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PRACTICAL ASPECTS ON DIGITAL IMPLEMENTATION
OF CONTROL LAWS

K.J. Astrdm

Department of Automatic Control
Lund Institute of Techhology
Box 7255 220 07 Lund 7
Sweden

SUMMARY

Practical problems associated with digital computer implementation control laws are
discussed. The key problem is to convert a digital control law in state space or
polyhnomial form into a computer program which gives the desired results. The paper
covers: sensor and actuator interfacess analog prefilterings actuator saturations
anti-windups numerics and coding.

1. INTRODUCTION

This paper deals with practical aspects on implementation of digital control laws.
The starting point is a description of a control algorithm in terms of a linear dynamical
system either in state space form or in transfer function form. A summary of these form
is given in Section 2. Analog pyrefiltering is a necessity when realising digital control
laws. This is discussed in Section 3. The consequences of the dynamics of the prefilters
and of the computational delay is also covered in this Section. Although many control
laws can be designed using linear theory it is necessary to take nonlinearities into
account in the implementation. The special case of actuator saturation which is very
common is discussed in Section 4. Consequences of roundoff and finite word-length in the
calculations are discussed in Section é. A more detailed treatment of the topics of this
paper is given in [11.

2. DIFFERENT REPRESENTATIONS OF THE REGULATOR

Linear design methods give control laws in the form of linearv dynamical system. Such
systems can be represented in many different ways.

State feedback _with_an explicit observer

Pole placement or LEG design result in a control law of the forwm

A A A
r x(klk) = x(k|k—-1) + Ky(k) — y(k|k=131
A
u k) = LIx (k) — x(k}jk)1 + D u (k)
m ec
A A . .
{ xCk+1|k) = Ax(k]k) + Bud(k) €17
x (k+1) = £(x (k)s u (k).
m m c
A A
{ y(k+1|k> = Cx(k+1i|k>
A
where ¥ is an estimate of the process state and x is the state of the model which

n

generates the desired response to command signals u . Notice that a nonlinear model for
)

the desired state may be used in this representation.

If the function £ in (1) is linear the regulator given by (1) is a linear system
with the inputs y and u and the output u. Such a regulator may always be repressnted as

[mg
Utk) = Cx(k) + Dy(k) + D u (k)
c o
XCk+1) = Fx(k) + Gulk) + G u CKk). ‘2
c o

This form is more compact thanm (1). The state mays howevers not necessarily have a simple
physical interpretation.
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Several design methods result in a description of the regulator in terms of a linear
transfer function model. The general form of such a wmodel can be written as

R{g? utk) = Tlg) u (k) —~ S(g) y(k)y 3D
c
where R(g)s 8(g) and T(q) are polynomials in the forward shift operator g.

There are simple transformations between the different representations of the
regulataors.

The implementation of a discrete time system described by (2.1 (2.2) or (2.3)
using a digital computer is straightforward. The computer code for implementation of the
regulator given by equation (2.2) is:

Procedure Regulate

begin
1 Adin vy ue
2 u = C#x + D¥y + Do # uc
3 X i= F#x + G#y + Go # uc
a Daout u

and

Analog to digital conversion is commanded in the first line. The appropriate values
are stored in the arrays y and uc. The control signal u is computed in the second line
using matrix vector wmultiplication and vector addition. The state vector x is updated in
the third lines and the digital to analog conversion is performed on line four. To abtain
a complete code it is also necessary to have type declarations far the wvectors us ucs o
and y and the matrices Fy Gy Gos Cy D and De. It is also necessary to assign values to
the matrices and the initial value for the state x. When using computer languages which
do not have matrix operations it is necessary to write appropriate procaedures for
generating matrix operations using operations on scalars.

The details depend on the hardware and software available. To show the principles it
is assumed that the system described by (2) should be implemented using a digital
computer with A-D and D-A converters and a real time clock. The execution of the program
is controlled by the clock. which initiates the execution of the code at each clock
interrupt. The sampling period is thus determined by the time betwean the clock pulses.

It is thus straight forward to implement a digital control law. To eobtain a good
control system it is however necessary to also considers numericsy sensorss actuatorss
operational aspects and programming aspects. These will be discussed in the following
sections.

%. PREFILTERING AND COMPUTATIONAL DELAY
To obtain a satisfactory digital system it is necessary to filter the analog signals

before they are sampled. It is also necessary to consider the dyhamics caused by the
prefilter and the computational delay.

