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Abstract

Electric and magnetic currents are essential to describe electromagnetic stored

energy, as well as the associated quantities of antenna Q and the partial di-

rectivity to antenna Q-ratio, D/Q, for general structures. The upper bound

of previous D/Q-results for antennas modeled by electric currents is accu-

rate enough to be predictive, this motivates us here to extend the analysis

to include magnetic currents. In the present paper we investigate antenna

Q bounds and D/Q-bounds for the combination of electric- and magnetic-

currents, in the limit of electrically small antennas. This investigation is both

analytical and numerical, and we illustrate how the bounds depend on the

shape of the antenna. We show that the antenna Q can be associated with the

largest eigenvalue of certain combinations of the electric and magnetic polariz-

ability tensors. The results are a fully compatible extension of the electric only

currents, which come as a special case. The here proposed method for antenna

Q provides the minimum Q-value, and it also yields families of minimizers for

optimal electric and magnetic currents that can lend insight into the antenna

design.

1 Introduction

Time harmonic electromagnetic radiating systems do not in general have a �nite
total energy associated with them. This is well known since the radiated electric
and magnetic �elds decay as r−1 and the corresponding energy density hence decay
as r−2, which is not an integrable quantity for exterior unbounded regions. This non-
integrability di�ers from the singularities of the electromagnetic energy for charged
particles, see e.g., [14, 69], where the challenge is the �nite mass of particles in
coupling Maxwell's equation to the dynamics of the charged particles.

To consistently extract a �nite stored energy from the energy densities associ-
ated with classical time-harmonic energy has been investigated in [10, 11, 18, 32, 58,
62, 68]. These stored energies have been based on spherical (and spheroidal) modes,
circuit equivalents and on the input impedance for small antennas. In 2010 Vanden-
bosh [63] proposed a current-density approach to stored energies also applicable to
larger antennas. This approach has generated new interest in electromagnetic stored
energy that is explored in [8, 24, 27, 28, 64, 65]. This `stored energy' is similar to the
results of Collin and Rothschild [11] and it also has similarities with the stored ener-
gies proposed in [9, 20]. The generalization in [66] and in the present paper includes
electric and magnetic current-densities for arbitrary shapes. Antennas embedded in
lossy or dispersive material has been considered in [29].

The drive to �nd a well-de�ned stored energy stems partly from that it is closely
related to the antenna quality factor Q. Lower bounds on antenna Q is directly
related to the electric size of the antenna, and indirectly to the maximal matching
bandwidth that can be obtained. The relation between antenna Q and bandwidth
is not trivial, for a discussion and examples see e.g., [22, 23, 28, 68]. An alternative
method to derive bandwidth bounds is sum-rules, see e.g., [15, 25, 37, 40, 52, 68].
The approach given here, is related to [25, 27, 28, 66, 68]. In the present paper, we
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show how the electric and magnetic polarizabilities [42, 54, 55] are directly related
to lower bounds on antenna Q for small antennas. The investigation is based on the
asymptotic behavior of stored energy in the electrically small case for both electric
and magnetic currents. This result is an extension of the stored energies in [63] and
their connection to both antenna Q and partial directivity over antenna Q. That
scattering properties are related to the polarizabilities are known, see e.g. [5, 60],
but that polarizability tensors appear directly as the essential factor in antenna
Q-estimates is a recent result [25, 38, 66, 67].

The current-representation approach to stored energy enables the maximal par-
tial directivity over antenna Q problem to be reduced to a convex optimization
problem [24]. It also enables us to consider fundamental limitations for arbitrary
geometries. Convex optimization problems are e�ciently solvable [7]. From a user
perspective it can be compared with solving a matrix equation. To numerically �nd
the physical bounds on antenna Q or partial directivity over antenna Q, D/Q is
here reduced to tractable problems, solvable with common electromagnetic tools.
In the present paper we illustrate how this can be applied to a range of shapes,
both numerically and analytically. The here considered minimization problems in-
vestigate how di�erent current and charge density combinations yield di�erent lower
bounds on antenna Q. For the electrical dipole problem we show that the minimiz-
ing currents result in Q and D/Q that agree with [25, 62, 67]. For the case of a
generalized electric dipole with both electric charges and magnetic current-densities
as sources our result agrees with the sphere in [10]. When we allow dual-modes,
i.e., both electrically and magnetically radiation dipoles, we �nd that the result
agree with [38, 66]. The framework here easily account for all these di�erent cases
with a generic approach. Another result of our method is that we can show that
small antennas have a family of current-densities that realize the associated optimal
antenna Q for a given shape [27].

The present paper is based on the stored energies for both electric and magnetic
current densities [38]. Another approach to these energies and associated bounds
are given in [66]. We investigate the small antenna limit and illustrate how antenna
Q and related optimization problems behave for electric and magnetic currents for
a range of antenna shapes. These results are based on the leading order terms
of the stored energies as the electric size of the domain approach zero. One of the
advantages here is that the bounds on Q and D/Q are known once the polarizability
tensors are determined for a given shape. We use this knowledge to sweep shape-
parameters to illustrate how Q andD/Q depend on the shape of antenna. Analytical
expressions for the electrically small case provide physical insight into limiting factors
for Q and D/Q. These more general results are shown to reduce to the analytically
known cases in [26, 66, 67].

In Section 2, we recall the de�nitions of key antenna and energy quantities.
Using an asymptotic expansion of the electric and magnetic currents in Section 3 we
give the explicit leading order current-density representation of the radiated power,
stored energies, and the radiation intensities. Analytical and numerical examples for
antenna Q and D/Q under di�erent constraints are given in Section 4. In Section 5,
we formulate the problem as a convex optimization problem, and determine Q for
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Je,Jm, ρe, ρm

a
n̂

V
∂V

Figure 1: The �gure illustrates the joint support, V , of the current densities,
enclosed within a sphere of radius a, and with a normal n̂ at the boundary ∂V of
V .

some shapes. Conclusions and appendices end the paper.

2 Antenna Q and partial directivity

Let V ⊂ R3 be the joint bounded support of the electric and magnetic current
densities Je and Jm respectively, see Figure 1. The support V is here assumed to be
bounded and connected. Through the continuity equations we de�ne the associated
electric and magnetic charge densities ρe and ρm. The time-harmonic Maxwell's
equations with electric and magnetic current densities in free-space take the form

∇×E + jηkH = −Jm, ∇ ·E =
ρe

ε
=
−η
jk
∇ · Je, (2.1)

∇×H − jk

η
E = Je, ∇ ·H =

ρm

µ
=
−1

jkη
∇ · Jm, (2.2)

where we use the time convention ejωt, which is suppressed. In this paper, we let
ε = ε0, µ = µ0 and η = η0 =

√
µ/ε be the free space permittivity, permeability and

impedance, respectively. E is the electric �eld and H is the magnetic �eld. The
dispersion relation between the wave number, k, and the angular frequency, ω, is
k = ω

√
εµ and t is time.

The �eld energy densities are ε|E|2/4 and µ|H|2/4. Here we are interested in
stored electric We and magnetic Wm energies, which are more challenging to de�ne.
We follow the de�nition of [11, 16, 20, 22, 28, 63, 68] and de�ne the stored electric and
magnetic energies as

We =
ε

4

∫
R3
r

|E(r)|2 − |FE(r̂)|2
r2

dV, Wm =
µ

4

∫
R3
r

|H(r)|2 − |FH(r̂)|2
r2

dV, (2.3)

where FE,FH are the far-�elds, i.e., E → FE
e−jkr

r
as r → ∞ and ηFH = r̂ × FE.

Let r denote a vector in R3, with length r = |r| and corresponding unit vector
r̂ = r/r. Here

∫
R3
r
is an abbreviation of the limit limr0→∞

∫
|r|<r0 . Note that the



4

expressions (2.3) can for certain antennas become coordinate dependent, and for
large structures (2.3) may become negative [27], these artifacts do not appear in the
small electrical limit, as shown later in this paper as all obtained minimal antenna
Q are non-negative, see e.g., Section 4.

Given these stored energies, we de�ne the two main antenna parameters that
appear in the physical bounds. The antenna quality factor: Q = max(Qe, Qm, 0)
where

Qe =
2ωWe

Prad

, and Qm =
2ωWm

Prad

. (2.4)

Here, Prad is the radiated power of the system described by (2.1)-(2.2). De�ned as

Prad =
1

2η

∫
Ω

|FE(r̂)|2 dΩ, (2.5)

where Ω is the unit sphere in R3.
The partial directivity D(k̂, ê) in the direction k̂ from an antenna with polar-

ization ê, is [3]

D(k̂, ê) = 4π
P (k̂, ê)

Prad

, (2.6)

where P (k̂, ê) is the partial radiation intensity |ê · FE|2/(2η). The other main
antenna parameter here is the partial directivity over antenna Q, D/Q, which with
the above notation is

D(k̂, ê)

Q
=

2πP (k̂, ê)

ωmax(We,Wm, 0)
. (2.7)

The goal here is to optimize and investigate Q and D/Q in terms of the electric
and magnetic current densities, in the small antenna limit. We hence express these
quantities in terms of the current densities, see A. While these calculations are
straight forward, they are also rather lengthy, see e.g., [63] for a similar e�ort, see
also [38, 39]. Substantial simpli�cation is obtained in these derivations for the case
of electrically small antennas which is illustrated in the next section. The leading
order term of the stored energies, for small k is given by

We =
µ

4k
Im
[
〈Je,LeJe〉+

1

η2
〈Jm,LmJm〉

]
+O(k) (2.8)

and

Wm =
µ

4k
Im
[
〈Je,LmJe〉+

1

η2
〈Jm,LmJm〉

]
+O(k). (2.9)

Note that these stored energies are symmetric in the current densities and a natural
extension of the electric only current-case, Jm = 0. Above we use the ordo notation
O(k) to indicate that the next order term is bounded by Ck, for some constant C
as k → 0. The associated operators in (2.8) and (2.9) are

〈J ,LeJ〉 =
−1

jk

∫
V

∫
V

∇1 · J(r1)∇2 · J∗(r2)G(r1 − r2) dV1 dV2, (2.10)

〈J ,LmJ〉 = jk

∫
V

∫
V

J(r1) · J∗(r2)G(r1 − r2) dV1 dV2. (2.11)
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The operators are similar to the Electric Field Integral Equation, EFIE, operators
L = Le−Lm, when the currents are on a surface of an object, and for such currents
there is a range of implementations in the standard method-of-moment codes. Here
and below we occasionally use the notation `current', in place of `current density',
to shorten the notation. The kernel G(r) is the Green's function, e−jkr/(4πr) and ∗
indicates the complex conjugate, see also Figure 1.

