much of the analysis deals with the question how the temporal dispersion of
the dielectric response of various physical materials is affected by the mixing
process. Debye, Lorentz, Drude, and modified Debye susceptibility models
are treated in detail.

1 Introduction

The purpose of the present paper is twofold. One of the aims is to present a time
domain approach to the effective-medium modeling of dielectrically heterogeneous
materials. A second objective of the present analysis is to study how the mix-
ing process affects the frequency behavior of temporally dispersive materials, which
task will be mostly performed in the frequency domain. Because the time domain
response of a medium is the primary mechanism that determines its frequency dis-
persion, these two aspects arise from the same physical basis.

One of the motivations for the time domain analysis to the homogenization
problem is that to our knowledge it has not been performed previously. The classical
mixing theories make use of static treatment of inclusions embedded in a host matrix
and the effective permittivity is enumerated with the help of the polarizabilities of
the inclusions (see, for example [3]). Alternatively, a long-wavelength limit of a
time-harmonic dynamic problem is used to calculate the local fields and effective
parameters of the mixture (see, for example [13]). A time domain approach differs
from these analyses in the manner that the permittivity functions of the problem are
convolution operators acting on the electric fields, and therefore a different algebraic
formalism has to be applied to solve for the effective parameters of the mixture.
The time domain response of the material is described by an instantaneous response
and a susceptibility kernel responsible for the memory effects instead of frequency-
dependent permittivity function as is customary in the frequency domain.

The two approaches are nevertheless connected through a Fourier transformation.
Therefore, much of the properties of temporal dispersion of a dielectric mixture
can be gleaned by using effective-medium theories in the frequency domain. It is
astonishing how greatly the dielectric properties of a material in particulate form can
differ from those of the bulk material. One is tempted to to think that small particles
are uninteresting and simple scatterers and absorbers and that they only repeat the
spectral structure of the parent material, but this misconception is dangerous; on
this issue the discussion in [2, Chap. 12] makes useful reading. For example, the
absorption peaks in metals can be shifted in frequency when the material exists as
inclusions, which is a well-known fact, and resonances can be generated by the mixing
process that were not present in the response of the parent material. This paper
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attempts to present a systematic analysis of the mixing effect on the dispersion,
taking into account various fundamental dispersion models.

The present century has brought forward a large amount of effective-medium
mixing models with always growing complexity in microstructure [15]. When taking
the first step into the time domain of mixing rules it is reasonable to limit the analysis
to the most basic model. In the following, the Maxwell Garnett model of a two-phase
mixture is studied where the inclusions are embedded in the environment in the form
of spheres, and both temporally dispersive materials are isotropic, homogeneous and
non-magnetic.

The basic definitions and the constitutive relations are defined in Section 2. The
Maxwell Garnett formula in the fixed frequency domain and in the time domain
is presented in Section 3, and the dispersive effects in a mixture are analyzed in
Section 4. Different dispersive models and mixtures illustrate the theory in Section 5.
These results are presented in both the fixed frequency and in time domain domain.
Conclusions and an appendix end the paper.

2 Definitions and constitutive relations

In the present paper we consider linear, isotropic, temporally dispersive dielectric
materials. Therefore the medium displays neither magnetic susceptibility nor mag-
netoelectric coupling. The constitutive relations have a general form for such kind
of medium, see [10]:


1

ε0

D(r, t) = ε∞(r)E(r, t) + (χ ∗ E)(r, t)

B(r, t) = µ0H(r, t)
(2.1)

where the vacuum permittivity is ε0 and the vacuum permeability µ0.
The electric and magnetic fields E, D, H , B appearing in these constitutive re-

lations have an explicit space and time dependence. Since we are analyzing the
dielectric material at a given fixed position, the spatial dependence is suppressed
for convenience. Of these two constitutive equations, the magnetic relation is triv-
ial. The dielectric relation is separated into two parts: the optical response and a
dispersive part. The function ε∞(r) ≥ 1 describes the instantaneous (optical) re-
sponse of the material. The dispersive part is described by the susceptibility kernel
χ(r, t) as a function of time, and the operation denoted by ∗ stands for the temporal
convolution:

(χ ∗ E)(t) =

t∫
−∞

χ(t − t′)E(t′) dt′

The susceptibility kernel is assumed to have piecewise continuous derivatives for
t > 0. Due to causality, the susceptibility kernel χ vanishes for t < 0, but it can
have a discontinuity in the origin, i.e., it can happen that χ(t = 0+) �= 0. Although
this option of discontinuity across the origin is sometimes doubted in the literature
(see, for example [8, p. 310], [18]), it does not violate causality.
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In the following, we shall treat the permittivity functions using both their time
domain and frequency domain descriptions. On the level of notation, we try to
distinguish the operator form of the permittivity by denoting it with ε whereas
any permittivity quantity not depending on time is written as ε, be it constant or
depending on frequency. Note that both the permittivity operators and constants
are dimensionless, relative quantities, and the susceptibility kernel has the dimension
of frequency.

The frequency domain counterpart of the dielectric constitutive relation in (2.1)
is

1

ε0

D(ω) = ε(ω)E(ω)

where the Fourier transformation of the quantities are defined by the following con-
vention 



D(ω) =

∞∫
−∞

D(t)e−jωt dt

E(ω) =

∞∫
−∞

E(t)e−jωt dt

ε(ω) − ε∞ =

∞∫
−∞

χ(t)e−jωt dt

(2.2)

In the frequency domain, the Kramers–Kronig relations are fulfilled for causal ma-
terials that have an absolutely integrable susceptibility kernel [8, pp. 309-312].