Analog_prefiltering

To avoid aliasing it is necessary to use an analog prefilter for elimination of
disturbances with frequencies higher than the Nyguist frequency associated with the
sampling rate. In signal processing applications the analog prefilter is determined
frequency content of the signals see [2] and [31. In a contral problem theve is novmally
much move information available about the signals in terms of differential equations for
the process models and possibly also for the disturbances. An analog Kalman filter would
be a very good prefilters because it can be based on a detailed description of the
signal. There are several advantages in implementing the Kalman filter in a computer. In
such a case it is useful to sample the analog signals at a cowparatively high rate and to
avoid aliasing by an ardinary analeog prefilter designed from the signal processing point
of view.

The bandwidth MB of the prefilter is inversely proportional to the sampling period
h. A comnon rule of thumb is to choose the sampling period so that mBh ¥ 0.5 - 1.
The precise choice depends on the order of the filter and on the character of the

measured signal. The dynamics of the prefilter should be taken into account when
designing the systen.



9-3

If the sampling rate is changed the prefilter must also be changed. With reasonable
component values it is possible to construct analog prefilters for sampling periods
shorter than a few seconds. For slower sampling rates it is often simpler to sample once
pev second or faster with an appropriate analog prefilter and apply digital filtering to
the sampled signal. This approach also makes it possible to change the sampling period of
the control calculations by software only.

Since the analog prefilter has dynamies it is necessary to include the filter
dynamics in the process model. If the prefilter or the sampling rate is changed it is
necessary to recompute the coefficients of the control law.

Crude estimates indicate that with normal sampling ratess like 10-20 times per
periody it is indeed necessary to consider the prefilter dynamics.

Since A-D and D-A conversions and computations take times there will always be a
delay when a control law is implemented using a computer. The delays which is called the
computational delays will depend on how the control algovithm is implemented. There are

basically two different ways to do this. The measured variables read at time tk may be

used to compute the control sigral to be applied at time tk n This is called case A.
(+

Another possibilitys case By is to read the measured variables at time tk and to make the

D-A conversion as soon as possible.

The first scheme has the disadvantage that the control actions are delayed
unnecessarily and second scheme has the disadvantage that the delay will be variable
depending upon the programming. In both cases it is necessavry to take the computational
delay into account when computing the caontrol law. This is easily done by including a
time delay of h or t respectively in the process model. Another practical detail is that
there is a good rule to read the inputs before the outputs are set out. If this is not
done there is always the risk of electrical cross coupling.

The computational delay can be made as small as possible by making as few operations
as possible between the A-D and D-A conversions.

Consider the previously given program. Since the control sigrnal u is available after
executing the sescond line of code the D-A conversion can be done before the state is
updated. The delay may be reduced further by also calculating the product C#x after the
D-A conversion. The following algorithm is then obtained.

Procedure Regulate

begin
Adin vy uc
u i= ul + D#y + Doxuec
Daout u
® B= F#x + G#y + Gokuc
ul = C#x

end

LR

It is useful to have good estimates of computing times for different control
algorithms. A good way to obtain these is to run test programs. For linear control laws
it is often possible to estimate times from results of a scalar product computation.

On simple microcomputers, which do not have floating point arvithmetic in hardwares
there will be a substantial difference in computing time between fixed point and floating
point operations. The difference is much less if there is hardware for floating point
operations.

To judge the consequences of computational delays it is also useful to know the
sensitivity of the closed loop system with respect to a time delay. This may be evaluated
from a root locus with respect to a time delay. A simpler way is to evaluate how much the
closed loop poles change when a time delay of one sampling period is intvroduced.

Linsar filtering theory is very useful to reduce the influence of measurement noise.
There mays howevers also be other types of errors like instrument malfunctions and
conversion ervors. These are typically characterized by large deviations which occur with
low probabilities. It iss of courses very important to try to eliminate such errors so
that large errors do not enter into the control law calculations. There are many good
ways to achieve this when using computer control.

