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Abstract

Understanding the interaction between electromagnetic waves and matter is

vital in applications ranging from classical optics to antenna theory. This

paper derives physical limitations on the scattering of electromagnetic vector

spherical waves. The assumptions made are that the heterogeneous scatterer

is passive, and has constitutive relations which are on convolution form in

the time domain and anisotropic in the static limit. The resulting bounds

limit the re�ection coe�cient of the modes over a frequency interval, and can

thus be interpreted as limitations on the absorption of power from a single

mode. They can be used within a wide range of applications, and are partic-

ularly useful for electrically small scatterers. The derivation follows a general

approach to derive sum rules and physical limitations on passive systems on

convolution form. The time domain versions of the vector spherical waves are

used to describe the passivity of the scatterer, and a set of integral identities

for Herglotz functions are applied to derive sum rules from which the physical

limitations follow.

1 Introduction

Understanding how electromagnetic �elds interact with matter is vital in classical
science, like optics and scattering theory, but also in modern applications like wire-
less communication, cloaking and metamaterials. When interacting with various
objects, electromagnetic waves may be scattered and/or absorbed. If the objects
are small compared to the wavelength, this interaction is limited. An early paper
addressing these limits is Purcell's [19], discussing radiation emission and absorption
by interstellar dust. Results similar to Purcell's can also be found in [3]. Limita-
tions on antenna performance where introduced by Chu in [5]. Sohl et al. derives
limitations on the extinction cross sections of arbitrary heterogeneous, anisotropic
objects in [23], results that are directly applicable to antenna theory [8]. A sum-
mary of some important results on physical limitations on antennas can be found in
Hansen's book [12]. More general dispersion relations for electromagnetic as well as
quantum-mechanical scattering are discussed in e.g., [13, 17] and references therein.

Electromagnetic �elds can be decomposed into orthogonal vector spherical waves
[11], also referred to as partial waves, (electric and magnetic) multipoles, or (TM
and TE) modes. Such a decomposition is very bene�cial in scattering theory. In
wireless communication, these orthogonal modes are closely related to the orthogonal
communication channels of multiple-input multiple-output (MIMO) systems [7].

The present paper seems to be the �rst to derive physical limitations on the
scattering and absorption of electromagnetic vector spherical waves. To do so, a
general approach to obtain sum rules and physical limitations for passive systems
on convolution form put forth in [2] is used. At the core of this approach is a set
of integral identities for Herglotz functions, a class of functions that is intimately
linked to the transfer functions of passive systems.

The main results of this paper are physical limitations on the re�ection coe�-
cients of the modes for arbitrary heterogeneous, passive scatterers with constitutive
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relations on convolution form, and anisotropic in the static limit. The bounds state
that the re�ection coe�cient cannot be arbitrarily small over a frequency interval
of non-zero length; how small it can be depends upon the smallest sphere circum-
scribing the scatterer, its static material properties and the fractional bandwidth.
An interpretation of the bounds on the re�ection coe�cients is as bounds on the
maximum absorption of power from a single mode. The bounds are particularly
useful for electrically small scatterers, and so they are well suited to analyse sub-
wavelength particles designed to be resonant in one or more frequency bands, like
antennas and metamaterials.

This paper is divided into sections as follows: First, in Section 2, the general
approach to derive sum rules and physical limitations for passive systems presented
in [2] is reviewed. In order to use this method and obtain the bounds in this paper,
expressions for the vector spherical waves in both the time and frequency domains
are needed. This is the topic of Section 3. In Section 4, the scattering matrix is
introduced, and the physical limitations are derived. After this comes two examples
in Section 5, one which discusses absorption of power in nanoshells, and another
which considers limitations on antenna performance. Last come some concluding
remarks in Section 6.

2 A general approach to obtain sum rules and phys-

ical limitations on passive systems

The derivation of the physical limitations on scattering of vector spherical waves in
this paper follows a general approach to obtain sum rules and physical limitations
for passive systems on convolution form presented in [2]. This section summarises
this general approach in order to put the following sections in the right context. The
general approach is described more thoroughly in [2], where all the necessary proofs
can be found.

There are three major steps to obtain sum rules for a physical system: First,
the transfer function of the system is related to a Herglotz function h. Secondly,
the low-frequency asymptotic expansion of the transfer function is determined. This
step commonly uses physical arguments, and is speci�c to each application. Then
a set of integral identities for Herglotz functions, relating weighted integrals of h
to its low-frequency asymptotic expansion, is used. Essentially, this relates the
dynamical behaviour of the physical system to its static properties. In the third step,
physical limitations are derived by estimating the integral. Variational principles can
sometimes be applied to the static parameters if they are unknown.

2.1 Herglotz functions and integral identities

Here the class of Herglotz functions is reviewed brie�y, and the integral identities
used to obtain sum rules for passive systems are presented. A Herglotz function h
is de�ned as a function holomorphic in C+ = {z, Im z > 0}, satisfying Imh(z) ≥ 0
there. Furthermore, many Herglotz functions appearing in various applications are
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Figure 1: The cone {ω : ϑ ≤ argω ≤ π − ϑ} for some ϑ ∈ (0, π/2].

of the form h(ω) = α + h1(ω), where h1 exhibits the symmetry h1(ω) = −h∗1(−ω∗)
and α ∈ R [2]. Such a function h is called symmetric in this paper, and it satis�es
the low-frequency expansion

h(ω) = α +
N∑
n=0

A2n−1ω
2n−1 + o(ω2N−1), as ω→̂0, (2.1)

for some integer N ≥ 0. Here A−1 ≤ 0 and all An are real. The limit ω→̂0 is
a short-hand notation for |ω| → 0 for ω in the cone ϑ ≤ argω ≤ π − ϑ for any
ϑ ∈ (0, π/2], see Figure 1. The asymptotic expansion (2.1) is clearly valid as ω → 0
for any argument in the case h is holomorphic in a neighbourhood of the origin.

There is a set of integral identities for a symmetric Herglotz function h [2]:

lim
ε→0+

lim
ω′′→0+

2

π

∫ ∞
ε

Imh(ω′ + iω′′)

ω′2p
dω′ = A2p−1 − δp,1β, p = 1, 2 . . . , N. (2.2)

Here δp,q denotes the Kronecker delta and β = limω→̂∞ h(ω)/ω ≥ 0, which always
exists �nitely. The Herglotz function h is not necessarily holomorphic in a neigh-

bourhood of the real line, but the distributional limit limω′′→0+ h(ω′ + iω′′)
def
= h(ω′)

exists. The notation ω′ = Reω and ω′′ = Imω is used throughout this paper. The
left-hand side of (2.2) is the integral of Imh(ω′)/ω′2p in the distributional sense, i.e.,
contributions from possible singularities in the interval (0,∞) are included [2].