The radiation intensity, P (k̂) in the direction k̂, have a representation in terms
of the current densities [38]:

P (k̂) =
ηk2

32π2

[∣∣ ∫
V

(ê∗ · Je(r1) +
1

η
k̂ × ê∗ · Jm(r1))ejkr̂·r1 dV1

∣∣2+∣∣ ∫
V

(ĥ∗ · Je(r1) +
1

η
k̂ × ĥ∗ · Jm(r1))ejkr̂·r1 dV1

∣∣2] = P (k̂, ê) + P (k̂, ĥ), (2.12)

where we use that k̂, ê, ĥ is an orthogonal triplet with k̂× ê = ĥ. We recognize the
partial radiation intensity P (k̂, ê) for the polarization ê. For electric currents only,
i.e., Jm = 0, these expression agree with e.g., [27, 63].

To �nd the total radiated power Prad, in terms of its current-density representa-
tion we can integrate (2.12) over the unit sphere. A more direct route to Prad is based
on (2.5) and the observation that the electric far-�eld, FE, have the representation

FE(r̂) =
jηk

4π
r̂ ×

∫
V

[
r̂ × Je(r1) +

1

η
Jm(r1)

]
ejkr̂·r1 dV1. (2.13)

Somewhat lengthy calculations [38, 39] show that the corresponding quadratic form
in terms of the currents are

Prad =
η

2
Re〈Je,LJe〉+

1

2η
Re〈Jm,LJm〉 − Im〈Je,K1Jm〉, (2.14)

where K1 is the operator de�ned by

〈Je,K1Jm〉 =
k2

4π

∫
V

∫
V

J∗e (r1) · R̂× Jm(r2)j1(kR) dV1 dV2. (2.15)

Here R = r1 − r2, R = |R|, R̂ = R/R and jn(x) is the spherical Bessel function of
order n [1].

The small electrical size limit simplify the above energy and power related ex-
pressions We,Wm, P (k̂) and Prad and subsequently Q and D/Q. We utilize that the
radius, a, of the enclosing sphere, is electrically small, i.e., that ka is small enough
to motivate that we discard higher order terms. To expand the above quantities in
terms of small ka we assume that the currents have the asymptotic behavior:

Je = J (0)
e + kJ (1)

e +O(k2) with ∇ · J (0)
e = 0, (2.16)

Jm = J (0)
m + kJ (1)

m +O(k2) with ∇ · J (0)
m = 0. (2.17)

This assumption is consistent with the continuity equations for the electric and
magnetic current densities. Note that J

(0)
e , J

(0)
m , J

(1)
m and J

(1)
m are all k-independent

and the two latter correspond to a lowest order static charge through the continuity
equation.
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3 Electrically small volume approximation

We apply the small ka approximation and (2.16), (2.17) to the partial radiation
intensity and the far-�eld FE in the form of (2.13). We �rst note that∫

V

Jejkk̂·r dV =

∫
V

J (0) + kJ (1) + jk(k̂ · r)J (0) +O(k2) dV

= −jk

∫
V

jJ (1) +
1

2
k̂ × (r × J (0)) dV +O(k2), (3.1)

where we have used that [59, p432]:∫
V

J (n)
e,m dV =

{
0, n = 0,

−
∫
V
r∇ · J (n)

e,m dV, n 6= 0,
(3.2)

and [59, p433], [43, p127]∫
V

(k̂ · r)J (0)
e,m dV =

−1

2
k̂ ×

∫
V

r × J (0)
e,m dV, (3.3)

since ∇ · J (0)
e,m = 0. Here J

(n)
e,m, indicate that the expression is valid for J

(n)
e and

J
(n)
m , n = 0, 1. It follows that the partial radiation intensity (2.12), for a wave with

polarization ê and propagating in direction k̂ is P (k̂, ê) = P (0)(k̂, ê)+O(k5), where
P (0) reduces to

P (0)(k̂, ê) =
ηk4

32π2

∣∣ ∫
V

ê∗ · (jJ (1)
e +

1

2η
r× J (0)

m ) + k̂× ê∗ · ( j

η
J (1)

m −
1

2
r× J (0)

e ) dV
∣∣2

=
ηk4

32π2

∣∣ê∗ · πe + k̂ × ê∗ · πm

∣∣2. (3.4)

Here we used that the triplet k̂, ê∗, ĥ∗ forms an orthogonal basis system. The

πe =

∫
V

jJ (1)
e +

1

2η
r × J (0)

m dV and πm =

∫
V

j

η
J (1)

m −
1

2
r × J (0)

e dV (3.5)

terms are generalized dipole-moments that account for both the electric and mag-
netic dipole radiating �elds, respectively.

To �nd the total radiated power in (2.5) we start with inserting the expansion
(3.1) into the far-�eld (2.13) to �nd the small ka approximation of the far-�eld:

FE(k̂) =
ηk2

4π
k̂×

∫
V

k̂×(jJ (1)
e +

1

2η
r×J (0)

m )+(
j

η
J (1)

m −
1

2
r×J (0)

e ) dV +O(k3). (3.6)

We insert (3.6) into the expression for the total radiated power (2.5), to �nd that
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Prad = P
(0)
rad +O(k5) where

P
(0)
rad =

ηk4

32π2

∫
Ω

|πe|2 − |k̂ · πe|2 + |πm|2 − |k̂ · πm|2 − 2k̂ · Re(πm × π∗e ) dΩ

=
ηk4

12π
(|πe|2 + |πm|2)

=
ηk4

12π

{∣∣∣ ∫
V

jJ (1)
e +

1

2η
r × J (0)

m dV
∣∣∣2 +

∣∣∣ ∫
V

j

η
J (1)

m −
1

2
r × J (0)

e dV
∣∣∣2} = Pe + Pm.

(3.7)

Here we used the integration over the unit sphere Ω of the angular variables in k̂
to �nd the relations

∫
Ω
k̂ dΩ = 0 and

∫
Ω
|k̂ · πe|2 dΩ = 4π

3
|πe|2. The radiated power

consists of two types of terms: terms that radiate as electric dipoles with power Pe

and the second part that radiates as magnetic dipoles with power Pm. An alternative
derivation to calculate Prad in the small volume limit is to start from (2.14), see C.
The power in terms of the dipole-moments can alternatively be expressed as

Prad =
k4

12π
√
εµ

[∣∣ 1√
ε
pe −

√
εmm

∣∣2 +
∣∣ 1√
µ
pm +

√
µme

∣∣2]+O(k5), (3.8)

where jcpe =
∫
V
J

(1)
e dV andme = 1

2

∫
V
r×J (0)

e dV and analogously for the magnetic
currents and moments with subscript m, i.e., mm. Here c = 1/

√
εµ is the speed of

light.
A check that the above expressions agree with what is known for small antennas

that radiate as dipoles is obtained by comparing the maximal partial directivity,
i.e., P (0)(k̂, ê) to the total radiation Prad. We consider two cases: �xed generalized
electric dipole moments and no generalized magnetic dipole moment (3.5) i.e., πm =
0 and πe 6= 0 (or vice versa) and �xed non-zero πm,πe:

max
ê

4πP (0)(k̂, ê)

P
(0)
rad

=
3

2
, when πm = 0, (3.9)

and

max
ê,ê⊥k̂

4πP (0)(k̂, ê)

P
(0)
rad

= max
ê,ê⊥k̂

3

2

|ê∗ · (πe − k̂ × πm)|2
|πe|2 + |πm|2

≤ 3. (3.10)

Stating that a small antenna with electric dipole radiation from a generalized elec-
tric dipole moment have directivity 3/2, but upon adding a magnetic generalized
dipole πm we �nd that appropriate oriented combinations of πe and πm can have a
directivity of 3, corresponding to a Huygens source see e.g., [51].

The small electric volume stored energies follow directly from their integral rep-
resentation (2.8), we �nd that We = W

(0)
e +O(k), where

W (0)
e =

µ

16π

∫
V

∫
V

[ 1

η2
J (0)

m (r1) ·J (0)∗
m (r2)+(∇1 ·J (1)

e (r1))(∇2 ·J (1)∗
e (r2))

] 1

R12

dV1 dV2

(3.11)
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and similarly (2.9) yields Wm = W
(0)
m +O(k), where

W (0)
m =

µ

16π

∫
V

∫
V

[
J (0)

e (r1)·J (0)∗
e (r2)+

1

η2
(∇1 ·J (1)

m (r1))(∇2 ·J (1)∗
m (r2))

] 1

R12

dV1 dV2.

(3.12)

4 Minimal antenna Q and analytical and

numerical illustrations

One of the goals with the above expressions for antenna Q and D/Q is that they
should lend us some insight into antenna design and limitations of Q and D/Q. It is
reasonable to ask the question of what shapes that give low antenna Q. Similarly we
investigate which charge and current densities that gives low antenna Q. Another
goal with the expressions is to �nd easily derived a priori bounds of antenna Q and
D/Q. Partial answers are given in this section, that extends the relation that a
large charge-separation ability in the domain imply a small antenna Q see e.g., [25�
27, 66, 67]. Similarly we may think of a shape with low antenna Q, as a structure
that supports a large `current loop area' for a magnetic dipole-moment. One of the
new results here is that the generic shape results in [27] for D/Q is extended to
lower bounds on antenna Q.

An often studied case is the electric-dipole case [24�26, 63, 67], here represented
by the electric charges only and we illustrate below how an optimization problem
is used to determine the minimal Q. We continue and show that the method and
its associated eigenvalue-problem extend to the more general case of both electric
and magnetic currents that radiate as an electrical dipole. Here we also �nd that
the magnetic polarizability enters in the lower bounds on Q. A short review of
polarizability tensors are given in B.

Consider the minimization problem for �nding the lower bound on Q.

