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Abstract

Scalable and reliable distributed object-oriented computing (DOC) middleware
systems is an important technology in, for example, telecommunications service
logic and distributed web servers. The Common Object Request Broker Archi-
tecture (CORBA), developed by the Object Management Group (OMG) is a spec-
ification of a common platform for DOC systems. CORBA acts as middleware,
by inserting itself between the Operating System (OS) layer and the Application
layer on a host. CORBA provides support for transparent interaction of objects
situated on different nodes. The original CORBA specifications had no support
for timing constraints in applications and very little support in the terms of perfor-
mance optimizations. Present extension to CORBA include support for real-time
applications and a number of performance enhancements such as load balancing.
However, no work so far address the issue of overload in a CORBA system. This
paper presents a discussion of overload issues in distributed CORBA systems with
time-constrained tasks. First a performance model of a CORBA system is intro-
duced. Second, overload in distributed CORBA systems is discussed. Third, a
number of classic overload protection mechanisms are applied to the performance
model and investigated using simulation. The simulations show that even by using
very simple protection mechanism, a good throughput can be achieved.

1 Introduction
Scalable and reliable distributed object-oriented computing systems like CORBA are
being used to implement, for example, telecommunications service logic and distributed
web servers. As the systems become larger, it becomes more difficult to predict the
needs of the applications for dimensioning purposes, in particular since the needs may
change during the execution of the application.

Depending on the time constraints put on a system, it can be classified as either
real-time or best-effort. A real-time system is a system where the correctness of a task
depends not only on the logical result of the task, but also on the time at which the
results are produced. A best-effort system is one where the time it takes to complete a
task has no impact on the correctness of the execution.
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In general, a task in a real-time system has a deadline associated with it. The
deadline is the time when the task is supposed to be finished. A real-time system can be
further classified into being either hard or soft real-time. In a hard real-time system all
deadlines must be met and the failure to meet a deadline may have disastrous results. A
hard real-time system need not be fast, but it must be very predictable. In the soft real-
time case occasional timing violations may occur, as long there is no system failure. A
typical performance criteria for a soft real-time system is to minimize the number of
missed deadlines. Jensen [1] provides a discussion of soft real-time systems.

Soft real-time systems include systems where full predictability is not possible, or
not even necessary. It may be that the timing of the completed task is important, but
the overhead introduced by real-time operations and/or complexity of the system may
prohibit the use of a full real-time environment. Further, there might be a dynamic
request pattern, as arrival times for new tasks is not known.

An e-commerce site may be regarded as a soft real-time system, even though it is
not implemented using a real-time infrastructure. The traffic to the site is not likely to
be known with great accuracy. This means that the system may become overloaded,
causing long response times. If a response from a server takes to long to reach a client
it may mean that the client leaves the site without making any purchases, resulting
in a loss of revenue for the site. In a market-place where a customer can chose be-
tween many different e-commerce sites, poor performance can be disastrous for a site.
Also, for an e-commerce site, it is the user-experienced performance that matters, and
nothing else.

CORBA is a suitable platform for soft real-time applications such as e-commerce
systems. In order to improve performance, support for load balancing, migration of ob-
jects and distributed scheduling exist in several different implementations of CORBA.
An object distribution mechanism decides how objects are distributed on physical
nodes, taking into account the possible migration of objects from one node to another.
A load balancing mechanism attempts to distribute the workload so that the system
performs as efficiently as possible. These facilities allow given systems to work with
better efficiency and to approach soft real-time capabilities.

In many cases load balancing and object distribution mechanisms are not sufficient
to guarantee the timing requirements of a system. These mechanisms are only sufficient
when the workload caused by arriving tasks is well below system capacity. In, for
example, web servers and telecommunications service logic, tasks may arrive at so
high rate that system capacity is exceeded and the system becomes overloaded. If no
overload protection is used in this case, task throughput suffers and overloaded servers
cause response times to grow above acceptable levels. The fundamental observation
for overload protection is that in some cases it is better to prevent some tasks from
entering a system, than to let all tasks enter and thereby let all tasks experience poor
QoS.

