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Abstract

A plane wave impinges on an in�nite, plane frequency selective surface (FSS)

of patch type, and a surface current is induced on the conducting parts of the

FSS. Using the established spectral Galerkin method, where the method of

moment (MoM) procedure is carried out in the spectral domain, the induced

current is determined, and the scattering problem is solved.

We derive a necessary continuity condition of entire domain basis functions,

and show that basis functions which do not satisfy this condition are sup-

pressed by the spectral Galerkin method. Speci�cally, we present an improved

set of basis functions, designed for crossed dipoles. This set of basis functions

consists of traditional even (symmetric) dipole basis functions, and a new set

of V-dipole basis functions. It is found that the present basis functions are con-

siderably more e�cient than the existing basis functions for crossed dipoles.

In fact, it is found that it su�ces to take 4 of the present basis functions into

account, still getting highly accurate result in a frequency band including the

�rst two resonance frequencies.

1 Introduction

In 1984, Tsao and Mittra presented a method to calculate the scattered �elds from
frequency selective surfaces, which is sometimes referred to as the spectral Galerkin
method [17]. In this method, the formulation is carried out in the spectral domain,
where the convolution in the integral equation is reduced to an algebraic relation.
The basis functions, used in the Galerkin's procedure, can be either entire domain
or subdomain basis functions [18, 19]. The entire domain basis functions can be used
successfully only on standard element geometries (such as crossed dipoles, Jerusalem
crosses, circular rings, etc.), while the subdomain basis functions allow a general
patch geometry. However, for standard element geometries, the entire domain basis
functions are usually preferable, since the matrix to invert is usually much smaller
than the subdomain one, and hence, the computation time is shorter. It is also
well known that the double sum over the Floquet modes is usually more rapidly
convergent in the entire domain case, also yielding shorter computation time [19].

The modes of resonance of the crossed dipole are well known [6, 10, 13, 14, 17].
Firstly, the fundamental resonance at f1 corresponds to that observed for arrays
of elements consisting of only (single) dipoles. Secondly, the resonance at f2 arises
through an asymmetric resonance in right-angle V-dipoles [14]. The surface current
density that gives the �rst resonance at f1 is accurately approximated by even
(symmetric) dipole basis functions, i.e., sine functions. However, the second one, f2,
is more troublesome. Hamdy and Parker [6] have found that, for their geometry, it is
adequate to take 6 odd (asymmetric) dipole basis functions into account. However,
in general, considerably more odd dipole basis functions are required to pick up the
second resonance at f2. In fact, for the geometry of Tsao and Mittra [17], we have
found that 100 odd dipole basis functions are adequate.

Tsao and Mittra introduced a junction basis function to approximate the surface
current density that gives the second resonance at f2 [17]. In this paper, we derive
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a necessary property of entire domain basis functions�a continuity condition�and
show that basis functions which do not apply to this condition are suppressed by
the spectral Galerkin method. This means that current coe�cients corresponding
to basis functions which do not obey to the continuity condition, which are obtained
by matrix inversion, are small. Since the junction basis function of Tsao and Mittra
is discontinuous, it does not apply to the continuity condition, and hence it is sup-
pressed by the spectral Galerkin method. Basis functions which do not apply to the
continuity condition have been used in the literature also on Jerusalem crosses [19].
Furthermore, existing entire domain bases for tripoles do not obey to the continuity
condition [18].

In this paper, we introduce a new set of V-dipole basis functions. These basis
functions are found to pick up the second resonance at f2 excellently. Moreover,
by numerical computations, it is found that it su�ces to take only 4 of the present
basis functions into account, still getting highly accurate result. The V-dipole basis
functions are also applied to crossed dipoles with unequal lengths of the dipole arms,
with applications to polarisation twisting re�ectors [4].

In the next section we recapitulate the spectral Galerkin method. Then we
derive the continuity condition and show that basis functions which do not apply
to this continuity condition are suppressed by the spectral Galerkin method. After
that, we present the improved set of basis functions and demonstrate their e�ciency
by several numerical computations of re�ection and transmission coe�cients. We
consider both crossed dipoles with equal and unequal length of the dipole arms.
Finally, the e�ect of reducing the length of one arm only is demonstrated.

2 Methods

Numerous methods have been used to analyse FSSs. Among other, we mention the
equivalent circuit method, the mutual-impedance method and the integral equa-
tion method [19]. In this paper an integral equation method, called the spectral
Galerkin method [17], is used to determine the scattered �elds from the FSS. This is
a spectral-domain approach where the convolution in the integral equation is reduced
to an algebraic relation. It is important to notice that the forthcoming continuity
condition is valid for the spectral Galerkin method, and that it is not applicable for
the other methods, for instance, the equivalent circuit method.

In this section we review the spectral Galerkin method brie�y, and introduce the
notation of the forthcoming proof concerning the necessary properties of the entire
domain basis functions.

2.1 The FSS and the incident �eld

The frequency selective surface (FSS) covers the plane z = 0. The periodic pattern
is divided into identical cells, where the cell at the origin is called the unit cell
E. The cartesian x-axis is directed along one of the periodic directions, and the
y-axis is chosen so that x, y and z form a right hand system. Each cell, which
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Figure 1: The unit cell E with the sides a and b.

is a parallelogram, has the sides a (along the x-axis) and b (in the other periodic
direction). The angle between the two periodic directions is denoted φ0, 0 < φ0 ≤
π/2, see Figure 1. Moreover, we introduce the area of the unit cell, denoted by
AE := ab sinφ0. The unit cell is partly covered by a perfectly conducting, in�nitely
thin crossed dipole, and the set of points on this crossed dipole is denoted by Sσ
(open set), while points in E, but outside the cross, are denoted S0. Thus, we have
E = Sσ∪S0. We let x̂′ and ŷ′ be unit vectors in the periodic directions, see Figure 1,
so that{

x = x′ + y′ cosφ0

y = y′ sinφ0

{
x′ = x− y cotφ0

y′ = y/ sinφ0

{
x̂′ = x̂

ŷ′ = x̂ cosφ0 + ŷ sinφ0

(2.1)

The incident �eld, Ei(r), is a plane wave with wave vector k = x̂k sin θ cosφ +
ŷk sin θ sinφ + ẑk cos θ, where θ and φ are the spherical angles of the wave vector.
The wave number k is de�ned as k := ω(ε0µ0εµ)1/2, where ω := 2πf is the angular
frequency, and f is the frequency. Here ε0 and µ0 are the free space permittiv-
ity and permeability, respectively, while ε and µ are the relative permittivity and
permeability, respectively, of the surrounding space.

