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Abstract— Several recent techniques from hybrid and opti-
mal control are evaluated on a power electronics benchmark
problem. The benchmark involves a number of practically
interesting operating scenarios for a fixed-frequency step-up
dc-dc converter. The specifications are defined such that good
performance can only be obtained if the switched and nonlinear
nature of the problem is respected during the design phase.

I. INTRODUCTION

In this paper we investigate the application of hybrid

systems control design techniques to a class of power elec-

tronic systems, namely fixed frequency dc-dc converters.

The system under consideration is a fixed-frequency step-up

(boost) converter, operating in the continuous current mode.

Part 1 of the paper covers the analysis and control synthesis

of the related step-down (buck) converter.

Despite its simplicity, the step-up topology represents a

good entry point for the investigation of the control design

and performance benefits that can be brought by hybrid

control techniques. As will be later highlighted, the control

problem entails a number of challenges, such as the non-

minimum phase behavior of the controlled variable and the

existence of multiple steady-state equilibria, while the hybrid

nature of the system and the existence of input constraints

further complicate the control design task. The benchmark

example investigated in this paper was first defined in [1] to

which we also refer for a comprehensive survey of the state

of the art works in the power electronics area.

Four research groups identified according to the affiliations

(ETH, KTH, LTH, Supélec) have applied recent ideas from

the hybrid control area to the benchmark. More specifically,

ETH uses Model Predictive Control (MPC) based on a Piece-

wise Affine (PWA) discrete-time model, KTH proposes a

controller designed with the H∞ technique using a sampled-

data model of the converter, LTH uses Relaxed Dynamic

Programming based on representation of the converter as

a Robust Piecewise Affine (RPWA) system and Supélec

investigates the application of stabilizing Lyapounov-based

control using a Port-Control Hamiltonian formulation of the

continuous-time plant dynamics.
II. PHYSICAL MODEL OF THE STEP-UP CONVERTER

The topology of the step-up converter is shown in Fig. 1.

Using normalized quantities, ro denotes the output load

† Corresponding author. Email: beccuti@control.ee.ethz.ch
! Fujioka is with Kyoto University and Kao is with the University of

Melbourne.
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Fig. 1: Topology of the step-up (boost) converter

which we assume to be ohmic, rc the Equivalent Series

Resistance (ESR) of the capacitor, rℓ is the internal resistance

of the inductor, xℓ and xc represent the inductance and the

capacitance of the low-pass filtering stage and vs denotes the

source voltage.

The switching stage of the converter comprises a con-

trolled semiconductor switch S and a secondary switch D
that is operated dually to the primary one. The switches are

driven by a pulse sequence of constant frequency (period),

the switching frequency fs (switching period Ts), which char-

acterizes the operation of the converter. The dc component

of the output voltage can be regulated through the duty cycle

(ratio) d, which is defined by d = ton

Ts
, where ton represents

the interval within the switching period during which the

controlled switch is in conduction.

The state vector is given by x(t) = [iℓ(t) vc(t)]
T ,

comprising the inductor current and the capacitor voltage; the

system is described by the following pair of affine continuous

time state-space equations

ẋ(t) =

{

F1x(t) + f1vs, kTs 6 t < (k + d[k])Ts

F2x(t) + f2vs, (k + d[k])Ts 6 t < (k + 1)Ts

(1a)

vo(t) =

{

gT
1 x(t), kTs 6 t < (k + d[k])Ts

gT
2 x(t), (k + d[k])Ts 6 t < (k + 1)Ts

(1b)

Matrices F1 and F2 and vectors f1, f2, g1 and g2 are of

appropriate sizes and depend on the circuit parameters. Their

analytical expressions can be found in [1].

Notice that the evolution of the system is externally

affected by when the switching takes place; the input to

the system is therefore the duty cycle d[k] specifying the

switching instant.
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III. MODELLING FOR CONTROL DESIGN

The two milestone papers on the analysis and design of

switch-mode dc-dc converters were written by Middlebrook

and Cuk [2], [3]. In these, the basic ideas of state-space

averaging were introduced and the so-called small signal

modeling was proposed for control design purposes. The

notion of averaging implies that only the dynamics of

the dc components of the circuit variables are taken into

account, which are by definition quite slow compared to

the switching frequency. On the other hand, the term small

signal analysis describes the linearization of the resulting

non-linear state equations around the operating point. The

averaging technique is convenient to use but it offers only a

low frequency approximation of the true dynamics where

the effect of discontinuous switching is ignored. Several

alternative modeling techniques will be discussed in the

paper, including both continuous and discrete time hybrid

systems frameworks. Examples of the latter are Piecewise

Affine (PWA) and Robust Piecewise Affine (RPWA) systems,

Sampled Data (SD), and Port-Control Hamiltonian models.

