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Abstract

We discuss some of the problems involved in homogenization of a composite
material built from ferromagnetic inclusions in a nonmagnetic background
material. The small signal permeability for a ferromagnetic spherical particle
is combined with a homogenization formula to give an effective permeability
for the composite material. The composite material inherits the gyrotropic
structure and resonant behavior of the single particle. The resonance frequency
of the composite material is found to be independent of the volume fraction,
unlike dielectric composite materials. The magnetic losses are described by
a magnetic conductivity which can be made independent of frequency and
proportional to the volume fraction by choosing a certain bias. Finally, some
concerns regarding particles of small size, i.e., nanoparticles, are treated and
the possibility of exciting exchange modes are discussed. These exchange
modes may be an interesting way to increase losses in composite materials.

1 Introduction

Due to the possibility of manufacturing ferromagnetic fine particles of very small
dimensions with well-defined characteristics and narrow distribution of particle size
[28], research on ferromagnetic nanoparticles has been of great interest over the
past years. Since ferromagnetic media interact with magnetic fields, ferromagnetic
nanoparticles are capable of being used in a wide variety of fields such as magnetic
recording media, ferrofluids [24], medical applications [13| and microwave composite
materials for absorption of electromagnetic energy [5].

In this paper our attention is mainly directed towards absorption of electromag-
netic energy and the losses associated with ferromagnetic nanoparticles. The overall
aim is to study if a composite material with ferromagnetic nanoparticles can be
constructed with substantial magnetic losses. The geometry proposed is depicted in
Figure 1.

A review of losses in magnetic materials can be found in [11] and the main
loss mechanisms mentioned are hysteresis, domain wall motion, eddy currents, and
ferromagnetic resonance (FMR). However, at microwave frequencies we only have to
consider the last two since the others are relatively low frequency phenomena. For
nanoparticles with diameters below 1 ym the exchange interactions have to be taken
into account, resulting in the possibility of excitation of exchange modes [1,2, 14].
The existence of exchange modes is typically manifested by several particle size
dependent resonance peaks in the absorption spectra [21,29|. This phenomenon is
sometimes referred to as spin wave resonance (SWR) [16] and may lead to an increase
of the magnetic losses. Therefore, ferromagnetic nanoparticles have the potential
of being a good candidate as a component in a composite material designed for
absorbing electromagnetic energy. In radar absorbing applications, the main reason
for using composite material with ferromagnetic inclusions is to reduce the effect
due to the electric conductivity, resulting in the losses being almost purely magnetic.
Magnetic radar absorbing materials (RAM) can be made very thin with an improved
bandwidth compared to electric RAMs [17, p. 334]|.
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Figure 1: Geometry of the composite material. Each inclusion is a single-domain
particle, roughly of dimensions 100 nm or less. Due to the small size, each particle
is uniformly magnetized with magnetization M ,. The amplitude is the same for
all particles, |M,,| = |M /| = Ms where Mg is the saturation magnetization of the
ferromagnetic material, but the direction of the magnetization may be different in
different particles.

When modeling composite materials, homogenization methods are often applied.
The composite is then essentially treated as a homogenous material with effective
material parameters. Such a homogenization procedure is motivated for materials
where the typical length scale of the inhomogeneities in the microstructure are small
compared to the wavelength. At microwave frequencies, nanoparticles obviously
meet this criterion. An exhaustive presentation on modern homogenization theory
can be found in [23].