Several papers have discussed load balancing and load sharing in computer net-
works. Othman et al [2] presents the load balancing scheme used in the TAO real-time
implementation of CORBA. The Realize Resource Management system described in
Melliar-Smith et al [3] describes a full system that takes care of the run time needs
of real time distributed applications. Realize supports replication for fault tolerance,
migration and dynamic scheduling of objects using an off-the-shelf ORB. Kreimen et
al [4] discussed load sharing algorithms for distributed systems. Kunz [5] examined
how the network nodes should exchange load status information to be used in load
balancing schemes.

Overload protection has been studied extensively for telecommunication systems,
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see for instance Körner et al [6] for a survey of early results. Berger [7] compares
the efficiency of two classic protection schemes, call gapping and percent thinning.
The ACTS project MARINER has published extensively on using market-based agent
technology to protect distributed systems in Intelligent Networks, see [9]. Kihl [10] de-
scribes a simple throttle scheme for the Telecommunications Information Networking
Architecture (TINA). TINA is an architecture for next generation telecommunication
networks, see the TINA Consortias home page [8]. Jordan et al [11] investigated call
admission policies for communication networks that support several services. In the
ACTS project MARINER CORBA-based IN systems were investigated and some re-
sults on the use of agents for load balancing in CORBA system can be found in Conor
et al [12]. Also in [12] is an investigation in how to assign a number of objects to to a
number of processors in order to minimize, for example, the mean session completion
time.

Other than Kihl [10] and Rumsewicz [13], no research has been performed in the
area of overload protection schemes for distributed object oriented systems. The reason
for this is probably that overload control has not been deemed necessary for the sys-
tems under study, due to the assumption that the offered workload is not above a certain
acceptable limit. However, for some systems, typically where the resources are used
by “outsiders”, such as CORBA based web servers, the overload problem can be very
serious and must therefore be studied. While some results from classic telecommuni-
cation research can be used, new problems, such as how to identify overload conditions
in a distributed system and how to react to overload when it has been identified in a
way that still provide good service to the users etc. remains to be investigated.

This paper focuses on the introduction of overload protection in CORBA systems
with timing constraints. The main objective is for the system to preserve the user-
experienced QoS during short periods of overload. The paper is organized as follows:
Section 2 provides background on CORBA. Section 3 introduces a performance model
of a distributed CORBA system. Section 4 discuss the philosophy behind overload pro-
tection. Section 5 mentions how overload protection may be implemented in CORBA.
Section 6 describes a number of simulation cases using the performance model together
with some classic protection mechanisms. Section 7 summarizes the work.

2 CORBA
CORBA is an open standard for distributed object computing under development by
the Object Management Group [16]. By the use of standards, CORBA aims to provide
independence from programming language, computing platform and communication
medium.

A CORBA platform provides many necessary functions for distributed processing,
such as object registration, location and activation, parameter passing among others.
CORBA defines a set of mechanisms that allow a client object to invoke a method on a
server object on a remote node with full location transparency. Location transparency
means that neither the client object nor the server object needs to know anything about
on which node they are executing, since the CORBA infrastructure hides the distribu-
tion from the application.

An object in CORBA is an encapsulated entity with a distinct identity whose ser-
vices can only be accessed through well defined interfaces. Thus an object’s services
and how the services are implemented is separated. The interfaces of an object are
specified in the Interface Description Language, IDL. The IDL is then used to generate
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stubs and skeletons in a some programming language, such as C++ or Java. The stubs
are used by a client object to make method invocations to a server object. The server
uses the skeleton to implement the service.

The CORBA Object Request Broker (ORB) acts as a message bus to provide seam-
less interaction between client and server objects. Using the General Inter-ORB Proto-
col (GIOP) and the TCP/IP specific Internet Inter-ORB Protocol (IIOP) heterogeneous
ORBS can interoperate.