Q = minimize
ρ
(1)
e ,ρ

(1)
m ,J

(0)
e ,J

(0)
m

2ωmax{W (0)
e (ρ

(1)
e ,J

(0)
m ),W

(0)
m (ρ

(1)
m ,J

(0)
e ), 0}

Pe(ρ
(1)
e ,J

(0)
m ) + Pm(ρ

(1)
m ,J

(0)
e )

, (4.1)

with the two constraints
∫
V
ρ

(1)
e dV = 0 and

∫
V
ρ

(1)
m dV = 0. Here jωρ

(1)
e = −k∇·J (1)

e

and similarly for ρ
(1)
m . One of the interesting cases in antenna design is when the

antenna radiate as an electrical dipole, i.e., when Pm is negligible and Wm ≤ We.
Once the optimal (Pe,We) is determined we tune the antenna with a tuning circuit
to make the antenna resonant, i.e., Wm = We. Thus we start with the optimization
problem for a pure (We, Pe)-case. The `dual mode' case, where both Pe and Pm

are comparable is considered in Section 4.4 below. Before we consider the general
case, let's start with the easier case of an electric dipole when we have only ρe, i.e.,
J

(0)
m = 0.
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4.1 Antenna Q for an electric dipole, e.g., Pm = 0

Di�erent approaches to lower bounds of this antenna Q case has also been inves-
tigated in e.g., [24�27, 63, 64, 67]. However, one of the goals here is to arrive to
a generic method that works for di�erent cases of current-density sources, and the
�rst step towards this goal, is to verify that this method indeed gives the previously
derived result on the lower bound see e.g., [25, 27, 62, 66, 67]. The electric dipole
is here equivalent with the assumption Pm = 0 and We ≥ Wm which yields that
Q = Qe and that we have an optimization problem that depend only on the electric
charge-densities ρe. Once the design is determined we can tune the antenna with a
tuning circuit to make We = Wm. This case is the classical electrical dipole-case.
Let ρe = ρ

(1)
e . The minimization problem (4.1) reduces to:

Qe = minimize
ρe

2ωW 0
e (ρe)

Pe(ρe)
=

6π

k3
minimize

ρe

∫
V

∫
V
ρ∗e (r1)ρe(r2)
4π|r1−r2| dV1 dV2

|
∫
V
rρe dV |2 , (4.2)

where we have used (3.2) to re-write the denominator. This minimization comes with
the constraint that no current �ows through the surface ∂V , i.e., 0 =

∫
∂V
n̂ ·Je dS =

−jc
∫
V
ρe dV , where c is the speed of light. Hence, (4.2) is accompanied with the

constraint of total zero charge,
∫
V
ρe dV = 0.

The associate problem to maximize D/Q in the small electric volume limit for
arbitrary ρe, see [27] corresponds to:

D

Qe

= maximize
ρe

2πP 0(k̂, ê)

ωW 0
e (ρe)

=
k3

4π

|
∫
V
ê∗ · rρe(r) dV |2∫

V

∫
V
ρ∗e (r1)ρe(r2)
4π|r1−r2| dV1 dV2

, (4.3)

with the same constraint of a total zero charge,
∫
V
ρe dV = 0. These two problems

are related but the D/Q-problem has the simpli�cation in that the integrand in
P 0(k̂, ê) see (3.4), is scalar-valued and the maximization has a convex optimization
formulation see [24, 27].

The method that we apply below to (4.2) works on both problems (4.2) and (4.3)
and yield the same result as in [27] where it is applied to (4.3). The �nal result is
similar to the result in [66, 67], but obtained with di�erent methods. Note that both
(4.2) and (4.3) remain unchanged under the scaling, ρ 7→ αρ. Thus the solutions
to (4.2) are a family of scaling invariant solutions. We determine the minimum by
breaking the scaling-invariance by selecting a particular value of the amplitude of
the dipole moment, pe. We rewrite (4.2) as the minimization problem as:

minimize
ρe

∫
V

∫
V

ρ∗e(r1)ρe(r2)

4π|r1 − r2|
dV1 dV2, (4.4)

subject to |
∫
V

rρe(r) dV |2 = p2
e, (4.5)∫

V

ρe(r) dV = 0. (4.6)

This is a classical optimization problem for the Newton-potential. An energy space
approach in a similar context is discussed in [44] and an approach that allow for
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geometries with corners is given in [33]. We note that there may be several minimiz-
ers that realize the same minimum, e.g., for spheres and shapes with appropriate
symmetries [55]. To explicitly �nd the minimum, we use the method of Lagrange
multipliers see e.g., [70, �4.14] and de�ne the Lagrangian Q as

Q(ρ, ρ∗, λ1, λ2) =

∫
V

∫
V

ρ∗(r1)ρ(r2)

4π|r1 − r2|
dV1 dV2 − λ1(|

∫
V

rρ dV |2 − p2
e)− λ2

∫
V

ρ∗ dV.

(4.7)
Here λ1 and λ2 are Lagrange multipliers, and we use the short hand notation ρ = ρe.
Variation of Q with respect to λ1 and λ2 gives the two constraints above. Taking
the variation of Q with respect to ρ∗, or equivalently, taking a Fréchet derivative of
Q yields the Euler-Lagrange equation for the critical points∫

V

(
1

4π|r1 − r2|
− λ1r1 · r2

)
ρ(r1) dV1 = λ2, r2 ∈ V. (4.8)

Note that this is an integral equation with unknown ρ. Accompanied with the
constraints we �nd three equations (4.8), (4.5), and (4.6) and three unknown ρ, λ1

and λ2.
Upon multiplying (4.8) with ρ∗ and integration over V , utilizing the zero total

charge constraint, we �nd that Qe in (4.2) is equivalent with

Qe =
6π

k3
min
ρ
λ1. (4.9)

The unknown Lagrange multiplier, λ1, depends implicitly on ρ and λ2. The lower
bound of the minimization problem (4.2) is hence determined by the unknown La-
grange multiplier λ1, times a constant. Another property of the solution appears if
we apply Laplace operator on (4.8), for r /∈ ∂V we have that ρ(r) = 0. Thus we
reduce (4.8) to:∫

∂V

(
1

4π|r1 − r2|
− λ1r1 · r2

)
ρs(r1) dS1 = λ2, r2 ∈ ∂V, (4.10)

where ρs is the surface charge density, i.e., we have formally the relation that ρ dV =
ρs dS. A similar result for D/Q was shown in [27].

Using the constraint |
∫
∂V
rρs dS| = pe > 0 we re-write the critical equation (4.10)

into: ∫
∂V

ρs(r1)

4π|r2 − r1|
dS1 = λ1pep̂ · r2 + λ2, r2 ∈ ∂V (4.11)

for some unknown unit vector p̂.
To solve the equation (4.11) we make �rst a few observations: Any solution ρs

of (4.11) for given right hand-sides, yields an associated potential that solves an
electrostatic boundary-value problem cf., B. Such solutions are restricted in their
asymptotic behavior by the electric polarizability tensor γe, which depends only on
the shape of V . To make this restriction explicit we note that the electric polariz-
ability tensor γe is de�ned through (B.2) and (B.4): γe · êD0 = p. Comparing (B.2)
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with (4.11), we see that the generic D0ê in (B.2) is here D0ê = λ1pep̂, and the
dipole-moment is by de�nition p =

∫
∂V
rρs dS. Since the electric polarizability ten-

sor γe is given, once the shape V is known, we thus have a constraint on (λ1, p̂) in
order for ρs and its associated potential to comply with the polarizability tensor.
The constraint is that:

γe · p̂ =
1

λ1

p̂, (4.12)

which we recognize as a eigenvalue problem in (λ1, p̂) for γe. Here we have used
that p = pep̂.

We conclude that critical points of (4.2) correspond to solutions (λ1, p̂) of the
eigenvalue problem (4.12). Given such a solution (λ1, p̂) we determine the associ-
ated charge-density through (4.11) with (λ1, p̂) given as solutions to (4.12). A charge
density that solves (4.11) is hence the base for the family of current-sources that sup-
ports the optimal radiation, which we obtain from the continuity equation. Through
the re-writing of the optimal Qe in (4.9) it follows that the largest eigenvalue, (γe)3

of the polarizability matrix γe yields the minimum Qe, i.e.,

Qe =
6π

k3(γe)3

. (4.13)

We have hence reduced the variational problem of �nding the minimum Qe for
the electric dipole to �nding eigenvalues of γe. This result have large similarities
to [66, 67], derived with di�erent methods. We conclude thatQk3 in the small volume
size only depend on shape and size as expressed through the electric polarizability.
The physical interpretation connects large polarizability eigenvalues to the ability of
the structure to separate charge under an external static �eld in a given direction.
The polarizability γe is associated with the scalar Dirichlet-problem of the Laplace
operator, and depend only on the shape of the object [54]. We note also that γe is
identical with the high-contrast electric polarizability in e.g., [25].

We note that the low-frequency magnetic charge density and electric charge
density antenna Q are dual-similar, and hence if we consider a case with either a ρe-
term or a ρm-terms both of these problems result in identical minimization problems
with a lower bound on antenna Q given by (4.13).

To compare with the D/Q-problem, we note that the constraint |
∫
ê∗ ·rρs dV | =

const, was in [27] reduced to
∫
ê · rρ∗s dV = α, yielding the critical equation corre-

sponding to (4.11) as∫
∂V

ρs(r1)

4π|r1 − r2|
dS1 = ν1ê · r2 + ν2, r2 ∈ ∂V. (4.14)

Similarly to Qe-case above we �nd that ν1 is connected to γe through the relation
ê∗ · γe · ê = α

ν1
. The corresponding maximum is D/Q = k3

4π
ê∗ · γe · ê. We thus

see that the two problems are related, but that they describe di�erent optimization
problems. The antenna Q lower bound, minimize Q without concern of radiation
direction of the antenna, whereas D/Q assume a �xed ê radiation direction though
out its optimization. With a-priori knowledge about the optimal radiation direction
of the structure or alternatively the principal eigenvalue of γe associated with a
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given structure, we select ê in this direction, to �nd the expected 3/2 di�erence
between 1/Qe and D/Qe. This D/Q result is similar to the sum-rule in [25] for
electric sources. With the Qe result and the observation of principal directions of
γe we see that these three approaches illustrate closely connected results here with
a common energy principle method to obtain them.

To illustrate the result we begin with a sphere: γe = 4πa3I, where I is the 3
times 3 unit tensor, and all eigenvalues of γe are identical. Note that to these de-
generate eigenvalues there are three orthogonal eigenvectors, and the corresponding
charge densities in (4.10) for each a given amplitude of the dipole-moment pe. This
degeneracy is due to the geometrical symmetries of the shape. Thus even when we
remove the scaling invariance, we may have multiple ρ that yields the same lower
bound on Q. Note also that for any arbitrary optimizer ρe = ρ

(1)
e that the associ-

ated electric current connected to ρ
(1)
e , here J

(1)
e , i.e., jωρ

(1)
e = −∇ · J (1)

e , has an
in�nite dimensional subspace that all yield the same ρ

(1)
e . It allows a potentially

large design-freedom that does not change Qe in the quasi-static limit. This case is
analogous to the case discussed in [27].

For the sphere we �nd (ka)3Qe = 3
2
and for a disc (ka)3Qe = 9π

8
for the electrical

dipole case, see D. If we instead study γe of a rectangular plate of size `2 × `1 and
sweep the ratio `1/`2 we �nd that the two non-zero eigenvalues depicted as the two
curves with highest value (red, green) in Figure 2a, and corresponding Q in Figure 2b
marked with (E). Note thatD/Q = k3ê∗·γe·ê/4π, and hence proportional to the two
electric polarizability curves given in Figure 2a, for given direction ê. The electrical
polarizability here can physically be thought of as how well a structure allow charge
separation, in the sense that large eigenvalues in a direction correspond to large
static electric dipole-moment, or equivalently large ability to separate charges.