We assume that 0 ≤ θ < π/2, i.e., the incident plane wave impinges along the
positive z axis. The incident plane wave can be written as

Ei(r) =

{
Ei

k×ẑ
|k×ẑ|e

ik·r = Eiê
⊥
i e

ik·r TE incidence

Ei
k×(k×ẑ)
|k×(k×ẑ)|e

ik·r = Eiê
‖
i e
ik·r TM incidence
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where Ei is an complex constant. Note that the time convention e−iωt is adopted.
The unit vectors of TE and TM incidence, respectively, are explicitely given by{

ê⊥i := x̂ sinφ− ŷ cosφ

ê
‖
i := x̂ cos θ cosφ+ ŷ cos θ sinφ− ẑ sin θ

(2.2)

The orthogonal (⊥) and parallel (‖) symbols call attention to the fact that the
electric �eld is orthogonal to the plane of incidence for TE polarization, while it
is parallel to the plane of incidence for TM polarization. The transverse part of
the incident electric �eld, denoted ET

i (r), is easily obtained by subtracting the z
component,

ET
i (r) := (I − ẑẑ) ·Ei(r) = ET

i e
ik·r (2.3)

where I is the three-dimensional unit dyadic, i.e., I := x̂x̂+ ŷŷ+ ẑẑ, and where the
polarisation vector is given by

ET
i :=

{
Ei(x̂ sinφ− ŷ cosφ) TE incidence
Ei cos θ(x̂ cosφ+ ŷ sinφ) TM incidence

This tangential electric �eld is used below when the system of linear equations for
the induced current is derived.

2.2 Floquet expansion of the global current

When the incident plane wave impinges on the FSS, a current is induced in the
perfectly conducting crossed dipoles. We assume that this current inherits the phase
of the incident �eld. Then, the induced current J(ρ), which is de�ned for all ρ :=
x̂x+ ŷy, can be expanded according to Floquet's theorem [7] in Floquet harmonics :

J(ρ) =
∞∑

m=−∞

∞∑
n=−∞

Fmne
iτmn·ρ, ρ ∈ R2 (2.4)

where τmn := x̂αm + ŷβmn with

αm :=
2πm

a
+ kx βmn :=

2πn

b sinφ0

− 2πm

a
cotφ0 + ky

The real numbers kx and ky are the x and y components of the wave vector, re-
spectively, and Fmn are the Floquet coe�cients. The speci�c appearance of τmn
can be motivated in the following way. Let ρ be an arbitrary point in the unit cell
E. By the relation (2.1), this point can be expressed in both the primed and the
unprimed system of coordinates. We introduce the current J ′(ρ′) as J ′(ρ′) := J(ρ),
where ρ′ = x̂′x′ + ŷ′y′ and ρ = x̂x + ŷy denote the same vector. If we, as before,
assume that the induced current inherits the phase of the incident �eld, the function
J ′(ρ′)e−ik·ρ

′
is periodic, with period a and b in the x′ and y′ direction, respectively.

Hence, the function can be Fourier expanded as

J ′(ρ′)e−ik·ρ
′
=

∞∑
m=−∞

∞∑
n=−∞

Fmne
i2πmx′/a+i2πny′/b, ρ′ ∈ R2
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Since ρ′ = ρ, we have eik·ρ
′

= eik·ρ, and the coordinate relation (2.1) then implies
the Floquet expansion (2.4). To sum up, the Floquet expansion is nothing but
an ordinary Fourier expansion in a non-orthogonal cartesian system of coordinates,
under the assumption that the induced current inherits the phase of the incident
�eld.

The spatial Fourier transform of the Floquet expanded current (2.4) is

J̃(τ ) = (2π)2

∞∑
m=−∞

∞∑
n=−∞

Fmnδ
2(τ − τmn), τ ∈ R2 (2.5)

where the spectral variable is de�ned through τ := x̂α + ŷβ, and where δ2(τ ) :=
δ(α)δ(β) is the two-dimensional delta function. The Fourier transform pair is

f̃(τ ) =

∫
R2

f(ρ)e−iτ ·ρ dxdy

f(ρ) = (2π)−2

∫
R2

f̃(τ )eiτ ·ρ dαdβ

2.3 The unit cell current

We introduce the current JE(ρ), which has support in the unit cell E, as JE(ρ) :=
J(ρ) for all ρ ∈ E. It is important to distinguish the two currents J(ρ) and JE(ρ).
On the unit cell E they are equal, but outside the unit cell J(ρ) is periodic, while
JE(ρ) vanishes. As a consequence, the Fourier spectrum of J(ρ) is discrete, see
(2.5), while JE(ρ) has a continuous spectrum.