In the original CORBA specifications there were no support for real-time appli-
cations. Real-time CORBA 1.0 [17] adds support for static scheduling of tasks. The
proposed Real-time CORBA 2.0 specification will include support for “pluggable” dy-
namic schedulers.

2.1 CORBA performance improvements
A number of features exists in CORBA that improves the performance of applications.
These include, for example, object distribution, object migration and load balancing.

The process of distributing objects on multiple nodes is fundamental to CORBA.
However, due to the extra processing time necessary to make method invocations be-
tween nodes, the distribution of objects can have large impact on performance. A good
distribution will improve performance, while a poor distribution will decrease perfor-
mance.

A CORBA application with a given object distribution can be re-configured to an-
other object distribution during run-time using object migration. However, object mi-
gration is a complex and computationally expensive operation and its use under con-
ditions of short term overload remains to be investigated. Object migration makes it
possible to change the system if the conditions for the system change. Such changes
include new task types being added, new nodes being added or if the traffic pattern of
arriving tasks changes.

To make distribution efficient, support for load balancing mechanism is required.
Load balancing allows the system to spread the load from arriving tasks to objects on
different nodes so that no node has excess spare capacity while another node in the
system is overloaded. In CORBA, this means that given a set of distributed objects to
chose from, the mechanism should chose an object residing on the node with the least
load.

The current load balancing mechanism in CORBA is simple (see Othman et al [2].
The mechanism works by sending all requests to one node until that node is overloaded,
then the mechanism decides which other applicable node has the least load and sends
all further requests there, until that node is overloaded.

3 Performance Model
This section presents a performance model of a distributed CORBA system to aid in
the discussion of overload protection.

Consider a system containing a network with m nodes. Nodes are labeled N1

to Nm. As an example, figure 1 shows a simple five node (N1 to N5) network. To
allow for an inhomogeneous network, node i has a relative processing speed si. If
si = 1, 1 ≤ i ≤ m, then all nodes have equal processing speed. For the present
model, it is assumed that it is the processors that are the performance bottlenecks. In
addition, assume that the network is very fast compared to the nodes, and switching
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Figure 1: A five node network with five objects

and transmission times are negligible. Therefore the nodes can be considered as fully
connected. Each node is modeled as a single server queue. The queuing discipline
depends on the scheduling mechanism used. However, for simple analysis a FIFO
queue is used.

Distributed in the network are software components called object of n different
classes. In the performance model, the set of objects all instantiated from a single class
i is labeled oi. Objects in oi each has a number of services called methods. By saying
that oi is located on node Nj , it is meant that the services of class i can be accessed
at run-time at node NJ . Referring to figure 3, there are five objects sets (o1 to o5)
distributed in the network.

For every method m of object oi invocation time toi,m is used to model the time
a method invocation executes before returning or making a new invocation to another
object. This is a simplification, since the actual method invocation times may vary
depending on the application. It is assumed that the behavior of each method invocation
is independent of context, meaning that processing time and other resource usage does
not depend on why or when the method was invoked.

The process of translating the parameters transfered during a method invocation
between two objects is called marshalling for the client object and unmarshalling for
the server object. If a method invocation must be transfered over the network, the
marshalling/unmarshalling process is modeled as an extra service time tm for the node
with the client and on server object node side an unmarshalling time tu. If both client
and server objects are located on the same node, then tm = tu = 0.

The node at which a new task arrives is called a gateway. There can be as many
gateways as there are nodes. The gateway represents the entry point for a task. All
communication between system and user passes through the gateway.

Tasks of different types, Ti, arrive at the system according to some stochastic pro-
cess, with a a mean rate λi . A task Ti is described by: a sequence of method invoca-
tions (SMIi), a deadline di and a importance vi. SMIi describes which objects are
used and in what order they are used by the task. di is the time the task must be finished
for it to be considered as useful. vi is the value of the task to the system, as defined by
the implementer. A mission-critical task will have vi = ∞. The value of a task may
be used during overload in order to reject tasks with lesser value to give more valued
tasks more resources.