The corresponding, electric charge maximization problem ofD/Q is solved in [25�
27]. We have thus the solution to both the minρQ and the maxρD/Q problems for
small antennas for small antennas that radiate as electric dipoles.

4.2 Antenna Q for an electric current magnetic dipole

Analogous to how the electric dipole, ρ
(1)
e , and the magnetic dipole with ρ

(1)
m yield

the same optimization problem in the previous section, we see that an electric J
(0)
e

or a magnetic J
(0)
m current density result in identical optimization problems. We

associate a magnetic dipole momentm = mm̂ an electric current density, J
(0)
e here

denoted J , to �nd the minimization problem:

Qm = minimize
J

W
(0)
m (J)

Pm(J)
= minimize

J

6π

k3

∫
V

∫
V

J∗(r1)·J(r2)
4π|r1−r2| dV1 dV2∣∣ ∫

V
1
2
r × J dV

∣∣2 , (4.15)

with the constraint that n̂ · J = 0 over the surface and J ∈ X0, as de�ned in (B.5)
see Section 4.3 and B for a more detailed discussion of this choice. This problem
is associated with an antenna that radiates as a magnetic dipole i.e., Pe = 0, and
We ≤ Wm. Once the optimization is done we can tune the antenna with a tuning
circuit to reach resonance We = Wm.
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Figure 2: (a) Eigenvalues for the electric and magnetic polarizability for an in-
�nitesimally thin plate normalized by a3, where a = (

√
`2

1 + `2
2)/2 is the radius of a

circumscribed sphere. The polarization directions are indicated by ê and ĥ for the
E and H-�elds respectively. The curves are marked with (E) for electric polariz-
ability or (M) for magnetic polarizability. The curves are symmetric with respect to
`1/`2 = 1, the lowest curve is the single non-zero eigenvalue of γm. (b) The corre-
sponding Q-value from (4.13), (4.21), once again the (E) correspond to the electric
and (M) to the magnetic case.

We apply once again the method in (4.2)�(4.7) to the minimization of (4.15).
Scaling invariance is broken by the assumption that |1

2

∫
V
r × J dV | = m, which

reduces the problem (4.15) to an equivalent problem with Lagrange multipliers.
The Lagrangian is

Q(J ,J∗, λ1) =

∫
V

∫
V

J∗(r1) · J(r2)

4π|r1 − r2|
dV1 dV2 − λ1(

∣∣ ∫
V

1

2
r × J dV

∣∣2 −m2) (4.16)

for J ∈ X0, see (B.5). The associated critical point equation is∫
V

J(r2)

4π|r1 − r2|
dV2 = −λ1

2
r1 ×

∫
V

1

2
r2 × J(r2) dV2 = −λ1m

2
r1 × m̂. (4.17)

Similar to the electric case (4.9) we take the scalar product of (4.17) with J∗ and
integrate over V to �nd that Qm is determined by λ1.

Qm =
6π

k3
min
J
λ1. (4.18)

By applying the operator∇×∇× to (4.17), we realize that the currents have support
only on the boundary, i.e., J dV = Js dS, and the equation (4.17) reduce to

n̂×
∫
∂V

Js(r2)

4π|r1 − r2|
dS2 =

λ1m

2
n̂× (m̂× r1), for r1 ∈ ∂V, (4.19)

where n̂ is normal to ∂V .
Similarly to the electric case (4.11), we compare this with the de�nition of the

magnetic polarizability tensor, γm in (B.6) and (B.10): γm · ĥH0 = m. The mag-
netic polarizability tensor is known, once the region V is given. The (λ1, m̂) in
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equation (4.19) is hence subject to constraint:

γm · m̂ =
1

λ1

m̂. (4.20)

The eigenvalue solution (λ1, m̂) of (4.20) yields the solution to the minimization
problem:

Qm =
6π

k3
min
J
λ1 =

6π

k3(γm)3

, (4.21)

where (γm)3 is the largest eigenvalue of γm. The analogous case for D/Q is given
in [27]. The sphere has magnetic polarizability 2πa3I, which yields (ka)3Qm = 3
cf., [51, 62]. Here I is a unit 3 times 3 tensor.

The electric and magnetic polarizabilities of a rectangular plate are depicted
in Figure 2a marked with (E) and (M) respectively. The polarizability tensor are
diagonal for geometries with two orthogonal re�ection symmetries and co-aligned
coordinate system [42, 48] and for planar structures we have only one eigenvalue
of γm, orthogonal to the plane. We can physically think of large γm-eigenvalues
as that the region V support a large loop current for the corresponding dipole-
moment. Note that planar structures have one non-zero eigenvalue in γm which is
associated to the normal-to-the-surface dipole-moment with the planar `current loop
area'. We observe that the magnetic polarizability tensor is connected to the scalar
Neumann-problem of Laplace equation, see B, and is hence the second of the two
`�rst-moment' (or dipole) quantities associated with a given shape. Note that the
magnetic polarizability correspond to the permeable case of µ → 0. There are dif-
ferent sign conventions for γm, however we note that λ1 ≥ 0 in (4.21) independently
of choice of sign-convention in the de�nition of γm, see (4.15).

A similar current loop-area argument is illustrated in Figure 3, for a �at ellipse
and a thin ellipsoid. The eigenvalues of the polarizability tensor of an ellipsoid are
known, see D, and they are depicted in Figure 3ab. The two curves marked with
(M) in Figure 3c correspond to Qm, the upper one (blue) is for an ellipse of zero
thickness and only one γm-eigenvalue corresponding to a current loop-area over the
surface. The other marked (M,thick) corresponds to an ellipsoid identical to the
�at one, but where the radius normal to the paper is h/100 where h is the height
of the ellipse. The two transverse eigenvalues of γm are ignored by Qm until the
width, w, is h/100, where equivalent current loop-area of the height-normal (out of
the paper) loop dominates the transverse current loop-area and Qm changes slowly
for w/h < 10−2 since this area is essentially preserved.

4.3 Lower bound on antenna Q for both electric charge and

magnetic currents

The common electric and magnetic dipoles cases above agree with previously derived
results [28, 66]. We here extend these results to include both the electric charge
density ρe and the magnetic current density Jm i.e., the components making up a
generalized electric dipole-moment πe (3.5). We once again consider the case where
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Figure 3: (a) Eigenvalues to the electric polarizability tensor, γe. Solid lines are the
�at-case, dashed lines correspond to the case with normal (out of the paper) radius
of the ellipsoidal is h/100. Polarization direction is indicated with an arrow. (b)
Eigenvalues to the magnetic polarizability tensor γm. Solid line correspond to the
�at case, dashed lines are the case with normal radius h/100. Note that the x-axis
is the same as in (a). (c) The antenna Q for a �at ellipse indicated by (E), and (M)
and (E+M) corresponding to Qe from electric sources (4.13), Qm from magnetic
sources (4.21) and, Q from combined dual-mode in (4.34) respectively. Two lines
are also marked with `thick', to indicate that the ellipsoidal radius normal to the
ellipse-surface in the �gure is h/100. Note in particular for Qm, that as the width
becomes smaller than h/100, the thickness become important, as is clear in (4.21),
since it implies a switch of dominant eigenvalue. The reduction of Q as compared
to Qe due to the eigenvalue of γm is absent for �at structures since the non-zero
eigenvalues of γe and γm have orthogonal directions. It is a marginal reduction for
structures with small thickness. See also D.

the antenna radiates as an electrical dipole, i.e., Pm = 0 and where the stored
energy is mainly electric, Wm ≤ We. After the optimization we tune the antenna to
make the stored electric and magnetic energies equal. Optimizing for the (Pm,Wm)-
case is identical to the (Pe,We)-case up to a sign and the free-space impedance
normalization of the currents. Similar to the above discussion in Section 4.1 and
Section 4.2 of electric and magnetic dipoles we optimize

Q =
6π

k3
min
ρ,J

∫
V

∫
V
ρ∗(r1)ρ(r2)+J∗(r1)·J(r2)

4π|r1−r2| dV1 dV2∣∣ ∫
V
rρ− 1

2
r × J dV

∣∣2 . (4.22)

We above use the short hand notation J = J
(0)
m /η, and ρ = cρ

(1)
e = j∇·J (1)

e . Here we
also have the constraints

∫
V
ρ dV = 0 and that ∇ · J = 0 to account for the Gauge-

freedom of the associated vector-potential. To include this Gauge-freedom into the
optimization problem we restrict the current-density space to J ∈ X0, see (B.5).

The minimization problem is scaling invariant under transformations (ρ,J) 7→
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(ρ,J)α for any complex valued scalar α. By assuming that the denominator has a
given value π̃2

e , we may equivalently consider the problem

minimize
ρ,J

∫
V

∫
V

ρ∗(r1)ρ(r2) + J∗(r1) · J(r2)

4π|r1 − r2|
dV1 dV2, (4.23)

subject to
∣∣ ∫

V

rρ(r)− 1

2
r × J(r) dV

∣∣2 = π̃2
e , (4.24)∫

V

ρ∗(r) dV = 0, (4.25)

J ∈ X0. (4.26)

Using the method of Lagrange multipliers λ1, λ2, we de�ne the Lagrangian

Q =

∫
V

∫
V

ρ∗(r1)ρ(r2) + J∗(r1) · J(r2)

4π|r1 − r2|
dV1 dV2

− λ1(
∣∣ ∫

V

rρ− 1

2
r × J dV

∣∣2 − π̃2
e )− λ2

∫
V

ρ∗ dV. (4.27)

Critical points of Q are determined by the variation (Fréchet derivative) of Q. Vari-
ation with respect to the Lagrange parameters λ1 and λ2 gives the constraints. The
variation with respect to ρ∗ and J∗ yields:∫

V

ρ(r2)

4π|r1 − r2|
dV2 = λ1

[
r1 ·

∫
V

r2ρ(r2)− 1

2
r2 × J(r2) dV2

]
+ λ2, (4.28)∫

V

J(r2)

4π|r1 − r2|
dV2 =

λ1

2
r1 ×

∫
V

r2ρ(r2)− 1

2
r2 × J(r2) dV2. (4.29)

Here we utilized that n̂ · J = 0 on ∂V , and we recognize λ2 as a way to ensure
that the total charge is zero. To investigate the properties of these Euler-Lagrange
equations, we �rst note that the inner product of these equations with ρ∗ and J∗

respectively and that their sum can be rewritten as the original problem:

Q =
6π

k3
min
ρ,J

∫
V

∫
V
ρ∗(r1)ρ(r2)+J∗(r1)·J(r2)

4π|r1−r2| dV1 dV2∣∣ ∫
V
rρ− 1

2
r × J dV

∣∣2 =
6π

k3
min
ρ,J

λ1. (4.30)

The minimization problem is thus reduced to �nding λ1 for ρ,J that solves (4.28)
and (4.29).

