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Abstract—The relation between low-density parity-check
(LDPC) codes and hypergraphs supports searching for powerful
LDPC codes based on hypergraphs. On the other hand, coding
theory methods can be used in searching for hypergraphs with
large girth. Moreover, compact representations of hypergraphs
based on convolutional codes can be found. Algorithms for
iteratively constructing LDPC codes with large girth and for
determining their minimum distance are introduced. New quasi-
cyclic (QC) LDPC codes are presented, some having both optimal
girth and optimal minimum distance.

I. INTRODUCTION

An important consequence of the relation between low-
density parity-check (LDPC) codes and hypergraphs (see, for
example [1]–[3]) is the new possibilities in searching for
powerful LDPC codes. Moreover, coding theory methods can
be used in searching for hypergraphs better than previously
known. In particular, compact representations of hypergraphs
based on convolutional codes can be found.

Typically, LDPC codes have a minimum distance which is
less than those for the best known linear codes, but due to
their structure they are suitable for low-complexity iterative
decoding. In general, however, belief propagation [4] works
better if the minimum distance of an LDPC code is large.

A parity-check matrix of a quasi-cyclic (QC) LDPC code
can be regarded as the incidence matrix of a regular hy-
pergraph. Although QC LDPC codes are not asymptotically
optimal, they can outperform pseudo-random (asymptotically
optimal) LDPC codes of short or moderate lengths [5]. This
motivated our search for good short QC LDPC codes.

The problem of finding QC LDPC codes with large girth
were considered in [6]–[10]. Best known examples are a
(155, 64, 20) code with girth 8, a (305, 124) code with girth
10, and a (905, 364) code with girth 12; the latter two codes
with previously unknown minimum distance. In [10], rate
R = 1/2 codes of lengths 970 and 2534 with girth 10 and
12, respectively, were presented.

We present new examples of regular QC LDPC codes in
the form of tailbiting (TB) LDPC codes with girth 8, 10,
and 12; some of them having optimal girth and/or optimal
minimum distance. This representation is compact and we can
apply low-complexity encoding, as well as efficient searching
and decoding procedures developed for convolutional and TB
codes [11]. Moreover, the girth and free distance of the parent

convolutional code upper-bound the girth and the minimum
distance of the corresponding TB LDPC code [12].

Relations between the girth of the basic Tanner graph and
the hypergraph corresponding to the parent LDPC convolu-
tional code are derived. We introduce new algorithms for
iteratively constructing LDPC codes with large girth and for
determining their corresponding minimum distance. Examples
of newly found QC LDPC codes and best known examples
are tabulated together with their girth and minimum distance.

II. PARITY-CHECK MATRICES

A rate R = b/c LDPC convolutional code C is determined
by its parity-check matrix of memory m

H(D) =


h11(D) h12(D) . . . h1c(D)
h21(D) h22(D) . . . h2c(D)

...
. . .

h(c−b)1(D) h(c−b)2 . . . h(c−b)c(D)


(1)

where the parity-check polynomials hij(D) = Dwij are
monomials of degree wij . If each column and each row contain
exactly J and K nonzero elements, respectively, we call C a
regular (J,K) LDPC convolutional code. Denoting the degree
of 0 by −∞, such a parity-check matrix can be represented
by its degree matrix

W = {wij}
with i = 1, 2, . . . , c − b and j = 1, 2, . . . , c [13]. Expressing
the (c−b)×c parity-check matrix H(D) in terms of its binary
matrices Hi, i = 0, 1, . . . ,m, that is,

H(D) = H0 +H1D +H2D
2 + · · ·+HmD

m

we obtain the binary semi-infinite parity-check matrix H ,
which can be written as

HT =


HT

0 HT
1 · · · HT

m

HT
0 HT

1 · · · HT
m

HT
0 HT

1 · · · HT
m

. . .
. . .

. . .
. . .