A. ETH: Piecewise Affine (PWA) Systems

From an implementation point of view, it is preferable

that all states used in the prediction model be directly

measurable. Thus, the capacitor voltage is replaced by the

output voltage in the state vector which leads to setting

x(t) = [iℓ(t) vo(t)]
T . Additionally, to account for variations

in the voltage source vs directly, the (to be derived) optimal

control law would need to be parameterized over vs. To

obviate this requirement and as will further be explained

in section V-A, the voltage source vs is removed from

the model equations by redefining the scaled state vector

x′(t) = [i′ℓ(t) v
′

o(t)] = [ iℓ(t)
vs

vo(t)
vs

]. Next, we formulate a

discrete time model by employing a sampling interval equal

to the switching period Ts. The employed method considers a

direct least squares fitting (LSF) approximation over several

regions of the control input of the exact system update

equations, yielding a PWA description of the associated non-

linear expressions. These can be written as

x′[k + 1] = Φ(d[k])x′[k] + Γ(d[k]) (2)

where Φ(d[k]) and Γ(d[k]) are matrices that depend nonlin-

early on the duty cycle d[k], calculated by integrating the

converter equations from t = k to t = k + 1.

Expression (2) is approximated by determining the ma-

trices Āi, B̄i and f̄i that describe the system in terms of

x′[k + 1] = Āix
′[k] + B̄id[k] + f̄i (3a)

if d[k] ∈ Di i = 1, . . . , ν (3b)

0 ≤ d[k] ≤ 1 (3c)

and that minimize the sum of quadratic error terms

(Φ(d[k])x′[k] + Γ(d[k]) − (Āix
′[k] + B̄id[k] + f̄i))

2 (4)

over a gridded series of points x′[k] in the state space

[0, i′ℓ,max] ×[0, v′o,max], where Di are the ν intervals

[0, 1
ν
], ..., [ν−1

ν
, 1], and i′ℓ,max, v′o,max are the maximum

values of the scaled inductor current and output voltage.

B. KTH: Sampled Data (SD) Modeling

The control synthesis is based on a sampled data (SD)

model of the boost converter. The SD model provides a

precise description of the system dynamics at the switching

instances and it allows the effect of continuous time distur-

bances and model uncertainty to be exactly accounted for in

an equivalent discrete time model.

Within the SD framework we consider H∞-synthesis and

we therefore include an external disturbance w in the dy-

namics. The disturbance is chosen as an independent current

source at the output to model uncertainty in the load.

To derive the SD model two types of sampling are

introduced. Firstly, the ideal sampler S is defined according

to (Sf) [k] := f(kTs) Secondly, the averaging sampler Save

is defined according to

(Savef) [k] :=
1

Ts

∫ kTs

(k−1)Ts

f(t) dt.

The quantities that are sampled are the inductor current il
and the output voltage vo. We define

ψ1[k] = (Savevo)[k], ψ2[k] = (SHx)[k] =

[

il(kTs)
vo(kTs)

]

(5)

The control objective is to ensure asymptotic convergence

to a nominal periodic solution (x0, d0) that satisfies the

tracking condition

lim
k→∞

1

Ts

∫ kTs

(k−1)Ts

vo(t) dt =

∫ Ts

0

v0
o(t) dt = vref . (6)

We want (6) to be satisfied robustly against e.g., parameter

uncertainties and the disturbance w, and this motivates us to

introduce the integrator state

ed[k] :=

k−1
∑

i=0

(ψ1[i] − vref)

and consider the objective of satisfying

∫ t

0

∥

∥ξ(t) − ξ0(t)
∥

∥

2

2
dt+

∞
∑

k=0

q‖ed[k]‖
2 ≤ γ2

∫ t

0

‖w‖
2
2 dt

(7)

for all t ≥ 0 and for all solutions to the dynamics in (1). Here,

ξ is an auxiliary output that is chosen to tune the controller

and ξ0 corresponds to a stationary periodic solution (x0, d0)
for the nominal system, i.e. when w ≡ 0.

To solve the problem of satisfying (7) subject to the

dynamics in (1) we derive a lifting representation of the

system, see [4] for details.