The ervrors may be detected at the source. In systems with high reliability
requirements this is done by duplication of the sensors. Two sensors are then combined
with a simple logicy which gives an alavam if the difference between the sensor signals is
larger than a threshold. A pair of redundant sensors may be regarded as one sensors which
either gives a reliable wmeasurement ovr a signal that it does not work.
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In mare extreme cases three sensors may be used. A measurement is then accepted as
long as two out of the three sensors agree (two~out-of-three logic), It is of course also
possible to use even more elaborate combinations of sensors and filters.

it is also possible to use a Kalman filter for evror detection. Consider for example
the control algorithwm (1) with an explicit observer. The one step prediction evrror

A A
(k) = y(k) — y(k]k=1> = y(k) - Cx(k[k=1)

appears explicitly in the algorithm. 1§ estimates of the covariance matrix of the
prediction error are available it is easy to test if a particular measurement is
reasonabley see [4].

One possibility to obtain the evror covariance is to update the covariance equation
of the Kalman filteér on line.

Kalman filters and redundant sensors pairs may also be combined. 1f measurement
errors are checked in this way it is possible to obtain a very flexible system. The
scheme should be augmented with tests to ensure observability. It is thus possible to
obtain a system which can provide diagnosis of sensor ervors.

Notice that the possibilities of making these types of test depend crucially on the
fact that the representation of the control law (1) with an explicit observer is used.

In computer control there are also may other passibilities to detect different types
of hardware and software errors. 8 few extra channels in the A-D convertery which are
connected to fixed voltagess may be used for testing and calibration. By connecting a D-A
chanhel to an A-D channel the D-A converter may also be tested and calibrated. The
computer may be checked by performing caloculations calculations whose results are known
and compare the results with the known values.

4, NONLINEAR ACTUATORS

Although linear theory has a wide applicability theve are often sowe nonlinearities
which must be taken into account. Actuators often have a saturation characteristics. This
nonlinearity may be important when large changes are made. There may be difficulties with
the control system during start up and shut down as well as during lavge changes if the
nonlinearities are not consideved.

The rational way to deal with the satuvration is to develop a design theory which
takes the nonlinearity into account. This can be done using optimal contvol theory. Such
a design wmethod iss howsvers quite complicated. The corrvesponding control law is also
complex. It is therefore practical to use simple heuristic methods.

The reason for the difficulties is that the regulator is a dynamical system. When
the econtrol variable saturates it is hecessary to make sure that the state of the
regulator behaves properly. Different ways of achieving this are discussed below.

State space regulators _with_an explicit observer

) Consider first the case when the control law is described as an observer combined
with a state feedback (1). The regulator is thus a dynamical system whose state is

A
represented by the estimated state x in (1). In this case it is straightforward to ses
how the difficulties with the satuvration may be avoided.

The estimator (1) will give the correct estimate if the variable u in (1) is chosen
as the actual contrel variable up. If the variable u is measured the estimate given by
(13 and the state of the regulator are thus correct even if the control wvariable
saturates. If the actuator output is not measuvred it can be estimated provided that the
nonlinear chavacteristies is known. For the case of a simple saturation the control law
can thus be written as

A i . A . ) A A A
XCkjk=1) = xw(k]k=13+KLy(k)—Cx(k[k=-131 = [A - KCI xCk-1|k=-1) + Bu (k-1D
A A
u (k) = sat {LELx (k) — x(klk31 + u ¥
2] m ]
4 can
A A A
wik+1 k) AxCkiky + Bu (k)

A
L Ck+1 | k)

A A
Axi{kiksy p Bu (k3
P

H
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ulow u £ ulow
sat u = Ju ulow { u { uhigh

uhigh u 2 uhigh
for a scalar and

sat u
sat u

sat u = |.

for a vector. The values ulow and uhigh are chosen to correspond to the actuator
limitations. Notice that even if the transfer function from y to u for (1) is unstable
the state of the system (4) will always be bounded if the matrix A-KC is stable. It is

A
also clear that x will be a good estimate of the process state even if the value
saturates provided that ulow and uhigh are chosen properly.

The regulator may also be specified as a state space model of the form (2
XCk+13 = F x(k) + G y(k) 5

utCk?

"

C xtk) + D y(k) (&)

which does not include an explicit observer. The command signals have besen heglected
for simplicity. If the matrix F has eigenvalues outside the unit disec and the control
variable saturates it is clear that windup may occur. Assume for example that the output
is at its limit and there is a control error y. The state and the control signal will
then continue to grow although the influsnce on the process is restricted because of the
satuvration.