Similar to the charge-density case (4.9), we note that λ1 implicitly depend on ρ
and J through the Euler-Lagrange equations. Another property of the minimization
problem appears if we for r /∈ ∂V operate with ∆ and with ∇ × ∇× on (4.28)
and (4.29) respectively. We �nd that ρ and J only have support on the boundary,
and we use the notation J dV = Js dS and ρ dV = ρs dS. We hence �nd the
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Euler-Lagrange equations∫
∂V

ρs(r2)

4π|r1 − r2|
dS2 = λ1(r1 ·

∫
∂V

r2ρs(r2)− 1

2
r2 × Js(r2) dS2) + λ2

= −λ1r1 · π̃e + λ2, (4.31)

n̂1 ×
∫
∂V

Js(r2)

4π|r1 − r2|
dS2 = λ1n̂1 × (

1

2
r1 ×

∫
∂V

r2ρs(r2)− 1

2
r2 × Js(r2) dS2)

= −λ1n̂1 × (
1

2
r1 × π̃e), (4.32)

for r1 ∈ ∂V . We have here introduced the electric and magnetic dipole-moments
for the current and charge-distribution that solve (4.31) and (4.32): p =

∫
∂V
rρs dS,

m = 1
2

∫
∂V
r × Js dS and π̃e = m − p. However both m and p are presently

unknown apart from the constraints that |π̃e| = |p−m| = π̃e.
To determine λ1, we recall the de�nitions of the electric polarizability tensor γe

and magnetic polarizability tensor γm in B. We compare (4.31) and (4.32) with
(B.2) and (B.6). The polarizability tensors γe and γm are known, once V is given,
and we �nd that (B.4) and (B.10) impose constraints on λ1 and π̃e:

γe · (p−m) =
1

λ1

p, γm · (p−m) =
−1

λ1

m. (4.33)

Adding the two equations yields that λ−1
1 is an eigenvalue to the matrix γe + γm.

Furthermore, m − p = π̃eπ̂e, where π̂e is an eigenvector of γe + γm of unit length.
Thus we have found that in this case the lower bound on Q is given by

Q =
6π

k3(γe + γm)3

, (4.34)

where (γe +γm)3 is the largest eigenvalue of the γe +γm tensor. The corresponding
ρs,Js are hence the solution of (4.31) and (4.32), where m− p = π̃eπ̂e, i.e., in the
direction of the unit eigenvector corresponding to the largest eigenvalue. This result
is similar to [66], but derived with a di�erent method. Note that γe + γm ≥ 0.

The minimization procedure also establish that there exists a λ1 ≥ 0 such that∣∣ ∫
V

rρ− 1

2
r × J dV

∣∣2 ≤ 1

λ1

∫
V

∫
V

ρ∗(r1)ρ(r2) + J∗(r1) · J(r2)

4π|r1 − r2|
dV1 dV2 (4.35)

for all ρ and J that satisfy the bi-condition J ∈ X0 and
∫
V
ρ dV = 0. Equality is

reached when ρ and J satisfy the Euler-Lagrange equations above, yielding 1/λ1 =
(γe + γm)3. An equivalent formulation of this result is

Pe ≤ (γe + γm)3
ck4

3π
We, or Pm ≤ (γe + γm)3

ck4

3π
Wm, (4.36)

for the above described currents. The identity is achieved in either case for currents
that realize the minimization of Qe or Qm. The inequality for the (Pm,Wm)-case is
obtained identically with above described case starting from Pm and Wm with the
substitution of J = −J (1)

e and ρ = cρ
(1)
m /η giving (4.22) with rρ + r × J/2 of the

integrand in the denominator.
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4.3.1 Comparisons and numerical examples for the Q-lower bound for

the dual-mode case (4.34)
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ê

(T)

(+)

(E)

(M)

Figure 4: (a) Eigenvalues for the electric polarizability tensor. Polarization di-
rection is indicated with a vertical or horizontal arrow. (b) Eigenvalues of the
magnetic polarizability tensor. The x-axis is the same as the axis in (a). (c)
Qe from (4.13) is marked with (E), Qm from (4.21) marked with (M) and Q
from (4.34) are marked with a (+) and for the dual-mode antenna (4.39) with
a (T). Note that the (γe)11 = 2(γm)33, as for axial-symmetric objects shown
in [48]. Dashed lines in (abc) are the prolate case, solid lines are the oblate case.
(ka)3(Qm, Qe, Q+, QT )→ (3, 3/2, 1, 1/2) as ζ → 1 i.e., the sphere. See D.

We note that for a sphere where both electric and magnetic currents contribute
to the generalized electric dipole-moment we �nd that (ka)3Qe = 1 [10]. The Q-
lower bound for the �at ellipse and the thin ellipsoid are depicted in Figure 3. For
planar structures we note that there is only one non-zero eigenvalue of γm, in the
direction normal to the surface and hence perpendicular to the non-zero direction
of γe. For a rectangular plate this eigenvalue is depicted in Figure 2. We conclude
that in planar structures γe and γm do not couple to improve the antenna Q. As is
clear from the case where we add a small thickness of the domain as in Figure 3c,
we see that there is a rather small reduction of Q as compared with the �at case.

The polarizability tensors for spheroidal shapes are known, see D and Figure 4ab.
We depict Q for spheroidal bodies as a function of the ratio between height and
diameter in Figure 4c. Here, the curve marked with (+) correspond to Q given
in (4.34) are shown for both the prolate (dashed lines) and oblate cases (solid lines).

The approach in [67] provides an antenna Q, QV , depending only on γe and
volume V . To compare QV with (4.34) we use the inequality [54, 1.5.19]:

(ê·γe ·ê−V )(ê·γm ·ê−V ) ≥ V 2 ⇔ (ê·γe ·ê−V )(ê·(γe+γm)·ê) ≥ (ê·γe ·ê)2. (4.37)
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Rewriting and comparing with the results we �nd that

Q =
6π

k3ê · (γe + γm) · ê ≤
6π

k3ê · γe · ê
(1− V

ê · γe · ê
) = QV , (4.38)

if we choose the ê to be the unit eigenvectors corresponding to the largest eigenvalue
of γe + γm. Equality holds for several cases in particular for ellipsoidal-shapes. An
updated approach to antenna Q is given in [66], see also [38]. To illustrate that
there is a di�erence between Q and QV we calculate both antenna Q's for a cylinder.
We assume here that the currents radiate as an electrical dipole aligned with the
cylinder axis, i.e., the vertical x̂3-axis, the resulting Q from (4.34) and QV are
shown in Figure 5. To demand that a small antenna radiates as an electric dipole
in a given direction is equivalent with selecting the corresponding eigenvalue of the
polarizability tensor. Such a choice of eigenvalue does not necessarily minimize
antenna Q.
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Figure 5: The �gure depicts the antenna Q, for energies that corresponds to cur-
rents that radiate as an electrical dipole aligned with the vertical axis. The dotted
green line correspond to QV in (4.38), the Je, Jm and Je + Jm correspond to Qe,
Qm and Q in respectively (4.13), (4.21) and (4.34).

The above examples illustrate how the shape of a small antenna enters into
the antenna Q-bound. The shape characterization in antenna Q is encoded in the
respective polarizability tensors. The electric polarizability is a measure on how
easy it is to separate charge for a given V , i.e., to create a large electric dipole-
moment. Similarly, the magnetic polarizability measure how easy it is to create a
large magnetic dipole moment, i.e., �nding a large `current-loop area' in the domain.

If we similarly to [30, 61, 66] associate the magnetic currents with layers/volumes
of magnetization or synthesized Amperian current loops we note that the associated
volumes for the electric and magnetic currents do not necessary need to occupy
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identical volumes/surfaces. In such a case there are a considerable design freedom
for γe and γm, with the performance bounded by the eigenvalues of γe + γm for the
total volume V .

4.4 Dual mode antennas

Self-resonant dual mode-antennas where both the electric Pe and magnetic Pm dipole
radiation contribute signi�cantly to the radiation and We = Wm is considered here.
Utilizing that the problem decouples, we use the respective electric and magnetic
case above with identities (4.35) where λ1 ≥ 0 for both We and Wm. We hence �nd
that the general case can be bounded by:

Q ≥ 6π

k3

max(We,Wm)

λ−1
1 We + λ−1

1 Wm

≥ 6π

k3

λ1

2
=

3π

k3(γe + γm)3

, (4.39)

which follows directly from the Hölder inequality [46]. Equality follows when both
electric and magnetic charges are optimized and the antenna is self-resonant. Clearly
we �nd that Q is half the value of Qe or Qm when only electric or magnetic dipole
radiation is allowed. The sphere yields (ka)3Q = 1/2, which agrees with the result
of the sphere given in [10, 31, 47]. A similar result is given in [66], derived with a
di�erent method1. The antenna Q for this case is illustrated for spheroidal shapes
in Figure 4c, for curves marked with a (T).

5 Convex optimization for optimal currents

Bounds on D/Q can be expressed as a convex optimization problems [24]. Here,
these results are generalized to include electric and magnetic current densities. We
consider a volume V with electric Je and magnetic Jm current densities. We expand
the current densities in local basis-functions

Je(r) ≈
N∑
n=1

Je,nψn(r) and Jm(r) ≈
N∑
n=1

Jm,nψn(r) (5.1)

and introduce the 1 × 2N matrix Jv with elements {Je,n} for n = 1, ..., N and
{η−1Jm,n−N} for n = N + 1, ..., 2N to simplify the notation. The basis functions
are assumed to be real valued, divergence conforming, and having vanishing normal
components at the boundary [50].