2.2 Sum rules for passive systems

Having introduced Herglotz functions, it remains to discuss the link between this
class of functions and the transfer functions of passive systems on convolution form,
i.e., the �rst step of the general approach. The results presented here relies mainly
on the work by Youla et. al. [26], Zemanian [27�29] and Wohlers and Beltrami [25].
See also the book [17] by Nussenzveig. How the integral identities (2.2) can be used
to derive sum rules for such systems once the low-frequency asymptotic behaviour
of the transfer function has been determined is also explained in this section.

Consider a general mathematical model of a physical system in the time domain,
u(t) = Rv(t), where v and u are the input and output signals, respectively, related
to each other by the operator R. The context of distributions is natural, since
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generalised functions such as the delta function should be allowed; hence, the domain
D(R) of the operator R is assumed to be some subset of the space of distributions
D′. The assumptions of linearity, continuity, and time-translational invariance imply
that the operator is on convolution form [28], i.e.,

u(t) = Rv(t) = w ∗ v(t). (2.3)

Such a system is fully described by its impulse response w. Many physical systems
obey causality, which intuitively means that the output cannot precede the input.
For the mathematical model (2.3) it means that suppw ⊆ [0,∞) [28].

Another crucial assumption is that of passivity; if the power of the input (output)
signal at the time t is |v(t)|2 (|u(t)|2), the power absorbed by the system is |v(t)|2−
|u(t)|2. In this paper, a system is de�ned to be passive if the energy expression

e(T ) =

∫ T

−∞
|v(t)|2 − |u(t)|2 dt (2.4)

is non-negative for all T ∈ R and v ∈ D, where D denotes smooth functions of
compact support [25, 29].1 Only input signals v ∈ D are considered in order for
the integral to be well-de�ned. However, this is often enough to ensure that the
corresponding energy expressions are non-negative for other admissible input signals
v ∈ D(R).

One might expect that passive systems must be causal, and it turns out that
this expectation is correct for operators on convolution form [26, 29]. Also, passivity
implies that the impulse response is a distribution of slow growth [25, 29], w ∈ S ′
and hence Fourier transformable in the distributional sense. In this paper, the
Fourier transform for all such distributions f is de�ned through 〈Ff, ϕ〉 = 〈f,Fϕ〉
for all ϕ ∈ S. Here S denotes the set of smooth functions of rapid descent, 〈f, ϕ〉
is the value in C that f ∈ S ′ assigns to ϕ ∈ S [28], and the Fourier transform of
ϕ is de�ned as Fϕ(ω) =

∫
R ϕ(t)eiωt dt. The frequency domain version of (2.3) is

ũ(ω) = w̃(ω)ṽ(ω), where the transfer function of the system is given by

w̃(ω) = (Fw)(ω),

and ṽ = Fv and ũ = Fu are the input and output signals, respectively [2].
Passivity implies that the region of convergence for w̃ contains C+ and w̃ is holo-

morphic there. Furthermore, the transfer-function w̃(ω) is bounded in magnitude
by one for ω ∈ C+ [25, 29]. The transfer function w̃ is not necessarily holomorphic
in a neighbourhood of the real axis, but w̃(ω′) = limω′′→0 w̃(ω′+ iω′′) is well-de�ned
for almost all ω′ ∈ R and bounded in magnitude by one [16].

One more assumption on the physical system is convenient (but not necessary):
It is assumed that it maps real-valued input signals to real-valued output, which
means that w is real. This implies the symmetry

w̃(ω) = w̃∗(−ω∗), Imω > 0, (2.5)

1This is not the only way to classify passive systems, see [2, 26, 28].
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where the superscript ∗ is used to denote the complex conjugate.
A Herglotz function can be constructed from w̃ in two ways, either with the

inverse Cayley transform of ±w̃, or by taking the complex logarithm of w̃ [2]. The
latter way is chosen here. It requires that the zeros of w̃ are removed, which is done
with a Blaschke-product. The Herglotz function is therefore

h(ω) = −i log

(
w̃(ω)

B(ω)

)
, (2.6)

where

B(ω) =
∏
ωn

1− ω/ωn
1− ω/ω∗n

(2.7)

is a Blaschke product [16], repeating the possible zeros ωn of w̃ in C+ according to
their multiplicity. The logarithm is de�ned in [2]. The symmetry (2.5) implies that
h(ω) is symmetric in the sense discussed in Section 2.1, with α = arg w̃(iω′′).

The integral identities (2.2) applied to the function in (2.6) yield

lim
ε→0+

lim
ω′′→0+

2

π

∫ ∞
ε

1

ω′2p
ln

1

|w̃(ω′ + iω′′)|
dω′ = A2p−1 − δp,1β, p = 1, 2 . . . , N, (2.8)

where it has been used that |B(ω′+ iω′′)| → 1 as ω′′ → 0 for almost all ω′ ∈ R [16].2

The low-frequency asymptotic expansion in (2.1) may be related to the behaviour
of w̃(ω) as ω→̂0, where as before ω→̂0 is short-hand notation for |ω| → 0 for ω
in the cone ϑ ≤ argω ≤ π − ϑ for any ϑ ∈ (0, π/2]. The cone assures that the
low-frequency limit is only dependent on the behaviour of w(t) for arbitrarily large
times t [2]. If, however, w̃(ω) is holomorphic in a neighbourhood of the origin,
the low frequency limit is identical whatever the argument of ω. The asymptotic
behaviour of w̃(ω) as ω→̂0 must be found by physical arguments speci�c to each
application, and constitutes the second step of the general three-step approach [2].
In the third step, physical limitations may be derived by considering integrals over
�nite frequency intervals, since the integrand in (2.8) is non-negative. In some cases,
variational principles are used to bound the expansion coe�cients Ap of h when they
are unknown.

