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1. INTRODUCTION

Mathematical models of processes in terms of contreolled ARMA
processes are of interest in control engineering. Such models are
convenient representations of systems, whose input-output relation
can be characterized by rational transfer functions, subject to
disturbances having rational spectral densities. The problem of
estimating the parameters of controlied ARMA processes.has also
received much attention. The maximum likelihood method was applied
in {1} where it was shown that the maximum likelihood estimates were
consistent, asymptotically efficient and asymptotically normal. It
is a drawback of the maximum likelihood method that the likelihood
function is nonlinear. This implies that there may be several local
minima and that the optimization may be difficult. Various alternative
methods for estimating the parameters in controlled ARMA processes
have.therefore been proposed, e.é. the generalized least squares [2],
the extended least squares [3] and the two stage least sqguares [4].

& new method was proposed in [5] and [6]. This method is a multistep
technique where least sgquares isg used in each step. A recursive
version of the method presented in [5] is presented and analysed in
this report.

The recursive algorithm is of interest for the design of
adaptive regulators and adaptive predictors. A review of recursive
estimation methods isg given in [71, It may be legitimally gquestioned
whether it is of any use to add yet another method to a large number
of already existing routines. Thus gquestion can be answered as
follows. In the case of pure ARMA processes (i.e. no inputs) it is

known that the maximum likelihood method is globally convergent. Many
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of the other recursive methods axe, however, not globally convergent
even for ARMA proceéses. There is, moreover, no method which is known
to converge globally when inputs are present. One motivation for
introducing the method presented in this report is that it is globally
convergent. Another motivation is that the corresponding off-line
method is consistent and asymptotically efficient.

It is unfortunately only possible to analyse the asymptotic
properties of the recursive estimation procedure. 8Since short sample
properties are also important it follows that it is not possible to
evaluate estimation methods purely by analysis. For this reason it is
thus necessary to explore the proposed method by simulation and also
to investigate its numerical properties before it can be.jUdged soberly.

The report is organized as follows. The process model, consisting
of a controlled ARMA process, is described in Section 2. The off-line
estimation method, which is the basis for the recursive algorithm, is
presented in Section 3. The properties of the off-line method are also
discussed briefly in that section. The recursive algorithm is presented

in Section 4, and its properties are analysed in Section 5. It is

shown that the algeorithm will under reasonable assumptions always

converge.

2. PROCESS DESCRIPTION

The process is described in this section. The assumptions made
on the process are also stated.

Only discrete time processes are discussed. It is thus assumed
that time T is the set of integers T = {...,-1,0,1,...}. Signals are

functions from T to R. They are denoted by lower case letters like u




and y. It is assumed that the process is a controlled ARMA process

described by:

- 1 -1
Al Dyt = Blg Dult) + clad et (2.1)

where u is the input signal, v the output signal and {e(t)} is a
sequence of independent identically distributed random variables with
zero mean values and covariances l2. In {2.1) A(qui), B(q_l) and C(q_ )
are polynomials of degree n in the backward shift operator q— :

-1 -1 -n
aA(g ) 1+ag9g + ... +ag
i n

i

-1 -1 -
B{g ) 1 ---‘+ bnq "

It
o
fle]
o+

t+cql+ +cgq
¢4 ‘e qu : (2.2)

-1
cl{g )

it is assumed that there are no factors common.to A, B and C. There is
no loss of generality is assuming that A(0) = C(0) = 1. The assumption
that B{0) = O is not important; it is made only to obtain symmetry in

certain equations.

The model (2.1) will also be written in the following abbreviated

form:

Ay = Bu + Ce (2.1")

The problem we will consider is estimation of the parameters of the
process (2.1) from observations of input-output records'{u(t),y(t),t € T}

of the process. For easy reference the parameters are gathered into the

vector:




O = coeff [A(th),B(qpl),C(qnl)3

I

[al a2 - an b1 b2 P - R - < S cn] {2.3)

Conversely to each parameter vector O we can also associate polynomials

A, B and C given by:

-1 -1 -n

Alg ) =1 + Olq + ... + enq
-1 -1 -n

B{g ) = n+1q + ...+ ®2nq (2.4)
-1 -1 " -n

Cilg ) =1+ 82n+1q + ... + 63nq .

Assumptions
The following assumptions are made on the process {2.1) which
generates the data to be used in the system identification:
Al: There are no factors common to all of A, B and C and C(q_l) #£ 1,
1

Furthermore the zeros of the polynomials znA{z_l)«and an(z_ )

are. strictly less than Y < 1 in magnitude.

AZ: The input signal is covariance stationary and persistently
exciting of .arbitrary order p,
A3: The disturbance e is a seguence of independent random

variables with bounded fourth moments. The disturbance is

iincorrelated.




THE OFF-LINE ALGORITHM

A new algorithm for estimating the parameters of the process

(2.1) was proposed in [5] and [6&].
method where least squares is used in each

described in this section.

The algorithm is a multistep

step. The algorithm is

Some of its properties are also discussed

together with minor modifications which lead to different versions of

the algorithm.

The Algorithm

Estimate A, . and B

Step 1; 1 5

where deg A, = deg B

1 1

denote the residuals obtained.