In the present work we analyze a composite material consisting of ferromagnetic
spherical nanoparticles embedded in a background material. The magnetic proper-
ties of a ferromagnetic spherical particle biased by an external magnetic field are
modelled by the Landau-Lifshitz-Gilbert (LLG) equation, resulting in a gyrotropic
small signal permeability with a resonance behavior. The effects of eddy currents
and exchange modes in a spherical particle are then investigated. It is found that
eddy currents at microwave frequencies can be neglected in nanoparticles and that
an applied time harmonic magnetic field can excite exchange modes. However, it
seems that surface anisotropy, 7.e., pinning of the spins at the surface, plays a cru-
cial role when analyzing the exchange modes and their resonance frequencies. This
is also pointed out in [2]. Further, the permeability of the single particle is then
combined with a homogenization formula to obtain an effective permeability for the
composite material. It is found that the material remains gyrotropic and that the
resonance frequency of the single particle is preserved. We also show that a mag-
netic conductivity can be identified, and that it is independent of frequency for a



certain bias condition. Finally, bounds for the complex effective permeability of the
composite material are discussed.

2 Equation of motion

The time evolution of the magnetization vector is described by the Landau-Lifshitz-
Gilbert equation [19]

—— = —yuoM X Hog + a—— X —— (2.1)

The constant v = ge/2m, = 1.759 - 10" C/kg is the gyromagnetic ratio for the
material, and « is a dimensionless constant typically at most in the order of 0.1.
However, for bulk materials values as large as 0.4 [31] and 0.92 [32] can be found,
and for single domain particles values in the range 0.2-0.6 are reported [28]. It is
immediately clear from this equation that the magnitude of the magnetization is
preserved: since the right hand side is orthogonal to M due to the vector products,
we have
oM 0 |M|*
ot ot 2
where the constant Mg is the saturation magnetization. Thus, the magnetization
can only change its direction, not its magnitude.
The effective field H .4 is the local field producing the torque on the magnetic
moment. This has several contributions, not all of which are easy to understand [10]:

Hgi=H-+H, +H.,+H,, (2.3)

0 = |M|=Ms (2.2)

The field H is the classical magnetic field, which is the one appearing in Maxwell’s
equations, whereas the remaining fields are of microscopic (quantum mechanical)
origin. The magnetocrystalline anisotropy field H ., is due to the atomic lattice and
can generally be calculated from the anisotropy energy U,y as pioH oy = —0U, /OM.
To first order, the anisotropy can be modeled with a symmetric tensor N, such that
U = M - N.M and H,, = —IN.M [4]. For a uniaxial crystal with axis a,
we have N, = N.aa. The case N. < 0 is termed easy azis, and the case N, > 0
is termed easy plane. The exchange field H., is due to the nonuniformity of the
magnetization and can be modeled as H., = A\xV>M. The combination of these
two contributions is usually responsible for setting up the magnetic domains. Finally,
the magnetoelastic field H,,. models the possible influence of mechanical strain on
the magnetization. For typical values of the parameters, see Table 1.

It is a delicate matter to determine which of these fields to include in or exclude
from the model. In this document, we do not consider the magnetoelastic field H .,
and focus on the purely electromagnetic properties.

3 Small signal solution

A small signal analysis was performed in [25|, which is briefly repeated and aug-
mented here. We assume the classical magnetic field, which is the one we can



Material T  poMs N, lex s

Unit K] |T] [nm| |GHz|
Fe 1044 216 -0.026 2.8 61
Co 1398 1.82 -0.038 3.4 o1
Ni 627 0.62 0.037 9.9 17
Permalloy 720 1.0 0 5.7 28
CrOq 0.5 -0.22 3.2 14

SmCos 993  1.05 -39 74 29

Table 1: Main properties of ferromagnetic materials, data taken from [7, p. 137].
Tc is the Curie temperature of the material, Mg is the saturation magnetization,
N, is the principal value of the crystalline anisotropy tensor N, (computed as N, =
—2K1/(puoM3) due to |7, eq. (2.12), p. 41], where K is the uniaxial magneto-
crystalline anisotropy constant as given in |7, p. 137]), le is the exchange length
of the material (computed as lo, = VAex = /24/(1oM2), where A is the exchange
constant as given in [7, p. 137]), and fs = yuoMs/2m = ws/27 is the intrinsic
precession frequency.