3 Vector spherical waves in the time and frequency

domains

Expansions of the electric and magnetic �elds in vector spherical waves are widely
employed in the frequency domain, see e.g., [11]. Their counterparts in the time

2It might be that w̃(ω) has an accumulation point of zeros for one or more ωj ∈ R, in which
case B(ωj + iω′′) does not tend to 1 as ω′′ → 0. Then the Blaschke product must be included for
the left-hand side to make sense, i.e., (2.8) reads [2]:

lim
ε→0+

lim
ω′′→0+

2
π

∫ ∞
ε

1
ω′2p

ln
|B(ω′ + iω′′)|
|w̃(ω′ + iω′′)|

dω′ = A2p−1 − δp,1β, p = 1, 2 . . . , N. (2.9)

Equation (2.8) is understood to be replaced by (2.9) whenever necessary throughout this paper.
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Figure 2: The scatterer is contained in a sphere of radius a centered at the origin.
Outside this sphere, the electric and magnetic �elds are expanded in outgoing and
incoming vector spherical waves, u

(1)
ν and u

(2)
ν , with index ν.

domain have been treated by Shlivinski and Heyman [20, 21]. Both the time and
frequency domain vector spherical waves are considered in this section, since they
are both required in Section 4 to derive physical limitations for passive scatterers
according to the general approach described in Section 2; the time domain waves
are necessary in order to rigorously describe passive scatterers and �nd their corre-
sponding Herglotz functions, whereas the frequency domain counterparts are needed
to derive the low-frequency behaviour of the scatterer and determine sum rules and
physical limitations. A tilde (̃ ) is used in the remainder of this paper to denote func-
tions in the frequency domain, and it is also convenient to employ the wavenumber
k = ω/c, so that f̃(k) = Ff(ω). Here c is the speed of light in free space.

Consider an object in free space, and let a be the radius of a sphere (centered
at the origin) containing the object, see Figure 2. Outside this sphere, the electric

�eld is expanded in outgoing and incoming vector spherical waves, denoted u
(1)
ν and

u
(2)
ν , respectively:

Ẽ(r, k) = k
√
η0

∑
ν

il+2−τ b̃(1)
ν (k)u(1)

ν (kr) + il+2−τ b̃(2)
ν (k)u(2)

ν (kr). (3.1)

Here η0 is the wave impedance in free space. The spatial coordinate is denoted
r, and in the rest of the paper the notation r = |r| and r̂ = r/r is employed.
For a de�nition of the vector spherical waves, see Appendix A.1. The multi-index
ν = {τ, s,m, l} is introduced to simplify the notation, and the factors k

√
η0il+2−τ

are included for consistency with the time domain expansion described below. The
corresponding magnetic �eld is

H̃(r, k) =
k
√
η0

∑
ν

il+1−τ b̃(1)
ν (k)u

(1)
ν̄ (kr) + il+1−τ b̃(2)

ν (k)u
(2)
ν̄ (kr), (3.2)

where the dual multi-index ν̄ = {τ̄ , s,m, l} with τ̄ = 3− τ has been introduced.
Outgoing vector spherical waves in the time domain are described thoroughly

in [20, 21]. A short description, also covering incoming waves, is included here for
clarity. Assuming that the �elds vanish as t→ −∞, the inverse Laplace transform
may be applied to (3.1)�(3.2) with k = is/c and the integration curve over s suf-
�ciently far into the right half-plane. Using the explicit expressions (A.1) for the
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vector spherical waves yields the transverse electric �eld ẼT = Ẽ − r̂(r̂ · Ẽ):

ẼT(r, k) =

√
η0

r

∑
ν

[
b̃(1)
ν (k)e−sr/cR

(1)
τ,l (sr/c) + b̃(2)

ν (k)esr/cR
(2)
τ,l (sr/c)

]
Aν(r̂), (3.3)

where 
R

(1)
1,l (s) =

l∑
n=0

Dn,ls
−n

R
(2)
1,l (s) = (−1)l−1R

(1)
1,l (−s)

R
(j)
2,l (s) = R

(j)
1,l−1(s) +

l

s
R

(j)
1,l (s), j = 1, 2,

and Dn,l = (l+n)!/(2nn!(l−n)!) according to (A.6). The vector spherical harmonics
Aν are de�ned in Appendix A.1. Applying the inverse Laplace transform yields

ET(r, t) =

√
η0

r

∑
ν

[
R(1)
τ,l b

(1)
ν (t− r/c) +R(2)

τ,l b
(2)
ν (t+ r/c)

]
Aν(r̂).

Here the operators R(j)
τ,l : D → D in the time domain are de�ned by
R(j)

1,l f(t) = (±1)l−1

l∑
n=0

Dn,l

(
±c

r
d−1
t

)n
f(t)

R(j)
2,l f(t) = R(j)

1,l−1f(t)± l c
r

d−1
t R

(j)
1,l f(t),

where the upper (lower) signs are for j = 1 (j = 2). The inverse to di�erentiation d−1
t

is chosen so that d−1
t f(t) is the distributional primitive to f that vanishes at t = −∞,

i.e., d−1
t f(t) =

∫ t
−∞ f(t′) dt′ for regular functions f . A similar representation is used

for the magnetic �eld, giving

HT(r, t) =
1

r
√
η0

∑
ν

[
R(1)
τ̄ ,l b

(1)
ν (t− r/c) +R(2)

τ̄ ,l b
(2)
ν (t+ r/c)

]
(−1)τ−1Aν̄(r̂).

Recall that b
(j)
ν (t) are assumed to be distributions in general. In the case they

are regular functions, the electromagnetic power passing in the negative r-direction
through a spherical shell of radius r at the time t is

P (r, t) =

∫
Ωr̂

r2 (−r̂) · [ET(r, t)×HT(r, t)] dΩr̂

= −
∫

Ωr̂

r2 ET(r, t) · [HT(r, t)× r̂] dΩr̂

= −
∫

Ωr̂

[∑
ν

2∑
j=1

R(j)
τ,l b

(j)
ν (t∓ r/c)Aν(r̂)

]
·

[∑
ν

2∑
j=1

R(j)
τ̄ ,lb

(j)
ν (t∓ r/c)Aν(r̂)

]
dΩr̂,

where Ωr̂ = {(θ, φ) : 0 ≤ θ ≤ π, 0 ≤ φ ≤ 2π} is the unit sphere and dΩr̂ =
sin θ dθ dφ. Here (A.2) has been employed, and the upper (lower) signs are for j = 1
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(j = 2). The orthogonality relation (A.3) ensures that the two sums over ν may be
replaced by one. Also, all cross-terms in j cancel each other:

P (r, t) = −
∑
ν

2∑
j=1

[
R(j)
τ,l b

(j)
ν (t∓ r/c)

] [
R(j)
τ̄ ,lb

(j)
ν (t∓ r/c)

]
.