We derive a relation between the Fourier coe�cients of the global current J(ρ)
and the Fourier transform of the unit cell current JE(ρ). We start with the identity

JE(ρ) = J(ρ), ρ ∈ E

If we multiply this equation by e−iτmn·ρ, integrate over the unit cell, and substitute
the Floquet harmonics expansion, (2.4), for J(ρ), we arrive at∫

E

JE(ρ)e−iτmn·ρ dxdy =
∞∑

m′=−∞

∞∑
n′=−∞

Fm′n′

∫
E

ei(τm′n′−τmn)·ρ dxdy, (m,n) ∈ Z2

The integral on the left hand side can be extended from E to R2, due to the compact
support of JE(ρ) and it can be identi�ed as the Fourier transform of the unit cell
current J̃E(τ ) evaluated at τ = τmn. On the other hand, the integral on the right
hand side can be carried out after a substitution of the variables according to (2.1).
We get∫
E

ei(τm′n′−τmn)·ρ dxdy =

∫ a

0

dx′
∫ b

0

sinφ0 dy
′e2πi[(m′−m)x′/a+(n′−n)y′/b] = AEδm′mδn′n

where AE is the area of the unit cell and where δmn is the Kronecker's delta, δmn = 1
if m = n and δmn = 0 if m 6= n. Finally, we have

J̃E(τmn) = AEFmn, (m,n) ∈ Z2 (2.6)
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This is the sought relation between the unit cell current and the global current. The
relation is used later to eliminate the global current. The unit cell current can be
approximated with arbitrary precision when it is expanded in a set of appropriate
entire domain basis functions jp(ρ), i.e.,

JE(ρ) =
∑
p∈χ

Cpjp(ρ) (2.7)

where χ is a set of indicies and the scalars Cp are the unknown expansion coe�cients.
Here, the index p is an integer or a multi-index.

Finally, for completeness, an alternative derivation of (2.6) is now given [11].
The in�nite number of periodic cells are numbered by indicies p and q, so that cell
(p+ 1, q) is the cell to the right (in the x̂′ direction) of cell (p, q). Similarly, the cell
(p, q + 1) is the cell above (in the ŷ′ direction) cell (p, q). We denote the current in
cell (p, q) with Jpq(ρ). The current Jpq(ρ) vanishes outside cell (p, q). Furthermore,
we let cell (0, 0) be the unit cell, that is J00(ρ) = JE(ρ). The current in cell (p, q),
Jpq(ρ), can be related to the unit cell current by

Jpq(ρ) = JE(ρ− ρpq)eik·ρpq , ρ ∈ R2

where ρpq := x̂(pa+ qb cosφ0) + ŷqb sinφ0. Note that this relation is based upon the
assumption that the induced current inherits the phase of the incident �eld. The
origin of the di�erent factors in the translation vector ρpq is illustrated in Figure 2.

The global current J(ρ) now reads

J(ρ) =
∞∑

p=−∞

∞∑
q=−∞

Jpq(ρ) =
∞∑

p=−∞

∞∑
q=−∞

JE(ρ− ρpq)eik·ρpq , ρ ∈ R2

By taking the spatial Fourier transform of this equation, we arrive at

J̃(τ ) = J̃E(τ )
∞∑

p=−∞

∞∑
q=−∞

ei(k−τ )·ρpq , τ ∈ R2

where, as before, τ = x̂α + ŷβ is the spectral variable. We �rst use the formula∑∞
p=−∞ e

−ipx = 2π
∑∞

m=−∞ δ(x − 2πm) to replace the exponential function, and
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then, we use the relation δ(ax) = δ(x)/|a| to extract a and b sinφ0, yielding 1/AE.
The �nal result is

J̃(τ ) = J̃E(τ )
(2π)2

AE

∞∑
m=−∞

∞∑
n=−∞

δ2(τ − τmn), τ ∈ R2 (2.8)

were, as before, τmn = x̂αm + ŷβmn. Now, the sought relation (2.6) immediately
follows from (2.5).

2.4 The scattering operator

In this subsection, we derive the scattering operator, i.e., the operator which for a
known current gives the scattered �eld. It is well known that the scattered �eld is
given by the convolution integral [19]

E(r) = − 1

iωε0ε
[k2I2 +∇∇] ·

∫
R2

g(r − ρ′)J(ρ′) dx′dy′, z 6= 0 (2.9)

where I2 := x̂x̂+ ŷŷ, and where the free space Green's function g(r) := eik|r|/4π|r|
is a solution to the Helmholtz' equation,

(∇2 + k2)g(r) = −δ3(r) (2.10)

The convolution integral, (2.9), de�nes the scattering operator for the global current.
In the spectral Galerkin method, which we use here, it is the unit cell current, and
not the global current, which is expanded in basis functions. Thus, we need the
scattering operator for the unit cell current. By taking the spatial Fourier transform
of the convolution integral (2.9) in the transverse coordinates ρ, we arrive at

Ẽ(τ , z) = − 1

iωε0ε
[k2I2 − ττ + i

∂

∂z
ẑτ ] · g̃(τ , z)J̃(τ ), z 6= 0 (2.11)

where g̃(τ , z) is the Fourier transform of the free space Green's function. Note that
the Fourier transform converts the convolution integral to an ordinary multiplication.
To derive g̃(τ , z), we start with the Fourier transform of the Helmholtz' equation
(2.10), which reads, (

γ2 +
∂2

∂z2

)
g̃(τ , z) = −δ(z)

where γ is de�ned through k2 = |τ |2 + γ2. Here, the principal square root branch
is chosen such that the imaginary part of γ is non-negative. The above ordinary
di�erential equation is solved for z < 0 and z > 0, respectively, and the following
boundary conditions are applied,

lim
ε→0+

[g(ρ+ ẑε)− g(ρ− ẑε)] = 0

lim
ε→0+

∂

∂z
[g(ρ+ ẑε)− g(ρ− ẑε)] = −1
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In the latter boundary condition, it is understood that the derivative with respect to
z is done before the limiting process. Moreover, the solution should be an outgoing
wave in each half space, respectively. The result is

g̃(τ , z) =
i

2γ
eiγ|z|

Our next move is to replace the global current in (2.11) by the unit cell current by
using (2.5) and (2.6), and then apply the inverse Fourier transform, to obtain

E(r) = − 1

iωε0εAE

∞∑
m=−∞

∞∑
n=−∞

g̃(τmn, z)Gmn(z) · J̃E(τmn)eiτmn·ρ, z 6= 0 (2.12)

where Gmn(z) := k2I2−τmnτmn−γmn sgn(z)ẑτmn. Here sgn(z) is the sign function,
that is sgn(z) gives −1 or 1 depending on whether z is negative or positive. The
scalar γmn is de�ned by γmn := (k2 − |τmn|2)1/2. As before, the principal square
root branch is chosen such that the imaginary part of γmn is non-negative.