C. LTH: Robust Piecewise Affine (RPWA) Systems

Fixed frequency pulse-width-modulated systems are inher-

ently discrete. This is because we can only make control

decisions at discrete time instances, k := Tsk ≥ 0. The
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exact state propagation between time k and k+1 can easily

be obtained by integrating (1) over one period, we obtain

x[k + 1] = Φ(d[k])x[k] + Γ(d[k]) (8)

The matrices Φ(d) and Γ(d) depend nonlinearly on the duty

cycle in such a way that the model is not suitable for control

synthesis purpose. In addition, these matrices also depend on

the output load ro, which is assumed to be unmeasurable. To

resolve these two problems simultaneously we will make a

RPWA approximation of the model. To obtain a model that

is useful in combination with our synthesis approach we first

subdivide the range D of the duty cycle into a finite number

of sets Dm such that ∪Dm = D. To each Dm we will

compute a constant affine system

x[k + 1] = Φmx[k] + Γmd[k] + νm (9)

valid for d ∈ Dm. When the model (8) is replaced by (9)

the largest error we make can be expressed as

J = sup ||Φmx+ Γmd+ νm − (Φ(d, ro)x + Γ(d, r0))||

where the supremum is taken over (x, d, r0) ∈ X×Dm×R,

whereX is the set of states were the model is valid and R is a

model of the set of values the load can assume. Naturally, we

would like minimize J . The robust approximation problem is

to minimize J(Φm,Γm, νm) over (Φm,Γm, νm). Our ability

to solve this problem depend on the choice of norm and

the description of the set X ×Dm × R, the candidates are

those which makes the resulting problem a finite dimensional

convex optimization problem, see [5] for examples.

D. Supélec: Port Control Hamiltonian for Affine Systems

The control synthesis using a stabilizing approach is

based on a continuous model of the switching system. The

Port Control Hamiltonian (PCH) formulation that is used

in the control method enables taking into account energetic

considerations and it has the following standard expression:

ẋ = [J(ρ) −R(ρ)]
∂H(x, ρ)

∂x
+G(ρ)u (10)

x = [pl qc]
T is the state vector with pl the fluxes in the

inductances and qc the charges in the capacitors, ρ is the

boolean control variable, J the skew-symmetric intercon-

nection matrix, R the symmetric dissipation matrix, H the

energy stored in the system, G the power input matrix.

If the constitutive relations of the storage elements are

linear, which is most often the case of power converters, the

Hamiltonian of the system is:

∂H (x, ρ)

∂x
= Fx = z (11)

where F = FT > 0 and in the simple cases, it is a diagonal

matrix and z = [iℓ vc]
T is the co-state vector. Furthermore,

in the case of dc-dc power converters, the state equation

is affine with respect to boolean control variables [6]. The

matrices J(ρ), R(ρ) and G(ρ) can thus be written as:

J (ρ) = J0 +

p
∑

1

ρiJi, R (ρ) = ro +

p
∑

1

ρiRi

G (ρ) = G0 +

p
∑

1

ρiGi

(12)

where ρi are the components of the control vector ρ and p
is its dimension.

IV. THE CONTROL PROBLEM

The main control objective for the boost dc-dc converter

is to regulate the dc component of the output voltage vo

to its reference vo,ref . This regulation has to be achieved

in the presence of the hard constraints on the manipulated

variable (the duty cycle) which is bounded between 0 and

1, and needs to be maintained despite the changes in the

load ro and the source voltage vs. Moreover, the controller

must render a steady state operation under a constant duty

cycle, thus avoiding the occurrence of fast-scale instabilities

(subharmonic oscillations).

However, one needs to account for the fact that the output

voltage exhibits a non-minimum phase behavior with respect

to the duty cycle [7], and for the existence of multiple steady-

state equilibria due to the existence of the parasitic elements

rc and rℓ [8], the inclusion of which in the model is of crucial

importance, as depicted in Fig. 2. Indeed, neglecting them

leads to a model that yields an arbitrarily high output voltage

for duty cycles close to unity, whereas it can be clearly seen

that a realistic setup will yield significantly different results.

For an assigned average voltage ratio vo

vs
> 1 there will

always be two possible stationary values for the duty cycle

for a typical boost converter configuration.

These two problems can be bypassed by formulating the

control problem of the boost dc-dc converter as a current

(rather than a voltage) regulation problem, aiming at steering

the the inductor current to a reference iℓ,ref . This approach

is the common industrial practice [7], and yields satisfactory

results in terms of the closed-loop performance for the

following reasons: (i) the inductor current has a minimum

phase behavior with respect to the duty cycle [7], and (ii)

the steady state characteristic of the average value of iℓ is

monotonically increasing as a function of the duty cycle.