The power P (r, t) may be divided into one radiating part, and another part apper-
taining to the reactive near-�eld:

P (r, t) = Prad(r, t) + Preact(r, t), (3.4)

where
Prad(r, t) =

∑
ν

|b(2)
ν (t+ r/c)|2 − |b(1)

ν (t− r/c)|2 (3.5)

is only dependent on r via t ∓ r/c. The reactive power Preact(r, t) tends to zero as
r →∞, and furthermore it has a zero mean for all r ≥ a, i.e.,∫ ∞

−∞
Preact(r, t) dt = 0. (3.6)

This result is derived in [21], where also Prad and Preact are described in more detail.
An illustration of the radiative and reactive power �ow for TM-modes of orders l = 2
and l = 5 can be found in Figure 1 and Figure 2 in [21]. It is made clear there that
the reactive power becomes larger for higher order modes if the radiative power is
the same.

4 The scattering matrix S̃S

This section introduces the scattering matrix S̃S, which for a given scatterer relates
the outgoing wave amplitudes b̃

(1)
ν (k) to the incoming b̃

(2)
ν (k). The equivalent to

the scattering matrix in the time domain is also covered. The elements of the
scattering matrix are related to passive systems (as described in Section 2.2) in
case the scatterer is passive. This is described in more detail below, using the time
domain expressions for the vector spherical waves presented in Section 3. Herglotz
functions corresponding to (2.6) and their low-frequency expansions of the type (2.1)
are derived next. In the end of the section all this is used to obtain sum rules and
physical bounds on the diagonal elements of S̃S.

Assume that the scatterer is linear, continuous, and time-translational invariant,
i.e., that the constitutive relations relating the electric and magnetic �ux densities
D(t) and B(t) to the electric and magnetic �elds E(t) andH(t) are on convolution
form, as discussed in Section 2.2. In this case the relation between the outgoing and
incoming amplitudes b

(1)
ν (t) and b

(2)
ν (t) must also be on convolution form, b

(1)
ν (t) =∑

ν′ Sν,ν′ ∗ b(2)
ν′ (t). With matrix notation,

b(1)(t) = SS ∗ b(2)(t), (4.1)
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where b(1) = [b
(1)
1 b

(1)
2 . . .]T and b(2) is de�ned analogously. The order of the multi-

index is speci�ed in Appendix A.1. In the frequency domain, (4.1) reads

b̃
(1)

(k) = S̃S(k)b̃
(2)

(k), (4.2)

where S̃S(k) is the in�nite dimensional scattering matrix.

4.1 Implications of passivity on S̃S

It is now shown that the elements of SS(t−2a/c) are the impulse responses of passive
systems in case the scatterer is passive; in this case the total radiative power that
has passed through a sphere of radius r ≥ a before the time T must be non-negative.
This means∫ T

−∞
Prad(r, t) dt =

∫ T

−∞

∑
ν

|b(2)
ν (t+ r/c)|2 − |b(1)

ν (t− r/c)|2 dt ≥ 0,

for all T ∈ R and r ≥ a, where (3.5) has been used. Recall that it is only necessary

to consider smooth, compactly supported incoming wave amplitudes b
(2)
ν ∈ D, as

discussed in Section 2.2. Using (4.1) and letting the incoming �eld consist of only
one vector spherical wave give∫ T

−∞
Prad,ν′(r, t) dt =

∫ T

−∞
b

(2)
ν′ (t+ r/c)−

∑
ν

|Sν,ν′ ∗ b(2)
ν′ (t− r/c)|2 dt ≥ 0,

for all T ∈ R, r ≥ a and ν ′. Note that the above energy expression closely resembles
that in (2.4), except for the time shifts −2r/c in the outgoing waves. Hence Sν,ν′(t−
2a/c) is the impulse response of a passive operator for all ν, ν ′, and so its Fourier-
transform ei2kaS̃ν,ν′(k) is holomorphic and bounded in magnitude by one for k ∈ C+,
see Section 2.2 and [2, 25, 29]. Furthermore, ei2kaS̃ν,ν′(k) satis�es the symmetry (2.5).

The time shift −2a/c can be understood intuitively in the sense that the outgoing
wave can appear at r = a as soon as the incoming wavefront has reached r = a, see
Figure 3. This is discussed from a somewhat di�erent perspective in [17].

4.2 Low-frequency asymptotic behaviour of S̃S

To derive equalities of the type (2.8), the low-frequency asymptotic expansion of the
S̃S-matrix is required. For this reason, consider the alternative decomposition of the
electric �eld in outgoing and regular vector spherical waves:

Ẽ(r, k) = k
√
η0

∑
ν

il+2−τ d̃(1)
ν (k)u(1)

ν (kr) + il+2−τ d̃(v)
ν (k)vν(kr). (4.3)

Here vν(kr) denotes regular vector spherical waves, de�ned as vν(kr) = (u
(1)
ν (kr)+

u
(2)
ν (kr))/2 (see Appendix A.1). The relation corresponding to (4.2) is d̃

(1)
(k) =
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Figure 3: An incoming spherical wave b
(2)
ν′ (t + r/c): a) impinges on the scatterer,

b) interacts with the scatterer, and c) creates outgoing waves
∑

ν Sν,ν′ ∗ b(2)
ν (t−r/c).

Note that the picture is over-simpli�ed, but it makes it believable that Sν,ν′(t−2a/c)
is the impulse response of a passive operator for all ν and ν ′.

T̃(k)d̃
(v)

(k), where T̃ is the so called transition, or T−, matrix. Evidently, S̃S =
2T̃ + I, where I is the in�nite dimensional identity matrix.

The advantage of a decomposition in regular and outgoing waves is that a plane
wave Ẽi impinging on the scatterer is regular everywhere, while the produced scat-
tered �eld Ẽs has to satisfy the radiation condition. Accordingly, in this situation
Ẽi equals the sum over vν , while Ẽs is the sum over u

(1)
ν . Consider a plane wave

E0(t − r · k̂/c) propagating in the k̂-direction, corresponding to eir·kẼ0(k) in the
frequency domain. Here k = kk̂ and as usual Ẽ0(k) = (FE0)(ω) with k = ω/c.

The radiating part of the scattered �eld is described by the far-�eld amplitude
F , viz.,

Es(t, r) =
F (t− r/c, r̂)

r
+O(r−2), Ẽs(k, r) =

eikrF̃ (k, r̂)

r
+O(r−2), as r →∞.