It is evident from (2.12) that the scattered �eld is a discrete sum of plane waves.
Some of these are propagating waves, while others are evanescent waves (inhomo-
geneous waves). For instance, the wave corresponding to m = n = 0, for positive
z, is a plane wave propagating in the transmitted direction, i.e., in the kt := k
direction. On the other hand, for negative z, the wave corresponding to m = n = 0,
is a plane wave propagating in the re�ected direction, i.e., in the kr := (I − 2ẑẑ) ·k
direction, where I is the three-dimensional unit dyadic. For su�ciently large m and
n, the corresponding plane wave has an exponential decay in the ±z direction, due
to behaviour of g̃(τmn, z), and this wave is evanescent. To sum up, the scattered
�eld consists of a �nite number of propagating plane waves, and an in�nite number
of evanescent plane waves.

2.5 The linear system of equations for the unit cell current

Following the Galerkin procedure, it is quite straightforward to derive a system of
linear equations for the unit cell current from (2.12). Since the total tangential
electric �eld vanishes on a conductor, we have1

ET
i (ρ) =

η0η

2kAE

∞∑
m=−∞

∞∑
n=−∞

gmn · J̃E(τmn)eiτmn·ρ, ρ ∈ Sσ

where η0 := (µ0/ε0)1/2 is the impedance of free space, η := (µ/ε)1/2 is the relative
impedance, and where

gmn =
1

γmn
(k2I2 − τmnτmn)

The transverse part of the incident �eld, ET
i (ρ), is de�ned through (2.3). We

multiply the above equation by j∗q(ρ)·, where ∗ denotes the complex conjugate, and

1Taking the limit |z| → 0 of the tangential part of (2.12) we obtain a well-de�ned limit [3].
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integrate over the conducting part of the unit cell Sσ. Then, the left and right hand
side can be identi�ed as a Fourier transform, i.e.,

j̃∗q(k
T ) ·ET

i =
η0η

2kAE

∞∑
m=−∞

∞∑
n=−∞

j̃∗q(τmn) · gmn · J̃E(τmn), q ∈ χ

where the transversal wave vector is de�ned by kT := I2 ·k. Finally, we replace the
unit cell current with its basis function expansion (2.7). We have

j̃∗q(k
T ) ·ET

i =
η0η

2kAE

∑
p∈χ

Cp

∞∑
m=−∞

∞∑
n=−∞

j̃∗q(τmn) · gmn · j̃p(τmn) (2.13a)

where q ∈ χ. If χ is an in�nite set of indicies, the above equation is an in�nite system
of linear equations for the unknown current coe�cients Cp. We assume that if this
in�nite system is truncated, the solution to the truncated system approximates the
exact solution. When the linear system (2.13a) is truncated, it can be written

AC = b (2.13b)

where A is a square matrix and C is a vector containing the unknown coe�cients
Cp. The following properties of the linear system of equations are obvious:

• The size of the matrix equals the number of basis functions used, i.e., the
number of elements in χ.

• The matrix has to be computed for each frequency.

• The matrix is not dependent on the polarization of the incident �eld, but it
depends on the angles of incidence.

• The truncation of the in�nite sums depends on the asymptotic behaviour of
j̃p(τmn) for large |m| and |n|.

According to the �phenomenon of relative convergence� [8, 15], for some geometries
and for a �xed number of basis functions, there is an optimal truncation of the
double sum of Floquet modes. In other words, for some geometries, the number
of terms in the double sum can be related to the number of basis functions used.
However, in general, we gradually increase the number of terms until the matrix
elements converge.

2.6 The re�ection and transmission coe�cients

Once the linear system is solved, the unit cell current is known, and the scattered
�eld is given by (2.12). We have seen that the scattered �eld consists of at least
two propagating plane waves, one of which propagates in the re�ected direction kr,
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and one of which propagates in the transmitted direction kt. We denote these plane
waves by Er(r) and Et(r), respectively, i.e.,

Er(r) := − 1

iωε0εAE
g̃(τ 00, z)G00(z) · J̃E(τ 00)eiτ00·ρ, z < 0

Et(r) := − 1

iωε0εAE
g̃(τ 00, z)G00(z) · J̃E(τ 00)eiτ00·ρ, z > 0

which can be simpli�ed to

Er(r) = − η0η

2kkzAE
G−00 · J̃E(kT )eikr·r = Ere

ikr·r

Et(r) = − η0η

2kkzAE
G+

00 · J̃E(kT )eikt·r = Ete
ikt·r

(2.14)

where G±00 := k2I2 − kTkT ∓ kz ẑkT and where kz is the z component of the wave
vector, kz := ẑ · k > 0. Here, Er and Et are the amplitude and polarization of the
re�ected and transmitted plane waves, respectively. We determine these amplitudes
for the TE and TM polarization of the incident �eld, respectively, and obtain the
amplitudes E⊥r , E

‖
r, E

⊥
t , and E

‖
t . Note that since the matrix in the system of linear

equations, (2.13b), is independent of the polarization of the incident �eld, these four
amplitudes are determined by a single matrix inversion.