3 Maxwell Garnett formula

The objective of mixing rules is to connect the macroscopic effective properties
of a heterogeneous medium to its structural parameters: volume fractions of the
constituents and their dielectric properties. Consider a mixture of two isotropic
homogeneous dielectric materials of type (2.1). Let one of those form the background
matrix and let the other be a “guest phase” in the form of spheres, and occupying
a volume fraction f of the total space, as illustrated in Figure 1.

3.1 Frequency domain

In the frequency domain characterization of dielectric materials, we describe the
material with the permittivity function ε(ω). Let us denote the dielectric permit-
tivity of the background medium by εb and that of the inclusions by εi, and both
quantities are understood to be functions of frequency in general. According to the
Maxwell Garnett formula [5], the effective permittivity of the mixture with spherical
inclusions is

εeff = εb + 3fεb
εi − εb

εi + 2εb − f(εi − εb)
(3.1)
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εb

εi

Figure 1: The geometry of the mixing problem: spherical isotropic dielectric inclu-
sions in isotropic dielectric environment.

For sparse mixtures, i.e., the inclusion phase is very dilute (f � 1), the Maxwell
Garnett (MG) rule reads

εeff = εb + 3fεb
εi − εb

εi + 2εb

(3.2)

Despite its simplicity, the Maxwell Garnett rule is much used and also a successful
model. Let us try to formulate this formula with quantities having explicit time
dependence.

3.2 Time domain

If the mixing problem is treated in the time domain, the fields and flux densities
have explicit time dependence. The time-dependent polarizability characteristics of
the material inclusions need to be calculated. Consider the permittivity operators
of the materials, denoted by ε and defined in the following way:

[εE] (t) = [(ε∞ + χ∗)E] (t) = [(ε∞δ + χ) ∗ E] (t) (3.3)

where the variable r has been suppressed and δ(t) is the Dirac delta-function. Note
that the convolution asterisk is contained within the permittivity operator ε.

Now the problem of a spherical inclusion (permittivity operator εi) in a homo-
geneous background medium (permittivity operator εb) can be formulated. To solve
the dipole moment induced in the inclusion, the internal field needs to be known
first. Then the dipole moment operator can easily be calculated as an integral of
the polarization density over the inclusion volume.

The homogenization of a mixture is always an approximation because the num-
ber of parameters of the structure is being decreased considerably. High-frequency
scattering effects from a heterogeneous medium cannot be explained by modeling
the medium effectively homogeneous and therefore the macroscopic permittivity has
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only a meaning if the sources and the fields vary temporally in a sufficiently slow
manner. This is a limitation that has to be encountered both in the frequency and
the time domains.

The quasistatic limitation in the frequency domain is often expressed by saying
that the size of the scatterer should be small in comparison with the wavelength
of the field. However, in the time domain formulation there are no wavelengths.
Instead, the corresponding limitation relates the general time variation of the source
with the propagation velocity v and the size d of the inclusions. When the “temporal
size” ∆t = d/v of the inclusion is small compared with the inverse of the time
derivative of the source, we can consider the field inside an inclusion homogeneous
even if the field varies temporally. Time only appears as a parameter in the field
expressions.

Although the retardation effects are excluded within the homogenization analy-
sis, memory effects are allowed in the dielectric materials. These are contained in
the susceptibility kernels. The high-frequency components of the material response
are integrated into the optical response (delta-function) part of the representation
(3.3).

To calculate the internal field, one can follow the steps of the classical analysis of
the sphere in a uniform and static field (cf., for example [8, Sect. 4.4]). The relation
between the internal field Ei(t) and the external field Ee(t) comes as

[(εi + 2εb)Ei] (t) = 3 [εbEe] (t)

This equation looks formally similar to the purely static result but attention must
be paid to the fact that the permittivities are here convolution operators. Hence, to
solve for the internal field, a deconvolution has to be performed:

Ei(t) =
[
(εi + 2εb)

−13εbEe

]
(t)

The deconvolution for the operators of the type (3.3) can be done provided that the
optical response of the operator is nonzero. The detailed calculation of the inverse
is discussed in Appendix A.

The polarizability operator for a single inclusion, α, being defined through the
dipole moment p(t) = [αEe] (t) can now be written as

α = ε0V (εi − εb)(εi + 2εb)
−13εb (3.4)

where V is the volume of the sphere.
For a mixture, the exciting field that has to be used to calculate the dipole

moment is the so-called Lorentzian field [19]. In time domain description this field
looks like:

EL(t) = Ee(t) +
1

3ε0

[
ε−1
b P

]
(t)

where P = np is the average polarization in the mixture (n is the number density
of inclusions). Using now the Lorentzian field on which the polarizability operator
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acts to calculate the dipole moment (p = αEL), we can solve the Lorentzian field
in terms of the average field:

EL(t) =

[(
3εb −

nα

ε0

)−1

3εbEe

]
(t)

which gives us the effective permittivity operator, being defined by ε0 [εeffEe] (t) =
ε0εbEe(t) + P (t):

εeff = εb +
nα

ε0

(
3εb −

nα

ε0

)−1

3εb (3.5)

This could be termed as the time domain Lorenz–Lorentz formula1 because it gives
the effective permittivity as a function of the polarizability operator [15].