control, has one static bias part and one signal part (time convention e ), with
the resulting splitting of the magnetization and effective field,

H = HO + Hle_i“’t, M = Mo + Mle_i“’t, Heﬁ‘ = Heff,O + Heff’le_th (31)

where index 0 corresponds to fields constant in time, and time harmonic fields are
indexed by 1. In general, all sorts of harmonics of w are generated, but since we can
assume |M | > |M,|,|H|, the problem is linearized. Since the original equation

preserves the magnitude of M as a function of time, |M| = Mg, we must have
|M | = Ms, and can represent the zeroth order magnetization by
MO = ]\43’)’7’),07 ‘mo‘ =1 (32)

The result of this decomposition is that the dynamics split in two equations (one for
each order of magnitude, where we drop the time dependence e™™! from the time
harmonic fields)

0= —’}/,U()Msmo X Heff’o (33)
—iwMy = —ypuoMs [My X Hego/Ms + mo x Heg 1] — iwamg x M, (3.4)

We now turn to the solution of these equations.

3.1 Zeroth order solution

For a given ferromagnetic particle occupying a closed region €2, the first equation is
part of Brown’s equations in micromagnetics |7, p. 27|

my X Heff,l) =0 inQ

n-Vmy=0 on 0N (3.5)

Ime| =1



Shape N
/3 0 0
Spherical 0 1/3 0
0 0 1/3
1/2 0 0
Circular needle 0 1/2 0
0 0 0
000
Plate 000
0 01

Table 2: Different demagnetization tensors for different shapes.

where n denotes the outward unit normal of 2. The boundary condition is due to
the occurrence of the exchange term in the effective magnetic field, Ho = Ay VM.
The classical magnetic field H, must satisfy Maxwell’s static equations for a mag-
netized body [7, p. 22]

V'HOZ—Msv'mO in €}
V-Hy=0 outside (3.6)
VxHy;=0 everywhere

with the boundary conditions on 0f)

A [H A = Men -

"+ [Hol = Msnt - mq (3.7)
n X [Ho] =0

where [H| denotes the jump of H across the boundary 9. The equations (3.5)
and (3.6) couple through m and the effective field

H o= Hy— MsN.mg + Ay Ms VMg (3.8)

where we skip the magnetoelastic contribution H .. The combined equations are
nonlinear and difficult to solve even numerically; this is the field of computational
micromagnetics [8]. In general, the resulting magnetization direction mg will vary
within the magnetic particle.

Significant simplifications are possible for the special case of a spheroidal particle
immersed in a homogeneous external field Hj. For this particular geometry, the
particle is uniformly magnetized, and the total classical field within the particle can
be shown to be

H,=H;— MsNgmy (3.9)

where Ny is the demagnetization tensor for the particle. A table of demagnetization
tensors for different extremes of spheroidal particles is found in Table 2.



Since the particle is uniformly magnetized, the exchange term drops out, and
the effective field is

H .50 = Hj — Ms(Ng + No)mgy = Hy — MsNm (3.10)

Brown’s equations (3.5) require that the effective field is parallel to my, that is,
H 4o = BMgmy for some constant 3, which implies

H(E)/MS - Nmo = 6m0 = my = (/BI+ N)_lH(e)/MS (311)

The constant (3 is then determined from the normalization requirement |mg| = 1.
Thus, the “constant” [ is really a function of Hj, as well as Mg and N. Typically, it
is of unit order (or of order | H{|/Ms for strong bias), and together with the direction
of my it is the primary parameter that can be controlled by an external field.

In the special case of the spherical particle, where N = I/3, we can solve (3.11)
explicitly for § = £|H{|/Ms — 1/3. In order to choose the correct sign in this
solution, we study the total free energy, i.e., the sum of the anisotropy energy U,,
and the magnetostatic energy of the particle [20, p. 157]

Ftot:/(Uan_%MO'<HO+H(e))>dV:%/MO'G\ICMO_HO_HS)dV

_ —@/MO-<HQH,O+H3) AV (3.12)

which should be minimal for the correct 3. This discards the minus sign, and
henceforth we use the solution § = |Hj|/Ms — 1/3.