(4.4)
Due to the assumption of convolution form for the constitutive relations, a scattering
dyadic S̃ may be de�ned:

F (t, r̂) = S(·, r̂, k̂) ∗E0(t), F̃ (k, r̂) = S̃(k, r̂, k̂) · Ẽ0(k). (4.5)

The elements of the T -matrix can be deduced from the scattering dyadic:

T̃ν,ν′(k) =
ik

4π

∫ ∫
Aν(r̂) · S̃(k; r̂, k̂) ·Aν′(k̂) dΩr̂ dΩk̂. (4.6)

See Appendix A.2 for details.
Assume that the medium of the scatterer is anisotropic in the static limit (k = 0),

so that the constitutive relations are

D̃(0, r) = ε0ε(0, r) · Ẽ(0, r)

B̃(0, r) = µ0µ(0, r) · H̃(0, r).
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Here D̃(k, r) denotes the electric �ux density and B̃(k, r) the magnetic �ux den-
sity at the point r and wavenumber k. The relative permittivity and permeability
dyadics are denoted ε(k, r) and µ(k, r), respectively, and ε0 and µ0 are the permit-
tivity and permeability of free space, respectively. The low frequency expansion of
S̃(k, r̂, k̂) is then

S̃(k, r̂, k̂) ·E =
k2

4π

{
r̂ ×

[
(γe ·E)× r̂

]
+
[
γm · (k̂ ×E)

]
× r̂
}

+O(k3), as k → 0,

(4.7)
whereE is a constant vector. The electric polarizability dyadic γe relates the electric
dipole moment induced in the scatterer to an applied static homogeneous electric
�eld Ẽ(0), viz., p = ε0γe · Ẽ(0). Similarly, the magnetic dipole moment induced by
an applied static homogeneous magnetic �eld H̃(0) is given bym = γe · H̃(0). The
polarizability dyadics are thoroughly discussed in [15] and [23]. Now letE = Aν′(k̂).
From (4.6) and (4.7) it follows that

S̃ν,ν′(k) = δν,ν′ + i2ρν,ν′k3a3 +O(k4), as k → 0, (4.8)

where

ρν,ν′ =
1

16π2a3

∫∫
Aν(r̂) · γe ·Aν′(k̂) + (−1)τ+τ ′

Aν̄(r̂) · γm ·Aν̄′(k̂) dΩr̂ dΩk̂.

Here (A.2) was used, and recall that the dual multi-index is ν̄ = {τ̄ , s,m, l} with
τ̄ = 3− τ .

Let γe,xx = x̂ · γe · x̂, γe,xy = x̂ · γe · ŷ and so on, and use the identities (A.5).
This gives explicit expressions for ρν,ν′ :

ρν,ν′ =
1

6πa3
δl,1δl′,1δτ,τ ′γ{m/e},nn′ , (4.9)

where m (e) should be chosen for τ = 1 (τ = 2) and

n =


x, for s = 1, m = 1

y, for s = 2, m = 1

z, for s = 1, m = 0,

and similarly for n′. Note that ρν,ν′ = 0 for non-dipole modes (l ≥ 2 or l′ ≥ 2), and
that ρν,ν′ = 0 for τ = 1 (τ = 2) when the scatterer is non-magnetic (non-electric).

4.3 The polarizability dyadics and bounds on ρν,ν

It is clear now that the polarizability dyadics are of vital importance. Until now, the
only assumptions made on the constitutive relations of the scatterer is that they are
on convolution form in the time domain and passive, and furthermore anisotropic
in the static limit. If the scatterer is heterogeneous, these assumptions are made for
all points r within the scatterer. It is common to assume that the permittivity and
permeability dyadics are symmetric in the static limit, i.e., ε(0, r) = ε(0, r)T and
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µ(0, r) = µ(0, r)T. This implies that the polarizability dyadics are also symmet-
ric [23], and hence diagonal for a suitable choice of coordinates. Closed form expres-
sions for the polarizability dyadics exists for anisotropic homogeneous spheroidal
scatterers, see [23] and references therein. For the simple case of an isotropic sphere
of radius a, they are

γe = 4πa3 ε(0)− 1

ε(0) + 2
I

γm = 4πa3µ(0)− 1

µ(0) + 2
I,

where I is the identity dyadic.
Furthermore, under the assumption of symmetry it can be shown that γe and γm

are non-decreasing as functions of ε(0, r) and µ(0, r) [22]. More speci�cally, consider
two objects with permittivity ε(0, r) and ε′(0, r), respectively. If ε′(0, r) − ε(0, r)
is a positive semide�nite dyadic for all r in the object, then γ ′e − γe is positive
semide�nite as well. The same holds for γm, with ε(0, r) replaced by µ(0, r). The
diagonal elements of γe and γm for any scatterer (satisfying the aforementioned
assumptions) contained in the sphere of radius a are therefore bounded by 4πa3 for
the high contrast sphere. Following (4.9), the parameters ρν,ν are non-decreasing as
functions of ε(0, r) and µ(0, r), and thus bounded from above by ρν,ν = 2/3.

If the scatterer is contained within a non-spherical geometry, the diagonal ele-
ments of γe and γm are bounded by the largest eigenvalue γ1 ≤ 4πa3 of the high-
contrast polarizability dyadic γ∞ of that geometry. Therefore a sharper bound on
ρν,ν , given by ρν,ν ≤ γ1/(6πa

3) ≤ 2/3, can be determined. The high-contrast polar-
izability dyadics γ∞ of many geometries can be calculated numerically, see [10] for
some examples.

A widely used material model is the perfect electric conductor (PEC). For a
PEC inclusion, ε(0) = ∞ and µ(0) = 0. Consequently, γe (γm) is non-decreasing
(non-increasing) as the volume of the PEC inclusion increases [22].

4.4 Sum rules and physical limitations on S̃S

Now it has been shown that ei2kaS̃ν,ν′(k) is a holomorphic function bounded in mag-
nitude by one in C+ for all ν and ν ′, due to the passivity assumption. Furthermore,
its low frequency asymptotic expansion has been determined in (4.8) and (4.9). It
remains to de�ne a Herglotz function and derive sum rules of the type (2.8). The
Herglotz function corresponding to (2.6) is

hν,ν′(k) = −i log

(
ei2kaS̃ν,ν′(k)

Bν,ν′(k)

)
.

Here Bν,ν′ is a Blaschke products of the form (2.7) for each pair (ν, ν ′). Since
ei2kaS̃ν,ν(k)→ 1 as k → 0 when S̃ν,ν is a diagonal element of the scattering matrix,
the low-frequency expansion may be calculated separately for that factor and the
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Blaschke product (cf., [2]):

hν,ν(k) = 2ka+ 2ρν,νk
3a3 +O(k4) + 2

∑
n

∞∑
q=1,3,...

kq

q
Im

1

kqn
, as k → 0. (4.10)

This is not necessarily possible for the o� diagonal terms hν,ν′ , where ν 6= ν ′, since
then S̃ν,ν′(k) tends to zero as k → 0. Only terms with odd q appear in (4.10) due
to the symmetry (2.5).

