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A LINEAR QUADRATIC GAUSSIAN SELF-TUNER

K.J. ASTROM and Z. ZHAO-YING

Abstract. The paper describes a self-tuning regulator for single-
input single-output systems based on linear quadratic gaussian (LQG)
design and recursive estimation. The design problem is solved using
spectral factorization and solution of a linear polynomial equation.
The parameter estimation is based on extended least squares. The re-
gulator has been implemented on a micro computer DEC LSI 11/03. The
implementation admits interactive experimentation with operator comr
munication via an ordinary terminal. All programming is done in the
Pascal language. Applications to an analog computer simulation of
ship steering and control of a laboratory process for concentration
control are given. :

1. Introduction.

Self-tuning regulators are based on a very simple heuristic idea.
A design problem is first solved under the assumption that the model
of the system and its environment is known. When the parameters are
not known they are replaced by estimates obtained from a recursive
parameter estimator. A self-tuning regulator where the underlying
design scheme is based on linear quadratic gaussian (LQG) control
theory is developed in this paper. An advantage of this formulation
is that the performance of the control system can be characterized
by a few parameters. In the single-input single-output case there is
in fact only one parameter, the weighting factor between penalty on
the control signal and the error. Another advantage is that the LQG
theory is not restricted to any particular class of systems. It can
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thus easily be applied to non-minimum phase systems as well as to
systems with variable time delays. .

A self-tuner based on LQG was first proposed by Astrom (1974).
The solution was based on an iterative solution of the steady state
Riccati equation. This idea was further elaborated by Xstrdm and
Wittenmark (1975), Peterka and Xstrdm (1976), Gustavsson (1980),
Belanger (1981),Zhao-ying and Astrdm (1981).

In this paper a different idea is used. The solution is given
in terms of spectral factorization and a linear polynomial equation.
This approach has several advantages. It is easy to incorporate con-
straints on the loop gain at high and low frequencies to ensure ro-
bustness against both low frequency disturbances and unmodeled high
frequency dynamics. The sampling period can also be adjusted easily.
The algorithm can also be modified to give a pole placement self-
tuner. ’
The paper is organized as follows. A review of the LQG design
for systems with known parameters are given in section 2. A brief
summary of the recursive parameter estimation used is given in sec—
tion 3. Section 4 deals with practical problem related to implementa-
tion and coding. Results of experiments performed with the self-tuner
are presented in section 5 and section 6.

2. LQG design for systems with known parameters.

The design procedure for systems with known parameters is dis-
cussed in this section. Consider a single-input single-output system
described by the model

A(Q)y(t) = B(qlu(t) + C(qle(t) (2.1)

wvhere q is the forward shift operator.
Let the criterion be to minimize

1 52 2
E lim & J [y ) + pu (K] (2.2)
t>e k=1
The optimal feedback law is given by
R(qlu(t) = C(qlu (t) = 8(q)y(t) (2.3)

where the polynomials R and S are determined by a two step procedure.
The characteristic polynomial of the optimal closed loop system
is first obtained as a solution to the spectral factorization problem

-1 -1 - '
P(2)P(z 1) = pA(@)A(z ) + B(2)B(z ) (2.4)
where p is the weighting factor in the criterion (2.2). The polyno-
mials R and S are then obtained from the solution of the linear po-
lynomial equation.

A(z)R(z) + B(2)S(z) = P(z)C(2) (2.5)

See Astrdm (1979) and Zhao-ying and Astrém (1981b).
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Sensitivity constrainte

There are normally two types of sensitivity constraints on a con-
trol system. The loop gain BS/AR should be sufficiently high at low
frequencies to make sure that low frequency disturbances are rejected.
The loop gain should also be falling of sufficiently fast at high fre-
quency to reduce the effects of uncertainties in the high frequency
dynamics of the process.

A high loop gain at low frequencies will be obtained automatically
if the model (2.1) includes sufficient low frequency disturbances. When
the model (2.1) is estimated there is, however, no guarantee that the
loop gain will always be sufficiently high. One possibility to gua-
rantee a high loop gain at low frequencies is to require that the po-
lynomial R has one or more zeroes at z=1 i.e. to make sure that the
regulator has integral action.