In a composite material as in Figure 1, the “bias” field Hj at one particle may also
be generated by the neighboring particles. Indeed, assuming that all particles have
the same magnetization M, the effective magnetization in the composite medium
is M = f1 M, where fi is the volume fraction of the magnetic particles. The field
from the neighboring particles can then be estimated by |12, p. 162]

1
Hj = H + M= H{ + %MO (3.13)

where H{' is the external field applied to the composite material. Inserting this in
the expression for (3, we find

Mg 3 Mg 3 Mg 3 '

where fo = 1— f; is the volume fraction of the medium inbetween the particles. This
demonstrates that as the volume fraction of the background material fo — 0, i.e.,
the composite material consists only of magnetic material, the bias parameter (3 is
proportional to the field H{'. This field may in its turn consist of a demagnetizing
field from discontinuities of the composite medium, but we study only an infinite
medium here.



3.2 First order solution

We remind ourselves that the equation for the first order quantity M, is
—iwMy = —yugMs[M | x Hgo/Ms + my X Heg 1] — iwamg x My (3.15)
Introducing ws = yugMs and using H g9/Ms = Fmy, this can be written
iwM | = wg[M; X fmgy+ my X Heg | + iwamg x M, (3.16)
The effective field is
Hyg,=H, —N.M,+ \,V>*M, (3.17)

where H; is the classical magnetic field appearing in Maxwell’s equations. In the
following, we ignore the exchange field, but return to its effects in Section 5. The
small signal susceptibility is the relation between the small signal field H; and the
small signal magnetization M. To find this, we rewrite (3.15) as

[iw + my x ((wsf — iaw)I + wsNe)| My = wsmy x H, (3.18)

From the structure of this equation it is seen that mg - M = 0, which means we
only need to consider components orthogonal to mg. The equation is then a 2 x 2
system of linear equations, which can be solved explicitly after some algebra. The
result is that the small signal susceptibility, defined by M = xH 1, is

xi xi2\ _ L (B4 Neao — iow/ws  —iw/ws — Ne 19 (3.19)
X21  X22 D iw/wg — N2 B+ Neai — low/ws :

where we used that the tensor N, is symmetric, i.e., N. 12 = N 21, and the denom-
inator is

D= —(w/ws)?* — NCZJZ + (B + Neoo — law/ws) (B + Nea1 — law/ws) (3.20)

When anisotropy can be ignored, the susceptibility simplifies to

(Xn X12> _ 1 (ﬁ— iaw/wg  —iw/wg ) (3.21)
X211 X22 —(w/ws)? + (B — law/wg)? iw/ws B —iaw/ws '

From this form (temporarily ignoring losses, i.e., &« = 0) we would conclude that
the resonance frequency of the susceptibility is given by the expression wyes/ws =

:l:\/(ﬁ + Ne2o) (B + Nea2) — NCQJQ. However, the resonance frequency should be re-

lated to the appropriate input signal (the signal to which the material responds to).
For the case of a single spherical particle the relevant input signal is the external
applied field HY, which is the field we control. We should then look at the polariz-
ability «,,, which is the relation between the total magnetic dipole moment, V M,
where V' is the volume of the particle, and the external field HY, i.e., VM, = ~, HY.
Since for small spheroidal particles Hy = H{ — N4qM, a short calculation shows
that the tensor =, is given by (3.19) after adding the components of Ny to the




components of N, i.e., substitute N, — N, + Ngy. Assuming no anisotropy and a
spherical particle, this is N. + Ngq = I/3, and the resonance frequency of v,, is then

Wres 1 |Hy|
=ity = Mg

This shows that the resonance frequency of a spherical particle can be controlled
by an external bias field H{. The general condition for the resonance frequency of
an arbitrary spheroidal particle is known as Kittel’s equation [15], and is obtained
by setting the right hand side of (3.20) equal to zero after making the substitution
N. — N¢ + Ng. It should be remembered that in composite media, the external
field H{; may have a large contribution from the neighboring magnetic particles
according to the discussion leading to (3.14).