Note that the low-frequency asymptotic expansions (4.7) and (4.10) are valid
as k → 0 for all arguments of k, and especially as k→̂0. With the notation of
Section 2.1, N = 2 and hence two sum rules of the type (2.8) (using p = 1, 2) can
be deduced:

lim
ε→0+

lim
k′′→0+

1

π

∫ ∞
ε

1

k′2
ln

1

|S̃ν,ν(k′ + ik′′)|
dk′ = a− βν,ν

2
+
∑
n

Im
1

kn
(4.11)

and

lim
ε→0+

lim
k′′→0+

1

π

∫ ∞
ε

1

k′4
ln

1

|S̃ν,ν(k′ + ik′′)|
dk′ = a3ρν,ν +

1

3

∑
n

Im
1

k3
n

. (4.12)

Here k′ = Re k and k′′ = Im k, in consistency with previous notation. As discussed in
Section 2.1, the left-hand sides may be interpreted as integrals of − ln |S̃ν,ν(k′)|/k′2p
in the distributional sense, i.e., contributions from possible singularities in the in-
terval (0,∞) should be included.

Both sum rules incorporate the radius a of the circumscribing sphere, and the
second depends on the material and shape of the scatterer via ρν,ν given by (4.9).
The parameter βν,ν = limk→̂∞ hν,ν(k)/k is greater than or equal to zero. Evidently,
βν,ν > 0 applies if the chosen circumscribing sphere is larger than the smallest
circumscribing sphere, but it is expected that βν,ν = 0 if a is chosen as small as
possible. This is true for isotropic spherical scatterers with material described by
e.g., the Debye or Lorentz models. It is hard to prove this statement for an arbitrary
scatterer, so it is assumed that βν,ν can be larger than zero.

In order to derive physical limitations, consider a �nite wavenumber interval, K =
[k0(1−BK/2), k0(1 +BK/2)], with center wavenumber k0 and fractional bandwidth
BK < 2. Letting S0 = supk′∈K |S̃ν,ν(k′)|, it follows that3

BK lnS−1
0

π
≤ k0a+

∑
n

Im
k0

kn
(4.13)

and
BK lnS−1

0

π
≤ k3

0a
3ρν,ν +

1

3

∑
n

Im
k3

0

k3
n

. (4.14)

3Here S0 = supk′∈K |S̃ν,ν(k′)| should be interpreted as the supremum over those k′ ∈ K such

that S̃ν,ν(k′) is well-de�ned (recall that it is well-de�ned for almost all k′ ∈ R). Also note here
that the inequalities (4.13)�(4.14) are valid even if (4.11)�(4.12) must be interpreted as (2.9).
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Figure 4: Interpretation of the bound (4.15). In the �gure, bounds for a given cen-
ter wavenumber k0 are depicted for two di�erent values of S0 (and thus two di�erent
values of BK). The bound states that the magnitude of all re�ection coe�cients
Sν,ν have to intersect the boxes, when the scatterer satis�es the aforementioned as-
sumptions; also shown in the �gure is one attainable and one unattainable re�ection
coe�cient.

Here it has been used that k2p−1
0

∫
K 1/k2p dk ≥ BK for p = 0, 1, . . . Note also that

k2p−1
0

∫
K 1/k2p dk ≈ BK when BK � 1.

The sum in the right-hand side of (4.13) is non-positive (since Im kn > 0 for all
kn), and so

BK lnS−1
0

π
≤ k0a.

An alternative bound not containing the sum over all zeros can also be derived (see
Appendix A.3):

BK lnS−1
0

π
≤ k0a− 3

√
ι+ ζ + 3

√
ι− ζ (4.15)

=

(
1

3
+ ρν,ν

)(
k3

0a
3 − k5

0a
5
)

+O(k7
0), as k0 → 0.

Here the material and geometry of the scatterer are contained in ρν,ν via ζ =

3k0a(1−ρν,νk2
0a

2)/2 and ι =
√

1 + ζ2. The term k3
0a

3/3 in the bound stems from the
circumscribing sphere. The bound (4.15) states that, somewhere on the wavenumber
interval K, the re�ection coe�cient S̃ν,ν(k

′) for mode ν must be larger in magnitude
than some value prescribed by the fractional bandwidth BK , the radius of the small-
est circumscribing sphere a, and the material properties of the scatterer via ρν,ν , see
Figure 4.

An interpretation of the bound is as a limitation on the absorption of a vector
spherical wave over a bandwidth. To see this, consider the total energy e(∞) ab-
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sorbed by the scatterer when the incoming �eld consists of only the mode ν ′, and
b

(2)
ν′ (t) is assumed to be in L2. By (3.4)�(3.6), it is (with r ≥ a)

e(∞) =

∫ ∞
−∞

Pν′(r, t) dt =

∫ ∞
−∞

Prad,ν′(r, t) dt =

∫ ∞
−∞
|b(2)
ν′ (t)|2−

∑
ν

|Sν,ν′ ∗ b(2)
ν′ (t)|2 dt.

The expression for e(∞) may be rewritten with Parseval's equation:

e(∞) =
1

2πc

∫ ∞
−∞
|b̃(2)
ν′ (k′)|2

(
1−

∑
ν

|S̃ν,ν′(k′)|2
)

dk′.

Hence 1 −
∑

ν |S̃ν,ν′(k′)|2 is the normalised energy of the incoming mode ν ′ that is
absorbed by the scatterer at wavenumber k′; all of the incoming energy is absorbed
if
∑

ν |S̃ν,ν′(k′)|2 = 0, while no energy is absorbed in the case
∑

ν |S̃ν,ν′(k′)|2 = 1.
The absorbed normalised energy is obviously less than or equal to 1 − |S̃ν,ν(k′)|2.
Also recall that S̃ν,ν′(k′)→ 0, as k′ → 0, when ν 6= ν ′, due to (4.8).

5 Examples

5.1 Nanoshells

A nanoshell is a dielectric core covered by a thin coat of metal. By varying the
core radius, shell thickness, and materials, they can be constructed to scatter or
absorb large parts of incoming electromagnetic waves in the visible light and near-
infrared (NIR) spectra. Applications include e.g., biomedical imaging and treatment
of tumours.