To avoid the difficulty it is desirvable to make sure that the state of (5) assumes
the proper value when the control variable saturates. In conventional process controllers
this is accomplished by introducing a special tracking_mode which makes sure that the

state of the system corresponds to the input output sequence {u (k) yik)}. The design of

a tracking mode may be formulated as an observer problem. In the case of state feedback
with an explicit observer the tracking is done automatically by providing the observer

A
with the actuator output u or its estimate u . In the regulator given by (5) and (&)
P R

there is no explicit observer. To get a regulator which avoids the windup problem the
solution for the regulator with an explicit obsevrver will be imitated. The control law is
First rewritten as indicated in Fig. 1. The systems in a) and b) have the same
input—output relation. The system SB is also stable. By introducing a saturation in the

feasdback loop in b) the state of the system SB is always bounded if y and u are bounded.

This argument may formally be expressed as follows. Multiply (43 by K and add to (5).
This gives

®Ck+1) = F x(k) + G y(k) + KLu(k) - C x(k> - D yCki]

it

EF-KC1 x (k) + L[G-KDly(k) + K u(kd

F x(k) + G y(k) + K u(k).
0 o]

o) )

Fig. 1 Different representations of the control law.
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If the system (S)s (6) is observable the wmatrix K can always be chosen so that F0 =

F - KC has prescribed eigenvalues inside the unit dise. Notice that this equation is
analogous to (4). Applying the same avrguments as for the regulator with an explicit
observer the control law becomes

®Ck+1D F)x(k) + 6 ylky + K udk)
L Q

73
utk’ = sat [Cx(k) + D y(kil.

The saturation function is chosen to correspond to the actual saturation in the
actuator. A comparison with the case of an explicit observer shows that (7) corresponds
to an observer with dynamics given by the matvix F_. The system (7) is of course also

. o]

equivalent to (23 for small signals.

Transfer_Function Form

The corrvesponding constructions can also be carried out for regulators characterized
by input-output models. Consider a regulator described by

Rigd utk) = Tiqg) u (k) — 8(g) y(k €2
[

where Ry 8§ and T are polynomials in the shift operator. The problem is to rewrite

the equation so that it looks like a dyrnamical system with the observer dyhamics driven

by three inputsy the command signal u s the process output y and the control signal u.
o

This is accomplished as follows.

Let A (g be the desired characteristic polynomial of the observer. Adding A (giulk)
o =]

to both sides of (8) gives

Au=Tu — 8y + (A - R) u
o (= o

A regulator with anti-windup compensation is then given by

Av =Tu - 8y + (A - R) u
o c o
()]

sat v.

B

5]

This regulator is equivalent to (8) when it does not saturate. When the control
variable saturates it can be interpreted as an observer with dynamics given by the
polynomial A .

o
*
A particularly simple case is the case of a dead beat observer i.e. AO = 1. The
model can then be written as
. ®#, =1 # =1 . * =1 .
utk) = sat [T (g 3 u (k) — 8§ (g ) y(k) + (1-R (g ) ulkdl €10}

S. NUMERICS

When implementing a cowmputer control system it is necessary to answer guestions
like: How accurate converters are needed? What precision is requived in the computations?
Should computations be made in fixed point or floating point arithmetic? To answer these
questions it is necessary to understand the effects of the limitations and to estimate
their consequences for the closed loop system. This is not a trivial question: because
the result will depend on a complex intervraction of the feedbacks: the algovrithwm and the
gsanpling rate. The real issues fortunately involves ecrude guestions like 10 or 12 bit
resolutiony 24 or 32 bit wordlength. Such gquestions may be answered using simplified
analysis. A detailed treatwent is given in [31.

Error_sources

The major erraor sources are

- Quantization in A~D converters.

Guantization of parameters.

Round—-offs overflows and underflow in addition: subtractiony multiplications
divisions function evaluation and other operations.
Guantization in D—-A converters.
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Common types of A-D converters have accuracies of B8y 10y 12 and 14 bits which
corresponds to a resolution of 0.4 %y 0.1 %y 0.025 % and 0,006 %. The percentages are in
relation to full scale. The D-A converters have also a limited precision. An accuracy of
10 bits 1is typical. The error due to the quantization of the parameters will depend
critically on the sampling period and on the chosen realization of the control law.

Digital control algorithms are typically implemented on wmicro and wminicomputers
which have word-lengths of 8. 16 or 32 bits. Special purpose computers where - the
word-length may be chosen freely are used in applications like the space shuttle or in
special products which are made in very large guantities. :

There are many differences in number representations. The following representations
are common.