We de�ne the unit vectors for TE and TM polarization of the transmitted �eld,
respectively, see (2.2),

ê⊥t := ê⊥i and ê
‖
t := ê

‖
i

Similarly, the unit vectors for the re�ected �eld are

ê⊥r := −ê⊥i and ê‖r := (2ẑẑ − I) · ê‖i

The dyadic 2ẑẑ − I, leaves the z component of ê‖i unaltered, while it changes the
signs of the x and y components, see also Figure 3.

In general, the FSS generates a cross-polarized component of the re�ected and
transmitted �elds. For instance, if the incident �eld is TE polarized, the transmitted
�eld is not necessarily strictly TE polarized. Therefore, we introduce four re�ection
coe�cients, R⊥⊥, R⊥‖, R‖⊥ and R‖‖, and four transmission coe�cients, T⊥⊥, T⊥‖,
T ‖⊥ and T ‖‖. Here the �rst symbol in each pair refers to the polarization of the
incident �eld, while the second refers to the polarization of the re�ected and trans-
mitted �elds, respectively. The coe�cients are complex. Without loss of generality,
we assume that the incident �eld is of unit strength, that is Ei = 1. The re�ection
coe�cients are given by

R⊥⊥ := E⊥r · ê⊥r
R⊥‖ := E⊥r · ê

‖
r

R‖⊥ := E‖r · ê⊥r
R‖‖ := E‖r · ê

‖
r

Since the transmitted �eld is the total �eld for z > 0, the incident �eld has to be
added, and the transmission coe�cients are given by

T⊥⊥ := E⊥t · ê⊥t + 1

T⊥‖ := E⊥t · ê
‖
t

T ‖⊥ := E
‖
t · ê⊥t

T ‖‖ := E
‖
t · ê

‖
t + 1
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Figure 3: The re�ected and transmitted �eld.

The scattered �eld E(r) depends of course on the speci�c form of the unit cell
current, but the coe�cients above depends only on the slow oscillations of the unit
cell current. This is concluded from (2.14), where it is evident that only J̃E(kT )
contributes.

2.7 The continuity condition

We start with the p:th diagonal element of the linear system (2.13b), which is

app :=
∞∑

m=−∞

∞∑
n=−∞

dmn (2.15)

where dmn := j̃∗p(τmn) · gmn · j̃p(τmn). By straightforward calculations we �nd that

dmn =
1√

k2 − α2
m − β2

mn

(
|j̃x(αm, βmn)|2(k2 − α2

m)

−2αmβmn Re{j̃∗x(αm, βmn)j̃y(αm, βmn)}+ |j̃y(αm, βmn)|2(k2 − β2
mn)
)

where j̃p(τ ) = x̂j̃x(α, β) + ŷj̃y(α, β). First we examine the asymptotic behaviour of
dmn for large βmn. For �xed m = m′, βm′n = O(νn) where ν := 2π/b sinφ0, and we
have

dm′n ∝
1

iνn
|j̃x(αm′ , νn)|2(k2 − α2

m′) + 2iαm′ Re{j̃∗x(αm′ , νn)j̃y(αm′ , νn)}

+ iνn |j̃y(αm′ , νn)|2
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for large |n|. This means that if j̃x(αm′ , νn) = O(n1−l) or j̃y(αm′ , νn) = O(n−l),
for large |n|, any l ≤ 1, then the sum over n in (2.15) diverges for each m = m′.
Next we examine the asymptotic behaviour of dmn for large αm. For large |m| and
|n| in the strip |n −mb cosφ0/a| ≤ ε, where ε > 0 is constant, αm = O(ηm) where
η := 2π/a, and we have

dmn ∝ iηm |j̃x(ηm, βmn)|2 + 2iβmn Re{j̃∗x(ηm, βmn)j̃y(ηm, βmn)}

+
1

iηm
|j̃y(ηm, βmn)|2(k2 − β2

mn)

This means that if j̃x(ηm, βmn) = O(m−l) or j̃y(ηm, βmn) = O(m1−l), for large |m|
and |n| in the strip |n−mb cosφ0/a| ≤ ε, any l ≤ 1, then the sum in (2.15) diverges.
Note that βmn is bounded in the strip.

To sum up, if j̃p(τ ) = x̂j̃x(α, β) + ŷj̃y(α, β) is an arbitrary entire domain basis
function, then the corresponding double in�nite sum of Floquet modes, (2.15), which
occurs as the p:th diagonal element of the linear system (2.13b), diverges if either

j̃x(α, β
′) = O(α−l) for large |α|, β′ �xed, any l ≤ 1 (2.16a)

j̃y(α
′, β) = O(β−l) for large |β|, α′ �xed, any l ≤ 1 (2.16b)

j̃x(α
′, β) = O(β−l) for large |β|, α′ �xed, any l ≤ 0 (2.16c)

or

j̃y(α, β
′) = O(α−l) for large |α|, β′ �xed, any l ≤ 0 (2.16d)

Consider a discontinuous function j(x) : R→ R, which has support in the inter-
val (x1, x2) ⊂ R. Without loss of generality, we suppose that j(x) is discontinuous in
only one point, x1 < x0 < x2 say, and that it is continuous elsewhere. The function
j(x) can be decomposed in one continuous function jc(x) and a Heaviside function,

j(x) = jc(x) + ∆H(x− x0)

where jc(x) is continuous on (x1, x2) and ∆ is the jump discontinuity at x = x0. It
is well known [16] that the Fourier transform of the Heaviside function decays as
H̃(α) ∝ 1/α for large |α|. Thus, j̃(α) = O(α−1) for large |α|. From (2.16a) and
(2.16b) it is concluded that if the basis function jp(ρ) = x̂jxx(x)jyx(y) + ŷjxy (x)jyy (y)
not obeys to the following continuity condition,{

jxx(x) : R→ R is continuous
jyy (y) : R→ R is continuous

(2.17)

then the corresponding double in�nite sum, (2.15), is divergent. Note that continuity
of jyx(y) and jxy (x) is not demanded, but that a restriction in the singularity of these
functions can be derived from (2.16c) and (2.16d). Moreover, note that the continu-
ity condition, (2.17), is valid only for separable basis functions, i.e., basis functions
which can be written jp(ρ) = x̂jxx(x)jyx(y) + ŷjxy (x)jyy (y). For a non-separable basis
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function, jp(ρ) = x̂jx(x, y) + ŷjy(x, y), the situation is more complicated, and we
refer to the conditions (2.16a)�(2.16d).

