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PROPAGATION INSIDE A BIANISOTROPIC WAVEGUIDE
AS AN EVOLUTION PROBLEM

A. D. IOANNIDIS, G. KRISTENSSON AND D. SJOBERG

ABSTRACT

The free source Maxwell system for the bianisotropic medium, in a fixed frequency
w > 0 and with time convention e !, is represented by the equation
(0.1) V x Je = iwMe

where e := (E, H)T is the electromagnetic (E/M) field; it is defined in a domain
Q2 c R?, depend on w and take values in C®. We denote
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characterizes the medium inside € and its entries are complex functions of the
frequency w and the position r € €). The Gauss law implies that

(0.2) V-Me=0

Assume that the boundary I' := 0f2 is smooth enough; usually Lipschitz is sufficient
for most of the applications. Let n be the exterior normal to I'. For a wide class
of boundaries, metallic for example, the perfect electric conductor (PEC) boundary
condition for the electric field, n x E =0 on I', applies.

Let now A = (A,, 4,, A,)" be a vector field in €2; it can be represented as A =
(A, AZ)T where A := A,x + A,y is the transverse and A, the longitudinal part.
It is easily seen that the curl operator reads
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where

The matrix
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and V| = 0,x + 9,y is the formal transverse gradient.
An infinite waveguide is a cylinder
O=0Q 1 X R

where Q, C IR? is a domain with I';. Observe that the wall of the waveguide is
I' =T, x IR and n coincides with its transverse part and is the exterior normal
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to 'y, whereas 7 := W is the tangent vector. The PEC boundary condition now
reads
(0.4) 7-E, =0 , E,=0onl

The fact that the longitudinal variable z runs IR allows us to formulate the
Maxwell system as an evolution equation with respect to this variable. Indeed,

letting
¢i= {mo- W WOVL}
the Maxwell system is written
0.Ve = (Ap + iwM)e
where V := z x J and Ay := CJ. Define now a Hilbert space X of functions of the
transverse variables and consider the E/M field e as vector—valued a function
e:Roz—e(,,2)eX
Then Ay can be realized as an unbounded operator in X and the PEC conditions

are incorporated in the domain of Ag. Actually, if we separate u € X into “electric”
and “magnetic” part
u(i
u=: ,
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The first step is to prove that Ag is the generator of a strongly continuous group
in X. The second is to realize Maxwell system as a perturbed abstract degenerate
evolution problem

(0.6) Ve'(z) = (Ao + iwM(w))e(z2)

and apply relevant perturbation arguments in order to establish well-posedness. The
research presented here implements exactly this program.

then Ag is given explicitly by

(0.5) Agu =
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