For a sparse mixture, the norm of the operator nα/ε0 is much smaller that of
3εb, which means that the effective permittivity is

εeff = εb +
nα

ε0

= εb + f(εi − εb)(εi + 2εb)
−13εb

where f = nV is the volume fraction of the inclusion phase in the mixture.
The full Lorenz–Lorentz formula (3.5) can also be manipulated further. Noting

that the convolution operator commutes:2 (a + A∗)(b + B∗) = (b + B∗)(a + A∗),
and for piecewise continuous kernels, the inverse of the operator product is

[(a + A∗)(b + B∗)]−1 = (a + A∗)−1(b + B∗)−1

we can write the time domain Lorenz–Lorentz formula in a Maxwell Garnett form

εeff = εb + f(εi − εb)[εi + 2εb − f(εi − εb)]
−13εb (3.6)

Note that in the derivation of the polarizability, (3.4), we have assumed that the
optical response of the operator εi + 2εb has to be nonzero. This is a reasonable
assumption because its violation would correspond to the unphysical condition

lim
ω→∞

εi(ω)

εb(ω)
= −2

Furthermore, the evaluation of the expression (3.6) requires that the optical response
of εi + 2εb − f(εi − εb) must not vanish.

Let us next move back into the frequency domain to analyze the dispersive
characteristics of a mixture in more detail.

1“Time domain Clausius–Mossotti formula” is equally suitable.
2Here a and b are nonzero constants.
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4 Modeling dispersive effects

The starting point in this section are the permittivity functions εi and εb modeled
as a general quotient of two polynomials.

εi(ω) =

∑
αi

mωm∑
βi

nω
n

and

εb(ω) =

∑
αb

mωm∑
βb

nω
n

The limits of the summation in the numerator and the denominator are suppressed
for convenience. However, it is assumed that all summations are finite and that only
non-negative m- and n-values contribute. In most practical situations the degree of
the polynomial in the nominator is less than in the denominator. The quotients are
normalized by requiring βi

0 = βb
0 = 1.3

Both the sparse and the dense formulae, (3.1) and (3.2) can be written in the
following form:

εeff = εb + 3fεb
εi − εb

γiεi + γbεb

where the values for a full Maxwell Garnett formula are γi = 1 − f and γb = 2 + f .
For a sparse mixture the corresponding values are γi = 1 and γb = 2.

The general frequency behavior for εeff can be written as a quotient between two
polynomials.

εeff(ω) =

∑
αe

mωm∑
βe

nω
n

where


αe
m =

∑
k,l

αb
k

{
αi

lβ
b
m−k−l(γi + 3f) + αb

l β
i
m−k−l(γb − 3f)

}
αi

0γi + αb
0γb

, m = 0, 1, 2, 3, . . .

βe
0 = 1

βe
n =

∑
k,l

βb
k

{
αi

lβ
b
n−k−lγi + αb

l β
i
n−k−lγb

}
αi

0γi + αb
0γb

, n = 1, 2, 3, . . .

(4.1)
If the background medium is non-dispersive, i.e., εb is constant with respect to

the frequency, the general expression (4.1) simplify. In this case it is easy to identify
the coefficients αe

m and βe
n in the following expansions. The explicit expressions of

3If the denominator vanishes as ω → 0, i.e., either βi
0 or βb

0 = 0, normalize such that the first
non-vanishing coefficient βi

n or βb
n = 1. An example where this situation occur is in the Drude

model which we analyze below.
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the coefficients are:


αe
m =

εb(γi + 3f)αi
m + ε2

b(γb − 3f)βi
m

γiαi
0 + εbγb

, m = 0, 1, 2, 3, . . .

βe
0 = 1

βe
n =

γiα
i
n + εbγbβ

i
n

γiαi
0 + εbγb

, n = 1, 2, 3, . . .

For a sparse mixture (γi = 1, γb = 2) we have


αe
m =

εb(1 + 3f)αi
m + ε2

b(2 − 3f)βi
m

αi
0 + 2εb

, m = 0, 1, 2, 3, . . .

βe
0 = 1

βe
n =

αi
n + 2εbβ

i
n

αi
0 + 2εb

, n = 1, 2, 3, . . .

and for the full Maxwell Garnett formula (γi = 1 − f , γb = 2 + f) we have


αe
m =

εb(1 + 2f)αi
m + 2ε2

b(1 − f)βi
m

(1 − f)αi
0 + εb(2 + f)

, m = 0, 1, 2, 3, . . .

βe
0 = 1

βe
n =

(1 − f)αi
n + εb(2 + f)βi

n

(1 − f)αi
0 + εb(2 + f)

, n = 1, 2, 3, . . .

(4.2)

The time domain expressions are very complex, unless the order of the polyno-
mial is low. The explicit time domain results are best illustrated by the examples
given in Section 5.

5 Examples of dispersive models and mixtures

Let us use the preceding results to study how the mixing process affects the charac-
teristics of certain specific dispersion models: Debye, Lorentz, Drude, and modified
Debye models.4 Let us first assume that the background material is non-dispersive,
and that only the inclusions show dispersion. The general case of a mixture of two
dispersive phases is then illustrated. The examples are first presented in the fixed
frequency domain and then in the time domain.

5.1 Frequency domain

5.1.1 Debye model

The Debye model is suitable to describe the dielectric properties of fluids that have
permanent electric dipole moments. The frequency-dependent permittivity function

4For more detailed discussion on the physical background of these models, see for example [2,
Chap. 9], [11, Sect. 2.1], [17, Chap. 3].
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for the Debye model reads

ε(ω) = ε∞ +
εs − ε∞
1 + jωτ

(5.1)

where εs and ε∞ are the low-frequency and optical permittivities of the material
and τ is the relaxation time, respectively.5 The material is lossy (the time-harmonic
convention exp(jωt) is assumed), and the dissipativity of the material is seen from
the fact that the imaginary part of ε(ω) is negative for all frequencies. The imaginary
part has its minimum6 at the relaxation frequency fr = 1/(2πτ).