 (2)

where HT denotes the transpose of H .
By TB the parent convolutional parity-check matrix (2) to

length M > m, we obtain the following M(c−b)×Mc parity-



check matrix HTB of the corresponding tailbitten linear binary
block code B of block-length Mc as

HT
TB =


HT

0 HT
1 · · · HT

m−1 HT
m 0

0 HT
0 HT

1 · · · HT
m−1 HT

m

HT
m 0 HT

0 HT
1 · · · HT

m−1
. . .

. . .
. . .

. . .
. . .

. . .

HT
1 · · · HT

m−1 HT
m 0 HT

0

 .

Note that HTB is (J,K) regular, that is, there are exactly J
ones in every column and exactly K ones in every row. With J
and K being much smaller than M , HTB is considered to be
sparse. Furthermore, the first c columns of HTB are repeated
in a cyclicly shifted manner throughout the whole matrix.

III. GRAPHS AND HYPERGRAPHS

Every parity-check matrix of an LDPC code can be inter-
preted as an incidence matrix of a graph G or hypergraph HG.
A hypergraph is a generalization of a graph and is determined
by a set of vertices V = {vi} and a set of hyperedges
E = {ei}, where each hyperedge is a subset of vertices
and may connect (contain) any number of vertices. If each
hyperedge connects not more than two vertices it is called an
edge and we obtain an ordinary graph.

A hypergraph is called s-uniform if every hyperedge has
cardinality s, that is, it connects s vertices. For s = 2, a
hypergraph is a simple graph. The degree of a vertex in a
hypergraph is the number of hyperedges that are connected
to (contain) it. If all vertices have the same degree c, then
the hypergraph is c-regular, that is, c is the degree of the
hypergraph.

Let the set of vertices V of an s-uniform hypergraph be
partitioned into t disjoint subsets Vk, k = 1, 2, . . . , t. If no
hyperedge connects (contains) two vertices from the same set
Vk, k = 1, 2, . . . , t, the hypergraph is said to be t-partite.

A path of length L in a hypergraph is an alternating
sequence of L + 1 vertices vi, i = 1, 2, . . . , L + 1, and L
hyperedges ei, i = 1, 2, . . . , L, with ei 6= ei+1. If the first
and the final vertex coincide, that is, v1 = vL+1, we obtain
a cycle. A cycle is called simple if all its vertices and edges
are distinct, except the first and final vertex which coincide. A
simple cycle is also known as a Berge cycle [14]. Finally, the
girth of a hypergraph is the length of its shortest simple cycle.
For graphs it has been shown in [15] that their girth coincides
with the minimum distance of the corresponding block code.

Example 1: Consider the rate R = 1/4 convolutional code
C with parity-check matrix

H(D) =

 1 1 1 1
1 1 D D
1 D 1 D

 (3)

and degree matrix

W =

 0 0 0 0
0 0 1 1
0 1 0 1

 .

v2
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e1

e8

e6

e7

v4

e2

e4

e5

v1

v6

v5 v3

Fig. 1. A 3-partite, 3-uniform, 4-regular hypergraph HG with vertices vi,
i = 1, 2, . . . , 6, and hyperedges ej , j = 1, 2, . . . , 8.

Tailbiting (3) via its dual generator matrix [11] to length M =
2, we obtain the tailbitten 6× 8 parity-check matrix

HTB =


1 1 1 1 0 0 0 0
1 1 0 0 0 0 1 1
1 0 1 0 0 1 0 1
0 0 0 0 1 1 1 1
0 0 1 1 1 1 0 0
0 1 0 1 1 0 1 0

 . (4)

Interpreting (4) as an incidence matrix, we obtain the 3-partite,
3-uniform, 4-regular hypergraph HG as illustrated in Fig. 1
with 6 vertices and 8 hyperedges. Every row of the incidence
matrix corresponds to a vertex of the hypergraph, while the
columns are represented by hyperedges (subsets of vertices).

It is easy to see that the girth of this hypergraph is g = 2.