A standard method of moment implementation using the Galerkin procedure
computes the stored energies given in A as matrices. For simplicity, we here compute
these stored energy matrices Xe and Xm only for the leading order term in (2.10)
and (2.11), for ka� 1, i.e.,

Xe
ij =

1

k

∫
V

∫
V

∇1 ·ψi(r1)∇2 ·ψj(r2)
cos(kR12)

4πR12

dV1 dV2 (5.2)

1Optimization that utilize a �xed electric to magnetic dipole radiation ratio is discussed in [66].
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and

Xm
ij = k

∫
V

∫
V

ψi(r1) ·ψj(r2)
cos(kR12)

4πR12

dV1 dV2. (5.3)

The quadratic forms for the stored energies (2.8) and (2.9) are then approximated
as

We ≈
η

4ω
JH

v XeJv =
η

4ω

N∑
i,j=1

J∗e,iX
e
ijJe,j + J∗m,iX

m
ij Jm,j (5.4)

and

Wm ≈
η

4ω
JH

v XmJv =
η

4ω

N∑
i,j=1

J∗e,iX
m
ij Je,j + J∗m,iX

e
ijJm,j. (5.5)

where the superscript, H, denotes the Hermitian transpose.
We also use the radiated far �eld, FE(r̂) see (3.6). The radiation vector projected

on ê, cf., (3.6), de�nes the 2N × 1 matrix E∞ from

ê∗ · FE(k̂) ≈ E∞Jv

= −jηk
N∑
n=1

[
Je,n

∫
V

ê∗ ·ψn(r)
ejkk̂·r

4π
dV + Jm,n

∫
V

k̂ × ê∗ ·ψn(r)
ejkk̂·r

4π
dV
]
, (5.6)

Using the scaling invariance of D/Q, we rewrite the maximization of D/Q into
the convex optimization problem of maximization of the far-�eld in one direction
subject to a bounded stored energy [24], i.e.,

maximize
Jv

Re{E∞Jv},

subject to JH

v XeJv ≤ 1,

JH

v XmJv ≤ 1.

(5.7)

The formulation is easily generalized by adding additional convex constraints [24].
There are several e�cient implementations that solve convex optimization problems,
here we use CVX [21].

We consider planar geometries and bodies of revolution to illustrate the bound.
The resulting Q of (2.4) for a small spherical capped dipole antenna is depicted
in Figure 6a as a function of the angle θ for a maximized omnidirectional partial
directivity in θ = 90◦ and polarized in the ẑ-direction. The resulting radiation
pattern is as from a ẑ-directed electric Hertzian dipole, i.e., D = 1.5 sin2 θ. The
three cases; electric and magnetic currents Je + Jm, only electric currents Je, and
only magnetic currents Jm are analyzed. The requirement of electric dipole-radiation
implies Pm = 0, Pe 6= 0, and that we can use ρe to represent the electric currents
Je. We observe that the θ = 90◦ case corresponds to a spherical shell with the
classical [10, 61, 62, 67] bounds Qk3a3 = {1, 1.5, 3} for the Je + Jm, Je, and Jm

cases, respectively. The reduced Q of the combined Je + Jm case is understood
from the suppression of the energy in the interior of the structure. This is also
shown in Figure 6bc, where the resulting electric energy density is depicted for the
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cases to electric currents Je and combined electric and magnetic currents Je + Jm.
We also note that the potential improvement with combined electric and magnetic
currents Je +Jm decreases as θ deceases. This can be understood from the increased
internal energy as the magnetic current can only cancel the internal �eld for closed
structures. Moreover, the faster increase of Qk3a3 as θ → 0 for the Jm case than
for the Je case is understood from the loop type currents of Jm whereas Je is due
to charge separation.
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Figure 6: (a) The capped spherical dipole. The �gure shows the optimized antenna
Q for di�erent values of the cap-angle, see the �gure in at top right. The purely
electric and the purely magnetic cases are shown in blue and green colors. The joint
case is given in the red-curve. Note that the constraint of only electrical energy
approaches: Je yield Qe(ka)3 = 3/2, Jm yield Qe(ka)3 = 3 and the combined electric
case Je and Jm yield Qe(ka)3 = 1 as θ = 90◦. (bc) The �gure shows a comparison of
the interior �eld without (b) and with (c) magnetic currents for dipoles that radiate
as an electric dipole.

The case of a spheroidal body with the additional radiation constraint corre-
sponding to an electrical dipole along the vertical axis is given in Figure 7. It is
interesting to compare this constrained result with, with the minimal Q as shown
in Figure 4c, the (+)-curve. Small `1/`2 in Figure 7 corresponds to small ζ with
solid lines of Figure 4c. We see that in the constrained case Q approaches the pure
magnetic current-case marked Jm, whereas in Figure 4c, Q marked with (+), ap-
proaches the pure Qe case (solid line marked (E)), and it is a lower value than the
result indicated in Figure 7. The cause of this di�erence is the requirement of the
radiation pattern, locking Q to a disadvantageous eigenvalue, see Figure 4a and the
vertical polarization direction (solid line). The physical interpretation is clear: for
the disc it is easier to excite an electrical dipoles aligned with the surface. The
required vertical electric dipole is the cause of the higher Q in Figure 7. For `1/`2

large, we see that both results agree (dashed lines in Figure 4c, as ζ → 0).
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Figure 7: Sweeping the two diameters of a spheroid, with purely electric and purely
magnetic currents, as well as the combination are shown. Here the optimization is
done under the assumption that the far-�eld radiates as a electric dipole aligned
with the vertical axis. See also the discussion at the end of Section 5.

6 Conclusion

The present paper introduces a common mathematical framework for deriving lower
bounds on antenna Q to arbitrary shapes for electric and magnetic current densi-
ties. For the corresponding cases considered in [25, 66] we get identical results for
appropriate choices of the ratio of electric and magnetic dipole radiation Pe and
Pm. This is rather remarkable since the underlying physics and mathematical ap-
proaches utilize widely di�erent ways to arrive to antenna Q and D/Q. The result
also verify that both electric and magnetic current densities are required to reach
the classical results for a sphere in e.g., [10, 31]. The present method also provides
a minimization method to determine the minimizing currents, which is attractive
for optimization procedures, where antenna-Q related problems can be considered.
A few of these are demonstrated in the present paper, and extensions analogously
to the convex optimization results in [24] follows directly from the explicit results
shown here.

In the paper we derive the antenna Q lower bound for small electric antennas.
The lower bound on antenna Q depends symmetrically on both the electric and
magnetic polarizabilities, which re�ect the dual symmetry of the electromagnetic
equations with electrical and magnetic current densities. The explicit lower bound
enables a priori estimates of antenna Q given the shape of the object in terms
of the static polarizability tensors γe and γm. We also determine the antenna Q
for planar rectangles, ellipsoids and cylinders. Here we sweep a geometrical shape
parameter, to illustrate how the antenna properties Q and D/Q depend on the
shape. Low antenna Q is associated with low �elds inside closed domains, with the
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present technique we can study objects like the spherical cap to observe how the
cancellation of the �elds in the interior of an essentially open structures behave for
optimal or constrained antenna Q.

We conclude, that the presented current density representation of the stored en-
ergy yields explicit analytical expressions on antenna Q and D/Q in terms of the
polarizability tensors. We also illustrate that the polarizabilities and di�erent an-
tenna Q-related optimization problems are straight forward to calculate, given stan-
dard software. This follows through the relation of the polarizabilities to the scalar
Dirichlet and Neumann problems. The present results are applicable to a range of
practical antenna problem, as a priori limitations of their antenna Q-performance,
and more subtle as explicit current minimizers that might give insight into antenna
design problems.
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Appendix A Stored energy � general sources

The stored energies are derived from (2.3) using an approach with potentials. The
result consist of a sum of terms each of a given leading kn-behavior for n = 0, 1, . . .
as k → 0

We = W 0
e +W 1

em+W 2
em+W 3

em+W rest

em , Wm = W 0
m+W 1

em+W 2
em−W 3

em+W rest

em . (A.1)

The EFIE operators Le and Lm are given in (2.10) and (2.11), and we �nd the
leading order electric and magnetic stored energy as

W 0
e =

µ

4k
Im
[
〈Je,LeJe〉+

1

η2
〈Jm,LmJm〉

]
∼ O(1), k → 0 (A.2)

and

W 0
m =

µ

4k
Im
[
〈Je,LmJe〉+

1

η2
〈Jm,LmJm〉

]
∼ O(1), k → 0. (A.3)

Both terms are to leading order 1 for small k, as is indicated by the O(1) above.
The second term contains the leading order cross-term:

W 1
em =

−µ
4kη

Im〈Je,K2Jm〉 ∼ O(k1), (A.4)

where

〈Je,K2Jm〉 =
k2

4π

∫
V

∫
V

J∗e (r1) · R̂× Jm(r2) cos(k|r1 − r2|) dV1 dV2. (A.5)
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Here R = r1 − r2, R = |R|, and R̂ = R/R. The next higher order term is

W 2
em =

µ

4k
Im
[
〈Je,LemJe〉+

1

η2
〈Jm,LemJm〉

]
∼ O(k2), (A.6)

where

〈J ,LemJ〉 = j

∫
V

∫
V

[k2J1 · J∗2 − (∇ · J1)(∇ · J∗2 )]
sin(k|r1 − r2|)

8π
dV1 dV2. (A.7)

The W 3
em term is

W 3
em =

−µ
4ηk

Re〈Je,K1Jm〉 ∼ O(k3), (A.8)

where

〈Je,K1Jm〉 =
k2

4π

∫
V

∫
V

J∗e (r1) · R̂× Jm(r2)j1(kR) dV1 dV2. (A.9)

The last termW rest

em is O(k3) for small k and it is coordinate dependent in certain
cases [22, 28]

W rest

em =
µ

4

[
K3(Je) +

1

η2
K3(Jm) +K4(Je,Jm)

]
, (A.10)

where

K3(J) = −
∫
V

∫
V

Im[k2Je,1 ·J∗e,2−(∇·Je,1)(∇·J∗e,2)]
(r2

1 − r2
2)

8πR
j1(kR) dV1 dV2 ∼ O(k4)

(A.11)
and

K4(Je,Jm) =
k

η

∫
V

∫
V

Re[J∗m,2×Je,1] ·
[r2 + r1

4πR
j1(kR)+kR̂

r2
1 − r2

2

4πR
j2(kR)

]
dV1 dV2

∼ O(k3). (A.12)

Note that both W rest

em and W 3
em are of the same asymptotic order in k. We keep the

terms separate due to the sign-change of W 3
em in (A.1) and since W rest

em can depend
on the coordinate system. We consider the coordinate independent part of these
energies as the essential physical quantity of the stored energy.

Appendix B Polarizability tensors

The electric and magnetic polarizability tensors are well known in electromagnetic
scattering [4, 13, 42, 60], and since they enter as an essential part in this work, we
review their de�nition and a few di�erent approaches to compute them. The po-
larizability tensors required in this paper are properties of the geometrical shape
V only [42, 48, 54], similar to the capacitance. The magnetic polarizability appear
also in �uid-dynamics as the virtual mass [54]. We denote the electric and mag-
netic polarizability tensors with γe and γm. For su�ciently regular domains it is
known [54] that γe is associated with a scalar Dirichlet-problem and γm with a scalar
Neumann-problem for the Laplace operator.
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If the shape V has two orthogonal re�ection symmetries this reduces γe and γm

to diagonal matrices for a co-aligned coordinate system [42]. If V is axial-symmetric
along e.g., the x3 = z-axis this reduce the number of unknowns to three [48]: (γe)11 =
(γe)22 = 2(γm)33, (γm)11 = (γm)22 and (γe)33, where the index denote the respective
matrix element.