This implies that the region of high duty cycles is to be

avoided for the steady state operation of the converter, since

due to the high currents the efficiency of the converter

drops significantly [8]. Therefore, despite the fact that there

will always be two possible stationary values for the duty

cycle for a given output voltage reference vo,ref , the current

corresponding to the lower duty cycle can be selected and

taken as the reference iℓ,ref .

V. PROPOSED CONTROL APPROACHES

A. ETH: Model Predictive Control

The major advantage of Model Predictive Control (MPC)

is its straight-forward design procedure [9]. Given a model

of the system, including constraints, one only needs to set up

an objective function that incorporates the control objectives.
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Fig. 2: Input-output steady state characteristic of the step-up converter

The control objectives are to regulate the average output

voltage to its reference as fast and with as little overshoot

as possible, or equivalently, to minimize the absolute scaled

inductor current error i′ℓ,err[k] = |i′ℓ[k]−i
′

ℓ,ref |. Let ∆d[k] =
|d[k]−d[k−1]| indicate the absolute value of the difference

between two consecutive duty cycles. This term is introduced

in order to reduce the presence of unwanted chattering in

the input when the system has almost reached stationary

conditions. Define the penalty matrix Q = diag(q1, q2) with

q1, q2 ∈ R
+ and the vector ε[k] = [i′ℓ,err[k],∆d[k]]

T .

Consider the objective function

J(D[k], x′[k], d[k − 1]) =

L−1
∑

l=0

‖Q ε[k + l|k]‖1 (13)

penalizing the predicted evolution of ε[k + l|k] from k
over the horizon L using the 1-norm. The control input at

time-instant k is then obtained by minimizing the objective

function (13) over the sequence of control moves D[k] =
[d[k], . . . , d[k + L − 1]]T subject to the model equations

and constraints (3a), (3b), (3c); the resulting optimization

program is referred to as the constrained finite time optimal

control (CFTOC) problem.

Multi-parametric programming is employed to solve an

optimization problem off-line for a range of parameters. In

[10] it is shown how to reformulate and solve a discrete-time

CFTOC problem for a PWA system as a multi-parametric

program featuring the state vector as a parameter. Note that

the CFTOC problem is not only a parametric function of

x[k], but also of the last control move d[k−1]; furthermore,

as it is necessary to solve the CFTOC problem for all possible

values of i′ℓ,ref , the scaled inductor current reference also

enters the augmented state vector, which therefore results

in being 4-dimensional. Again, it should be noticed that

normalizing the system equations over vs allows to define

a model independently of the voltage source, and therefore

an explicit state-feedback law that depends on one parameter

less [11]. As proven in [10] the optimal state-feedback

control law d∗[k] is a PWA function of the (augmented)

state vector defined on a polyhedral partition of the feasible

(augmented) state space. As a result, such a state-feedback

controller can be implemented online, since computing the

control input amounts to determining the polyhedron in

which the measured state lies and then simply evaluating

the corresponding affine control law.

To account for load resistance variations, an estimation

scheme is derived. The aim is to use the previously derived

state-feedback controller (for a time-invariant and nominal

load), augmented by an external loop which adjusts the

inductor current reference to compensate for the model

mismatch [12].

B. KTH: Sampled-data H∞-control

Our goal is to achieve robustness to uncertainty and

disturbances in the load and to deal with more complex loads

than purely resistive. We therefore prefer voltage regulation

to current regulation. The non-minimum phase behavior can

be made less pronounced by including both the inductor

current and the output voltage in the H∞-criterium (7).

The lifted system discussed in the previous section de-

pends on d[k] in a highly nonlinear fashion. We thus linearize

the system around d
0 and consider a quadratic approximation

of the design criterion (7). The result is a new type of

sampled-data H∞ control problem which was solved in [4].

For the step-up converter we derived a state feedback con-

troller. The full state is not measured, but can be obtained

nominally by inverting ψ2 in (5), i.e. x(kTs) = H−1ψ2[k].
To verify that the linear quadratic approximation is a valid

we perform a stability analysis of the closed loop system

below.