- (3.22)

3.3 Magnetic losses

The losses are connected to the anti-hermitian part of the susceptibility tensor. After
some algebra, this is found to be

x — x! _ioaw/ws

2 D’
1+ a?)(w/ws)® + NZig + (B + Nep2)? —(iw + Neji2)(28 + Near + Neoa)
(iw — Nea2)(28 + Neai + Neoz) (1+a?)(w/ws)® + Nc2,12 + (B + Nen)?
(3.23)
where

D' = [(B+ Nea)(B+ Negs) — (1 + a®)(w/ws)? — N2 ,]”
+ [(2ﬁ -+ Nc,ll + NC’QQ)O[W/CUS:IZ (324)
A natural quantity for discussing losses is the magnetic conductivity, which is defined
in [3] as o = —iwpoe(x — x')/2. Although this has unit [o,,] = Q/m instead of
S/m as in the electric case, we keep the notation from [3|. For simplicity we only
give the special case N. = 0 here,

. X~ X' _ avpows (w/ws)?
Om = —iwpg =
2 (0?2 — (14 a?)(w/ws)?)? + da?(w/ws)? 32
(14 a?)(w/ws)? + 3 —2ifw/wg (3.25)
2iBw [ws (1+ a?)(w/ws)? + 32 '
It is seen that for the special case of § = 0, this is independent of frequency:
=0 a
o Hows 7 o2 ( )

From Table 1 we see that typical intrinsic precession frequencies fg are in the order
10-60 GHz, and we can expect a ~ 0.1. Using fs = 30 GHz, the typical size of the
magnetic conductivity is then

Om = Jlows ~4r-1077-27-30-107-0.1Q/m =24 -10*Q/m  (3.27)

a
1+ a2



In [27], it is shown that a sheet with magnetic material can be modeled with a
series resistance of o,,d, where d is the thickness of the sheet, in a transmission line
model of plane wave propagation. A perfect match to free space is then obtained if
this resistance equals the wave impedance in vacuum, 7y, which requires the typical
thickness d = ny/o, = 377/(2.4 - 10Y)m = 1.6cm. This would be the typical
thickness required for a sheet used as a magnetic absorber [25].

4 Eddy currents

So far, we have not discussed the possibility of the time varying external field to
induce currents in the particle. Due to the linearity property for the small signal
analysis, this can be considered in addition to the previous calculations. We first
give the general equations in the quasi-static limit, and then the necessary approxi-
mations to get an estimate of the effects.

The quasi-static equations are the result from ignoring the displacement current
—iwD in Maxwell’s equations,

V X E1 = inl = iWMQ(I + X)Hl (41)
VXle—ile—i-leaEl (42)

where we use the index 1 to indicate small signal quantities as in the previous section.
Taking the curl of the last equation implies

V x (V X Hl) = inM()(I"— X)Hl (43)

i.e., we have a diffusion equation for the magnetic field.

From this equation it is seen that the typical length scale is given by the skin
depth, 05 = \/2/(wopg). Ferromagnetic materials like iron often have a high con-
ductivity, on the order of 10" S/m. The skin depth at 10 GHz is then

2
ds = ~ 1.6 um (4.4)
wo tlg

This is not too far from the typical size of the particle, 100nm or less. If the
susceptibility x is not too large, the particle size is roughly one order of magnitude
less than the skin depth. This does not automatically mean that the induced field
is small, but at least motivates ignoring the skin effect when doing our calculations.