B.1 Electric polarizability tensor

Here we assume that the boundary ∂V is smooth with a well-de�ned concept of inside
and outside in order to de�ne an outward normal n̂, see Figure 1, and will upon occa-
sion also consider degenerate surfaces like the rectangular plate. For generalizations
of the associated potential theory to Lyapunov and Lipschitz surfaces [12, 33, 34].
Consider a perfectly conductive object, V (or a high contrast object) in a homo-
geneous external electric �eld E0ê. The external Dirichlet problem for the electric
potential has the solution, φ0 that is related to the perturbed potential φ through
φ0 = φ− E0ê · r, and we have that

∆φ = 0, r ∈ R3\V,
φ = E0ê · r +K, r ∈ ∂V, (B.1)

φ = O(r−1), as |r| → ∞.

The constant K is selected in such a way that the total induced charge q is zero.
Here we have q =

∫
∂V
ρs dS and ρs = −ε∂nφ0 = −ε∂n(φ − E0ê · r) on ∂V . The

dielectric constant in vacuum is here denoted ε. The system (B.1) is a well-posed
problem and there exists a range of algorithms to solve it, like Fredholm integrals
of �rst and second kind [17].

The polarizability tensor, γe, is a linear map between the boundary condition
εE0ê and the dipole-moment, p =

∫
rρs dS, see [27, 42, 54]. To explicitly �nd this

relation, we connect the potential to the boundary condition through the single layer
potential:

εφ(r1) =

∫
∂V

ρs(r2)

4π|r1 − r2|
dS2 = D0ê · r1 + εK, r1 ∈ ∂V (B.2)

for a given electric displacement �eld D = D0ê = εE0ê = εE. It is known [41]
that (B.2) can be generalized to shapes V like the 2D-plate and other objects with
corners.

A Method of Moments approach can solve this �rst order integral equation for
ρs, but care is required to account for possible charge-density singularities near
corners or edges as well as large condition numbers. The multipole expansion of the
potential as r1 →∞ is given by

4πεφ(r1) =

∫
∂V

ρs(r2)

|r1 − r2|
dS2 →

q

r1

+
p · r̂1

r2
1

+O(r−3
1 ), as r1 →∞. (B.3)

The electric polarizability tensor, a 3× 3-matrix, γe, is de�ned as the map

γe · êD0 = p. (B.4)
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From this de�nition it follows that the dimension of γe is volume. A procedure
to calculate γe is to subsequently insert three orthonormal directions as ê in the
boundary condition in (B.1), and for each of these, �nd the corresponding charge-
density ρs, by selecting K so that q = 0, the ê-projection of γe is the scaled dipole-
moment p/D0. Alternative methods to de�ne γe exists see e.g., [54].

The electric polarizability tensor γe is a symmetric positive semi-de�nite ten-
sor [57]. Note also that γe depend only on the domain V . For the sphere of radius
a we have ρs = 3E0ê · r̂, with corresponding dipole moment p = 4πa3E0ê, and
potential φ = E0a

3(ê · r̂)/(εr2), and thus γe = 4πa3I.
The electric polarizability tensor appears in the literature with several di�erent

notations, in [54] it is denoted ejk, in [42, 49] a related quantity is called Pjk and
in [26, 35] and subsequent publications it is denoted γ or γe and in [4, 13] it is denoted
πe and π

d
e respective, and [56, 66] it is denoted α. For generalization of γe to a larger

class of materials as well as a review of its properties see e.g., [57].

B.2 Magnetic polarizability tensor

Magnetic polarizability is de�ned analogous to electric polarizability, as the map
between a boundary condition and the behavior at in�nity. Given an external �eld
B0ĥ we de�ne a current density J and the associated vector potential A that are
divergence free. Formally, we do this by introducing an energy space X of J such
that

∫
V

∫
V
J∗(r1) · J(r2)/|r1 − r2| dV1 dV2 <∞, and subsequently de�ne

X0 = {J ∈ X;∇ · J = 0}. (B.5)

in the distributional sense. Current densities throughout this paper are in X0 or
subsets of X0.

Our starting point is here to consider the current density J ∈ X0 that is the
solution to the integral equation:

µ

∫
V

J(r2)

4π|r1 − r2|
dV2 =

1

2
µH0ĥ× r1, r1 ∈ V. (B.6)

The currents are due to the applied external magnetic �eld H = H0ĥ = 1
µ
B0ĥ.

Note that if we operate on both sides within the volume with the operator ∇×∇×
we see that J only have support on the boundary, formally we use J dV = Js dS,
similar to the charge density case above. For surface current densities Js, we note
that the divergence free condition (B.5) is equivalent with n̂ ·Js = 0 and ∇S ·Js = 0,
and we let X0s denote this subset of X0. Here ∇S· is the surface divergence, i.e.,
∇ = n̂∂n +∇S. The two degrees of freedom of the surface currents are determined
by the equation:

n̂×
∫
∂V

Js(r2)

4π|r1 − r2|
dS2 =

1

2
n̂× (ĥH0 × r1), r1 ∈ ∂V. (B.7)

We recognize (B.6) as a vector potential A de�ned as

1

µ
A(r1) =

∫
∂V

Js(r2)

4π|r1 − r2|
dS2, r1 ∈ R3\V, (B.8)
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clearly A is in the Coulomb gauge, i.e., ∇ · A = 0 in the exterior domain. The
multipole expansion of the vector-potential for r →∞ is given as

4π

µ
A(r1) =

∫
∂V

Js(r2)

|r1 − r2|
dS2 →

1

r3
1

∫
∂V

(r1 · r2)Js(r2) dS2 +O(r−3
1 )

=
m× r̂
r2

1

+O(r−3
1 ), as r1 →∞, (B.9)

where ∇S · Js = 0 ensures that the magnetic monopole, qm/r term vanish. Here
m = 1

2

∫
∂V
r × Js dS. The magnetic polarizability tensor γm, as a 3 × 3-matrix, is

de�ned analogously to the electrical case:

γm · ĥH0 = m. (B.10)

We have here a choice of sign for γm, the choice in (B.10) ensures that γm is a positive
semi-de�nite matrix for surface-currents in this case. Alternative sign-conventions
exist in (B.10) see e.g., [66]. As an example for a sphere of radius a, we �nd that
the surface current Js = (3/2)H0ĥ× r̂ satisfy (B.7). The associated dipole-moment
is m = 2πa3ĥH0, and the magnetic polarizability is hence γm = 2πa3I, where I is
a 3 times 3 unit tensor. A numerical approach to solve (B.7) through the Method
of Moments for the rectangular plate together with a singular value decomposition
procedure to remove the gauge-freedom was used to determine the result depicted
in Figure 2. The induced magnetic moment m for a �xed external B0ĥ, is large if
we have a large current loop-area. Similarly to the electric polarizability measure of
charge separation, we have here that the magnetic polarizability measure `current
loop-area', orthogonal to the B-�eld direction.

Given a permeable body in an external �eld, we note that the case considered
above is when µ → 0 and the total �eld is given by B = B0 − ∇ × Ap, where
Ap = A as calculated above.

B.3 Calculations of the magnetic polarizability tensor

Given a smooth boundary ∂V , with a well-de�ned interior and exterior, we can
similarly to the electric potential write a corresponding partial di�erential equation
for the vector potential A with a boundary condition µH0ĥ:

∇×∇×A = 0, for r ∈ R3\V, (B.11)

∇ ·A = 0, for r ∈ R3\V, (B.12)

n̂×A =
1

2
n̂× (µH0ĥ× r), r ∈ ∂V, (B.13)

A→ O(r−2), as r →∞. (B.14)

A fundamental solution approach of this vector Laplace-problem, i.e., by expressing
A in terms of the single-layer operator yields the solutionA that satisfy (B.9), where
the surface current density Js is determined by solving the Fredholm integral equa-
tion (B.6) of the �rst kind. Numerical approaches to solve this quasi-static problems
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for A are given in e.g., [2, 6, 45, 53], where a central piece is the conservation of the
gauge-condition in the numerical basis element.

However, for closed smooth non-degenerate domains there is an alternative ap-
proach to obtain γm. Towards this end we note that the exterior domain is source
free and we introduce the scalar magnetic potential φm, withH = H0 +∇φm. Such
a potential satisfy the Neumann problem for the scalar Laplace equation:

∆φm = 0, for r ∈ R3\V,
−∂nφm = H0ĥ · n̂ on r ∈ ∂V, (B.15)

φm → O(r−2) as r → 0.

A fundamental solution approach with an associated charge-density results in the
relations:

4πφm(r) =

∫
∂V

ρms(r
′)

|r − r′| dS
′ → qm

r
+
m · r̂
r2

+O(r−3), as r →∞. (B.16)

Note that the term qm vanish on closed surfaces due to that
∮
∂V
ρms dS = H0

∫
V
∇ ·

ĥ dV = 0. The magnetic charge density ρms is determined through a Fredholm
integral equation of the second kind [17, 36]:

1

2
ρms +

∫
∂V

n̂ · (r − r′)
4π|r − r′|3 ρms(r

′) dS ′ = H0ĥ · n̂, r ∈ ∂V. (B.17)

The factor 1/2 is associated with that the boundary is locally smooth, for a corner
or line the corresponding volume-angle normalized with 4π appears. Here we have
m =

∫
∂V
rρms dS, the magnetic polarizability now follows from

γm · ĥH0 = m. (B.18)

If the volume V is simply connected with a su�ciently smooth boundary, then
(B.15) is uniquely solvable and the solution is given by (B.16), also for domains where
the exterior have disconnected parts we have uniqueness, see e.g., [17] due to that ĥ
is constant. If we return to the sphere, we note that ρms = (3H0/2)ĥ · r̂ solves (B.17)
with magnetic scalar potential φm = (H0a

3/2)ĥ · r̂/r2 that satisfy (B.15), and the
associated magnetic dipole moment is m = 2πa3H0ĥ, and consequently we �nd
again γm = 2πa3I, where I is a 3 times 3 unit tensor.

Scattering problems that connect a dipole moment to the magnetic �eld have
been studied in [5, 60] and with explicit polarizability tensor in e.g., [4, 13, 42], the
context is analytic and numerical implementation to determine electric and magnetic
dipole-moments of planar apertures.