Suppose now that the background permittivity is a dispersionless constant εb

and the frequency dependence of the inclusions follows the Debye law (5.1). Then
the Maxwell Garnett prediction (3.1) for the mixture permittivity can be calculated,
and it is

εeff(ω) = ε∞,eff +
εs,eff − ε∞,eff

1 + jωτeff

In other words, the mixture also a Debye material. The parameters of the mixture
are, (4.2) 



ε∞,eff = εb + 3fεb
ε∞ − εb

ε∞ + 2εb − f(ε∞ − εb)

εs,eff = εb + 3fεb
εs − εb

εs + 2εb − f(εs − εb)

τeff = τ
(1 − f)ε∞ + (2 + f)εb

(1 − f)εs + (2 + f)εb

(5.2)

As an example of such a mixture let us treat water and air. For the temperature
dependence of the dielectric properties of liquid water we take the following model
[4]:

εs = 190.0 − 0.375 T, ε∞ = 4.90, τ =
1.99

T
e2140/T · 10−12 s

where T is the temperature in Kelvin-degrees. See also [1, 9] for more information
about the temperature dependence of the relaxation parameters of liquid water.

Using the result (5.2) for water drops in air (εb = 1), we can see that the
relaxation frequency of the mixture depends strongly on the volume fraction of the
water phase, and is shown in Figure 2. This figure shows, for example at +20◦

degrees Centigrade, that the relaxation frequency which for bulk water is around
17 GHz, is about 10 times higher for a dilute water–air mixture. Note also the very
strong temperature dependence of the relaxation frequency τeff which comes from
the sensitivity of the properties of bulk water on temperature.

In the real world, an example of this type of a mixture is a cloud or fog. Rain
would also suggest itself, but a problem with raindrops is that they are not small in
wavelengths at this interesting regime of millimeter wave frequencies, and therefore
one cannot disregard the scattering effects.

5For real materials, this model is naturally valid only across a certain frequency band.
6Since Im{ε} is negative, its absolute value has a maximum.
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Figure 2: The relaxation frequency of water-air mixture as a function of the volume
fraction of the water phase. The curves correspond to three different temperatures:
0◦ C, 20◦ C, and 40◦ C.

However, fog and clouds consist of water droplets having a size around micro-
meters, which assures that certainly below 500 GHz the scattering effects are neg-
ligible compared to absorption phenomena. Broadband microwave and millimeter
wave propagation experiments have been performed to study the attenuation of fog
and clouds [6, 16], and indeed the maximum attenuation has been observed to be
around 200 GHz although the measurements are often impeded by additional atten-
uation factors in the atmosphere, like the absorption peaks of water vapor and other
molecules present in the troposphere.

The time domain analysis of the same Debye mixture is given later in Sec-
tion 5.2.1.

5.1.2 Lorentz model

The Lorentz model is a widely used model in solid state physics, and it predicts the
frequency dependence of the permittivity function as

ε(ω) = ε∞ +
ω2

p

ω2
0 − ω2 + jων

(5.3)

where again ε∞ is the high-frequency permittivity of the material. The other para-
meters are the plasma frequency ωp, the resonance frequency ω0, and the damping
amplitude ν, also with dimensions of frequency.

The use of the Maxwell Garnett rule (4.2) shows that a mixture with Lorentz
material (5.3) in dispersionless background medium, εb, is also a Lorentz-material,
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Figure 3: The plasma frequency of a mixture (relative to the plasma frequency of
inclusions) with Lorentz spheres in air as a function of the volume fraction of the
water phase. The high-frequency response is assumed to be ε∞ = 10.

but the model parameters are transformed to


ε∞,eff = εb + 3fεb
ε∞ − εb

ε∞ + 2εb − f(ε∞ − εb)

ωp,eff =
√

f
3εb

(1 − f)ε∞ + (2 + f)εb

ωp

ω2
0,eff = ω2

0 +
1 − f

(1 − f)ε∞ + (2 + f)εb

ω2
p

νeff = ν

(5.4)

These results show that a mixture has a higher resonance frequency than the in-
clusion phase, and the shift of ω0,eff from ω0 is largest for dilute mixtures. Another
observation is that the plasma frequency of a mixture increases for higher concentra-
tions. This is natural because ωp in fact is a measure of the permittivity magnitude
as can be seen from (5.3). The damping factor ν is not affected by mixing.

Figure 3 shows the effect of mixing ratio on the plasma frequency of the mixture
and Figure 4 displays the effect for the resonance frequency.

5.1.3 Drude model

A special case of the Lorentz model is the Drude model, used to describe the optical
properties of metals. It comes from (5.3) by letting the electrons to be free, i.e.,
assuming the resonance frequency is zero, ω0 = 0:

ε(ω) = ε∞ −
ω2

p

ω2 − jων
(5.5)

The typical conductivity behavior for low frequencies

ε(ω) → − jσ

ωε0
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Figure 4: The resonance frequency of a mixture (relative to the resonance frequency
of inclusions) with Lorentz spheres in air as a function of the volume fraction of the
water phase. The high-frequency response is assumed to be ε∞ = 10 and shown are
two plasma–to–resonance frequency ratios of the inclusion phase.

is apparent in this model, where the conductivity is σ = ω2
pε0/ν.