Estimate A

Step 2: B_ and C2

27 72

B .u+ C.¢

Ay = By 251

where the polynomials have the
residual from Step 1, by least
Step 3: Filter the signals u, y and €y

polynomial estimated in Step 2

y=>y, a=Xtu, & -
y =Y = u, =
C2 C2 1

. a .
Then estimate A3, B3 an C3 in

in the model

= p by least squares.

Let ¢
i

in the model

form (2.2) and e, is the

1

sguares.

2

to obtain

by C where C2 is the

the model

(M)

(hiz)




Ay = Bu + C.€ (M)

where the polynomials Ay B3 angd C3 are of the form {(2.2),
by least squares.

Minor Modifications

In Step 1 the parameters are determined in such a way that

the criterion

{[Al(q"l}y(t)—Bl(q_i)u(t)J2
t

is minimized. Similarly the criterion

-1 -1 -1 2
EEAZ(q Yy (£} =B, (g ult)-C,lq e, (B)]

|
is used in Step 2. Since the leading coefficient in C2(q } is one

{c.f. {2.2)) the alternative criterion

-1 -1 ' -1 2
E{Az(q Yy (t)-B, (g yuit)~le, (g )—1]e1(t)}

can also be used in Step 2. This means that the model M2 is replaced
by
= + - T
A,Y = B,u (C2 e, (Mz)

Similarly the model M3 in Step 3 can be replaced by

Ay = B,u + {C3—02)21 (Mé)




It is easily seen that these modifications are asymptotically ({(for
large p and large N) unimportant. They will, however, give versions
of the algorithm that are slightly different for finite p and N.

Properties of the Off-Line Algorithm

The residuals &, obtained in Step 1 will be close to the process

innovations e if p and N are large. In [5] and [é] it is shown that

n -1 )
if all zeros of the polynomial z C(z ) have magnitudes less than

v < 1 then asymptotically for large N

Efsl(t)—e(t)lz <k y B

For large N and p the polynomials Al and B1 obtained in-Step 1 are

also close to the polynomials obtained by truncating the series

‘ -1 -1 -1 - -1
expansions in g of the rational functions A{g )/C{g ") and Blg 1)/C(q )

in a sense given precisely in [63. This result is further illustrated
by the following simple example:

Example 3.1

Consider the process
y(t) = e(t) +ce(t-1), Je] <1

A straightforward solution of the normal equations gives asymptotically,

for large N, the following coefficients of the polynomial A,

2 u-
i 1-g° @)
1"02(];)-1-1)

ai = (=) s 1=1, ..., P

-1
The truncation of the rational function 1/C{qg ") gives a polynomial




. . i,
with the coefficients (-}, i =1, ..., p. t

An estimate of the parameters of the process (2.1) is already
obtained in Step 2. This estimate is the well known two-stage least
squares (28LS) estimate which was originally proposed by Durbin [41,
and later in the automatic control literature {81 and [9]. (Note
that the term 2LSL is used in the econometrics literature [10] to
describe a different estimate,closely related to instrumental
variable estimators.) It is shown in {6] and [9] that the bias of
the 2SLS estimate can be made arbitrarily small by choosing the
parameter p in the first step sufficiently large. The following
example from [9] gives the bias of the 2SLS estimate of a first order
system:

" Example 3.2

Consider the process
vi{t) + ay{t-1) = bu(t-1} + e({t) + ce{t-1)

where the input u is white noise which is independent of e and has

2
variance ¢ . Then [9] as N + =, the 25LS estimate converges to

602P"1(1—c2)

a=a -
2 5
(1-c Py (145-c"F)
b=b ‘
-1
6 e - c2p (1—c2)
(1-c2P)




2% -a®) (1-c?)

2 2
A (C—a)2+b20

If the modified estimate obtained by fitting the model Mé instead of M2

then [9] the 25LS estimate converges instead to

a=a
b=hb
2p+1 2
N P {1-c )
- =7 2
1+8-¢ P2

The example thus inhdicates that it is slightly advantageous (at
least for n=1) to use the version of the algorithm where the model Mé
is fitted in the second step.

The 28LS estimate is known to be inefficient. The purpose

of the third step in' the algorithm is to reduce the variance
of 2SLS estimate.

ih the second stage'bf_the algorithm the loss function

N
1 2
v, (0,) =2ﬁ-t£l [2,7(t) - Byu(t) - Cye) (t)]

is minimised with respect to 82, i.e, with respect to {(the

coefficients of) A

o B2, 02' In the third stage the loss function
N A B C
1 3 3 3 2
Vy(83) =3 gl [e) ¥®) —g wio - & 0]

is minimised with respect to 83 {i.e. A3, B3, C3). The
likelihood function associated with the problem is:

v, 0) == § 2y - 2umi®

ML 2N =1

nd
|
-
Q>

The maximum likelihood estimate BML minimises V. (8) with

ML,
respect to 8., It is shown in [14] that 83 > 6P w.p. 1,as N » o0,
that Bp + 0 as p *+ ®, that the asymptotic variance {as N » )

of VYN [0 - Bp] is:
3 Lo




[Ev2v3(ep)3‘l [999v, (6%) WP 17 rav’v, P 17

and that EV2V (6P > EVY (8) and VvV, (65 T (0F) »
3 ML, 3 3

EV2VML(8) as p * @, Hence the asymptotic variance of

/ﬁ'[BB -~ 8P] tends to that of /ﬁ'[GML - 81 as p + =;

this property is not possessed by 82. Since V3 is a convex

(indeed quadratic) function, the estimation scheme can be

regarded as based on a convex approximation of the likelihood

function.