In cancer treatment, the nanoshells are shuttled into the tumour using a so called
�Trojan horse�-method [4]. Hereafter they are illuminated by laser light, causing
most of the cancer cells to die, see Figure 1 in [4]. It is thus desirable to design
nanoshells that absorb large parts of the laser energy. In [4, 18], the nanoshells are
spherical cores of silicon dioxide (SiO2) covered with gold. The radius of the core is
typically around 60 nm, and the gold shell is 5−20 nm thick. The bound in (4.15) is
well suited to study this problem, since the normalised absorbed energy from mode
ν is bounded by 1− |S̃ν,ν |2 as discussed in Section 4.4. An illustration can be found
in Figure 5.

5.2 Physical limitations on antennas

As discussed in Section 4.4, (4.15) places a bound on the absorption of a spherical
wave over a bandwidth, which makes it a good candidate to �nd limits on the
performance of antennas. Furthermore, the communications channels of multiple-
input multiple-output (MIMO) antenna systems are coupled to orthogonal sets of
vector spherical waves [7]. It is unusual to compute the S̃S-matrix elements of an
antenna. Instead, consider the setup depicted in Figure 6. The antenna is fed the
power Pin(k) by a transmission line, and a matching network is employed in order
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Figure 5: The re�ection coe�cient S̃ν,ν of the electric dipole modes (τ = 2, l = 1)
for a nanoshell of outer radius a = 75 nm, consisting of a spherical silicon dioxide
core covered by a layer of gold of thickness d = 5 and 10 nm, respectively. Here λ
denotes the wavelength. The bound is (4.15) with ρν,ν = 2/3, and it states that
the curves have to intersect the boxes. The re�ection coe�cient S̃ν,ν was calculated
from the closed form expression, using a Matlab-script for a Lorentz-Drude model
for gold by Ung et al. [24]. Silicon dioxide is modeled as having negligible losses
and a refractive index of n ≈ 1.5, which is a good model at least for wavelengths
400�1100 nm [14].

to minimise the re�ection coe�cient Γ (k). The power rejected due to mismatch is
|Γ (k)|2Pin(k), and obviously the radiated power is bounded as

Prad(k) ≤ (1− |Γ (k)|2)Pin(k),

with equality if there are no ohmic losses in the antenna.
Many antennas can be modeled by the resonance circuit in Figure 7 in a frequency

interval close to their respective resonance frequencies [9]. Here the quality factor is

Q = k0c
Z ′(k0)

2R
, (5.1)

where k0 is the resonance wavenumber of the antenna, Z its input impedance, and
R = Z(k0) the (real-valued) input impedance at the resonance. A prime denotes
di�erentiation with respect to the argument. Using Fano's bounds on optimal match-
ing [6], it is straightforward to show that [9]

BK lnΓ−1
0

π
≤ 1

Q
, (5.2)
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Figure 6: The antenna and matching network considered in Example 5.2.

Figure 7: For many antennas, the impedance Zres(k) of the resonance circuit is a
good approximation for the antenna input impedance Z(k) close to its resonance
wavenumber k0 [9]. The quality factor Q is given by (5.1).

applies whatever the matching network is. Here Γ0 = maxk∈K |Γ (k)|. The wavenum-
ber interval is K = [k0(1 − BK/2), k0(1 + BK/2)], with center wavenumber k0 and
fractional bandwidth BK .

The input impedance Z(k) of an antenna, and hence also the quality factor Q in
(5.1), may be calculated numerically. Equation (5.2) provides a means to compare
the bound (4.15) to the quality factor of an antenna; since 1− |Γ |2 places a bound
on the radiated power in terms of the input power, and 1−|Sν,ν | limits the absorbed
power from a single mode ν, Γ and Sν,ν are on equal footing. In Figure 8, the bound
in (4.15) is compared to the inverse of the numerically determined quality factor Q
of four wire antennas.

6 Conclusions

Electromagnetic waves may be scattered and/or absorbed when they interact with
various objects. Understanding this interaction is vital in many applications, from
classical optics to antenna theory. One way to analyse it is to apply physical lim-
itations to it; in essence, the physical limitations state what can and cannot be
expected from a certain physical system.

There are several publications addressing physical limitations in scattering and
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Figure 8: The lines are the bound (4.15) for ρ = 2/3 and ρ = 0, respectively.
Four wire antennas were used in the example, with wires modeled as perfect electric
conductors of diameter 2 mm. The radii of the loops are 60 mm (giving a = 62 mm),
and the heights of the umbrellas are 100 mm (so that a = 52 mm). Here a is
the radius of the smallest circumscribing sphere. The loop with resonance at
k0a ≈ 0.46 is in series with a 100 F capacitance, causing it to radiate much like
a pure magnetic dipole close to the resonance. The input impedances and resonance
wavenumbers for the antennas were calculated using the commercial software E-
Field (http://www.e�eldsolutions.com). The inverse of Q given by (5.1) is depicted
for the four antennas at their respective resonance wavenumbers k0. The electric
polarizability dyadics γe were calculated using a Method of Moments code, and from
them the bounds on ρν,ν shown in the �gure could be determined.

antenna theory, see e.g., [3, 5, 8, 12, 19, 23]. However, the present paper seems to be
the �rst to derive physical limitations on the scattering of electromagnetic vector
spherical waves. The vector spherical waves constitute a means to expand a given
electromagnetic wave in orthogonal waves, and are commonly used [11, 20, 21]. In
wireless communication, they are intimately linked to the orthogonal communication
channels of multiple-input multiple-output (MIMO) systems [7].

The derivation makes use of a general approach to obtain sum rules and physical
limitations on passive physical systems on convolution form presented in [2]. The
limitations in this paper are valid for all heterogeneous passive scatterers with con-
stitutive relations on convolution form in the time domain, and anisotropic in the
static limit. They state that the re�ection coe�cients cannot be arbitrarily small
over a whole wavenumber interval; how small is determined by the center wavenum-
ber and fractional bandwidth, the radius of the smallest sphere circumscribing the
scatterer, and its static material properties.

The bounds can be interpreted as limits on the absorption of power from the
respective modes. They are particularly useful for the electrically small scatterers,
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and can therefore be employed to analyse sub-wavelength structures designed to
be resonant in one or more frequency bands. Two examples are nanoshells and
antennas, discussed in the examples in this paper.
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Appendix Appendix

A.1 De�nition of vector spherical waves

The incoming (j = 2) and outgoing (j = 1) vector spherical waves [11] are de�ned
as 

u
(j)
1sml(kr) = h

(j)
l (kr)A1sml(r̂)

u
(j)
2sml(kr) =

(krh
(j)
l (kr))′

kr
A2sml(r̂) +

√
l(l + 1)

h
(j)
l (kr)

kr
A3sml(r̂).