A sample task is:
Texample = ([o1, o2, o1, o3, o4, o3, o1, o3, o5, o3, o1, o2, o1], tnow + 0.5sec, 1).
To clarify the interaction between objects, figure 2 presents a Message Sequence
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Chart (MSC) of Texample:

3o o o o o2 51 4

Figure 2: τexample = [o1, o2, o1, o3, o4, o3, o1, o3, o5, o3, o1, o2, o1]

4 Overload Protection Philosophy
This section outlines why overload is dangerous to a real-time system and how overload
protection can be used to improve the performance of such a system.

Fundamental queuing theory states that the load, ρ, of a system is related to arrival
rate λ and the task mean service time of x as ρ = λx [14]. For a single server queue
the delay1 experienced by a task is proportional to 1

1−ρ
. From this relationship it is

obvious that keeping load levels down is crucial to prevent large delays. Since a real-
time system depends on short and predictable response times to meet deadlines, loads
close to one may be catastrophic for the system.

One main observation for overload protection is that in some cases it is better to
prevent some tasks from entering a system, than to let all tasks enter and thereby let
all tasks experience poor QoS. The objective of an overload protection mechanism is
to maximize the amount of useful work which is performed by the system. Useful
work is such that is performed to tasks that finish correctly before their deadline. Work
done and resources used by tasks that miss their deadlines is wasted. Note that in a
soft real-time system deadline misses are acceptable if they are rare, but not if they are
common.

The traditional way in which performance has been viewed is from the system
operator viewpoint, for instance a telecommunications company. The operator of a
system wants maximum capital gain from a given investment, in order to fully utilize
the system’s available resources. This means that the operator should invest in only
enough equipment to support the services offered, while at the same time have enough
resources so that no business opportunities are lost due to insufficient resources.

1The given relationship is for the Poissonian arrival process, however, for non-deterministic arrival pro-
cesses the delay typically has a similar behavior
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However, with a telecom market moving towards increasing deregulation, and an
Internet market where “all sites are equal”, the system user viewpoint is becoming more
and more important. A user wants quick error-free responses from the system. Good
performance is when a requested service is delivered without unacceptable delays.

4.1 Types of Overload
The causes for overload can generally be divided into two classes: resource failure
and unbounded traffic source. By resource failure overload it is meant overload that is
caused by the system itself, such as by hardware or software malfunction. The failure
of a processor, for example, may decrease the capacity so that the offered workload
can no longer be finished in time. The failure of a piece of software may cause system
instabilities by generating large amounts of erroneous traffic. Unbounded traffic source
overload is caused by external sources, such as the users of a system. This type of
overload is common in systems where the system itself has no control of the source of
the tasks.

While the overload protection schemes discussed in this paper may be applied to
both resource failure and unbounded traffic source overload, it is generally aimed at
overload caused by the later.

It important to note that overload protection is meant to decrease the problems
caused by short periods of overload. If overload continues, then the system is under-
dimensioned and other actions are necessary to improve performance.

4.2 Overload detection
The detection of overload is a process full of potential pitfalls. The system load may
change very quickly and the system itself may change due to the introduction of new
task types with new objects, new traffic patterns and so on. The overload protection
mechanism must both be ready for instant action, while at the same time being con-
servative in order to avoid oscillations in order to prevent mechanism instability. In a
distributed environment it becomes even harder, since overload on one node not neces-
sarily has any impact on the processing of tasks that do not use the overloaded node. In
addition, there is a trade-off between transferring load information often, with resulting
communication overhead, or relying on old and possibly inaccurate load information.

There are several system parameters that can be monitored during execution. The
following are commonly monitored: resource load, deadline miss rate and system re-
sponse times. In addition, a profiling system that can make fine-grained measurements
on execution times can be used.