The result (4.2) shows now that the Maxwell Garnett mixture of Drude spheres
in a dispersionless environment is a Lorentz model, where ε∞,eff , ωp,eff , and ν are
identical to the Lorentz mixture, (5.4), but ω0,eff is different. This means that the
mixture does not follow a metal-type Drude model but an insulator-type resonator
model (5.3). This is understandable because separate metal particles do not form a
conducting lattice and therefore there is no low-frequency divergence of the permit-
tivity. The mixture permittivity has a resonance frequency:

ω0,eff =

√
1 − f

(1 − f)ε∞ + (2 + f)εb

ωp (5.6)

For dilute mixtures and vanishing high-frequency response of the metal (ε∞ = 1)
this condition reads

ω0,eff =
ωp√

1 + 2εb

(5.7)

Metal colloids have been studied extensively and indeed the condition (5.7) has
been observed to hold for many metals like sodium, aluminum, and gold [2, 11]. The
experiments show that a strong peak occurs for the absorption cross section of small
spherical metal particles at this frequency ω0,eff .

The condition that determines the point of strong absorption for the small spher-
ical metal inclusions carries also other names in the literature: terms like surface
mode, surface plasmon, or Fröhlich frequency are associated with it. The studies
dealing with plasmons and Fröhlich modes do not consider mixing rules but rather
the scattering and absorption coefficients of inclusions. Looking at the polarizability
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of a sphere,

α = ε0V (εi − εb)
3εb

εi + 2εb

it is then obvious that for a frequency at which εi = −2εb something catastrophic
happens, and the amplitude of the resulting absorption peak is determined by the
imaginary part of the inclusion permittivity, assuming the background to be real.
This condition corresponds to the sparse-mixture limit of the more general resonance
condition (5.6).

5.1.4 Modified Debye model

The following model

ε(ω) = ε∞ +
ω2

p

(ω0 + jω)2
(5.8)

is called the modified Debye model, and where ωp and ω0 are the plasma and res-
onance frequencies, respectively. The reason for the name is that the time domain
susceptibility of the modified Debye model has the same exponential damping char-
acter as the Debye model but, unlike in the Debye model case, the initial value of the
kernel vanishes (in the Debye model χ(0+) �= 0). See Section 5.2 for more details.

A mixture with modified Debye material embedded in non-dispersive host, εb,
obeys the following frequency-dependent permittivity function:

εeff(ω) = ε∞,eff +
ω2

p,eff

ω2
0,eff − ω2 + jωνeff

where 


ε∞,eff = εb + 3fεb
ε∞ − εb

ε∞ + 2εb − f(ε∞ − εb)

ωp,eff =
√

f
3εb

(1 − f)ε∞ + (2 + f)εb

ωp

ω2
0,eff = ω2

0 +
1 − f

(1 − f)ε∞ + (2 + f)εb

ω2
p

νeff = 2ω0

It is seen that the mixture is no longer a modified Debye material, but a more general
Lorentz material. The effective parameters ε∞,eff , ωp,eff , ω0,eff obey the same rules as
a mixture with Lorentz inclusions. This is obvious, if the denominator in (5.8) is
expanded and compared with the form of the Lorentz model, (5.3). A difference in
the mixing process is the appearance of a damping factor, which in the present case
is twice the resonance frequency.

5.1.5 A mixture of two dispersive materials

If the background material is dispersive as well, the dispersion of the mixture is in
general more complicated than that of the inclusion phases. The general frequency



14

behavior was derived in Section 4, see (4.1). To illustrate the difficulties, let us
rewrite the permittivity functions as follows:{

εi(ω) = ε∞,i + Ωi(ω)

εb(ω) = ε∞,b + Ωb(ω)

where the frequency-dependent parts of the inclusions, Ωi(ω), and of the environ-
ment, Ωb(ω), vanish for high frequencies. It is here assumed that both the inclusions
and the background have a high frequency limit ε∞,i and ε∞,b, respectively. Then
the Maxwell Garnett prediction, (3.1), for the mixture permittivity can be written
as

εeff(ω) = ε∞,eff + Ωeff(ω)

where

Ωeff = Ωb + 3f
3ε2

∞,b(Ωi − Ωb) + (1 − f)(ε∞,i − ε∞,b)
2Ωb + A(Ωi − Ωb)Ωb

A [A + (1 − f)Ωi + (2 + f)Ωb]

were A = (1 − f)ε∞,i + (2 + f)ε∞,b, and

ε∞,eff = ε∞,b + 3fε∞,b
ε∞,i − ε∞,b

(1 − f)ε∞,i + (2 + f)ε∞,b

(5.9)

This expressions show that even for the simplest case of mixing dispersive mate-
rials — Debye inclusions in Debye background — the effective permittivity is not of
Debye form, not even a Lorentz form, but contains higher powers of ω both in the
numerator and the denominator. One has to resort to the formulas in Section 4 to
evaluate the required coefficients.

As an example, we analyze in the following the mixture of water and alcohol
(ethanol). Both liquids have the Debye-type of permittivity behavior. We take the
values at 20◦ C, whence the parameters are for water

εs = 80.1, ε∞ = 4.9, τ = 1.01 · 10−11 s

and those of ethanol

εs = 25.1, ε∞ = 4.4, τ = 1.2 · 10−10 s

Note the 12 times lower relaxation frequency for alcohol compared to liquid water.
An informative illustration of the complex permittivity of materials is the so-called
Cole–Cole plot where the permittivity curve is shown in the complex ε plane. For a
Debye material, the Cole–Cole diagram is a semi-circle where relaxation frequency
corresponds to the mid-point on the top of the half-circle.7

We show the Cole–Cole diagrams of two mixtures: alcohol–in–water and water–
in–alcohol, and for both mixtures the inclusion volume fraction is 20%. Figure 5
shows the first case (water as background, spherical ethanol inclusions) and Figure 6
shows the second case (ethanol as background, inclusions as water drops).