(A.1)

Here h
(j)
l denotes the spherical Hankel function of the j:th kind and order l, and a

prime denotes di�erentiation with respect to the argument kr. The regular vector
spherical waves vν are almost identical; for them the spherical Hankel functions have
been replaced by spherical Bessel functions jl = (h

(1)
l + h

(2)
l )/2. The vector spherical

harmonics Aτsml are de�ned by
A1sml(r̂) =

1√
l(l + 1)

∇× (rYsml(r̂))

A2sml(r̂) =
1√

l(l + 1)
r∇Ysml(r̂)

A3sml(r̂) = r̂Ysml(r̂).

Here Ysml are the (scalar) spherical harmonics

Ysml(θ, φ) = −
√

2− δm0

2π

√
2l + 1

2

(l −m)!

(l +m)!
Pm
l (cos θ)

{
cosmφ
sinmφ

}
and Pm

l are associated Legendre polynomials [1]. The polar angle is denoted θ while
φ is the azimuth angle. The upper (lower) expression is for s = 1 (s = 2), and the
range of the indices are l = 1, 2, . . . , m = 0, 1, . . . , l, τ = 1, 2, s = 1 when m = 0
and s = 1, 2 otherwise. The multi-index ν = {τ, s,m, l} is introduced to simplify
the notation. It is ordered such that ν = 2(l2 + l − 1 + (−1)sm) + τ .

Note that {
r̂ ·A1sml(r̂) = r̂ ·A2sml(r̂) = 0

r̂ ×A3sml(r̂) = 0,
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for which reason τ = 1 (odd ν) identi�es a TE mode (magnetic 2l-pole) while τ = 2
(even ν) identi�es a TM mode (electric 2l-pole) when the electric and magnetic �elds
are de�ned by (3.1) and (3.2), respectively. Furthermore,{

A1sml(r̂) = A2sml(r̂)× r̂
A2sml(r̂) = r̂ ×A1sml(r̂).

(A.2)

The vector spherical harmonics are orthonormal on the unit sphere. More specif-
ically, they satisfy ∫

Ωr̂

Aν(r̂) ·Aν′(r̂) dΩr̂ = δν,ν′ , (A.3)

where Ωr̂ = {(θ, φ) : 0 ≤ θ ≤ π, 0 ≤ φ ≤ 2π} is the unit sphere and dΩr̂ =
sin θ dθ dφ. De�ne the L2-norm || · || for vector-valued functions on Ωr̂:

||G||2 =

∫
Ωr̂

G(r̂) ·G∗(r̂) dΩr̂.

If the norm of G is �nite, it may be expanded in vector spherical harmonics:

G(r̂) =
∑
ν

cνAν(r̂), (A.4)

where the coe�cients cν are given by

cν =

∫
Ωr̂

G(r̂) ·Aν(r̂) dΩr̂,

and the sum in the right hand side of (A.4) converges in the norm || · ||.
The following expressions for the Cartesian unit vectors are used in (4.9):

x̂ =

√
4π

3
A3e11(r̂) +

√
8π

3
A2e11(r̂)

ŷ =

√
4π

3
A3o11(r̂) +

√
8π

3
A2o11(r̂)

ẑ =

√
4π

3
A3e01(r̂) +

√
8π

3
A2e01(r̂).

(A.5)

There are expansions for the Hankel functions, used to determine the polynomials
R

(j)
τ,l in (3.3): 

h
(1)
l (z) =

eiz

il+1z

l∑
n=1

(l + n)!

n!(l − n)!
(−2iz)−k

h
(2)
l (z) =

il+1e−iz

z

l∑
n=1

(l + n)!

n!(l − n)!
(2iz)−k.

(A.6)
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A.2 Derivation of (4.6)

The scattered �eld Ẽs is the sum over u
(1)
ν in (4.3), viz.,

Ẽs(k, r) =
√
η0

∑
ν

d̃(1)
ν (k)Aν(r̂)

eikr

r

(
1 +O(r−1)

)
, as r →∞,

where (A.1) and (A.6) have been used. From the above equation it is clear that the
far-�eld amplitude F̃ (k, r̂) in (4.4) is given by

F̃ (k, r̂) =
√
η0

∑
ν

d̃(1)
ν (k)Aν(r̂).

Using (4.5), multiplying with Aν′(r̂) and integrating over the unit sphere yield∫
Aν′(r̂) · S̃(k, r̂, k̂) · Ẽ0(k) dΩr̂ =

√
η0d̃

(1)
ν′ (k), (A.7)

due to (A.3).

The coe�cients d̃
(1)
ν′ (k) are given by

√
η0d̃

(1)
ν′ (k) =

√
η0

∑
ν′′

T̃ν′,ν′′(k)d̃
(v)
ν′′ (k) =

4π

ik

∑
ν′′

T̃ν′,ν′′(k)Ẽ0(k) ·Aν′′(k̂),

where the expansion coe�cients d̃
(v)
ν′′ (k) of a plane wave eir·kẼ0(k) have been used.

Inserting this into (A.7) gives∫
Aν′(r̂) · S̃(k, r̂, k̂) · Ẽ0(k) dΩr̂ =

4π

ik

∑
ν′′

T̃ν′,ν′′(k)Ẽ0(k) ·Aν′′(k̂),

which must be valid for all k̂ and Ẽ0. Letting Ẽ0(k, k̂) = Aν′′′(k̂)ϕ(k) for some
ϕ ∈ S and integrating once more over the unit sphere leads to∫ ∫

Aν′(r̂) · S̃(k, r̂, k̂) ·Aν′′′(k̂)ϕ(k) dΩr̂ dΩk̂ =
4π

ik
T̃ν′,ν′′′(k)ϕ(k),

and (4.6) is proven.

A.3 Derivation of (4.15)

First set k0/kn = θ′n− iθ′′n, where θ′n ∈ R and θ′′n > 0. With θ0 =
∑

n θ
′′
n, (4.13) takes

the form
BK lnS−1

0

π
≤ k0a− θ0. (A.8)

Furthermore, it follows that
∑

n Im k3
0/k

3
n ≤

∑
n θ
′′3
n ≤ θ3

0, since

Im
k3

0

k3
n

=
k3

0

|kn|6
[
(Im kn)3 − (Re kn)2 Im kn

]
≤ k3

0

|kn|6
(Im kn)3 = θ′′3n .
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Hence (4.14) becomes
BK lnS−1

0

π
≤ k3

0a
3ρν,ν +

θ3
0

3
. (A.9)

Combining (A.8) and (A.9) yields

BK lnS−1
0

π
≤ k3

0a
3ρν,ν +

1

3

(
k0a−

BK lnS−1
0

π

)3

,

with solution (4.15).
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