Similar constraints can be introduced in order to make sure that
the loop gain falls off sufficiently fast at high frequencies. The
cross over frequency can be determined and a constraint which guaran-
tees that the loop gain decreases sufficiently fast can be added. A
considerable attenuation of high frequencies is obtained automatically
in sampled data systems because of the antialiasing filler.

The sampling period can also be determined automatically based on
a calculation of the cross over frequency.

Spectral Factorisation

The spectral factorization problem is solved iteratively by the
method proposed by Wilson (1969) and Vostry (1975) which uses the re-
cursion

1 o
P, . = i{P. + xj] (2.6)
where Xj i1s given by
P, (2)X, (z-l)+X. (z)P.(z_l) - pA(2)A(z 1) +B(2)B(2 1) (2.7)

If the iteration is started with a stable polynomial the sequence {P }
will converge to the desired solution. See Wilson (1969). In practlce
only a few iterations are required. One to three iterations are used
in the program. The pelynomial P from a previous step is used as the
first iterate.

Equation (2.7) is solved using the complex integrals

-1 -1
oy o 1 pA(z)A(z ")+B(z)B(z ") gz
I(L) = 271 § Pj(Z)Pj(Z‘l) 22+1 (2.8)

Introducing
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the solution can be written as

Ny
X = PjI (2.9)

Formula I(%) has two versions, one is accurate and another is a
reduced version. See Zhao-ying and Astrdm (198la).

The Linear Polynomial Equation

The diophantine equation (2.5) has a general solution:

R(z) E(z)P(2)C(z) + G(z)V(z)
(2.10)

F(z)P(z)C(z) + H(z)V(z)

S(z)
where E,F,G and H come from a linear transformation
E F A 1 O 1 E F
= (2.11)
G H B 0 1 0 G H

with the relationships

1

It

A(2)E(z) + B(2)F(z)
(2.12)

A(z)G(z) + B(z)H(z) 0

which is solved by theEuclidean algorithm. See Kucera (1979). If a
common factor exists in A(z) and B(z), say Bo(z), the linear trans-
formation gives

El’ Fl’ G1 and H1 are the solution to (2.12) after cancelling the

common factor.
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Pole FPlacement

It is clear from the description of the design algorithm that a
pole placement self-tuner is obtained as a by-product, simply by spe-
cifying the polynomial P instead of determining it from spectral fac-
torization.

3. Parameter estimation.

The estimation is an extended least squares algorithm, Panuska
(1969) applied to the model (2.1). To describe the algorithm intro-
duce the notations

6 = EPEPIIN PPN S
o (t) =[—y(t—l),...,—y(t—n),u(t—l),...,u(t—m),
e(t-1),...,e(t-)] " '
and

e(t+1) = y(t+l) - d(t+1)6(t).

The extended least squares algorithm is given by

B(t+1) = 8(t) + K(t+1)e(t+1)
K(t+l) = P(t)¢§t+1)
1+¢(e+1) "P(t)p(t+1)
T
P(t+1) =-§ P(t) - P(t)¢(t+%)¢(t+l) PCE) (3.1)
: A+P(t+1) " P(t)d(t+1)

where the factor X is the forgetting factor introduced to discount
past data when performing the estimation. In actual implementation
a square root algorithm based on the U-D is preferrable. See Bierman
(1977).

To avoid problem of levels,the estimation may be based on the
difference model.

-1 -1 -1
A(z 7)Vy(t) = B(z ")Vu(t) + C(z ~)Ve(t) (3.2)

where V is a difference operator. The parameters estimates are still
given by (3.1) provided that the vector ¢ in (3.1) is replaced by

¢(t) = [-Vy(t-1),...,~Vy(t-n),Vu(t-1),...,Yu(t-m),Ve(t-1),...,
ve(t-2)1T. |

The parameters estimates are then given by (3.1).
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4, Implementation.