The resource load can be the load level of a processor, network element, memory
or disk. The resource load is used as a basis for load balancing and object migration
mechanisms. However, its applicability as a basis for overload detection in a CORBA
environment is hampered by a number of factors. First, overload on node Ni may
not have any impact on the processing of tasks that do not use Ni. Second, there is a
question of which measured load that should be used to make the decision, since in a
heterogeneous system the same measured load on two nodes with different capabilities
may result in very large differences in delay. Third, since the tasks arriving at the
system may have widely different service requirements, the variance of the service
time may have large impact on the mean service time of a particular node. Finally, if
the objective is to satisfy timing constraints, the process of relating a set of measured
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loads on a number of nodes to a particular task with its given processing requirements
may be non-trivial.

The objective of an overload protection mechanism is to maintain a good through-
put of tasks that meet their timing constraints. Thus, seeing how well this objective is
met by the system is useful for two reasons. First, as a way to discover overload. Sec-
ond, as a measurement of how successful the overload protection mechanism is. An
increase in the number of missed deadlines would be a good measure that the system
is experiencing overload. The ratio of missed deadlines is commonly used in real-time
systems as a measurement of success. Lu et al has a discussion of Deadline Miss Ratio
as overload indicator, see [18]. The main problem with looking at dead-line miss ratio
is that it only shows how many deadline misses there are, but gives little warning in the
non-overloaded case as to how close the system is to being overloaded. It may there-
fore fail to adjust to overload until it is to late. To lessen this issue, the mechanism may
look at the actual response times of the system and compare these with their respective
deadlines.

The response time of the system is a result of load, but also of the variance of the
execution times in the system. The main advantage of using system response time
instead of load is that the former is what the user of the system sees. For example,
a user of an e-commerce site has no knowledge of what the site looks like, how load
is distributed, how many nodes are used etc. All that matters for the user is that the
received QoS is acceptable to the user.

The Realize system [3] includes a Object Profiling System for real-time CORBA,
that allows the ORB to monitor execution times of methods, and then feed back this
information to the scheduler. The profiling service builds detailed models of how tasks
use objects and how long time methods take to invoke.

4.3 Overload protection mechanisms
The protective actions to be taken in the event of overload depends on what type of
resource that is to be protected and what type of traffic that arrives at the resource.
In traditional telecommunications, the most common way to prevent overload from
happening is to reject arriving calls according to some algorithm. However, this may
not be sufficient in more complex systems.

In the case of resource failure overload, just rejecting tasks is usually counterpro-
ductive. Instead, the nodes should try to act to conserve resources by limiting the
number of tasks sent.

In the case of unbounded traffic source, depending on the application and how
overloaded the system is, the actions may take many forms. Users can be notified that
the system is under heavy load and asked to return later (voluntary back-off), offered
a simpler service (service adaption) or in the worst case, be rejected. If possible, the
mechanism should be such that it discourages reattempts in a short time-scale. If, for
example, users make immediate reattempts after failed tasks, the traffic to the system
goes up and thus further increasing the load on the system.

Overload protection mechanisms are often designed to operate in three states. First,
when there is no overload and the system can finish all arriving tasks without problems,
all tasks receive full service. Second, when there is some overload, the system should
try to focus on getting as many of the most valuable tasks finished in time, while po-
tentially rejecting tasks with lower priorities. In this state the objective of the overload
protection mechanism is to make sure that the throughput of useful tasks remain high.
Third, when there is catastrophic overload, the system should concentrate on its own
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survival, executing only the most valuable tasks and being very restrictive on what
tasks that may enter the system.

The point at which a task is rejected during execution may have great impact on
performance. Since the objective of overload protection is to maximize useful work, it
is important to reject a task before it wastes to much resources. In a distributed system,
this means that, if possible, a task should be rejected at the gateway to the system.

Also it is important that the overload protection mechanism requires low overhead.
It must not require too extensive computational resources, making itself a reason for
overload.

To measure the success of an overload protection mechanism, tasks can be divided
into four classes.