The boost converter is designed to increase the input

voltage. It is therefore fair to describe the case when vs ≥ vo

as being out of the normal mode of operation. To increase

performance, whenever v0
s ≥ vo, where v0

s is the nominal

value of the source voltage, the sampled data controller K
is disregarded and we let dk = 0, i.e. we use the control law

dk =

{

sat[0,dmax]

(

d
0 +K(x̄[k] − x̄0)

)

, vo ≥ v0
s

0, vo < v0
s

.

where sat is a saturation, dmax is the point where the slope

of the v̄o/d-characteristics in Fig. 2(b) changes sign and

x̄[k] =
[

(H−1ψ2[k])
′ ψ1[k] ed[k]

]′

, x̄0 =
[

x0′

vref 0
]′

Finally, we add an anti-windup structure. If the linear feed-

back saturates, then the term

∆ = d
0 +K(x̄[k] − x̄0) − dk

is used to modify the integrator state in a linear fashion;

ed[k + 1] = ed[k] + (ψ1[k] − vref) + c∆

where c > 0.

1) Stability analysis: The H∞ synthesis was based on

a linearization of the system dynamics and the resulting

feedback was augmented with nonlinear control structures.

To justify the congregate controller a stability analysis was

performed using piece wise quadratic Lyapunov functions

and a griding procedure as described in [13]. It was shown

that the closed loop is globally exponentially stable, see [?].

FrB16.6

5467



C. LTH: Relaxed Dynamic Programming

1) Relaxed Dynamic Programming: Except for special

cases, the computations required to solve a synthesis problem

by means of dynamic programming are prohibitive. The

only possibility is to resort to approximations. One such

formulation was proposed in [14]. Using this formulation,

different parametrization of the value function results in

different algorithms. In this paper we will use the algorithm

proposed by the author in [15]. This algorithm uses a min-

max of linear functions as parametrization. In the next

section we summarize the properties of this approach in

terms of needed computations and the resulting control law.

2) Min-max parametrization: As discussed in the mod-

eling section we assume that the system is given by finite

number of affine systems (9). To apply dynamic program-

ming we need to define a suitable step cost l(x, u). Here we

consider the l1-norm. A crucial point for us is that this norm

can be represented as a max of linear functions

l(x, u) = ||W





x
u
1



 ||1 = max
q∈Q

qT





x
u
1



 (14)

for some choice of a finite set Q. We use relaxed value

iteration to solve for a stationary approximate value function.

Suppose that the k’th value function has the following min-

max representation

Vk(x) = min
j∈Jk

max
p∈Pjk

pT

[

x
1

]

(15)

where Jk and Pjk are finite sets. It can be shown, see

[15], that the k + 1’th value function also is a min-max of

linear function. The procedure can be iterated to obtain an

approximation which satisfies

βV ∗ ≤ V̂ ≤ αV ∗

where β ≤ 1 ≤ α are constants and V ∗ is the infinite horizon

cost function. Our approach to update the value function

in each iteration involves extreme point enumeration of a

certain polyhedron, in general such computations are very

costly. By exploiting structure, this step is not so costly for

us. Instead the most costly step is to solve a linear program.

3) Constraints and feedback control law: It should be

noted that the proposed algorithm allows for explicit in-

corporation of constraints on states and control variables,

as long as these can be described by polytopes. Moreover,

the function V̂ defined by the sets J and Pj , defines an

explicit feedback controller µ(x) which can be implemented

in a look-up table. This is so because to every p ∈ Pj

and every j ∈ J there is a corresponding vector Lp such

that µ(x) = LT
p [xT 1]T , hence the controller is piecewise

affine. All the Lp’s are computed along with V̂ .

D. Supélec: Stabilizing Control

1) General method: The approaches in the literature

which are based on Lyapunov function consider, in general,

linear systems with 0 as a common equilibrium point [16],

[17]. In the case of power converters, each configuration may

or may not have a different equilibrium point and physi-

cal considerations enable establishing a common Lyapunov

function.

The control objective is expressed using an admissible

reference x0 which must satisfy the constraint:

0 = (J (ρ0) −R (ρ0)) z0 +G (ρ0)E (16)

with ρ0 ∈ R
p, 0 ≤ ρ0i ≤ 1, z0 = Fx0. According to the

properties of this equation and the respective dimension or

x and ρ, for one ρ0, the equilibrium point can be unique

or not, and for ρ0 any point of the state space can be an

equilibrium point or not [18].