All programs required for the self-tuner are written in Pascal
for DEC LSI 11/03. The program has two major procedures, a foreground
program which realizes the adaptive control algorithm and a background
program for operator communication. The programs are scheduled using
a simple real time schedular, Mattsson (1978). A brief description of
the program is given here.

The foreground program performs the recursive parameter estima-
tion and the regulator design. The background program initializes the
algorithm. It also allows operator communication based on a simple
command driven interaction.

The following commands are available:

HELP  give available commands

STOP stop the self-tuner

RUN start the self-tuner

DISP display parameters

PAR change parameters

STORE store reference and control signals

RESULT store parameters of regulator and estimator

Zze of Program and Code

The source code is about 1400 lines of Pascal. This includes
comments and declarations. Some additional details are given in
Table 1. The total size of the compiled code is about 40 kbytes.
Examples of execution times are given in Table 2. This table is based
on the assumption that three iterations are required for the spectral
factorization. In the coding flexibility and readability has been
emphasized rather than compactness and computational speed.

It is of interest to compare this implementation of the LQG
self-tuner with others. An imp%ementation based on the solution of
Riccati equation was given in Astrdm (1974). In this implementation
there was no operator communication. The pure foreground code comr
piled to about 8 kbytes on the PDP-15. The program was transferred
to PDP 11/03 by Gustavsson (1980). Operator communication was also
added in this implementation. The source code for the program was
about 1400 lines of Fortran code. Half of them are comments. The
compiled code required about 40 kbytes. Of these about 8 kbytes was
required for the pure foreground.

It thus appears that implementation based on Ricecati equations
and polynomial manipulations require about the same amount of code.
The minimum size of a dedicated implementation with no operator com
munication is about 8 kbytes.
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Table 1 - Size of source code including comments and declarationms.

Program Number of lines
Foreground 770
Estimation 37
Spectral factorization 144
Linear polynomial equation 275
Background 604

Table 2 - Execution times for the adaptive LQG controller with
deg A = deg B = deg C = n

execution time [s]

=]

0.18
0.28
0.50
0.80
1.22
1.78
2.50
3.38

00 N N W

5. Ship steering.

Ship steering is ome of the few problems where there is a
quadratic loss function given from physics. Let ¥ be the heading
and § the rudder angle. The added resistance due to steering AR
can approximatively be expressed as

T 2
_ARE -k % [ {Ep(t) - wref:] + p62(t)}dt. (5.1)

[¢)

See Norrbin (1972). The ship steering dynamics can be described as
a third order system with the transfer function

L{v} _ 5 +b
L{s} k s(s+a) (s+c) (5.2
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Disturbances due to wind and waves may be represented as filtered
high frequency noise and narrow band or periodic signals. There is
also measurement noise. Experimental verification of such models are

given in AstrOm and Kallstrom (1976) and K2llstrom and Astrém (1981).

A model for ship steering was simulated on an analog computer.
The parameters chosen were a = 0.37, b = 1.4 and ¢ = 2.34. These
values are representative for a large tanker. The numbers correspond
to a normalized model where the time it takes to travel one ship
length is the time unit. Wind disturbances were simulated as filter—
ed white noise. Waves were simulated as a triangular wave. To sim-
plify the interpretation of the results the disturbances were in-
troduced as equivalent rudder motions. Under ideal situations the
rudder motions should thus be similar to the disturbances. The sam—
pling period was chosen as 0.5 time units. The parameter p has the
value 0.14 and the forgetting factor A = 0.98. Representative values
of the parameters are

A(z) = z(z® = 1.752 + 0.61)

B(z) 0.12z + 0.07.
The polynomial P is then
P(z) = z(z2 - 0.90z + 0.26).

The regulator which minimizes the loss function (5.1) subject
to the constraint that it has integral action is given by

(z - l)(z3 + 0.8122 - 1.02z - 0.81)

R(z) =
S(z) = 18.924 - 22.723 + 6.822.
Wind Waves
Rudd . i
udder 6 =1 Ship dynamics  |jee— Heading ¢

Fig. 1. Block diagram for simulation of ship steering.