4. THE RECURSIVE ALGORITHM

Since the algorithm given in the previous section is composed

of three least squares steps it is easy to obtain a recursive algorithm

simply be replacing the least sqguare estimations by recursive least
squares in each step. The recursive algorithm will then be Built up

of three recursive least squares steps. Thé equations will be very
similar for all steps. The following notation is introduced to describe
the algorithm.

coeff (Al,Bl), dim e1 = 2p )

91 = |
92 = coeff-(Az,B2,02), dim 92 = 3n
03 = coeff (A3,B3,C3), dim 83 = 3n (4.1}

The regressors are denoted as

T
2, (£) = L-y(t-1) ...~y (t-p) ult-1)...u(t-p)]

ZZ(t) [-y(t-1)...~y(t-n) u{t-1)...u(t-n) eft—l)...sl(t—n)]T

- 10 -




25 () = [y (E=1)0 ooy (Em) S(e-1) Lo u(emn) E (61 o E (o) I
(4.2)

where ;, u and €, are the filtered variables. They will be defined
precisely below.

1t is straightforward to obtain recursive equations for the
first step simply by replacing the least squares calculation by
recursive least squares. Such a recursive algorithm will give exactly
the same estimates as the off-line algorithm provided that the recursion
is initialized properly. The same trick can, however, not be used in
Steps 2 and 3. To calculate the regressor 22(t) it is necessary to
know +*the paét residugls eltt—n). These, however, depend on the estimate el
which, in turn, depends on all data. This estimate is ciearly not
available at time t. Similarly evaluation of the regressor 23(t)
requires knowledge of the filter polynomial 62, which is an estimate
based on all data. This is not aVaiiable at time t. To obtain a

recursive algorithm it is therefore necessary to approximate. One

possibility is to approximate the residuals by
e (£) = y(t) - 21 (£)0, (£-1)
1 1 1

where Oltt} is the estimate of 91 in (Ml) based on data available at
time t. Similarly the filtered values §, u and El in,z3(t) are

approximated by

T(O) = y(®) - & (OF(E-1) ~ ... - ¢ (B)y(tn)
u(t) = u(t) - gy (BU(E-1) - ... = & (Dult-n)
ei(t) = El(t) - cl{t)ei(t—l) - . - cn(t)al(t—n) {4.3)




~ — N -1 A —
where Cé{q l) Al o+ cl(q )+ .. F cn(q n)' that

is Ei(t) is the estimate of the parameter ci based on data available
up to time t. The équations (4.3) are difference equations. Since Ei,
i=1, ..., p, is an estimate it may happen that the difference
equations are unstable. This difficulty can be overcome by testing for
stability and reflecting in the unit circle when necessary. Summarizing

the recursive estimation algorithm can thus be written as follows:

Algorithm
Step 1: The recursive equations are given by
91(t+1) = 01(t) + Pl(t+1)21(t+1)31(t+1)
T ~ .
el(t+1) = y(t+1} - 21(t+1)91(t)
-1 -1 T '
P, (t+1) =P . (£) + 2, (t+l)z. (£+1) (4.4a)
1 1 1 1
where the regressors are defined by (4.1). The number p
of components of 61 is larger than 2n.
Step 2: The recursive equations are given by

0,(t+1) = @, () + P, (t+1)2, (t+1)e, (t+)
T ~
52(t+1) = y({t+l) - el(t+1) - 22(t+1)02(t)
p e 1) = P"i(t) + 7 (£)z2T (t) (4.4Db)
g (EH) =P, 2\ 2, .

where the regressor Zz(t) is defined by (4.2) and El(t} by

{4.4a).

- 12 -




Step 3: The recursive equations are given by

e3(t+1) = 93(t) + P3(t+1)23(t+1)e3{t+1)
—_— - - — T A
53(t+1) = y{t+1) - el(t+1) 23(t+1)e3(t)
-1 -1 T
P3 {t+1) = P, (t)y + z3(t)23(t) {4.4c)

where the regressor z3(t) is defined by (4.2} and the

filtering by (4.3) where 62 is obtained from (4.4b} i.e.

~ .th ~
Ci, the i component of C2 is given by:
A N QZin_

it

~
(2n+i) :th component of Bz(t) (4.5)
Remark 1

It is well known that the matrices P, (t) satisfy the following
5 ,

recursive equations

P, (t+1) = B, (£) - P, (t)z, (1;+l)[l-f—zri(if+l)Pi(t').?,i(t+l)]_"1z§(t+l)'Pi ()
| (4.6)

If the matrices Pi are badly conditioned squa?e root algorithms [10]
could also be used. It is, however, more convenient for the analysis
to use the equations given for P;I(t). Since the number of parameters
estimated in the first step may be quite large it is useful to use a
fast algorithm, [117, [12] for solving the least squares equations at
least in the first step. Neglecting numerical errors the fast
algorithms will give the same estimates as the ordinary algorithm.