A short calculation in Appendix A shows that if the magnetic field is constant
throughout a spherical particle of radius R, the induced magnetization due to eddy

currents is .
m = iwaR‘r’l—gB (4.5)

Normalizing with the volume of the sphere, 47 R3/3, we find the magnetization due
to induction (this should really be spatially varying, but we are only interested in
orders of magnitude)

1 iwopgR?

= iwocR’>—B

m
Miyg=——— =
T 4nR3/3 10 10

(I+x)H: (4.6)
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This should be compared to the magnetization induced through the susceptibility,
which is xH . This once again demonstrates the crucial dependence on the skin
depth relative the particle dimensions. In our case, we calculate
R? o 1
PO 27101107 - 47 - 1077(0.1 - 1076)2— = 7.9 10~ (4.7)
10 10
which is indeed a small number. This demonstrates that the eddy currents can
be controlled by the size of the particles. The effects of eddy currents are thus

negligible compared to the effects derived from the Landau-Lifshitz-Gilbert equation
for sufficiently small particles.

5 Spin waves

Before turning to the homogenization of ferromagnetic particles, we discuss the
possibilities of spin waves. One usually distinguishes between two types of spin
waves, i.e., magnetostatic (Walker modes) and exchange modes. The former are
observed in samples of large dimension where the exchange energy is negligible
compared to the demagnetization energy. On the other hand, the exchange modes
are obtained when at least one dimension of the sample is small, which means that
the exchange energy will dominate and the demagnetization energy can be neglected.

In order to understand what type of spin modes that will be present it is im-
portant to explain the concept of small and large in this context. For particles
small enough, it becomes energetically favorable to form a single domain particle,
which means that exchange energy is dominating. However, as the dimensions of the
particle increase, multidomains will form and the demagnetization energy will pre-
vail. From nucleation-field calculations a critical radius of the sphere is obtained [6].
At this critical radius, the behaviour of the magnetization shift from the so called
magnetization curling to rotation in unison, i.e., from a multidomain particle to a
singledomain particle. This critical radius is here found to be of the order 10 nm.
From measurements, this radius seems to be in the order of 10-100nm |[21,29].
Thus, the size range in which exchange modes are expected is typically for radius
R <100 nm, which is also mentioned in [2|. This limit is not distinct and there is an
intermediate region where both modes exist (mode mixing), which is investigated
in [1,30]. In this section we study the so called exchange modes, i.e., where the
particle size is of the order R < 100 nm, and their influences on the permeability.

Spin waves are propagating disturbances of the collective precession of the mag-
netic spins in the ferromagnetic material. Thus, in an infinite medium we expect
solutions of the form Me!*®=“% which can exist independent of a signal field H .
In [16, p. 506] the following dispersion relation is presented

w/ws = B+ Aexk? (5.1)

We see that if w is in the order of wg and 3 is in the order of unity, k2 is in the order
of 1/Aex. This implies a typical wavelength of the spin waves of

AR 2T Aex = 27l (5.2)
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where [ is the exchange length tabulated in Table 1. From this table, it is seen that
the exchange length is in the order of 3-10 nm, which means the typical wavelength of
the spin wave is around 20-60 nm. Since the typical single domain particle is smaller
than 100 nm, this means resonant conditions for the spin wave can be established in
the GHz range.

Note that the spin wave solution is formally independent of the solution induced
by the signal field, and as such represent a solution of the homogeneous differential
equation. Thus, if the signal field has a frequency corresponding to a resonant spin
wave, we can expect strong coupling from the signal to the spin waves, which are
ultimately dissipated in losses. This may be an interesting possibility of increasing
the magnetic losses.