1. Tasks that are rejected at the gateway, that is before they enter the system. This
is often called external or network level overload protection.

2. Tasks that are accepted at the gateway but are rejected by a node inside the dis-
tributed system. This is often called internal or node level overload protection.

3. Tasks that are not rejected at the gateway or at any other node but are not finished
in time, i.e. tasks that fail to meet their deadline.

4. Tasks that are successfully served and finished in time.

The purpose of overload protection is to maximize the number of tasks belonging
to class 4. Naturally, the number of tasks of class 2 and 3 should be as small as possible
since they are not successful and the processing time spent on them is wasted.

Tasks of class 1 and 2 can be considered as failed operations that must be taken
care of by the application or user generating the tasks. Note that there is a risk that
if a fault-tolerant system is being used, the system itself may do reattempts, and this
interaction must be addressed.

5 Implementation in CORBA
This section gives some proposals for the introduction of overload protection in CORBA.
The overload protection mechanism can then complement load balancing and object
distribution mechanisms as ways to improve performance.

An overload protection function may be divided into two main mechanisms: a set
of rules that decides which tasks to reject and a mechanism to clean up the system after
a task has been rejected.

The set of rules for task rejection are application specific. Tasks may be admitted
independently. For example, simple IN/CORBA services may generate only a single
task. Some systems require entire groups of tasks to be successful in order to consider
a user’s interaction with the system as successful. For example, user interaction ses-
sion with an e-commerce site requires all tasks to be successful for the session to be
considered successful.

The general mechanisms to support the release of resources after a task has been
rejected can be implemented by using existing CORBA services. The information of
a task rejection can be distributed using exceptions. The Real-time CORBA specifi-
cation specifies a TASK_CANCELLED exception that can be used. It is obvious that
the amount of work necessary to release resources is proportional to the amount of re-
sources used, and also the types of resources used. Stateless objects can be destroyed
right away, while objects with states must be handled with more care.
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6 Simulations
This section describes some classic overload protection mechanisms, a simple feedback
loop to make the mechanisms dynamic, and a number of simulation cases that show
the efficiency of the mechanisms.

6.1 Common overload protection mechanisms
There are two basic forms of overload protection mechanisms that have been used over
the years in telecommunications: window based and rate based. These are further
described below, with their respective strengths and weaknesses mentioned briefly.

6.1.1 Window based overload protection

A window based overload protection mechanism operates by limiting the number of
active tasks to the window size W . If a new task arrives and there are presently fewer
tasks executing than W , it immediately continues executing, otherwise it is rejected.
The window size is related to the capacity of the system, with one window size giving
one system response time.

The window mechanism is robust, since it handles transients well and uses re-
sources efficiently. For the mechanism to work well, the counter of the number of
active tasks must be kept updated at all times, for instance by using time-outs to dis-
cover failed operations.

The window mechanism used in this paper is similar to the Isarithmic mechanism
described by Gerla and Kleinrock [15].

6.1.2 Rate based overload protection

A rate based overload protection scheme works by limiting the traffic to the system.
The rate-based mechanisms are more susceptible to transients in arrival rates than the
window based ones, and control loops updating the algorithm parameters must run on
a tighter time scale.

Some variations include (both ar further described in Berger [7]):

Percent blocking The percent blocking algorithm admits tasks into the system with a
probability P (admit).

Call gapping A call gapping algorithm closes for a set amount of time tgap (the gap
size). After this interval the next task to arrive is allowed into the system and the
throttle is closed again. By varying the gap size the mechanism can set an upper
limit to the number of arriving tasks per time unit.

6.2 Algorithm control loop
A protection mechanism must be able to react to the changes in arrival rate or task mix
in a quick, efficient and stable way. The reaction is typically a change in the parameters
of the algorithm.

There are many ways in which algorithm parameters can be updated, using infor-
mation fed back from the system. In this paper a simple update loop, based on the
measured task execution time is used. The assumption is that it is the response time of
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the system that is important from the user viewpoint. The loads of the internal nodes is
of no concern to the user.