- Fixed point single precision 16 bit

- Fixed point double precision 32 bit

— Floating point single precision 8 bit exponent 24 bit wmantissa

~- Floating point single precision 8 bit exponent 54 bit mantissa

A key problem is that floating point operations are neither associative nor
distributive.

An overview of the effects of round-off and quantization will now be given. Tools
for analysing the effects will also be discussed.

The consequences of round-off and quantization depend on the feedback system and on
the details of the algorvithm. The properties may be influenced considerably by changing
the representation of the cantvrol law or the details of the algorithm. It is thus
important to understand the phenomena.

A detailed description of round-off and quantization leads +to a complicated
nonlinear model which is very difficult to analyse. Investigation of very simple cases
showss howevers that quantization and round—-off way lead to limit cycle oscillations: see
L6 and [7].

Some properties of guantization and round-off in a feedback system wmay also be
captured by linear analysis. Guantization and round—-off arve then modeled as ideal
operations with additive or wmultiplicative disturbances. The disturbance may be either
deterministic or stochastic. This type of analysis is particularly useful for order of
magnitude estimation. It allows investigation of complex systems and it is useful when
comparing different algorithmsy see [8]1 and [21.

Taechniques from sensitivity analysis and nuwmerical analysis are also useful to find
the sensitivity of algorithms to changes of parameters. Such methods wmay be used to
compare and screen different algorithms. The methods ares howevers limited to comparison
of the open-loop performances of the algorithms. It is of course also necessary to
compare the effects of quantization and round-off with the other disturbances in the
system.

Different_realizations

A control law is a dynamical system. Different realizations may be obtained by
transforming the state space coordinates. The choice of a suitable realization is very
important for the conditioning. In particular the cowpanion forms arve very bad from a
nhumerical point of views see [10]1. It is much better to represent a system as a
combination of first and second order systems.

If the dynamical system representing the rvegulator has nr distinect real poles and no
complex pole pairs the control algorithm may be transformed to the model form

fz (k+ld) = A z (k) + B y(k) i=1r.uertir
i ii i
o, w, Y
i .
v (k+1) = v (k) + yiky i = 1ls...9nC (112
i —u o4 i Y
i i iz
nr ne T
utk) = Dy(k> + I y = (k) + I & v (k)
iid i i
. i=1 i=1
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whare the complex poles are represented using real variables. Notice that =z are
i

scalars and vi are vectors with two =2lements.

To avoid numerical difficulties the control law should thus be transformed into the
farm (&.4) which is then implemented in the control computer. The transformation may
easily be done in a package for computer aided design. Notice that it is easy to use
fixed point calculations and scaling for equations in the form (&.4).

If the control law has wultiple eigenvalues a Jordan canonical form replaces (4.4).
An eigenvalue A of multiplicity 3 thus corrvesponds to a block

A1 0 I} 1
zik+1)» = {0 A 1 z(k) + Bﬂ yik).
0 0 A g~

Effects of_the_sampling period

The sampling period also has a considerable influence on the conditioning as is
shown by the following examples.

EXAMPLE - Effect of sawmpling period on coefficient precision

Consider a first order system with time constant T. The discrete time equivalent of such
a system is

X{t+h) = ax(t) + bultl)s
where

~h/T
= e .

Simple calculations show that

ar . _ T da

T h a

Far a given relative precision in the equivalent time constant is thus inverse
proportional to the sampling period.

&.  CONCLUSIONS

Implementation of control laws using a computer have been discussed in this paper.
The key problem is to iwmplement a discrete time systew. The principles for doing this
have been covered in detail. It was shown that it is straightforward to obtain the code
from the control algorithm. The importance of prefiltering to avoid aliasing has been
mentioned. Nonlinear digital filtering for rewmoving outliers has also been discussed. It
has been mentioned that the computational delay is influenced considerably by the
organization of the computer code. Difficulties which arise from saturation in actuators
and ways to avoid the difficulties have been discussed. This will also automatically give
a solution to mode switching and initialization. Numerical problems and consequences of
finite word-length have also been discussed. It was found to be very beneficial to
transfarm the equations describing the control law to a form which is humerically well
conditioned. Although the presentation is kept fairly brief the information given should
be sufficient to implement control algorithms on wini and wmicro computers using high
level languages.
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