Finally, we sketch how basis functions which do not ful�ll the continuity condition
are handled by the spectral Galerkin method. Suppose that the basis function jp(ρ)
does not obey to the continuity condition, and that all matrix elements apq in (2.13b)
are bounded, except for app. Since the continuity condition is not ful�lled, the double
in�nite sum (2.15) is divergent. The unknown current coe�cient Cp in (2.13b) is
given by Cramer's rule [12] as

Cp =
detAp

detA
where Ap is the matrix A with its p:th column replaced by the right-hand side b.
Since detAp is bounded, while detA is in�nite, the current coe�cient Cp is zero.
Thus, basis functions which do not ful�ll the continuity condition are suppressed
by the spectral Galerkin method. However, if we truncate the divergent, double
in�nite sum, the current coe�cient Cp is not identically zero, but its value is strongly
dependent of the choice of truncation.

3 Results

In the above analysis, the free space Green's function was used, and hence the FSS
has no kind of dielectric support. However, a multi-layer dielectric support can be
handled by an appropriate Green's function. For instance, this Green's function can
be calculated by the G1DMULT routine [9].

The junction basis function given by Tsao and Mittra [17] does not obey the
continuity condition, and hence it is not pertinent. Numerically, this shows up
when we try to �nd an appropriate truncation of the Floquet sum corresponding to
the junction basis function, since this sum is divergent. We have also, unsuccessfully,
tried to use a more general projection method than the Galerkin procedure and used
another testing function corresponding to the junction basis function. Moreover, it
is found that the convergence of the MoM solution is very slow, when ordinary even
and odd dipole basis functions are used. In fact, from Figure 7 it is evident that
we need about 100 odd dipole basis function to accurately approximate the surface
current that gives the second resonance at f2.

In view of this, we develop a new set of basis functions for crossed dipoles. It
is found that the surface current density that gives the �rst resonance mode at f1

is well approximated by the ordinary even dipole basis functions (see (3.1) below),
and that it is the second resonace at f2, occuring in right-angle V-dipoles, which is
troublesome. However, following the idea of Tsao and Mittra, we design a new set
of V-dipole basis functions�which obeys the continuity condition�to approximate
the surface current density that gives the second resonance at f2.

3.1 An improved set of basis functions

We denote the length and the width of the dipole arms by L and W , respectively,
see Figure 4.
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Figure 4: A crossed dipole. Note the length (L) and width (W ) of the arms.

Firstly, the following traditional even dipole basis functions are de�ned:

j1
p(ρ) := x̂ sin(π(2p− 1)(x+ L/2)/L), ρ on the x arm

j2
p(ρ) := ŷ sin(π(2p− 1)(y + L/2)/L), ρ on the y arm

(3.1)

Here, and in the following de�nitions, it is understood that the basis functions have
support on the conducting part of the crossed dipole. Moreover, we de�ne the
V-dipole basis functions (here (x, y) ∈ Sσ)

j3
p(ρ) :=


x̂Ap(x, y) x > W/2

−ŷAp(y, x) y > W/2

x̂s(x)c(y)− ŷc(x)s(y) |x| ≤ W/2 and |y| ≤ W/2

j4
p(ρ) :=


−x̂Ap(−x,−y) x < −W/2
ŷAp(−y,−x) y < −W/2
−x̂c(x)s(y) + ŷs(x)c(y) |x| ≤ W/2 and |y| ≤ W/2

j5
p(ρ) :=


−x̂Ap(−x, y) x < −W/2
−ŷAp(y,−x) y > W/2

−x̂s(−x)c(y)− ŷc(−x)s(y) |x| ≤ W/2 and |y| ≤ W/2

j6
p(ρ) :=


x̂Ap(x,−y) x > W/2

ŷAp(−y, x) y < −W/2
x̂c(−x)s(y) + ŷs(−x)c(y) |x| ≤ W/2 and |y| ≤ W/2
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0

1

Figure 5: The amplitude of the V-dipole basis function j3
1(ρ).

where the arm function Ap(x, y) is de�ned through

Ap(x, y) := up(x)[c(y)− v(x)(c(y)− 1)]

and where

up(x) := sin
(
π(2p− 1)(x+ L/2−W )/(L−W )

)
v(x) := sin

(
π(x−W/2)/(L−W )

)
s(ξ) := sin

(
π(ξ +W/2)/2W

)
c(ξ) := cos

(
π(ξ +W/2)/2W

)
These V-dipole basis functions approximate the surface current density in 90◦ V-
dipoles that gives the second resonance at f2. Roughly speaking, if we bend either
j1
p(ρ) or j2

p(ρ) 90◦ at the center of the cross, we obtain the V-dipole basis functions.
Figure 5 shows the amplitude of the V-dipole basis function j3

1(ρ), i.e., |j3
1(ρ)| is

plotted as a function of the spatial coordinates x and y. Note that the V-dipole
basis functions are continuous, even at the center of the cross, see Figure 6. Since
the V-dipole basis functions are comprised of ordinary sines and cosines, they are
easy to Fourier transform. We use the following enumeration of the basis functions,
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Figure 6: The current lines at the center of the cross.

i.e., the index is mod 6,

jp(ρ) :=



j1
(p+5)/6(ρ) p = 1, 7, 13, . . .

j2
(p+4)/6(ρ) p = 2, 8, . . .

j3
(p+3)/6(ρ) p = 3, 9, . . .

j4
(p+2)/6(ρ) p = 4, 10, . . .

j5
(p+1)/6(ρ) p = 5, 11, . . .

j6
p/6(ρ) p = 6, 12, . . .