The algorithm classifies the response times ttask for tasks into three categories:
good, fair or bad.

The algorithm uses the following parameters: an interval length t, a user defined
deadline tdeadline to categorize finishing tasks, an increase condition ci, a decrease
condition cd, counters for the task categories xgood, xfair and xbad, measured task
system time ttask, update results variable R. ci is the ratio of tasks classified as good
required for the mechanism to allow more tasks into the system. cd is the equivalent
ratio of tasks classified as bad required to decrease the number of tasks allowed into
the system.

1. Time is divided into intervals of length t seconds.

2. During interval N , xgood, xfair and xbad are updated for each finishing tasks as
follows:

Measured ttask Updated parameter
0 ≤ ttask ≤ 0.5 · tdeadline xgood := xgood + 1
0.5 · tdeadline ≤ ttask ≤ tdeadline xfair := xfair + 1
tdeadline < ttask xbad := xbad + 1

3. At end of interval N , calculate parameters for interval N + 1. Set R = 0.

(a) If xgood

xgood+xfair+xbad
> ci then R := R + 1.

(b) If xbad

xgood+xfair+xbad
> cd then R := R − 1.

(c) Update algorithm parameter according to table (note that R = 0 if both (a)
and (b) are true above):

Parameter R = 1 R = 0 R = −1
PN+1(admit) PN (admit) + 0.01 PN (admit) PN (admit) − 0.01
tgap,N+1 tgap,N · 0.95 tgap,N tgap,N · 1.05
WN+1 WN + 1 WN WN − 1

In all cases there are max and min values that the parameters cannot go
beyond.

6.3 Simulation parameters
The sample system is a model of a five node network (N1 − N5) with six object sets
o1 − o6 . Two different tasks, T1 and T2 arrive at the gateway node each according to
a Poisson process with rates λ1 and λ2 respectively.

The tasks are defined by:
T1 = ([o1, o2, o1, o3, o6, o3, o1], tarr + 0.5sec, 1)
T2 = ([o1, o2, o1, o3, o4, o3, o1, o3, o5, o3, o1], tarr + 0.5sec, 1)
where tarr is the arrival time of the task.
Table 1 summarizes other simulation parameters used.
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Value
Marshalling time, tm 1ms
Unmarshalling time,tu 1ms

Increase condition, ci 0.50
Decrease condition, cd 0.05
Length of update interval 1s

Table 1 Parameter settings

Table 2 below contains object distribution and respective probabilities used for load
balancing. A dash means that this type of object is not available on this node. The ob-
ject distribution is assumed to be static, with no object migration or further replication
taking place. A random load balancing scheme is used, with the probabilities given in
the table.

For example, a task of type T1 is executing in the system, and an object in o1 is
about to make a method invocation on an object in o3 for the first time of the task. The
random load balancing scheme with the probabilities shown distributes invocations to
object set o3 evenly on nodes N2, N3 and N4. Say that N2 is chosen. Then all further
invocations to o3 will also be sent to N2.

Object N1 N2 N3 N4 N5 to,m

o1 1.0 — — — — 1ms

o2 — 0.50 0.50 — — 4ms

o3 — 0.33 0.33 0.34 — 2ms

o4 — — 0.5 0.5 — 8ms

o5 — — — — 1.0 10ms

o6 — — — 1.0 — 3ms

Table 2: Object distribution and probabilities used for load balancing.

6.4 Simulation cases
Three performance perspectives were investigated. First the impact of the simple over-
load protection mechanisms on the throughput was compared to the case when no
protection was used. Second, the algorithms were tested for fairness. Fairness was
considered to be how available resources were used when the mix of tasks arriving was
changed. Third, the system’s reaction to traffic transients was investigated.

In all cases a Poissonian input process was used.

6.4.1 Case A: Throughput

The throughput of successful tasks was investigated. Successful tasks are tasks that fall
into category 4 as described in section 4.3 above. The throughput of successful tasks is
what is usually called Goodput [7].