The analysis can therefore be based on the normal algorithms.

- 13 -




Remark 2
The algorithm given can be modified slightly by redefining the

residuals in the second and third steps as

e, (tH) = y(t+1) - zg(t+1)éz(t)

and

Ii

- i A " -1
ey (t+1) = Y(tH) = 23 (410, (1) = Cpla Ye, (E41)

This corresponds to fitting the models (Mé) and (Mé) in the off-line

case.,

Remark 3

The third step can be repeated many times as for the off-line

algorithm.

5, CONVERGENCE ANALYSIS

The recursive algorithm proposed in Chapter 4 will now be
analysed. It has been shown by Ljung [13] that the convergence of
certain recursive algorithms are closely related to the.stability of
an ordinary differential eguwation. In this chapter the ordinary
differential eguation associated with the recursive algorxrithm of
Chapter 4 is first derived., It is then showh that this differential
equation has a unigque stationary solution which is globally asymptotically
stable. The convergence of the recursive parameter estimation algorithm
then follows from Ljung's theoxem.

The Associated Ordinary Differential Equations

Ljung [13] considers algorithms of the form

-14 -




x(t) = x(t~1) + y(B)Q(x(t-1),p(t)) {5.1)

where ¢ (t) may depend on past x{t) through

$(t) = A{x{t-1))o(t-1)+B(x(t-1))e(t)

Furthermore y(t) are numbers that converge to zero, e.g. as 1/t, as

t > », and fe(t)} is a sequence of independent random variables. It

is shown in [13] that the "estimates" x generated by (5.1) are close
Y

to the solutions of the ordinary differential equation

dx . * .
e f(x) (5.2)
where '
. £ (%) A:EQ(X,i(x,t)}

and .

$(x,t) = A(N6 (%, t-1) + B(x)e(t)

A precise statement of the results and the conditions required are
given in [13].
The recursive parameter estimation algorithm described by
equations (4.4) can be written in the form (5.1)}. The components of
’ ~A oA A

the r vector x are the components of the vectors 01, 92 and 03 and the

_ = =1 -1 . s s :
elements of the matrices P1, P2 and P3- To write eguaticdns (4.4) in

the form (5.1) introduce Ri(t) = tPi(t), i=1, 2, 3. The equations

(4.4) can then be written as

~ I ) 1
Gi(t+1) = Gi(t) + EIT-Ri(t+1)zi(t+1)si(t+1)

- 15 -




-1 -1 1 T -1
Ri (t+1) = Ri (t) + E;T‘[zi(t+1)zi(t+1}nRi (£} 3

for i = 1, 2, and 3. These equations are clearly of the form (5.1},
To obtain the ordinary differential equation (5.2) introduce the

following functions.

T
Sy = Ezl{t+1)zi(t+1}

B P
82(91) = Ez2(t+1)z2(t+1)
S.(0.,0.) = Ez_ (1) 7 (£+1
30707 T By z, (1)
s, = Ezi(t+i)y(t+1)

1

52(81) = Ezz(t+1)£y(t+1)—e1(t+1)]
55(0,,0,) = EzB(t+1)[§(t+1)-El(t+1)J (5.3)

The expectation in (5.3) should be calculated under the assumption that
the data is geherated by the process (2.1) in stationary equilibrium.
The ordinary differential equations which are associated with the

difference equations (4.4), (4.5) and (4.6} can then be written as

d%i' .
ar - Rqf8475404]
-1 (5.4a)
By gt
dt i i

- 16 -




A
ag

2 Q ~ FaY
i RZE 52 (91)—52(91)92]
1 (5. 4b)
dRr
2 oA 1
ar " 5,00 -~ Ry
23 a5 B..88.7
3r " Rsbs3(0040,)-5,(0,,0,)0,
-1 (5.4c)
s =8 (6 6 ) -1
ar  F39prYy) TRy

These ordinary differential equations, which are associated with the
three steps of the estimation procedure, will now be analysed. Notice

that the equations have a "triangular" structure. The equations (5.4a)

fal
can thus be integrated independently of the other equations to give O1

s &
and Rl as functions of 7. Knowing 81 the equations (5.4b) can then

be integrated to give 82.and R2' Finally when @1 and 92 are known the
: " )
equation (5.4c) can be integrated to give 93 and R3. The special

structure of the equations simplifies the analysis substantially.

Stationary Solutions

The equilibrium solutions to the differential equations will now
be investigated. The main result is:

Theorem 1

Assume that p > 2n then the differential equations (5.4) have a

unigque stationary solution given by

o -1
9y = 8y 84
(5.5a)
o -1
Ry =5




0 0 - 0
02 = 82(91) 52(91)
{5.5b)
0 0 -1
R2 82(61)
0 _ 0 0 -1 0 0
{5.5c)
0 0 -1
R3 = 53(61,92)

where the matrices S8,, S. and S3 are positive definite.