For a function V to be a Lyapunov function for a system

in a point x0 it must be positive anywhere except in x0

and its derivative must not be strictly positive. The candidate

Lyapunov function has the following form:

V (x, x0) = 1
2 (x− x0)

T
F (x− x0) (17)

Since the matrix F is positive, V is positive and contin-

uous for every x and it is null only in x0. Its derivative

depends on the control variable and using (10) and (16) it

can be expressed as following:

V̇ρ = − (z − z0)
T
R (ρ) (z − z0) +

p
∑

1

Ti (ρi − ρ0i) (18)

with:

Ti = (z − z0)
T ((Ji −Ri) z0 + giu) , i = 1 : p (19)

Due to the fact that R(ρ) is a non-negative matrix, the

first term is always negative, and because 0 ≤ ρ0i ≤ 1 the

sum can be made negative by choosing an appropriate value

for each ρi according to the sign of each Ti.

Various methods can be conceived to assure the negativity

of (18). In the following, a maximum descent strategy will be

used, which consist in choosing a new value for the control

variable each time one Ti changes its sign. This defines

commutation surfaces in the state space, Ti = 0, along which

the system has a sliding motion [18].

2) Control of frequency: Because this strategy requires

an infinite bandwidth a dead-zone is created with the help

of a parameter ǫ. This way the derivative of the Lyapunov

function may take positive values for a limited amount of

time. The new commutation surfaces are thus defined by

Ti = ǫ. The period and the amplitude of the oscillations

around the reference are determined by this parameter. To

maintain a constant frequency, in the case of parameter

variations, a discrete PI controller is used to compute the

value for ǫ, having as input the period of the control signal.

3) Application to the Step-up DC-DC converter: The

admissible reference is calculated as in (16) for a value of 1
p.u. for the voltage. The low value for the current is chosen

when selecting z0. As there is only one control variable,

the sum from expression (18) has only one term T , which,

according to (19) becomes:

T =
roi0
rc + ro

(v − v0) −
rorci0 + rov0

rc + ro
(i− i0) (20)
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VI. SIMULATION RESULTS

In this section we present a simulation study where each

suggested control strategy is tested. All simulations are done

using the same Simulink code and use the same set of

plant parameters. The output voltage reference is always

vo,ref = 1 while the circuit parameters, expressed in the

per unit system, are given by xc = 70
2π

p.u., xℓ = 3
2π

p.u.,

rc = 0.005 p.u. and rℓ = 0.05 p.u.. If not otherwise stated,

the source voltage is set to vs = 0.75 p.u. and the output

resistance is given by ro = 1 p.u.. We should note here that

current limit protection in the case of a short circuit in the

load is not possible for the step-up converter. Therefore, we

have not included such a case study in the proposal.

The case studies that have been considered are the follow-

ing:

1) The first case concerns the start-up of the converter

from zero initial conditions, i.e. with initial state

x(0) = [0, 0]T to the desired steady state operation

point.

2) In the second case, the response of the converter to

source voltage variations is tested. The converter is

initially at steady state with vs = 0.5 p.u. when a step

change to vs = 0.9 p.u. is applied.

3) The third case examines the response of the converter

to step changes in the output load. Starting from the

steady state, the load steps up at a given time-instant

from ro = 1 p.u. to ro = 1.5 p.u..

A. ETH: Model Predictive Control

The model was derived for a range of values of [0, 4]
for the scaled inductor current and [0, 3] for the scaled

output voltage; three PWA dynamics were calculated, with

the intervals Di being [0, 1
3 ], [13 ,

2
3 ], and [23 , 1]. For the cost

function, the penalty matrix is chosen to be Q = diag(10, 1)
and the prediction horizon in all cases is L = 2. As ex-

plained in Section V-A the explicit state-feedback controller

is defined in a 4-dimensional space resulting in a polyhedral

partition consisting of 239 regions, which, by utilizing the

merging algorithm introduced in [11] can be simplified to

121 regions.

Fig. 3 depicts the response of the proposed optimal

control scheme during start-up, yielding an output voltage

that reaches its stationary conditions with an overshoot

of about 4% and within 10 switching periods. For the
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Fig. 3: ETH: Closed loop step response from zero initial conditions
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Fig. 4: ETH: Closed loop response to a step in the source voltage from
vs = 0.5 p.u. to vs = 0.9 p.u.
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Fig. 5: ETH: Closed loop response to a step in the load resistance from
ro = 1 p.u. to ro = 1.5 p.u.

of the voltage source is measured, the current reference

updated accordingly and the system restored to its desired

output voltage value. Simulations from the final case are

displayed in Fig. 5. The Kalman filter adjusts the current

reference and the output voltage reaches its desired value

after approximately 20 switching periods.