These basis functions can straightforwardly be generalized to cover crossed dipoles
with unequal lengths and widths of the arms.
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3.2 The spatial Fourier transform

The spatial Fourier transform of the traditional dipole basis functions in (3.1) is
easily obtained. If we introduce the function

j̃1
p(α, β) := LW (−1)p+1(Γ1(α) + Γ1(−α))Γ2(β)/2

where Γ1(η) := sinc(π(2p− 1)/2 + ηL/2) and Γ2(η) := sinc(ηW/2), we have

j̃1
p(ρ) = x̂j̃1

p(α, β) j̃2
p(ρ) = ŷj̃1

p(β, α)

The following transform is useful when we determine the transform of the V-dipole
basis functions,

c̃(η) :=

∫ W/2

−W/2
c(ξ)e−iηξ dξ =

W

2

(
1− i√

2
Γ3(η) +

1 + i√
2

Γ3(−η)

)
where Γ3(η) := sinc(π/4 + ηW/2). Similarly, we have

s̃(η) :=

∫ W/2

−W/2
s(ξ)e−iηξ dξ = c̃∗(η)

Yet another useful transform is

ũp(η) :=

∫ L/2

W/2

up(ξ)e
−iηξ dξ =

i(−1)pe−iηW/2 − e−iηL/2Γ4

η(1− Γ2
4)

where Γ4 := (2p− 1)π/η(L−W ). Finally, we also make use of the transform

w̃p(η) :=

∫ L/2

W/2

up(ξ)v(ξ)e−iηξ dξ = Ψ(L/2)−Ψ(W/2)

where

Ψ(ξ) :=
Ψ+(ξ) + Ψ−(ξ)

4
Ψ±(ξ) :=

(
Λ±p−1(ξ)e±iπW/(L−W ) − Λ±p (ξ)

)
e±Γ5

Λ±p (ξ) :=
eiξ(−η±2πp/(L−W ))

i(−η ± 2πp/(L−W ))

Γ5 := iπ

(
p

(
1− W

L−W

)
− 1

2

)
Now, introducing the functions

j̃3
p(α, β) := Ãp(α, β) + s̃(α)c̃(β)

j̃4
p(α, β) := −Ãp(−α,−β)− c̃(α)s̃(β)

j̃5
p(α, β) := −Ãp(−α, β)− s̃(−α)c̃(β)

j̃6
p(α, β) := Ãp(α,−β) + c̃(−α)s̃(β)
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where Ãp(α, β) := (ũp(α) − w̃p(α))c̃(β) + w̃p(α)Γ2(β), the Fourier transform of the
V-dipole basis functions can be written

j̃np (α, β) = x̂j̃np (α, β)− ŷj̃np (β, α) n = 3, 4

j̃np (α, β) = x̂j̃np (α, β) + ŷj̃np (−β,−α) n = 5, 6

Note the symmetry in α and β.

3.3 The geometry of Tsao and Mittra

In this section we consider the geometry of Tsao and Mittra [17], i.e., a = 24.40
mm, b = 17.25 mm, L = 15.10 mm, W = 0.44 mm, and φ0 = 45◦. Actually, this
geometry also occurs in the paper of Pelton and Munk [14], and they have included
measured data, which we use for comparison in our calculations.

In this paper we use the Z matrix interpolation method, recently presented by
Barlevy [2]. We calculate the matrix A in the linear system (2.13b) at the frequen-
cies 8, 9, 10, 11 and 12 GHz and store them. Then, we compute the intermediate
frequency values of the matrix elements apq by cubic spline interpolation, and solve
for the current coe�cients Cp. Hence, to get the re�ection and transmission coef-
�cients of the FSS, for all frequencies at the X-band (8�12 GHz), we only need to
calculate the matrix A at 5 frequencies.

Figure 7 depicts the (power) re�ection coe�cient for TM incidence, as a function
of frequency and the number of odd dipole basis functions [17] included. The angles
of incidence are chosen as θ = 60◦ and φ = 0◦. The number of even dipole basis
functions included is 4, i.e., 2 on each arm. Moreover, the double in�nite Floquet
sum is truncated as

∑N
m=−N

∑N
n=−N , where N = 400. Hence, the number of Floquet

modes included is 8012. This truncation is determined by adding Floquet modes un-
til the result does not change. From Figure 7 it is concluded that, for this geometry,
it is adequate to include about 100 odd dipole basis functions; fewer basis functions
do not localize the second resonance at f2 correctly. However, the ill-posed nature
of the underlying integral equation shows up if too many basis functions are used,
cf., Figure 8, which depicts the condition number, de�ned as the ratio of the largest
singular value to the smallest one, of the matrix A of the linear system (2.13b).
Due to computer time limitations, we have not been able to examine whether the
odd dipole solution, Figure 7, do converge or stabilize when more than 200 basis
functions are included.

The condition number depicted in Figure 8 needs a few more comments. The
machine epsilon Mε [5] is a common measure of computing precision. By de�nition
the machine epsilon is the smallest �oating point number with the property that
1 + Mε > 1. Loosely speaking, a linear system is well conditioned with respect to
the computing precision if the condition number is small relative to 1/Mε [5]. All
computations in this paper was performed in double precision, on a PC where the
machine epsilon is approximately given by 1/Mε = 1016. Hence, from Figure 8 it
is concluded that the linear system (2.13b) is well conditioned with respect to the
computing precision for the computations of the re�ection coe�cients depicted in
Figure 7.