75% of the tasks were of type 1 and 25% of the tasks were of type 2.

6.4.2 Case B: Fairness

In this case the arrival rate λ was kept constant, but the task mix was changed. This
meant that the load on the system changed, since the two task types had different pro-
cessing requirements.
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Figure 3: Throughput of succesful tasks (“Goodput”) as function of arrival rate.

The objective of the investigation was to see whether the overload protection mech-
anism had any impact on the mix of tasks leaving the system.

Arrival rate was kept constant at λ = 120s−1. The task mix was varied from 0% to
100% of task 1 and the rest of task type 2.

6.4.3 Case C: Traffic transient reaction

In this case the mean response time for the system was investigated when a traffic
transient increase appeared. The task mix was kept constant, with 75% of the tasks
were of type 1 and 25% of the tasks were of type 2. A period of 600 seconds were
simulated. For the first 200 seconds, the arrival rate was kept at λ = 100−1. At time
200s the arrival rate was changed to λ = 120−1, which made the system overloaded.
At time 400s the arrival rate was changed back to λ = 100−1.

6.5 Simulation Results
6.5.1 Case A: Throughput

Figure 3 shows the throughput of successful tasks (goodput) as a function of total ar-
rival rate λ. Throughput is severely degraded for the case with no overload protection
(solid line), while call gapping (dashed line) and percent blocking (dash-dotted line)
are very similar, with call gapping being slightly better than percent blocking at higher
rates. The window mechanism (dotted line) gives the best throughput. All three pro-
tection algorithms are much better than a system without any protection.

The reason for the window mechanism being more successful is that it is less sensi-
tive to small statistical fluctuations than percent blocking or call gapping. With a given
window size, the number of tasks allowed into the system is kept at a level that the
system can handle, given its timing constraints.
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Figure 4: Mean response time for transient case

6.5.2 Case B: Fairness

The results from the simulations were the same for all three mechanisms. The through-
put of successful tasks changed, but the ratio of arriving tasks of type 1 and exiting
tasks of type 1 was constant.

6.5.3 Case C: Traffic transient reaction

In this case the transient characteristics of the system was investigated. Figure 4 shows
the mean response times, measured over 1 second long intervals, for one realization
of the simulation. All tasks that finish, whether they meet their deadline or not, are
included in the mean response times calculated for each interval.

The diagrams show that the window based mechanism seems to be more stable
than percent blocking or call gapping. All mechanisms show a large increase in the
beginning of the transient. The time it takes for the mechanism to establish a new
steady state depends on how fast the control loop is. In the window based case, the
response time decreases as fast as the loop allows it until it ends up on a new mean
response time, which is now slightly below the deadline at 0.5 seconds. Both call
gapping and percent blocking never attain any new steady state during the transient.
A better transient response for call gapping and percent blocking could probably be
achieved with better tuned parameters.

7 Conclusions
This paper argues for the introduction of overload protection in CORBA systems with
time constraints. The main reason to use overload protection is to prevent complete
throughput degradation when the load is high. This can be very important when dimen-
sioning systems in an environment where budgets are limited or where the accuracy of
traffic estimates is poor.
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Three classic simple overload protection mechanisms are added to a CORBA sys-
tem in this paper. Simulations show that all three mechanisms prevent a complete
throughput degradation that happens when no protection is used. To control the mech-
anisms a control loop is used. The control loop uses comparison of measured response
times and the deadlines of the task to update the parameters of the mechanisms. Us-
ing the measured response time is useful for two reasons. First, it is what the user of
the system sees, and therefore the experienced quality of the system is used to control
the system. Second, CORBA systems can be very complex, with many nodes, many
objects and quickly changing traffic patterns, where traditional load measurements are
both difficult and error-prone.

Simulations show that a window based mechanism performs better than both per-
cent blocking and call gapping. The window based mechanism has both better through-
put at high loads and is less sensitive to sudden traffic increases.
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