B. KTH: Sampled-Data Control

In the controller design the signal ξ was chosen as

ξ =
[

1.6 8
]

x

and the remaining design parameters are q = 11.5 and

γ = 0.5. The parameter of the anti windup feedback is

c = 0.5. We notice that we only use the output voltage and

the inductor current for control. It would also be possible to

use a dynamic feedback law and then only use the output

voltage for control and still get satisfactory performance.

The simulation in Fig. 6 shows the transient behavior

during startup, see Fig. 6. The output voltage reaches the

reference level with an overshoot of 5%. The simulations in

Fig. 7 and in Fig. 8 show the response to a source voltage

and a load resistance increase, respectively.
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Fig. 6: KTH: Closed loop step response from zero initial conditions
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Fig. 7: KTH: Closed loop response to a step in the source voltage from
vs = 0.5 p.u. to vs = 0.9 p.u.

0 10 20 30 40
0.95

1

1.05

1.1

Sampling period

v
0
 (

p
.u

.)

0 10 20 30 40
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Sampling period

d
u
ty

 r
a
ti
o

Fig. 8: KTH: Closed loop response to a step in the load resistance from
ro = 1 p.u. to ro = 1.5 p.u.

C. LTH: Relaxed Dynamic Programming

We used the approach in section III-C to compute an

approximate model consisting of two affine systems. As

explained in section V-C it is a good idea to control the

current to a suitable reference value iref . A simple, and yet

effective, way to compensate for errors in the model is to

introduce an integrator state. Since we would like regulate

the current to iref we augment (8) with an error state

e[k + 1] = e[k] − i[k] + iref (21)

This integrator state can now be used for feedback, and thus

the controller will have integral action. We used the step cost

l(x, e, d̂, d) = q1|iref − i| + q2|e| + q3|d− d̂| (22)

where d̂ is last control value and q1,q2 and q3 are non-

negative parameters chosen to reflect the relative importance

of the different terms in l. The reason to introduce the extra

state d̂ is to avoid subharmonic oscillations at stationary

conditions.

Our simulations are shown in figures 9-11. As can be seen

the step response is fast, it reaches its reference value after

only 6 cycles and makes an overshoot of 5%. The mean value

is within 1% already after 11 cycles. The fast repsonse is due

to our choice of relatively high value on q1, as compared to

q2 and q3.

The response to an increase in the voltage source vs from

0.5 p.u. to 0.9 p.u. during steady state operation are shown

in Fig. 9. As the new value of vs becomes available to the

controller a new current reference value is computed. The

ringing in the control signal the first 15 cycles is, again, due

to the high relative penalty on the current error.

In the final case we a 50% increase in the load resistance

ro from 1 p.u. to 1.5 p.u. is imposed during steady state

operation. The results are shown figure 11. An assumed

estimator adjusts the current reference and the output voltage

reaches its desired value after approximately 20 switching

periods.
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Fig. 9: LTH: Closed loop step response from zero initial conditions
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Fig. 10: LTH: Closed loop response to a step in the source voltage from
vs = 0.5 p.u. to vs = 0.9 p.u.
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Fig. 11: LTH: Closed loop response to a step in the load resistance from
ro = 1 p.u. to ro = 1.5 p.u.

D. Supélec: Stabilizing Control

In this section, simulation results demonstrating the perfor-

mance of the stabilizing control methodology are presented.

As explained in section V-D the goal is to assure the nega-

tivity of the Lyapunov function candidate (17) by choosing

a value for the control variable at each instant when the term

(20) becomes greater than a parameter ǫ. Since the command

signal for the switch is directly imposed, this results in a

scheme with a variable switching frequency; for the sake of

comparison a pseudo duty cycle, defined as the average over

one switching period of the amount of time the switch is

kept on, is calculated and presented in the following plots

alongside the command signal. Results for the startup are

depicted in Figure 12; Figure 13 depicts the response of the

controlled system in the case of an increase in the source

voltage from 0.5 p.u. to 0.9 p.u.. The new value for the

admissible reference is recalculated and the output of the

system is restored to the desired output with an overshoot of
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Fig. 12: Supélec: Closed loop step response from zero initial conditions
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Fig. 13: Supélec: Closed loop response to a step in the source voltage from
vs = 0.5 p.u. to vs = 0.9 p.u.
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Fig. 14: Supélec: Closed loop response to a step in the load resistance from
ro = 1 p.u. to ro = 1.5 p.u.

under 20%. Figure 14 depicts the response of the controlled

system in the case of an increase of the load from 1 p.u.

to 1.5 p.u.. The variation is supposed to be measurable, and

in each case a new value for the admissible reference is

recalculated and the output of the system is restored to the

desired value.