IV. TANNER, VOLTAGE, AND BASIC GRAPHS

In order to construct hypergraphs with large girth we need
to introduce some auxiliary graph representations. The Tanner
graph GT [16] of a regular (J,K) convolutional parity-check
matrix H(D) (1) is determined by the (2c−b)×Jc incidence
matrix

HT =

(
C1 C2 . . . Cc

J1 J2 . . . Jc

)
(5)

where each column of the (c− b)× J submatrix Ci contains
not more than one of the J nonzero elements of column i
of H(D), i = 1, 2, . . . , c. The elements of the c × J matrix
Ji are all zero except for the elements of the ith row, which
are equal to one. In other words, every hyperedge is replaced
by an additional vertex and J new edges between the newly
introduced vertex and each of the original vertices connected
to the hyperedge.

In order to represent the monomials in the incidence matrix
of the Tanner graph (5), every edge is labeled by an edge
voltage, that is, the degree difference of the corresponding
monomials. Note, the sign of the edge voltage depends on
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Fig. 2. A bi-partite Tanner graph GT with 7 vertices vi, i = 1, 2, . . . , 7,
and 12 edges. Since the edges are labeled according to (6), this is equal to a
voltage Tanner graph GVT.
the passing direction. The edge voltage µuv from vertex u to
vertex v; u, v ∈ {1, 2, . . . , (2c− b);u < v} is given by

µuv = wvk − wuk (6)
µvu = −µuv

where wij is the degree of the ith row and jth column entry
of the degree matrix W corresponding to the incidence matrix
HT (5) with entries hij and k is chosen such that both hvk and
huk 6= 0. (Note, that in general k is not necessarily unique.)
Hereinafter we will refer to a Tanner graph with its edges
labeled according to (6) as a voltage Tanner graph GVT [17].
The voltage of a path is the sum of all edge voltages involved.

If we neglect all monomials in the incidence matrix of the
Tanner graph (5), we obtain an unlabeled graph, which we call
basic Tanner graph GBT.

While the girth of a basic Tanner graph gBT follows directly
as the length of the smallest simple cycle, the girth of a voltage
Tanner graph gVT corresponds to its smallest simple cycle with
voltage zero. It can be easily seen that gVT ≥ gBT. Moreover,
if we denote the girth of the corresponding parent convolu-
tional code, determined by its parity-check matrix H(D) (1),
free girth gfree [12], we obtain the relation gVT = 2gfree.

The binary parity-check matrix H of a block code B, whose
hypergraph has girth g, can be represented as a Tanner graph
in a similar way. If all monomials are replaced by 1s, there
is no difference between the voltage and basic Tanner graphs,
and we refer to either of them as the Tanner graph for block
codes with girth gT = 2g.

Example 1 (continued): The Tanner graph GT for the (4, 3)
regular convolutional parity-check matrix H(D) (3) is deter-
mined by the 7× 12 incidence matrix

HT =



1 0 0 1 0 0 1 0 0 1 0 0
0 1 0 0 1 0 0 D 0 0 D 0
0 0 1 0 0 D 0 0 1 0 0 D
1 1 1 0 0 0 0 0 0 0 0 0
0 0 0 1 1 1 0 0 0 0 0 0
0 0 0 0 0 0 1 1 1 0 0 0
0 0 0 0 0 0 0 0 0 1 1 1


which is illustrated in Fig. 2 with 7 vertices and 12 edges.
Since its edges are labeled according to (6), Fig. 2 corresponds
to a voltage Tanner graph GVT with girth gVT = 4 (for

example, v1 → v4 → v2 → v5 → v1). The edge from, for
example, vertex 2 to vertex 6 is labeled according to

µ26 = −µ62 = w68 − w28 = −1.

We conclude that the girth of the corresponding parent convo-
lutional code C, determined by its parity-check matrix H(D)
(3), follows as gfree = 0.5gVT = 2. However, if we neglect all
labels, we would obtain the corresponding basic Tanner graph
GBT with girth gBT ≤ gVT.

V. BOUNDS ON GIRTH AND MINIMUM DISTANCE

Theorem 1: The minimum distance dmin and the girth g
of an (n, k, dmin) QC LDPC block code B obtained from a
rate R = b/c convolutional code C with free distance dfree
and girth gfree by TB to length M are upper-bounded by the
inequalities

dmin ≤ dfree

g ≤ gfree.