5.1 Excitation of exchange modes

In this section we study the excitation of exchange modes in a spherical particle due
to a uniform external time harmonic magnetic field. Using (3.17) (with N, = 0) in
(3.16) we obtain

[iwI +mp x ((wsf — iaw — /\estvz)l)] M, =wsmyx H; in ) (5.3)

where Hy = H{+ H ), is the sum of the external uniform applied field H{ and the
demagnetization field H j;, due to the small signal magnetization. This is essentially
the same equation as in [6, p. 59|, only here we have neglected the crystalline
volume anisotropy. In order to take the geometry of the particle into account, (5.3)
needs to be supplemented with the appropriate boundary condition. The form of
this boundary condition depends on whether the surface anisotropy is included or
not. There are several ways to express this anisotropy.! According to |6, p. 59]
the general boundary condition (to first order) is a Robin-like boundary condition.
In [2] a uniaxial surface anisotropy energy density is suggested that leads to the
following boundary condition

A-VM;+EM, =0 on 99 (5.4)

2K
/\exliﬂjws2

We choose the direction of the static magnetization my as the z-direction, i.e.,
the small signal magnetization M will be small perturbations in the xy-plane. Now,
assume that the small signal magnetization can be expressed as

where & =

is a pinning parameter and K is a surface anisotropy constant.

. Brig | &g
M, = i M by M = Ui ———— + b ———— ) M i, (5.5
1= Y (O M bt My 1) = (an 7 m—7 )M i (5.5)

where the functions M, are eigenfunctions of the Laplace operator with the
boundary condition (5.4),

nim nlm

v2]\41,nlm - _kIZan,nlm (56)
= Ml,nlm - jl(klnr)Ylm(ea ¢) (57)

1Tt seems that it is not fully understood what type of surface anisotropy expression that actually
occurs in real physical systems.
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ER 025 0.5 1 fi(GHz)
Too 0.8447 1.1656 1.5708 8.2
zoy 4.5490 4.6042 4.7124 3.5
Loy T.7576 7.7899 7.8540 5.8
ry 22862 2.4605 2.7437 7.0
Ty 3.4951 3.6328 3.8702 5.2
r5 4.6433 4.7622 49734 2.9

Table 3: The eigenvalues z;,, obtained from (5.11) and the associated resonance
frequencies for a R = 50 nm Co particle with ¢ R = 1.

which is a complete system of expansion functions for the problem. Here j,(k;,r)
denote the spherical Bessel functions and Yy,,(0, ¢) are the spherical harmonics.
Inserting (5.5) into (5.3) and using the orthogonality of the M, functions, the
following expressions for the mode coefficients is obtained

(H17 M+ )
Aplm = ¥ Lnlm 5 (58)
(Minlnw Ml,nlm) [/\exklzn + ﬁ o 1Oa"")/("‘)s o w/ws]
b ; _ <H17 Ml_,nlm) (5 9)
o (Ml_,nlm7 Ml_,nlm) [/\QXkZQn + ﬁ - iozw/ws + w/ws]

where the notation (A, B) denotes the inner product over the sphere.
With the boundary condition (5.4), the inner product becomes

R 21 T
(M, M) = / R (ki) dr / / Y6, 6)Yin(6, 6)° sin 0 d0 do
0 0 0

R {(1_ WD) iy o @i Em) o 1B )

2 x3 Tin 2

where z;, = k;,, R are the roots of

djl<17ln)

. + R&j(x,) =0 (5.11)

in
Some values of these roots are tabulated in Table 3, along with the associated

resonance frequencies.
The inner product (H, M7

1,nlm

) is given by

R 27 T
H, M+ Y=H, M [ j(k,r)r?dr Y, (6, )" sin 0 do do
1,nlm 1 0 0 0

_Jo I,m+#0 (5.12)
O\ Hy - MEVATE g (2,) Lm=0
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where M7 = mj/%y. We now conclude that all mode coefficients are zero for indices

[,m # 0, and the remaining ones are
2H1 . MT\/ 47Tj1<l’0n)

TonNon [(lex/ R)?x3, + 0 — low/ws — w/ws]
2H1 . Ml_\/ 47Tj1<l’0n)