The closed loop bandwidth corresponds to a period of approximatively
12 time units.
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Overview of the results

Many different configurations were tried in the simulations. A
systematic investigation of LQG self-tuners having different model
orders and different sampling periods was done. For a second order
model there is an analytic soluticn to the LQG problem as was shown
by Astrdom (1981). This analytic solution admits simplifications of
the calculations and the code. The performance of this simple algo-
rithm was compared to self-tuners based on more complex models. It
was found that the improvements from more complex models were barely
noticable in the recorder traces of system inputs and outputs.

Low sensitivity to low frequency disturbances may be achieved
by increasing the model order to allow modeling of low frequency
disturbances. The desired property can also be obtained by choosing
a regulator structure with integral control as was discussed in
section 2. In this particular case it was advantageous to force in-
tegral action. The parameter estimates of the high order model con-
verge slowly. The loop gain obtained at low frequencies will also vary
with the disturbance level. The estimates of the low order model
were stable, They also converged quite rapidly.

The performance of the system is illustrated in Fig. 2 which
shows the response of the system to wave disturbances having dif-
ferent periods. It is seen from the figure that the heading errors

Tq =100 Ty=30 Tg=12

§ 0 - mtrrn e onars IR LN Hwﬁ*WMWMWMM%W

A
WAWAMAVA - it

W\/N B

r ¥ ] i i ¥ B
0 100 200 300 LOO 0 )00 200 300 40 O 100 200 300 400

Fig. 2. Results of simulation of LQG self-tuners for a ship steering
problem.
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increase with decreasing period of the disturbance. Notice that the
characteristic period of the closed loop system corresponds to a
period of about 12 time units. Fig. 2 also shows the same results
for an algorithm without enforced integral action. The performance
of this system is almost the same for rapid disturbances. The per—
formance for slow disturbances is, however, not so good. The per-
formance improves after some time. When the disturbances have the
period 100 it may however take over 1000 steps before the perform-
ance is as good as for the system with forced integral action.

6. Concentration control.

The LQG self-tuner has also been applied to concentration con-
trol using a laboratory process. The process is shown in Fig. 3.
Fresh water flows through a mixing chamber where it is mixed with
a concentrated salt solution. The flow rate of the salt solution
is controlled by a peristaltic pump. Via a selector valve the flow
is then sent through a short tube, a long tube or a stirred tank.
The concentration at the outlet of either vessel is measured using
a conductivity cell. The outlet flow may also be recirculated to
the input., The amount of recirculation can be adjusted. The control
variable is the speed of the peristaltic pump. The controlled va-
riable is the concentration at the outlet. The dynamics of the pro-
cess depends on which vessel is selected. The dynamics varies with
the flow rate. The time-delay and the time-constants are inversely
proportional to the flow rate. The process gain is directly pro-
portional to the concentration of the salt solution and inversely
proportional to the flow. Due to the peristaltic action there will
also be rapid fluctuations in the flow.

Conductivity cell Selector valve
Long tube Conductivity cell

loop

Valve for adjusting the recirculation

Fig. 3. The laboratory process.

Recirculation
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Overview of the results

Many different configurations were tried in the simulations. A
systematic investigation of LQG self-tuners having different model
orders and different sampling periods was done. For a second order
model there is an analytic solution to the LQG problem as was shown
by Astrdm (1981). This analytic solution admits simplifications of
the calculations and the code. The performance of this simple algo-
rithm was compared to self-tuners based on more complex models. It
was found that the improvements from more complex models were barely
noticable in the recorder traces of system inputs and outputs,

Low sensitivity to low frequency disturbances may be achieved
by increasing the model order to allow modeling of low frequency
disturbances. The desired property can also be obtained by choosing
a regulator structure with integral control as was discussed in
section 2. In this particular case it was advantageous to force in-
tegral action. The parameter estimates of the high order model con-
verge slowly. The loop gain obtained at low frequencies will also vary
with the disturbance level. The estimates of the low order model
were stable. They also converged quite rapidly.