1 2

Proof

The "triangular" structure of the equations will be used by
analysing the equations one at a time. First consider the equations
(5.4a). It is a well-known result in least squares theory that the
matrix 51 is positive definite; this follows from u and e being
uncorrelated and from u being persistently exciting. A full proof is
given as Lemma Blrin Appendix B. It then follows that (5.5a) is the
stationary solution of (5.4a). It is also shown in Lemma B2 that the
matrices 82(6?) and 53(03,92) are positive definite and it thus follows

that the stationary solutions to (5.4b} and (5.4c) are given by (5.5b)

and (5.5c)}. 3

Remark

0
It is shown in Appendix B that the matrices 81 and 82(61) are

0 |
bounded. For small p it may happen that the estimate 82 is such that

its associated polynomial C2 is unstable 83 would then become unbounded.
It follows from Example 3.2 that this will not happen in the first order
case because there

0P (1-6%)

A cl1 - 2 B
. l—C P




and clearly

.
18] < |l

For large p the estimate C2 will be close to C which is stable.

Global Stability

conditions have thus been found which imply that the differential
equations (5.4) have a unigue stationary solution. It is then natural
to investigate the stability of the stationary solution. The following

result can then be established.

Theorem 2

Assume that the initial conditions to the differential equations
{5.4) are such that Ri(O), R2(O) and RB(O) are positive definite, then
the solutions will converge exponentially to the stationary solutions
given by Theorem 1.

Proof

The continuity of the functions Sl' 82, 83, Si' 82 and S3 appearing
in the right hand side of the eqguations is established in Appendix C.
This in essence establishes the existence of the differential equation.
The global stability is proven by exploiting the "triangular" structure
of the equations. The proof is thus composed of three almost identical
parts each dealing with the equations (5.4a), {(5.4b) and (5.4c¢}).

Part 1

First consider the eguation (5.4a). The equation

has the sclution

~ 19 -



T
R (1) = e TR (0) 1, fe—(T-S)S ds
i 1 1
0
Since 81 is a constant matrix we get
-1 - -1 -
R (DT = e R (O 4 (1-e"")s, (5.6)

It was assumed that Ri(O} was positive definite and it was shown in

. ‘o o -1
Lemma Bl that S, is positive definite. It thus follows that Ri(T)

1

is positive definite for all T € {0,»1. The matrix Rl(T) thus exists
an& is bounded for all:t-e¢ [0,#]. Furthermore it follows from (5.6)
that Rl('r)_1 converges exponentially to Sl' Then Rl(T)SliS also
bounded and-

Rl (T)sl'+ I

exponentially with rate exp{- tlas T + .
The equaticn

A

ag

vl Rl(sl-—slﬁl) = -RS 8 + RS,

ol

is a linear timevarying differential equation. The equation is
Fal
exponentially stable and the solution 8, (t) thus converges to the
o .
equilibrium solution Bl with rate exp (- (l-€)T).

Part 2

Now consider equation (5.4b}. The solution of the equation

-1

dr

2 _ A |
e Sz(ei(T)) R2

can be represented as




T
-1 -t -1 ~(t- A
R0 = e R (0 4 feT T @ (s))as (5.7)
2 2 27
0
It was assumed that R2(0) was positive definite. The matrix
A
82(91(5)) is nonnegative definite for all s. It follows from Lemma B2
0
that 52(01) is positive definite and from Lemma Cl1 that 82 is continuous
0] A
at O,. Since it has been shown in Part 1 of this proof that Gl(s)

1
. Fal
converges to OO it thus follows that 82(91(8))ij;positive definite

1
-1
for large s, The matrix Rz(T) is thus uniformly positive definite,
in [0,»] and its inverse R2(T) thus exists and is bounded in [0,=].

-1 0
Moreover it follows from (5.7} that RZ(T) > 82(91),exponentially

with rate exp(— (1-g)t)as T + » and consequently that
R2(T)Sz+ I

The same argument as in Part 1 of the proof now establishes that
~ 0 N
QZ(T) converges exponentially to 02 with rate exp (- {(l-g)T)as 7 &> w,

Part 3

Consider the eguation (5.4c). The solution of the eguaticn

-1
dR3

dgt

~ ~ ___‘1
= 53(91(T);92(T)) - R3

can be represented as

1 T "'(T“S) ~ A
+ fe 5510, (s),0,(s))ds

R0 =T (0)”
3 3 0

Using arguments analogous to those used in Part 2 of the proof it
~1
follows that R3(T) is positive definite uniformly in [0,»], that

R3(T) exists and that

-2 -




A~ -~
R3(T)SB(@1(T),92(T)) > I

exponentially with rate exp(- (l1-e)t). As before it then follows

~ 0
that 93(T) also converges exponentially to 63. 0
Remark

In view of the properties of the corresponding off-line
algorithm it is natural to use a 1argé value of p to make the limiting
estimates close to the true parameters of the process model. The
assumption for the initial values of R1, R2 and R3 to be positive
definite is also very natural.

In practice this will not be any real restriction.

Convergence of the Parameter Estimates

Having established the conditions for the ordinary differential
equation (5.4) to converge to its unique stationary solution we will
now return to the recursive parameter estimation procedure. The
lfollowing result then holds.
Theorem 3

Consider the recursive parameter estimation algorithm with initial
conditions such that Pl' P2 and P3 are positive definite. Assume that
the algorithm is applied to data generated by the prpcess (2.1) subject
to assumptions Al, A2 and A3. Then the parameter estimates converge
with probability one“porthe values given by eguation (5.5).