ZonNon [(lex/ R)?x3,, + 0 — iaw/ws + w/ws]

(5.13)

anoo =

buoo = (5.14)

where Ny, is given in (5.10).
Now we see the effect of the surface anisotropy on the mode coefficients a,mi, by
and hence, the magnetization (5.5). As £ becomes very small, (5.11) becomes a

Neumann condition, i.e., %ﬁl") = 0, which then modifies the eigenvalues x;,. The
mode coefficients now all equal zero since j1(20,) = —jo(z0on) = 0, except for the case

oo = 0, where we obtain the uniform mode treated in Section 3.2. Thus, if there
is no surface anisotropy and the applied small signal field is uniform, then only the
uniform mode is present. The resonance frequency for this mode is independent of
the radius of the particle (which is a typical property of the magnetostatic modes).
For the case where we have surface anisotropy included it is seen that the exchange
modes are excited. The magnetization will no longer precess in unison and the
resonance frequency depends on the radius of the sphere. Thus, in order for exchange
modes to occur when a uniform field is applied, surface anisotropy is needed (i.e.,
pinning of the magnetization at the surface). The same conclusion is also found in
for instance |14].

5.2 Magnetic susceptibility and spin wave resonance
For the case of a uniform applied field, the solution (5.5) together with (5.13) and

(5.14), can be written in the following way

where x is the total susceptibility tensor which consists of a sum of mode suscepti-
bility tensors, one for each mode. If this tensor is represented in an -y base then
we have

X, = MOnjo(konT)
" ((lex/ R)?a5, + B — low/ws)? — (w/ws)?
. (lex/R)*x}, + B — iaw /ws —iw/ws (5.16)
w/wg (lex/R)?23, + B — iaw /ws '
where M,, = % In particular, it is found that the resonance frequencies for

the different modes (for small losses, i.e., @*> < 1) are given by

tw/ws = (lex/R)*x5, + 3 (5.17)
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Figure 2: The logarithm of z7, /R? for a particle with radius R. The values for x;,

are computed from (5.11) and plotted against £ R, where & = Ae)ifgSM?.

which agrees with the expression in 2| except here we omitted the crystalline
anisotropy. If the easy axis of the crystalline anisotropy coincides with the direction
of the magnetization M, it can easily be included by adding N, and the result is
simply a shift in the resonance frequencies.

To be consistent with the choice of input signal in section 3.2 we should apply the
polarizability rather than the susceptibility when studying the resonance frequency.
But since the boundary condition (5.4) leads to a nonuniform magnetization M we
no longer have a uniform demagnetization field H ;. Therefore, in order to obtain
the polarizability, we cannot simply follow the procedure in section 3.2 leading to
(3.22). Taking the effects of the nonuniform H;, into account leads to extensive
calculations [1,30]. However, the effects of the demagnetization field H s, in the
nonuniform case will be weaker and can, as a first approximation, be neglected.
Hence, we set H; ~ H7{ and discuss only the resonances of the susceptibility x for
simplicity.

From (5.17) one might expect that the resonance frequency has a 1/R? depen-
dence. However, this is in general not the case. The reason for this is that the x;,
themselves has a R dependence as can be seen from Figure 2. Here, we see that only
for small values of (R, a 1/R? dependence can be expected. This deviation from
1/R? dependence is also found in experiments [21,29] and thus could be explained
by the surface anisotropy, i.e., pinning of the spins at the surface of the particle.
In [29], the resonance frequency for Co is found to have a R~ dependence and
according to |2| this behavior can be expected theoretically for R ~ 1. For a given
radius of the particle, it is then possible to estimate the surface anisotropy. Using a
radius of 50 nm gives a surface anisotropy K, ~ 2-10~%J/m? which, according to [2],
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Figure 3: The imaginary part of the diagonal element of the mode permeability

tensors averaged over a Co particle with R = 50 nm. The material parameters are
taken from 