19

8

9

10

11

12

50

100

150

200

-30

-20

-10

0

dB

GHz

Odddipole

basis functions

Figure 7: The power re�ection coe�cient for TM incidence as a function of fre-
quency (8�12 GHz) and the number of odd dipole basis functions included (0�200).

Figure 9 shows the (power) re�ection coe�cient for TM incidence as a function
of frequency. Three curves are drawn in this �gure. Firstly, the solid curve with
black dots, is measured and originates from Pelton and Munk [14]. The points are
the measure points. Secondly, the dashed curve is computed with 4 even dipole basis
functions and 100 odd dipole basis functions. Finally, the solid curve is computed
with 2 even dipole basis functions and 2 V-dipole basis functions. The number of
Floquet modes included for the computation of the dashed and solid curve is 2012

and 312, respectively. Due to to the larger number of basis functions required, 100
versus 4, and the number of Floquet modes required, the V-dipole basis functions
are de�nitely preferable compared to the odd dipole basis functions. In fact, it is
found that the computation time per frequency when the V-dipole basis functions
are used is reduced to about 0.06% of the computation time when the odd dipole
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Figure 8: The condition number of the matrix A as a function of frequency (8�12
GHz) and the number of odd dipole basis functions included (0�200).

basis functions are used. This means that the computer code based on the V-dipole
basis functions is about 1580 times faster than the corresponding code based on the
odd dipole basis functions.

3.4 Crosses with unequal length of the arms

Recently the use of crossed dipoles with unequal length of the dipole arms in low
observable, polarisation twisting, re�ector antennas was proposed [4]. In this section,
the e�ect of reducing the length of one of the dipole arms is demonstrated.

We denote the length of the arm parallel to the x and y-axis by Lx and Ly,
respectively, see Figure 4. In the previous section Lx = Ly, but here we consider
crossed dipoles with unequal length of the arms, e.g., Lx > Ly. For comparing
reasons, we consider the same geometry as above, but the length of the y-arm is
reduced to Ly = 13.1 mm. However, the length of the x-arm is Lx = 15.1 mm, as
above, see Figure 10. In Figure 11, a plot depicting the (power) re�ection coe�cient
for TM incidence, as a function of frequency and the number of odd basis functions
included, is given. The angles of incidence are chosen as θ = 60◦ and φ = 0◦. The
number of even dipole basis functions included is 4, i.e., 2 on each arm. Moreover,
4012 Floquet modes are included. From Figure 7 and 11 we conclude that the
second resonance at f2 still occurs when the dipole arms have unequal length, and
that the second resonance occurs at a higher frequency when Ly is reduced. It is
also concluded that the �rst resonance at f1 remains unaltered when the length Ly
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Figure 9: The power re�ection coe�cent for TM incidence as a function of fre-
quency. The solid curve with black dots is measured [14]. The dashed curve is
computed with 4 even dipole basis functions and 100 odd dipole basis functions.
The solid curve is computed with 2 even dipole basis functions and 2 V-dipole basis
functions.

is reduced.
Finally, Figure 12 shows the (power) re�ection coe�cient for TM incidence for

the same geometry as above, i.e., the geometry given in Figure 10. The angles of
incidence are chosen as θ = 60◦ and φ = 0◦. The dashed curve is computed with 4
even dipole basis functions and 80 odd dipole basis functions. Moreover, the solid
curve is computed with 2 even dipole basis functions and 2 V-dipole basis functions.
The number of Floquet modes included for the computation of the dashed and
solid curve is 1612 and 312, respectively. It is found that the computation time per
frequency when the V-dipole basis functions are used is reduced to about 0.15% of
the computation time when the odd dipole basis functions are used. This means
that the computer code based on the V-dipole basis functions is about 660 times
faster than the corresponding code based on the odd dipole basis functions.
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Figure 10: Crossed dipoles with unequal length of the dipole arms.

4 Conclusions

In this paper the re�ection and transmission properties of an in�nite array of crossed
dipoles have been analyzed by the use of the spectral Galerkin method. A thorough
treatment of the continuity condition is presented in the paper and, moreover, the
analysis shows that the junction basis function given by Tsao and Mittra [17] are
impertinent.

The continuity condition applies to all entire domain basis functions used in
the spectral Galerkin method. Since the junction basis function of Tsao and Mittra
cannot be used, and the MoM solution with odd dipole basis functions converges very
slowly, the need for an improved set of basis functions for crossed dipoles is obvious.
To this end, we presented a set of V-dipole basis functions, which together with
the ordinary even dipole basis functions form an excellent system of basis functions
for crossed dipoles. It was found that only 4 of the presented basis functions gave
highly accurate results, even above the �rst resonance at f1. We have considered
both crossed dipoles with equal and unequal length of the dipole arms. Finally, the
e�ect of reducing the length of one arm only was demonstrated.

However, the presented basis functions do not satisfy the edge condition, which
requires that the current component parallel to an edge must be singular. It is not
known how this edge condition changes these results concerning convergence of the
MoM solution, number of Floquet modes needed, etc. However, it is expected that
basis functions with correct edge behaviour improves the convergence [1].
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Figure 11: The power re�ection coe�cient for TM incidence as a function of fre-
quency (8�12 GHz) and the number of odd dipole basis functions included (0�200).
The length of the y-arm is reduced to Ly = 13.1 mm.

The extension of the given V-dipole basis functions to adopt the Jerusalem cross
[13] is straightforward. However, the generalization of the given V-dipole basis
functions to non right angle V-dipoles, with applications on tripoles, is not obvious.
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