Proof

Since the input signal is mean sguare bounded and the system

is stable the output is also mean square hounded, Under the

assumptions of the theorem the differential equation
Under the éssﬁmptions of the theorem the differential equation

(5.4) will converge {exponentially) to the unique stationary solution
(5.5). Assumptions Al, A2 and A3 imply that the conditions for Thecorem 1

of Ljung [13] are satisfied. The probability one convergence then

g

follows from Liung's theorem.

- 2"2‘- -




Remark
Notice that the limiting values (5.5) are the same as the

limiting values of the off-line algorithm.

6. Simulations

A range of simulation studies were carried out by Davis [15].
The initial variances {for each estimator) where set egual to
1061. A square root versioﬁ of the recursive least square
estimator was employed. To avoid poor initial estimates of
Bl adversely affecting the estimatoxrs 62 and 63 the following
"variable forgetting factor strategy" was employed. For 61 a
constant forgetting factor of unity was employed. For 62 and
63 the forgetting factor ¥{t) was defined to be [1 - B_l(t)]2
if B(t) > 1 and 6 otherwise, where B(t) is the maximum diagonal

e

element of P;l(t} . Effectively the updating equations for

Pi(t) in {4.4b) and (4.4c) are replaced by:
-1 - -1 Uy .
P, (t4) = Y(t)[Pi (t) + z, (t)z ()], i=2, 3,

While the estimate of 81 is poor (i.e. Pl(t) is large) the forgetting
factor is small. The signal to noise ratio .Sn in the simulations ‘
is defined to be the ratio of the variance of the output when

the input is u(t) only to the variance of the output when the

input is e(t) only. The simulations in [15] include (among many

others) the following examples:

s1 A=1-o0.80",
B = 1°Oq_l,
C=1+0.7q "




Sn =1, p=8

52 A=1 - l.5q—l +0.7q 7,

B = 1.0q"1 + 0.5q -,

c=1- l.Oq_l + o.zq”z,

For 81, a simulation with N = 1000 yielded the following results:

-

@)
oy
i

x L = ~0,7992 * 0.0194,.
b, = 1.0068 ¥ 0.0182,
~
c, = 0.6852 * 0,0393

) a +

3¢ @ = 0.8007 % 0.0136,

ﬁl = 1,0023 * 0.0133,

~ +
c., = 0.6880 1 0.0214

The standard deviations were {crudely) estimated using ten different




trials, each with N = 1000.

For S2, using the same procedure, the following results were

obtained:
0,: a, = -1.4982 ¥ 0.0055, 32 = 0.6988 * 0.0052,
~ ~
b, = 1,0035 + 0.0081, b, = 0.5004 + 0.0198,
~ ~ +
c, = -0.9522 1 0.0492, o, = 0.1907 I 0.0672
-~ ~ -~
93: a; = -1.4995 T 0.0036, a, = 0.6988 * 0.0030
~ + N
b, = 1.0018 ¥ 0.0075, b, = 0.5011 Y 0.0144
Fa ~
c, = ~0.9775 t 0.0447, c, = 0.1803 ¥ 0.0455

Table 1

The variation of §3 {t) with t for Sl is shown in Fig., 1. I£f

in 81 € is replaced by 1 + 0.992_1 {so that zC has a zero at

-0.99 and thus very close to the unit circle) themr ::2 has

a bias of 15% with p = 8 and 8% with p = 15. §Similarly, a second
order system with z’ZC having zeros. of magnitude 0.98 yielded
biases of 7.8% in G, and 15% in G, with p = 15. In both cases

2
the bias in A and B was negligible., In both Sl and S2 the standard

- 25 -




deviations of the estimates were better than published results

for a recursive maximum likelihcod estimate (N sufficiently large),
The results in Table 1 illustrate the reduction of variance
achieved by the third step. It can tentatively be concluded

that the algorithm is worth considering if the zeros of z C do

not lie near the unit circle,

70 CONCLUSION

A new multi-step method for estimating the parameters in a
controlled ARMA process was proposed in [6]. The first step is a
least squares fit of a high order (p} LS model to obtain estimates of
the residuals. The following steps are combinations of least squares
and filtering. The method proposed in this report is a recursive
version of the method proposed in [6]. The properties of the proposed
recursive method are investigated by analysis. In particular it has
been established that the method is globally convergent. The estimates
will converge to the limiting values for large data sets of the off-line
method. Since it has been shown that the estimates obtained by the
off-line method can be made arbitrarily close to the true process
parameters by choosing the dimension p of the first LS fit sufficiently
large it is élear that the proposed recursive method has nice
computational properties. It thus seems worthwhile to explore the
algorithm further. The next logical step is to explore the properties
of the estimate for finite data sets. This problem is unfortunately not
amenable to analysis. It has to be investigated by simulation. The
proposed method thus has to be compared with other recursive methods
for a large range of different systems. To do this the computational
aspects of the algorithm should also be explored. In particular the

possibilities of using fast algorithms and square root algoxrithms

should be investigated.

Provided that the method compares well also for short data sets

- 26 -




there are numerous extensions that can be considered, For example
~ extensions to multivariable systems
- modifications to the third step of the algorithm

- extensions to state-space models.