7Due to the time convention exp(jωt) it is in fact the negative imaginary part that is of interest,
and therefore the minimum of the curve.
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Figure 5: The Cole–Cole plot of the mixture of spherical ethanol droplets in wa-
ter (20% ethanol). Shown are also the Cole–Cole diagrams of pure water and pure
ethanol. Two frequency points are marked on each curve: 1 – the relaxation fre-
quency of ethanol (1.33 GHz) and 2 – the relaxation frequency of water (15.8 GHz).
Note that the negative pert of the imaginary part is given, due to the time convention
exp(jωt).
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Figure 6: The same as figure 5, for a mixture of water drops in ethanol (80%
ethanol).

From the figures we can observe the natural result that the mixture curve lies
closer to the curve of the background medium, being composed of four fifths of it.
But more interesting is certainly the frequency behavior of the mixture permittivity.
It is not a Debye-type semi-circle but there exists a bend in the curve, which is
more conspicuous at low frequencies for the alcohol–in–water mixture and at high
frequencies for the water–in–alcohol mixture. This bend is reminiscent of the curve
shape of a Davidson–Cole formula for the frequency dependence of the permittivity
of polar materials [17, Sec. 3.7].

The time domain analysis of the same Debye–in–Debye mixture is given later in
Section 5.2.3.
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5.2 Time domain

Moving again back into the time domain, the mixing analysis can also be performed
using permittivity operators as discussed in Section 3.2. In this case the multiplica-
tions and divisions with permittivity parameters have to be replaced by convolution
operators and inversions of such operators. To illustrate the analysis, let us consider
a mixture with dispersive inclusions in dispersionless background. The time domain
Maxwell Garnett formula, (3.6), written for a non-dispersive background medium,
εb = εbδ, and dispersive inclusions with optical response ε∞ and susceptibility kernel
χ(t), whence εi = ε∞ + χ∗, looks like

εeff = εb + 3εbf(ε∞ − εb + χ∗)[ε∞ + 2εb − f(ε∞ − εb) + (1 − f)χ∗]−1 (5.10)

This expression is well defined unless ε∞ + 2εb − f(ε∞ − εb) = 0. For several types
of susceptibility kernels, the required integrations for the operator products and
inverses can be carried out analytically. We here discuss the inverse calculations in
more detail and give as examples the inverses for certain material models.

5.2.1 Debye model

For example, the susceptibility kernel in the Debye model is

χ(t) = H(t)βe−t/τ (5.11)

where H(t) is the Heaviside step function8 to guarantee causality, and the constant
β is connected to the parameters in (5.1) by βτ = εs − ε∞. The time- and fre-
quency domain descriptions form a Fourier-transform pair (2.2) as can be checked
by comparing (3.3), (5.1), and (5.11).

In the evaluation of εeff according to (5.10), the following results are needed. For
two exponential functions χi(t) = H(t)βie

−t/τi (where i = 1, 2) the convolution is

(χ1 ∗ χ2)(t) = H(t)β1β2
e−t/τ1 − e−t/τ2

1/τ2 − 1/τ1

In case the relaxation times are equal (τ1 = τ2 = τ) this expression has to be replaced
by

(χ1 ∗ χ2)(t) = H(t)β1β2t e−t/τ

Furthermore, the resolvent kernel of (5.11) is

χres(t) = −H(t)βe−(1+βτ)t/τ

Using these results, the effective permittivity operator (5.10) can be written for the
Debye-mixture (inclusions of the form (5.11)) after some algebra:

εeff = ε∞,eff + χeff(t)∗ (5.12)

8The Heaviside step function is zero for negative arguments, and one for positive ones.
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Model χ(t) ε(ω) − ε∞ Note

Debye βe−t/τ βτ
1 + jωτ

Lorentz
ω2

p
ν0

sin (ν0t)e
−νt/2 ω2

p

ω2
0 − ω2 + jων

ν2
0 = ω2

0 − (ν/2)2

Drude
ω2

p
ν (1 − e−νt)

ω2
p

−ω2 + jων

Modified Debye ω2
p te−νt/2 ω2

p

(ν/2 + jω)2

Table 1: Susceptibility kernels χ(t) and the corresponding frequency-dependent
permittivity functions for the models analyzed in Section 5.

with

ε∞,eff = εb + 3εbf
ε∞ − εb

ε∞ + 2εb − f(ε∞ − εb)

and

χeff(t) =
9fε2

bβH(t)

[ε∞ + 2εb − f(ε∞ − εb)]
2 exp

[
−

(
1

τ
+

(1 − f)β

ε∞ + 2εb − f(ε∞ − εb)

)
t

]
(5.13)

This result shows the time domain correspondence of the MG result in frequency
domain. For example, the decrease of the relaxation time constant is evident from
(5.13), and agrees with the earlier result which was illustrated in Figure 2. In fact,
the effective relaxation time constant in (5.13) is easily proved to be identical to the
result in (5.2).

5.2.2 Other models

The above example with the Debye model showed that knowing the resolvent kernel
of the basic material response is essential in the time domain calculation of the
effective permittivity. For assistance in time domain mixture analysis, we can write
the following two tables for the basic models that have been treated above in the
frequency domain. Table 1 gives the frequency domain permittivity function for
each susceptibility kernel and Table 2 shows the resolvents.9 All kernels are defined
only for non-negative values (a Heaviside step function is assumed and omitted).