The performance of the system is illustrated in Fig. 2 which
shows the response of the system to wave disturbances having dif-
ferent periods. It is seen from the figure that the heading errors

Tq =100 Tg=30 Tg=12

-_g 0 o et ars AAEAAAI AN WWMWWMMV

TAANS B
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0 100 200 300 400 O 100 200 300 400 O W00 200 300
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Fig. 2. Results of simulation of LQG self-tuners for a ship steering
problem.
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In our experiments the long pipe was used. Tmpulse responses
at different flow rates are shown in Fig. 4. The figure shows clearly
that there is a substantial variation of the dynamics with the flow
rate. Also notice the response obtained with recirculation.

a) c-ga15Cmis c} 0= 22210 8mis

T T T
0 50 130 Time is] 1 50 100 Time {s}

b} 0= 14510"8ms d) 0= 4x10"8m¥s

li T

[+ 50 108 Time 1s) o 50 100 Time {s]

Fig. 4. Impulse responses of the process with the long pipe for
different flow rates.

The contrel problem

The control problem we tried to solve was to design a robust
adaptive controller which could handle the variations in dynamics
shown in Fig. 4 and additional gain variations due to changes in the
concentration of the salt solution. The identification had to be based
upon set point changes and the normal process disturbances. Looking
at Fig., 4 it is clear that the variations in the time delay is a
major difficulty.These variations may be captured by a model of type
(2.1), provided that the sampling period and the degrees of the poly-
nomials are chosen appropriately. After some experimentation it was
found that a model where the polynomial A has one coefficient the po-
lynomial B has three or four coefficients could be estimated using
the normal signals. Such a model might be expected because the dyna-
mics may be approximated by a time delay and a first order lag.
Sampling of such a model gives the discrete time system

y(t)tay(t-1) = bku(t-k)+bk+1u(t—k—1)

where the sampling period is chosen as the time unit and the integer k
is such that the time-delay is between kh and kh+h. With the varia-
tions in the time-delay shown in Fig. 4 it is not possible to choose
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k and h so that all cases will be covered. Extra b- parameters are
therefore introduced. These extra parameters may also contribute to
modeling of higher order dynamics. Experimentation showed that the
uncertainties of the estimates increased considerably if more pa-
rameters were estimated. Three b~ parameters were chosen as a com
promize and the following model structure was then used.

y(t)+ay(t~1) = blu(t-1)+b2u(t-2)+b3u(t—3)+e(t) (5.3)

With a sampling period of 15 s it is then possible to model systems
with time delays up to 30 s which is adequate for the variations
shown in Fig. 4. Some experiments were made in order to determine a
suitable value of p. The value p = 5 gives a reasonable compromise
between response time and magnitudes of control actions.

Signal conditioning

There are high frequency variations in the measured signals
because of pressure fluctuations introduced by the peristaltic pump.
It is therefore very important to filter the signals before they are
sampled so that there is no appreciable signal transmission above
the Nyquist frequency. If this is not done the high frequency dis-
turbances will appear as low frequency disturbances because of alia—
sing. The effect of filtering the output signal before it is sampled
is illustrated in Fig. 5. The figure shows the measured output signal
before the filter and the control signal. The self-tuner is started
with all parameters equal to zero except the first b-coefficient.
Notice the dramatic improvement after 40 sampling periods when a
first order low pass filter with a time-constant corresponding to 5
sampling periods is introduced before the A-D converter.

Measured variable

Control varigble

0 T
0 50 100

Time |semptling periods |

Fig. 5. Illustrates the importance of prefiltering. The sampling
“‘period is 15 s. The flow is 12x10°® m3/s. The model used
in thé-'self-tunér has the structure (5.3).
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Performance of regulators with constant parameters
J

It will first be shown that regulators with constant parameters
will not work if there are large flow changes. This is illustrat-
ed in Fig. 6. The flow is first set to 14x 1070 m3/s and the self-
tuner is run for about 30 sampling periods. The estimated model ob-
tained then has the pulse transfer function

0.40z + 0.14

2%(z - 0.52)