More attention needs to be given to the performance
of the algorithm for short data sets. The variable forgetting
function employed to prevent errors in @1 from adversely affecting

Fal

92 and 33 is commen to both 62 and.g3 and depends solely on P . It may
be preferable to use one variable forgetfing factor for 82 based on
Py and a seéqnﬁ for 65 béséd.ohlPl and P,.

However the computational results in [15] suggest that
the algorithm is worth considering for those cases when the
%erOS'of 2'C do not lie‘hear the unit circle.'HMoreovér the
structure of the algorithm, consisting of a seguence of
parallel estimatéfs,the estimator in one level utilizing
the estimate yielded in a lower.ilevel, may suggést a ireans
for improving other recursive algorithms or even developing
entirely new algorithms., The various "levels" represent
the on-line version of successive "iterations" of an off-
line algorithm. One possibility {(the authors are grateful
to T J Hannan for information on this point) is to employ
any consistent estimator gl of (A, B) in the first level, and
to employ an on-line approximation to a Newton-step from

~
81 for minimizing the likelihood function in the second step.
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APPENDIX A

Lemma Al

Assume that C(q_I) # 1. If p > 2n then the polynomials AI and
B1 associated with @? have the property deg Al > n or deg B1 > n.
Proof’

The proof is by contradiction. Hence assume that deg Al <n

0
and deg B1 < n, This means that the vector 91 has the form

_ T
@1 = [alaz..-an 0...0 3152...3n 0...0] (A1)

where the non zero components have been denoted by ai and Bi. Introduce

also the vector

¥ = [uiazn.unﬂiﬁz---ﬁn] - (1\2)

' 0
whose components are the non zero components of 91.

Furthermore introduce

v, (8) = [-¥(t-1)...-y (t-n) w{t-1) . ..u(t-n) 1T

and

v2(t) [-y({t-n-1)e.—y(t-2n) u(t—l)...ﬁ(twn)jT

Since the residuals are uncorrellated with the regressors:

B[V, (t£)V] (£) J¥ = BV, ()y (£) a3

It also follows from the process model {(2.1) that




T 0
E[Vz(t)vl(t)]w = Ev2(t)y(t)

(34)
where '

because C(g )e is a moving average of order n.

Combination of (A3}
and (A4) now give

B[V, (£)V] (©) 1rv-¥27 = o (25)

T
Assuming for the moment that the matrix EV.V

AL is nonsingular then it
follows from (A5) that

The least squares residuals are then given by

g{t) = e(t) + Cie(tvi) + ...+ cne(t-n) {R6)

0
Since ©

1 is a least squares estimate the residuals are uncorrelated

with the regressors. Hence

Ee(t)y(t-1) = 0

Ee(t)y(t-2) = 0

-
.

Ee{t)y(t-n) = 0

Using {R6) it follows from the last of the equations that
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2
Ee{t)y(t-n) = A e, = 0.
Hence ¢ = 0.
n

Similarly it can be shown from the other equations that

-1
Hence we find that C{g ") = 1 which is the desired contradiction.

, T
To complete the Lemma it now remains to show that the matrix EV2V1

is regular. For this purpose introduce the vectors
T
y, = Ly(e-1)...y(t-n) ]

[y(t-n-1) ...y (t=2n) 7"

¥y
u = [u(t~1)...u(t—n)]T.

T
The matrix EV2V1 can then be written as

o A -B
EV, {t)V, (t) = = A
2 i 1
-C D
where
T
A = Ey2y1
B ='Ey2uT
C = Eu T
T
D = Buu -

- 35 -
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The matrix D is invertible because it was assumed that the input was

persistently exciting (Assumption A2). Transforming the matrix (A7)

by the nonsihgular transformation matrix

-1

T BD
T1 =

0 T

gives
A-BD C 0
A =

T84

-1
The matrix A-BD C can be written as

-1
A - BD C

H]

Furthermore it follows from (2.1) that

e~

T T O
Ey,¥; - Ey,u (Euu™) Euy,
T T -1 T T, -
E{y,-Ey,u (Euu) Hy,-By,u (Euwu’)

mly,-Ely,|uwlHy,-Bly, [ul}" = By 7,

k~
Yy < ® Y, + Lle{t) + ... + Lne(t~n+1)

1}T

where ® is a nonsingular transition matrix associated with (2.1). Hence

~ e 1 ~ ~T
EYp¥y = @ EY,yY,

~ ~ oA
But Y, ig the error in predicting v, based on u. The matrix Ey2y2 is

thus clearly positive.
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APPENDIX B

This appendix contains the lemmas used in the proof of Theorem 1.

Lemma Bl

T
The matrix set 51 = Ezlz1 is positive definite and bounded.

Proof

The proof is by contradiction. Hence assume that S1 is not

positive definite. Then there exist polynomials

-1 -1 -
Flg ') = £.q +...+quP

and

~1 -p .

-1
G(g ") + g d

i
te]
(BN
fle:
+

not both zero, such that

vVar [F(q_l)y(t)—G(q_i)u(t)] =0

But since

bt
il

bR vy
bt
+

™[0
o

it follows that
B FC
0=v F=—-Gu+-—e
ar ¢ A ju A ]

_ B _ FC
=var [(F x G)ul + Var (A e)

because u and e are assumed toc be uncorrelated. Hence
F
Var (Kg e) = 0 (B1)
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and

Var (5;;-?— - G)u = 0 (B2)

Since e is white Toise equation (B1) implies that F = 0. Since u
is persistently exciting of arbitrary order, equation (B2) implies
G = 0 and we have thus obtained a cvontradiction.

