Constructing error-correcting codes with huge distances

Florian Hug

Department of Electrical and Information Technology
Lund University, Sweden

Outline

(1) Convolutional Codes
(2) BEAST
(3) Graphs \& Hypergraphs
(4) Conclusions \& Outlook

Outline

(1) Convolutional Codes

(2) BEAST

(3) Graphs \& Hypergraphs
4) Conclusions \& Outlook

General Model of a Communication System

General Model of a Communication System

- Block codes
- Convolutional codes

Applications

Convolutional codes are used for

- Radio-Communications
- Mobile-Communications
- Satellite-Communications
- Space-Communications

Convolutional Encoder

"Famous" $(7,5)$ rate $R=1 / 2$ convolutional code with memory $m=2$ and overall constraint length $\nu=2$

Can be easily extended to general rate $R=b / c$ convolutional codes.

Convolutional Encoder

"Famous" $(7,5)$ rate $R=1 / 2$ convolutional code with memory $m=2$ and overall constraint length $\nu=2$

Can be easily extended to general rate $R=b / c$ convolutional codes.

Trellis Repesentation

- 2^{ν} different nodes ξ
- 2^{b} branches

Characterization

- Memory m
- Overall constraint length ν
- Rate $R=b / c$
- Free distance

$$
d_{\text {free }}=\min _{\boldsymbol{v} \neq \boldsymbol{v}^{\prime}}\left\{d_{\mathrm{H}}\left(\boldsymbol{v}, \boldsymbol{v}^{\prime}\right)\right\}=\min _{\boldsymbol{v} \neq \boldsymbol{0}}\left\{w_{\mathrm{H}}(\boldsymbol{v})\right\}
$$

- Spectrum

Characterization

- Memory m
- Overall constraint length ν
- Rate $R=b / c$
- Free distance

$$
d_{\text {free }}=\min _{\boldsymbol{v} \neq \boldsymbol{v}^{\prime}}\left\{d_{\mathrm{H}}\left(\boldsymbol{v}, \boldsymbol{v}^{\prime}\right)\right\}=\min _{\boldsymbol{v} \neq \boldsymbol{0}}\left\{w_{\mathrm{H}}(\boldsymbol{v})\right\}
$$

- Spectrum

Burst-Error Probability (BSC)

$$
P_{\mathrm{B}} \leq \sum_{d=d_{\mathrm{free}}}^{\infty} n_{d}(2 \sqrt{\varepsilon(1-\varepsilon)})^{d}
$$

Outline

(1) Convolutional Codes

(2) BEAST

(3) Graphs \& Hypergraphs
4) Conclusions \& Outlook

BEAST

Bidirectional Efficient Algorithm for Searching Trees

- $R=b / c$ convolutional code

Find the number of codewords of weight $w=f_{w}+b_{w}$

BEAST

Bidirectional Efficient Algorithm for Searching Trees

- $R=b / c$ convolutional code

Find the number of codewords of weight $w=f_{w}+b_{w}$

Forward and Backward Sets

$$
\begin{aligned}
& \mathcal{F}_{+j}=\left\{\xi \mid w_{\mathcal{F}}(\xi)=f_{w}+j, w_{\mathcal{F}}\left(\xi^{\mathrm{P}}\right)<f_{w}, \boldsymbol{\sigma}(\xi) \neq \mathbf{0}\right\} \\
& \mathcal{B}_{-j}=\left\{\xi \mid w_{\mathcal{B}}(\xi)=b_{w}-j, w_{\mathcal{B}}\left(\xi^{\mathrm{C}}\right)>b_{w}, \boldsymbol{\sigma}(\xi) \neq \mathbf{0}\right\}
\end{aligned}
$$

$$
j=0,1, \ldots, c
$$

BEAST

Bidirectional Efficient Algorithm for Searching Trees

- $R=b / c$ convolutional code

Find the number of codewords of weight $w=f_{w}+b_{w}$

Forward and Backward Sets

$$
\begin{aligned}
& \mathcal{F}_{+j}=\left\{\xi \mid w_{\mathcal{F}}(\xi)=f_{w}+j, w_{\mathcal{F}}\left(\xi^{\mathrm{P}}\right)<f_{w}, \boldsymbol{\sigma}(\xi) \neq \mathbf{0}\right\} \\
& \mathcal{B}_{-j}=\left\{\xi \mid w_{\mathcal{B}}(\xi)=b_{w}-j, w_{\mathcal{B}}\left(\xi^{\mathrm{C}}\right)>b_{w}, \boldsymbol{\sigma}(\xi) \neq \mathbf{0}\right\}
\end{aligned}
$$

$$
j=0,1, \ldots, c
$$

- sort and match \mathcal{F}_{+j} with \mathcal{B}_{-j}
- number of matches is equal to number of codewords n of weight w