VII. COMPARISONS AND CONCLUSIONS

In this paper a collective study of different hybrid control

techniques applied to the same benchmark example of a

step-up dc-dc converter has been presented. The solution

approaches proposed in the paper are all based on digital

control techniques where measurement and actuation take

place only at the sampling instances.

The methods presented by ETH, LTH and KTH all act at

the beginning of each switching period and use the duty cycle

as the manipulated variable, rendering a constant switching

frequency operation; the former two allow for a more system-

atic analysis of the circuit characteristics but typically yield

an increased degree of complexity in the controller, whereas

the latter might be suitable for higher switching frequencies

in view of its more affordable implementation requirements.

The method of Supélec, on the other hand, directly decides

on the discrete position of the controlled switch based on a

much faster sampling of the system, and results in a scheme

with an improved behavior during transient, but also with

a variable switching frequency. In this case, the operation

under an excessively high switching frequency is avoided

through the use of an outer PI loop that adjusts the dead-

band between the commutation surfaces. It is the opinion

of the authors that the trade-off between this performance

improvement and the disadvantages of the variable switching

frequency operation (especially with respect to the con-

verter’s EMI design), can only be judged on an application-

specific basis. Future research directions will be focused

on extending the presented methods to more complicated

converter topologies and on strategies for dealing with the

parameter variations and dynamic uncertainties appearing

under experimental conditions.
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[3] R. Erickson, S. Ćuk, and R. Middlebrook, “Large signal modeling and

analysis of switching regulators,” IEEE Power Electronics Specialists

Conference Records, pp. 240–250, 1982.
[4] H. Fujioka, S. Almér, U. Jönsson, and C.-Y. Kao, “Control synthesis

for a class of PWM systems for robust tracking and H∞ performance,”
in Proceedings of the IEEE Conf. Decision & Control, 2006, to appear.

[5] S. Boyd and L. Vandenberghe, Convex Optimization. Cambridge
University Press, 2004.

[6] J. Buisson, H. Cormerais, and P. Y. Richard, “Analysis of the bond
garph model of hybrid physical systems with ideal swithces,” Journal
of Systems and Control Engineering, no. 11, November 2002.

[7] N. Mohan, T. M. Undeland, , and W. P. Robbins, Power Electronics:

Converters, Applications and Design. Wiley, 1989.
[8] G. T. Kostakis, S. Manias, and N. Margaris, “A generalized method

for calculating the rms values of switching power converters,” IEEE

Transactions on Power Electronics, vol. 15, pp. 616–625, 2000.
[9] J. Maciejowski, Predictive Control. Prentice Hall, 2002.

[10] F. Borrelli, Constrained Optimal Control of Linear and Hybrid

Systems, Volume 290 of Lecture Notes in Control and Information

Sciences. Springer, 2003.
[11] T. Geyer, “Low complexity model predictive control in power elec-

tronics and power systems,” Ph.D. dissertation, ETH Zurich, 2005.
[12] A. G. Beccuti, G. Papafotiou, and M. Morari”, “Explicit model

predictive control of the boost converter,” ETH Zurich, Tech. Rep.,
2006. [Online]. Available: www.control.ee.ethz.ch

[13] S. Almér, U. Jönsson, C.-Y. Kao, and J. Mari, “Global stability analysis
of DC-DC converters using sampled-data modeling,” in American

Control Conference, 2004.
[14] B. Lincoln and A. Rantzer, “Suboptimal dynamic programming with

error bounds,” in Proc. 41st IEEE Conference on Decision and

Control, Dec. 2002.
[15] A. Wernrud, “Min-max parametrization of value functions.” Depart-

ment of Automatic Control, Lund University, Tech. Rep., in prepara-
tion.

[16] R. DeCarlo, M. Branicky, S. Petterson., and B. Lennartson, “Perspec-
tives and results on the stability and stabilisability of hybrid systems,”
Proceedings of the IEEE, no. 88, pp. 1069–1082, 2003.

[17] D. Liberzon and A. S. Morse, “Basic problems in stability and design
of switched systems,” IEEE Control Systems Magazine, no. 19, 1999.

[18] J. Buisson, H. Cormerais, and P. Y. Richard, “On the stabilization of
switching electrical power converters,” Hybrid Systems: Computation

and Control, March 2005.

FrB16.6

5471