We note that γe and γm corresponds to solving the scalar Dirichlet and Neumann
problem respectively for the scalar Laplacian in an exterior domain. There are a
few di�erent normalizations and sign-conventions of γm, in [54] their corresponding
dipole-form djk = 4π(γm)jk. Another normalization for small surfaces S, γm/|S|3/2,
is used in e.g., [13] to make the quantity independent of equivalent volume, here
|S| is the area of S, see also [49, 57, 66], for additional properties and di�erent sign-
conventions.
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Appendix C Alternative derivation of Prad for the

electrically small case

An alternative method to determine the leading order behavior of Prad, given in (3.7),
for the electrically small case, ka� 1, is to start directly from (2.14) and using the
EFIE operators L = Le − Lm de�ned in (2.10) and (2.11). The explicit expression,
using these de�nitions is:

Prad = η

∫
V

∫
V

[(
k2Je,1 · J∗e,2 − (∇ · Je,1)(∇ · J∗e,2)

)
+

1

η2

(
k2Jm,1 · J∗m,2 − (∇ · Jm,1)(∇ · J∗m,2)

)]sin(kR)

8πkR
dV1 dV2

+
k2

4π

∫
V

∫
V

j1(kR)R̂ · Im(J∗e,1 × Jm,2) dV1 dV2, (C.1)

where Je,1 = Je(r1), Je,2 = Je(r2) and analogously for Jm,1 and Jm,2, as usual

R = r1 − r2, R = |R| and R̂ = R/R. We expand the integrand in terms of small
ka the dependence of the current-densities on k is accounted for by inserting the
current expansion (2.16) into (C.1).

Note that the integrand consists of terms, Je, Jm and mixed terms. The pure
Je and the pure Jm-terms are equal in structure (up to the constant η2). For the
integrand with purely electrical terms in (C.1) we �nd by inserting (2.16):

ηk2

8π

{
J

(0)
e,1 · J (0)∗

e,2 − (∇ · J (1)
e,1 )(∇ · J (1)∗

e,2 ) + 2kRe
[
J

(0)
e,1 · J (1)∗

e,2 − (∇ · J (1)
e,1 )(∇ · J (2)∗

e,2 )
]

+ k2
(
J

(1)
e,1 · J (1)∗

e,2 − (∇ · J (2)
e,1 )(∇ · J (2)∗

e,2 ) + 2 Re
[
J

(0)
e,1 · J (2)∗

e,2 − (∇ · J (1)
e,1 )(∇ · J (3)∗

e,2 )
])

+O(k3)
}[

1− (kR)2

6
+O(k3)

]
. (C.2)

We recall that (C.2) is part of the integrand in (C.1), we note that upon integration
several of the above terms vanish by using (3.2) and (3.3). The �rst electrical non-
vanishing contribution term in the integrand to Prad are of k4-order and have an
integrand of the form:

ηk4

8π

{
J

(1)
e,1 · J (1)∗

e,2 +
r1 · r2

3

[
J

(0)
e,1 · J (0)∗

e,2 − (∇ · J (1)
e,1 )(∇ · J (1)∗

e,2 )
]}

+O(k5). (C.3)

The pure magnetic terms give an analogous expression to (C.3).
For the cross term, J∗e,2 × Jm,2 in (C.1), we �rst note that j1(kR) = (kR/3)[1−

(kR)2/10 +O(k4)], and that we recall RR̂ = R, to �nd the integrand

k3

12π

[
1− (kR)2

10
+O(k4)

]
R · Im(J

(0)∗
e,1 ×J (0)

m,2 +k(J
(0)∗
e,1 ×J (1)

m,2 +J
(1)∗
e,1 ×J (0)

m,2)+O(k2)).

(C.4)
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Through (3.2), we �nd that the apparent leading order
∫
V

∫
V
R ·J (0)∗

e,1 ×J (0)
m,2 dV1 dV2

vanish and the k4-order terms is the �rst remaining term. Putting all these results
together yields the radiated power:

Prad =
k4

4π

[η
2

{
|
∫
V

J (1)
e dV |2+

1

3

∫
V

∫
V

r1·r2

[
J

(0)
e,1 ·J (0)∗

e,2 −(∇·J (1)
e,1 )(∇·J (1)∗

e,2 )
]

dV1 dV2

}
+

1

2η

{
|
∫
V

J (1)
m dV |2 +

1

3

∫
V

∫
V

r1 · r2

[
J

(0)
m,1 · J (0)∗

m,2 − (∇ · J (1)
m,1)(∇ · J (1)∗

m,2 )
]

dV1 dV2

}
+

1

3
Im
{∫

V

J (1)
m dV ·

∫
V

r × J (0)∗
e dV +

∫
V

J (1)∗
e dV ·

∫
V

r × J (0)
m dV

}]
+O(k5).

(C.5)

Partial integration yields
∫
V
J

(1)
e dV = jcpe, where c = 1/

√
εµ is the speed of light.

Similar vector manipulation [59, p433] [43, p127] yields
∫
V

(r̂2 · r1)J
(0)
e,1 dV1 = me ×

r̂2 since ∇ · J (0)
e = 0. Here pe =

∫
V
rρ

(1)
e dV , where ρ

(1)
e = −∇ · J (1)

e /c, and

me = 1
2

∫
V
r × J (0)

e dV , and analogously for the magnetic currents. Inserting these
expressions reduce the total radiated power, (C.5), to the contribution from the
electric current dipoles (pe,me) and the magnetic current dipoles (pm,mm) as

Prad =
k4

12π
√
εµ

[∣∣ 1√
ε
pe −

√
εmm

∣∣2 +
∣∣ 1√
µ
pm +

√
µme

∣∣2]+O(k5). (C.6)

An equivalent, but for optimization more tractable expression given current densities
is:

Prad =
k4η

12π

[∣∣ ∫
V

jJ (1)
e +

1

2η
r×J (0)

m dV
∣∣2+
∣∣ ∫

V

j

η
J (1)

m −
1

2
r×J (0)

e dV
∣∣2]+O(k5), (C.7)

which is identical to (3.7).

Appendix D Polarizability tensors for an ellipsoidal

shape

For ellipsoidal shapes we follow e.g., [25, 54, 56] and de�ne the dimensionless quan-
tity of the depolarization factors

Lj =
a1a2a3

2

∫ ∞
0

ds

(s+ a2
j)
√

(s+ a2
1)(s+ a2

2)(s+ a2
3)
, (D.1)

where a1, a2, a3 denote the radii of the three axis.
The electric and magnetic polarizability tensors are

(γe)jj =
V

Lj
and (γm)jj =

V

1− Lj
, for j = 1, 2, 3 (D.2)

all other elements in γe and γm are zero given that the coordinate axis are co-oriented
and centered with the axis of the ellipsoidal. Here the volume is V = 4πa1a2a3/3.
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We consider the cases of a �at ellipse, an ellipsoidal with a small a3, and the
oblate and prolate spheroidal. We note that the integral above is given in terms of
elliptic incomplete integrals as:

L1 =
ζξ√

1− ζ2(1− ξ2)
(F(arccos(ζ),

1− ξ2

1− ζ2
)− E(arccos(ζ),

1− ξ2

1− ζ2
), (D.3)

L2 = ζ
−(1− ξ2)ζ + ξ

√
1− ξ2 E(arccos(ξ), 1−ζ2

1−ξ2 )

(1− ξ2)(ξ2 − ζ2)
, (D.4)

L3 = ξ
−
√

1− ζ2ξ + ζ E(arccos(ζ), 1−ξ2
1−ζ2 )√

1− ζ2(ζ2 − ξ2)
, (D.5)

where we have used a1 = a, a2 = ξa, a3 = ζa with 0 < ξ < 1 and 0 < ζ < 1 and the
identity E(iφ, k2) = i(F(ψ, (k′)2)−E(ψ, (k′)2)+tanψ

√
1− k′2 sin2 ψ), where sinhφ =

tanψ, k′ =
√

1− k2 [19, 19.7.7] to simplify L1 to (D.3). The following notation
is used for the incomplete elliptic integrals of �rst and second kind: F(α,m) =∫ α

0
dθ/
√

1−m sin2 θ, E(α,m) =
∫ α

0

√
1−m sin2 θ dθ, and K(m) = F(π/2,m) and

E(m) = E(π/2,m) for the complete elliptic integrals of �rst and second kind [19].
For the case with zero-thickness, or a3 = aζ → 0, and a1 = a, a2 = aξ, 0 < ξ < 1

we �nd that the depolarization factors reduce to:

L1

ζ
= ξ

K(1− ξ2)− E(1− ξ2)

1− ξ2
,
L2

ζ
=

E(1− 1
ξ2

)−K(1− 1
ξ2

)

1− ξ2
,

1− L3

ζ
=

E(1− ξ2)

ξ
.

(D.6)
As ξ → 0, i.e., the needle, we �nd that

L1

ζ
= ξ(log(

4

ξ
)− 1) +O(ξ3),

L2

ζ
=

1

ξ
+O(ξ),

1− L3

ζ
=

1

ξ
+O(ξ) (D.7)

and as ξ → 1, i.e., the disc, we �nd that

L1

ζ
=
π

4
+

1

16
π(ξ − 1) +O(ξ − 1)2,

L2

ζ
=
π

4
− 5

16
π(ξ − 1) +O(ξ − 1)2,

1− L3

ζ
=
π

2
+
π

4
(1− ξ) +O(1− ξ)2. (D.8)

The polarizabilities for the case of ζ → 0 are

(γe)11 =
4πa3ζξ

3L1

, (γe)22 =
4πa3ζξ

3L2

, (γm)33 =
4πa3ζξ

3(1− L3)
. (D.9)

All other elements of γe, γm vanish for ζ → 0, see (D.2), the shape is re�ection
symmetric and hence is both γe and γm diagonal in a coordinate-system where
the re�ection symmetries coincide with the coordinate axes, see [42]. Note that as
ξ → 1, we recover the known value of the disc with (γe)11 = 16a3/3 and (γm)33 =
8a3/3. These eigenvalues and their corresponding antenna Q factors are depicted in
Figure 3.
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For a rotationally symmetric ellipsoid, i.e., the spheroidal shape, we have two
cases, the oblate and the prolate case. For the oblate case a1 = a2 = a, a3 = aζ and
we �nd

L1 = L2 =
ζ

2(1− ζ2)3/2

(
arccos(ζ)− ζ

√
1− ζ2

)
(D.10)

L3 =
1

(1− ζ2)3/2

(√
1− ζ2 − ζ arccos(ζ)

)
. (D.11)

For the prolate case a1 = a2 = ζa, a3 = a

L1 = L2 =
1

2(1− ζ2)3/2

(√
1− ζ2 − ζ2 ln(

ζ

1−
√

1− ζ2
)
)
, (D.12)

L3 =
ζ2

(1− ζ2)3/2

(
ln(

ζ

1−
√

1− ζ2
−
√

1− ζ2)
)
, (D.13)

which agree with e.g., [25], upon using standard identities. The corresponding
eigenvalues and antenna Q are shown in Figure 4. An alternative approach is also
given in [42].
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