BEAST

Example

$$
f_{w}=3 \quad w=f_{w}+b_{w}=6 \quad b_{w}=3
$$

$$
\left.\begin{array}{l}
\mathcal{F}_{+0}=\left\{\begin{array}{lll}
0 & 1
\end{array}\right), \quad\left(\begin{array}{ll}
1 & 1
\end{array}\right)
\end{array}\right\}
$$

$$
\begin{aligned}
& \mathcal{B}_{-0}=\left\{\begin{array}{ll}
1 & 1
\end{array}\right), \quad\left(\begin{array}{ll}
1 & 1
\end{array}\right), \\
& \mathcal{B}_{-1}=\emptyset
\end{aligned}
$$

$$
\left.\left(\begin{array}{ll}
1 & 0
\end{array}\right)\right\}
$$

BEAST

Example

$$
\begin{gathered}
f_{w}=3 \quad w=f_{w}+b_{w}=6 \\
n=2
\end{gathered}
$$

$$
b_{w}=3
$$

Parallel Implementations

- Only a smaller degree of parallelization possible (recursion)
- c forward and c backward sets
- $2 c$ individual sorts
- c mergers
- Fast and large growing sets (exceeding available memory)
- File I/O becomes a bottleneck

Outline

(1) Convolutional Codes

(2) BEAST

(3) Graphs \& Hypergraphs

4 Conclusions \& Outlook

Graphs \& Hypergraphs

2-uniform, 3 -regular, 2 -partite graph

Tannner graph representation

Example

Example

Encoding matrix of a rate $R=5 / 20$ woven graph code

$$
\begin{aligned}
& G_{\mathrm{wg}}(D)=\left(\begin{array}{lllll}
G_{0}(D) & G_{1}(D) & G_{2}(D) & G_{3}(D) & G_{4}(D) \\
G_{4}(D) & G_{0}(D) & G_{1}(D) & G_{2}(D) & G_{3}(D) \\
G_{3}(D) & G_{4}(D) & G_{0}(D) & G_{1}(D) & G_{2}(D) \\
G_{2}(D) & G_{3}(D) & G_{4}(D) & G_{0}(D) & G_{1}(D) \\
G_{5}(D) & G_{5}(D) & G_{5}(D) & G_{5}(D) & G_{5}(D)
\end{array}\right) \\
& G_{0}=\left(\begin{array}{llll}
1473 & 40453 & 16256 & 62224
\end{array}\right) \\
& G_{1}=\left(\begin{array}{llll}
44364 & 50324 & 36077 & 30173
\end{array}\right) \\
& G_{2}=\left(\begin{array}{llll}
53717 & 4266 & 30434 & 32352
\end{array}\right) \\
& G_{3}=\left(\begin{array}{llll}
37464 & 14262 & 6517 & 71254
\end{array}\right) \\
& G_{4}=\left(\begin{array}{llll}
47726 & 14624 & 31724 & 5234
\end{array}\right) \\
& G_{5}=\left(\begin{array}{llll}
4463 & 7413 & 6523 & 6153
\end{array}\right) .
\end{aligned}
$$

Example

Example

Encoding matrix of a rate $R=5 / 20$ woven graph code

$$
G_{\mathrm{wg}}(D)=\left(\begin{array}{ccccc}
G_{0}(D) & G_{1}(D) & G_{2}(D) & G_{3}(D) & G_{4}(D) \\
G_{4}(D) & G_{0}(D) & G_{1}(D) & G_{2}(D) & G_{3}(D) \\
G_{3}(D) & G_{4}(D) & G_{0}(D) & G_{1}(D) & G_{2}(D) \\
G_{2}(D) & G_{3}(D) & G_{4}(D) & G_{0}(D) & G_{1}(D) \\
G_{5}(D) & G_{5}(D) & G_{5}(D) & G_{5}(D) & G_{5}(D)
\end{array}\right)
$$

Free Distance

$$
\begin{aligned}
& \text { Using BEAST leads to } \\
& \mathbf{d}_{\text {free }}=\mathbf{1 2 0}
\end{aligned}
$$

Size of Forward and Backward Sets was 1.4 TB

Outline

(1) Convolutional Codes

(2) BEAST
(3) Graphs \& Hypergraphs
(4) Conclusions \& Outlook

Conclusions \& Outlook

So far...

- Huge free distances can be verified with BEAST
- Iterative implementation was derived
- Algorithm was ported to Cell Broadband Engine (PS3)

Maybe...

- Further speed-ups by using Solid-State-Drives
- Higher parallelization degree possible

The End

Thanks a lot for your attention

Constructing error-correcting codes with huge distances

Florian Hug

Department of Electrical and Information Technology
Lund University, Sweden