Note that the Drude model is a special case of the Lorentz model, and can be
obtained as the limit ω0 → 0 (meaning ν0 = jν/2). The modified Debye model is
also a special case of the Lorentz model, and can be written from it as the limit
ν0 → 0 (meaning ω0 = ν/2).

9The resolvent kernels can be used in calculating operators not only for mixing formulas but
also for many other time domain quantities.
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Model χ(t) χres(t) Note

Debye βe−t/τ −βe−(1/τ+β)t

Lorentz
ω2

p
ν0

sin (ν0t)e
−νt/2 −ω2

p
ωr

sin (ωrt)e
−νt/2 ω2

r = ν2
0 + ω2

p

Drude
ω2

p
ν (1 − e−νt) −ω2

p
ωr

sin (ωrt)e
−νt/2 ω2

r = ω2
p − (ν/2)2

Modified Debye ω2
p te−νt/2 −ωp sin (ωpt)e

−νt/2

Table 2: Susceptibility kernels χ(t) and the corresponding resolvent kernels χres(t)
for the models analyzed in Section 5. The Heaviside step function H(t) has been
omitted.

5.2.3 A mixture of two dispersive materials

If the background medium and the inclusions are both dispersive, the time domain
MG formula can still be written in the form, (5.12), where the optical response of
the mixture, ε∞,eff, is given in (5.9) and the effective susceptibility kernel, χeff(t), is

χeff(t) = χb(t) + A(t) + (ε∞,eff − ε∞,b) Bres(t) + (A ∗ Bres)(t) (5.14)

The kernels A(t) and B(t) are found to be
 A(t) = (ε∞,eff − ε∞,b)

(
χb(t)

ε∞,b

+
χi(t) − χb(t)

ε∞,i − ε∞,b

+

(
χb

ε∞,b

∗
(

χi − χb

ε∞,i − ε∞,b

))
(t)

)
B(t) = fbχb(t) + fiχi(t)

where

fb =
(2 + f)

(1 − f)ε∞,i + (2 + f)ε∞,b

, fi =
(1 − f)

(1 − f)ε∞,i + (2 + f)ε∞,b

Thus, the effective susceptibility kernel can be obtained by solving a resolvent equa-
tion followed by straightforward convolution. The resolvent kernel Bres(t) cannot be
written in closed form in general.

We now focus on the special case of a Debye–in–Debye mixture which was ana-
lyzed in frequency domain in Section 5.1.5:


χb(t) =

εs,b − ε∞,b

τb

exp

(
− t

τb

)
H(t) ≡ αb exp (−tβb)H(t)

χi(t) =
εs,i − ε∞,i

τi

exp

(
− t

τi

)
H(t) ≡ αi exp (−tβi)H(t)

In the case τb �= τi,

A(t) = a1χb(t) + a2χi(t) + a3χb(t)
t

τb
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where 


a1 =
ε∞,eff − ε∞,b

ε∞,b

− ε∞,eff − ε∞,b

ε∞,i − ε∞,b

(
1 +

εs,i − ε∞,i

ε∞,b

τb

τi − τb

)

a2 =
ε∞,eff − ε∞,b

ε∞,i − ε∞,b

(
1 +

εs,b − ε∞,b

ε∞,b

τi

τi − τb

)

a3 = −(ε∞,eff − ε∞,b)(εs,b − ε∞,b)

ε∞,b(ε∞,i − ε∞,b)

and

Bres(t) = −χ+(t) − χ−(t) ≡ −α+ exp (−β+t)H(t) − α− exp (−β−t)H(t)

where


2β± = fiαi + βi + fbαb + βb ±
√

(fiαi − βi + fbαb + βb)
2 + 4fiαi (βi − βb)

α± =
βi − βb

(β∓−βb)
(β±−βb)

− (β∓−βi)
(β±−βi)

Using (5.14) gives the explicit expression for the effective susceptibility kernel:

χeff(t) = c1χb(t) + c2χi(t) + c3χ+(t) + c4χ−(t) + c5χb(t)
t

τb

where the coefficients


c1 = 1 + a1

(
1 − α+

β+ − βb

− α−

β− − βb

)
+ a3

(
α+βb

(β+ − βb)2
+

α−βb

(β− − βb)2

)

c2 = a2

(
1 − α+

β+ − βi

− α−

β− − βi

)

c3 = −ε∞,eff + ε∞,b − a1
αb

βb − β+

− a2
αi

βi − β+

− a3
αbβb

(β+ − βb)2

c4 = −ε∞,eff + ε∞,b − a1
αb

βb − β−
− a2

αi

βi − β−
− a3

αbβb

(β− − βb)2

c5 = a3

(
1 − α+

β+ − βb

− α−

β− − βb

)

are real and dimensionless. Consequently, χeff(t) is a linear combination of four
Debye kernels and one modified Debye kernel. It can be shown that

min (βi, βb) < β− < max (βi, βb) < β+, α± > 0

This implies that the relaxation time τ+ = 1/β+ is less than both the relaxation
times τi and τb, whereas τ− = 1/β− assumes a value between τi and τb.