H(z) =

This correspond to a first order system with a time constant of 13 s.
and a time delay of 17 s. The regulator parameters are then fixed and
the flow is changed. It is seen from the Fig. 6 that the regulator
behaves well when the flow is increased to 22 x 10~ m3/s. When the
flow is decreased to 10x 1076 n3/s the damping decreases however and
the coptrol loop becomes unstable when the flow is decreased to

8 x 10—6 m3/s. The results are quite natural because the time-delay
and the time constants increase with decreasing flow. When the flow
is sufficiently small the time delay is so large that the system be-
comes unstable.

| AWWN—

T
0 50 100 150 200 250

Measured variable

Control varioble

0 50 100 150 200 250
— 30
o
)
o 20
~
£ o4
2
o [+ T T T T
0 50 100 150 200 250

Time {sampling periods )

Fig. 6. Results of experiments with varying flow. A self-tuner is
used during the first 30 sampling ‘periods when the flow is
14 %1076 m3/s. -The regulator parameters are then fixed and
the flow is changed.
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Results of a similar experimentare shown in Fig. 7. In this case
the process is however initialized with a flow of 8x107° m3/s. The
self-tuner is used for the first 35 sampling periods. The estimated
model obtained has the transfer function

H(z) = -y 0:28
z°(z =~ 0.52)

which correspends to a first order system with time constant of 23 s
and a time delay of 30 s. Fig. 7 shows that the closed loop becomes
unstable when the flow is increased to 14 x 10° m3/s.

5
9
)
o
S <N\
>
o
g
3
2
g
b3
0 T T T
o} 50 100 150
5
&
o
g
§
e
=
=
(%)
G T T T
0 50 100 150
&
=4
x 20+
K
- .
£ 04 I I T
2
2
Iy

0 T T T
4] 50 100 150

Time [sampling perczs)

Fig. 7. Results of experiments with varying flow. A self-tuner is
used during the first 35 sampling periods, when the flow
is 8x10”6p /s. The regulator parameters are then kept con-
stant and the flow is’ changed.

Adaptive Control

The experiments with regulators having a fixed gain indicate that
there are difficulties in finding a regulator with constant parameters
whichworks well over a range of flows from 8x 10~ m3/s to 22x10~6m3/s.
It is actually possible to find a regulator which will stabilize the
system over the whole range of flows provided that the gains are chosen
very low. Such a regulator. will, however, have a poor performance.
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Results from experiments with an LQG self-tuner under the same
flow changes as in Fig. 6 are shown in Fig. 8. The figure shows clear-
1y that the self-tuner can easily cope with the parameter variations.
The parameters used in the self-tuner are p = 5 and A = 0.98. The pa-
rameter estimates are based on differences of the input and the out-
put signals. A comparison with Fig. 6 shows that the self-tuner has
considerably better performance than a constant gain regulator. It

W AN —

T T T
o 50 100 el 200 250

Measured varioble

Conlrol variable

1) 53 100 ke 200 250

Fiow Im /sx10
N
o o
1 1

[¢] T T T
0 50 100 15T 200 250

Time {scmpling periods}

Fig. 8. Results of experiments with an LQG self-tuner when the flow
varies. The changes in the flow are similar to those in
Fig. 6.

jis of course possible to make such a self-tuner unstable by decreas-—
ing the flowrate so much that the time delay is larger than 45 s.The
model (5.3) with a sampling period of 15 s is then no longer adequate.
The properties of the 1LQG self-tuner are further illustrated in Fig.9
which shows how it responds to set point changes, flow changes,pulse
disturbances and introduction of recirculation. The self-tuner is
initialized with all parameters zero except bl.The set point is
changed from 1.4 to 2 at time 35. A load disturbance is introduced

at time 105 by injecting a salt solution with high concentration for
10 s. A sequence of flow changes are then introduced. The flow is
increased by 307 at time 140. It is reduced to its normal value at
time 150.The flow is decreased by 307 at time 210. At time 245.it is
returned to its normal value again. At time 280 the recirculation
pump is started. The results in Fig. 9 show that the self-tumer
works very well in all cases.
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Fig. 9. Experiments with an LQG self-tuner with set point changes,
load disturbances, flow changes and recirculation.
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