That S1 is bounded follows from our assumptions on u and the

stability of A. r]

Lemma B2

T
The matrix 82(61) = E2222 is positive definite and bounded for

2
all 6, ¢ R«
The matrix 52(01,92) = Ez3z§ is positive definite and bounded for all

5 _
Ql ¢ R°F such that the degree of A1 or the degree of B1 exceeds n and

for all 92 € RBn such that C2 is stable.

Proof

. -1 : _
if 62 is such that Cz(q ) =1, then 53(01,62) = 52(61). Hence
it is only necessary to consider S3. If S3 is not positive definite,

there exist polynomials

-1 -1 -1
Flg )} = flq + eee + fnq
ala ) =gal+ rga™®

g = glq cee gnq
-1 -1

il

-1
H{g ) hlq +...+hnq

not all zero, such that

35




var

But since

it follows that

1 - -1 - g -
(r(q Dy -cla DA -Hig IE ()] = 0

Bu+Se
A A
B B C G
Var [— (—u + —-e) -~ — u - — (A, y-B u)]
C2 A A C2 5 i i
HA B HB C
P SN s Gl NN . I WA
C2A C2 C2A C2 CzA C2A

Because u and e are assumed to be uncorrelated, we obtain

Var
and

Var
Hence

F o=
and

G =

But this contradicts
Hence S3 {and 32) is

and 92.

The boundedness of 8§

(E (F—HAl)e] =0

C,A .
E{—B— (F~HA,) - 1— {G-BB,)Jul = 0O
C.a 1 c /A8

2 2
1Ay
HB,

the fact that the degree of Ai or B1 exceeds n.

positive definite for the permitted values of @1

3 (and 82) follows from our assumptions on

u and the stability of the polynomials A and C,. 0
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APPENDIX C

In this appendix the continuity of the functions 82 and S3 is

shown.
Lemma C1

The function 82 : R2p > R3nx3n is continuous. The function
S5, ¢ RQP x B - RBHX3n is continuous at all (91,92)'such that

the corresponding polynomials satisfy Assumptions Al,

Proof

As in Lemma B2, we need only consider Sy 83(01,92) contains

terms of the following types

(1) By (i)y (3)
(ii) Ey (i)u(3)
(iii) , Ey(i)e, (3)
(iv) Bu{i)u(j)
(v) Eu(i)e, (3)
(vi) Ee, (e, (3)

where y = (1/C,)y, u = (1/c,)u, and El = (1/c,) (A y-B,u).
Consider the first term and let F and G dencte the (infinite

degree} polynomials satisfying F = B/AC2 and G = C/ACz. Then

= Fu + Ge

o]

-1 -1
As before we let £ denote coeff [F{(g )], and g denote coeff [G(g )],
0 .
recalling that the coefficiant of g in F and G is unity. ILet Kp denote
the metric space of infinite dimensional vectors 6r infinite sequences with
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the metric [ Z (X.)p31/p
i

i=1
known [14], Proposition 11 of Part II} that any map of the type
R . . . - 1]

-, where p is any positive integer. It is

coeff fC(qql)} + coeff [C(qﬂl)—lj

from B to ﬂi is continuous at any point where C is stable. It follows

from ([14], Proposition 10 of Part II) that the maps c, > £ and c, > g
-1 1 n

{where c, A coeff [Cz(q y1) from R to ﬂl {and, hence, from R to ﬂz)

are continuous where C2 is stable. BSince

+

y(i) = u(i) + £uli-1) + £u(i-2) + ...
+ e{i) + gie(i—l) + gze(i—Z) + ...

it follows that

B @G| < |2y

| A

= M, [+ |] f”zjz

+

M+ [l 3%

. th v s
where Ru denotes the infinite matrix whose ij element in Eu(i)u{j}.
By assumption I]Ruflz is finite. It follows from the continuity of

¢, > £ and ¢, + g that the map c. ~ E§(i)§(j) is continuous. The

2 2 2

continuity of c, > Ey(i)u(j) and cy * Eu(i)u(j) can be similarly

established.
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Consider now the second term. Clearly
g, = Hu + Ke

~where H and K are infinite degree polynomials satisfying

I

= B -

H A1 /CzA 31/02
= A

K Alc/c2

The coefficient of qo in H and K ig unity. Arguing as above it is
2 .
seen that the maps (91,C2) + h, from R P x Rn to £2 and (ai,c2) + k

from BX x K" to £2 where

: -1 -1
Ql é=(a1'b1) = coeff [Al(q ),Bi(q )]

h A coeff [H(q'111
k & coeff (kg )
are continuous where C, is stable. Now
leye, ] < R, tr+{ell,am+ |nl]2
Mo+ g lla e+ el
The continuity of (9,,0,) > E§(i)sl(j) follows. The continuity of

(0,,0.,) +'Eﬁ{i)gi(j) and (0,,0,) Egl(i)gi(j) can be similarly established.
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