Numerical results for a Debye–in–Debye medium (ethanol and water, 20-80%
and 80-20%) using equation (5.14) are displayed in Figure 7. The figure shows
that although the mixture curves resemble in form the Debye-kernels of water and
ethanol, they are not exactly exponentially decaying. The differences correspond
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Figure 7: The susceptibility kernels for water, ethanol, ethanol–in–water mixture
(20% ethanol), and water–in–ethanol mixture (80% ethanol).

to the bends of the Cole–Cole curves that were observed in Figures 5 and 6. It is
worth observing from the curves that as far as the early-time responses (t small) are
concerned, both mixtures resemble water which can be seen from the quick decay of
the kernel. This is different from the stable early-time response of ethanol. Another
interesting detail of Figure 7 is the fact that the water–in–ethanol mixture has a
slightly stronger memory for times after 40 ps compared to both water and ethanol,
although the difference is very small.

6 Discussion and conclusions

The foregoing analysis has hopefully cast light upon the two different approaches of
the homogenization problem of mixtures. The classical treatment of permittivities
as frequency-dependent quantities takes the plain static Maxwell Garnett rule and
allows the parameters to vary with frequency. With this approach it is easy to
calculate the frequency behavior of the macroscopic permittivity of a mixture.

However, if one desires to find out the temporal behavior of the susceptibility
kernel of a mixture, the frequency domain approach does not always work directly.
It is true, as was shown in Section 5, that for certain dispersion models for the
inclusion permittivity the mixture permittivity can also be observed to follow a
known model which then allows one to identify the susceptibility kernel in the time
domain. But in the general case one needs to perform a Fourier inversion of the
mixture permittivity εeff(ω) to find out the kernel.

A direct time domain approach that has been developed in the present paper
expresses the effective permittivity of a mixture as an operator-form Maxwell Gar-
nett expression which includes the susceptibility kernels and optical responses of the
component materials. The evaluation of the effective permittivity operator requires
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calculation of convolutions and operator inverses. The inverse of the convolution op-
erators encountered in these problems can be solved from Volterra equations of the
second kind which have unique and well-behaving solutions. The advantage of the
time domain formulation is that the results are closer to physics than the frequency
domain results. As the example with alcohol–water mixture showed, the features of
the time domain result (Figure 7) were easier to interpret than the characteristics
of Figures 5 and 6.

In terms of geometry of the mixture, the present analysis is limited to the sim-
plest case where the inclusions are spherical. The ellipsoidal form is another one
suited for straightforward polarizability analysis because the internal static field in
ellipsoids, too, is also uniform. Then the effective permittivity functions contain the
depolarization factors of the ellipsoids [14]. The depolarization factors have accord-
ingly an effect on the manner how the dispersion characteristics of the mixture differ
from those of the inclusions and the background. Indeed, the frequency dependence
of a mixture permittivity could be used as an indicator of the microstructure of het-
erogeneous media that contain strongly dispersive components. An example could
be wet snow where the frequency dependence of liquid water determines the disper-
sion of snow permittivity. The pendular–funicular transition in wet snow around a
few per cent wetness point is an experimentally known fact [7], and this transition
certainly has a connection to the shape the water droplets occupy in the lattice of
ice grains.

One has to remember the quasi-static limitation when making use of mixing rules.
The analysis of the present paper assumed that the internal field of an inclusion is
spatially uniform. This means that the inclusions have to be small compared to
the distance which electromagnetic wave propagates during a time constant of the
temporal variation of the applied field. One has also to be careful with conducting
materials for which the field amplitude suffers a decay inwards from the inclusion
surface. It is important to check that the penetration depth is greater or at least
of the order of the sphere diameter. As an example take the case of clouds as a
water-droplet mixture which was analyzed in Section 5.1.1. The penetration depth

is c/
[
ωIm

√
ε(ω)

]
, which is around 600µm at the frequency of 30 GHz, and around

200 µm at 300 GHz. These figures assure that certainly all field inhomogeneities
caused by finite penetration depth can be ignored for those droplet sizes that can
be present in fog and clouds.
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Appendix A Inverse operator and resolvent

The calculation of an inverse for convolution operators makes use of the so-called
resolvent operator. Consider first a permittivity-type operator of the form ε = 1+χ∗
where we first assume for simplicity the optical response to be one. The inverse to
this operator contains the resolvent operator which is also an integral operator:

ε−1 = (1 + χ∗)−1 ≡ 1 + χres∗ = (δ + χres) ∗

This operator satisfies ε−1ε = εε−1 = 1.
The resolvent kernel of χ(t) is denoted by χres(t) and satisfies the linear Volterra

integral equation of the second kind

χres(t) + χ(t) + (χres ∗ χ)(t) = 0

This equation has a unique solution in the space of bounded and smooth functions in
each bounded time-interval 0 < t < T , see, e.g., [12, p. 33]. Explicitly, the resolvent
kernel can be represented by the function series10

χres(t) =
∞∑

k=1

(−1)k
(
(χ∗)k−1χ

)
(t)

The resolvent kernel vanishes for t < 0 and has a finite jump-discontinuity at t = 0
if and only if χ(t) has such a discontinuity: χres(0+) = −χ(0+).

In the mixing calculations we need inverses of operators where the optical re-
sponse is different than one, see, e.g., (3.4). A similar deconvolution procedure gives
us the inverse: let the inverse of an operator a + A∗ be written as b + B∗, where a
and b are nonzero constants. Then we have

ab + [aB + bA + A ∗ B]∗ = 1 = δ∗

which means that b = 1/a and the unknown kernel B(t) can be solved from the
resolvent equation

aB(t) + bA(t) + (A ∗ B)(t) = 0

This is again a Volterra equation of the second kind for B, which is a well-behaving
problem numerically.
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