In [13] a lower bound on the girth of a voltage Tanner
graph gVT was found via the girth of corresponding basic
Tanner graph gBT for ordinary graphs. It is straightforward to
generalize this bound:

Theorem 2: Consider a basic Tanner graph of a regular
(J ≥ 3,K) QC LDPC convolutional code with girth gBT and
let ds denote the sth generalized minimum Hamming distance,
that is, the number of nontrivial (not identically zero) positions
of an s-dimensional linear subcode. Then there exist a TB
length M and a set of edge labels, such that the girth gT
of the Tanner graph for the corresponding TB block code of
length N =Mc satisfies the inequality

gT ≥ 2max {gBT + dgBT/2e , d2}
where d2 is the second generalized minimum Hamming dis-
tance of the linear (JMc,M((J − 2)c + b)) block code
determined by the Tanner graph.

Finally, we want to recall the following upper bounds on
the achievable girth and minimum distance.

Theorem 3 ([5], [12], [18]): Let H(D) be the parity-check
matrix of a rate R = b/c convolutional code with all its
entries being nonzero monomials and free distance dfree. By
TB to length M we obtain a QC LDPC block code of block
length Mc and minimum distance dmin, together with its
Tanner graph representation with girth gT, which satisfies the
following inequalities:

gT ≤ 12 (7)
dmin ≤ dfree ≤ (c− b+ 1)!. (8)

VI. SEARCH FOR CODES WITH LARGE GIRTH

Every QC LDPC rate R = Mb/Mc block code B can be
obtained from a rate R = b/c parent convolutional code C
using a TB length M . Limiting the parity-check matrix H(D)
of the parent convolutional code C to only nonzero monomial
entries, we can represent it by its basic Tanner graph GBT.
Then we can use the algorithm, as presented in [13], to find



R W M gT dmin

#1 [6] 2/5

 0 0 0 0 0

0 4 12 28 29

0 24 10 13 19

 31
N=155

8 20

#2 [7] 2/5

 13 7 25 25 0

0 18 8 0 25

8 0 0 21 2

 61
N=305

10 24∗

#3 [7] 2/5

 6 54 13 8 53

0 31 0 53 0

54 0 19 0 0

 181
N=905

12∗ 24∗

#4 [12] 2/5

 0 0 0 0 0

0 1 3 10 14

15 10 1 3 0

 45
N=225

8 24∗

#5 2/5

 0 0 47 0 119

9 19 30 42 11

55 1 3 7 37

 138
N=690

10 24∗

#6 2/5

 11 1 53 0 73

0 0 0 12 42

55 73 11 17 0

 196
N=980

12∗ 24∗

#7 3/6

 0 0 0 0 0 1

5 8 1 11 0 16

7 1 6 0 11 0

 24
N=144

8 12

#8 3/6

 0 0 47 0 0 18

5 8 1 31 0 27

39 1 6 0 11 0

 72
N=432

8 24∗

TABLE I
DEGREE MATRICES W FOR VARIOUS CONVOLUTIONAL CODES WITH RATE
R. THE BLOCK CODES, AFTER TB TO LENGTH M , HAVE OPTIMUM (∗) OR

ALMOST OPTIMUM GIRTH gT AND MINIMUM DISTANCE dmin .

a voltage labeling together with a TB length M , such that the
girth of the tailbitten QC LDPC block code is g.

For the sake of completeness, this algorithm is given below.
1) Choose a desired girth g, the rate of the parent convo-

lutional code R = b/c, and a TB length M .
2) Construct a list of n equations describing all cycles of

lengths less than 2g in the basic Tanner graph GBT

corresponding to the chosen convolutional code rate.
3) Represent these n cycles by an n × Jc matrix, where

each row a = (a1, a2, . . . , aJc) corresponds to one
cycle with the value ai denoting the difference between
the number of passes of the ith edge in forward and
backward directions.

4) Search randomly for a vector µ = (µ1, µ2, . . . , µJc)
such that µAT 6= 0 mod M .

5) Label the edges of the basic Tanner graph according to
µ to obtain a voltage Tanner graph. Tailbite the parity-
check matrix of the corresponding parent convolutional
code via its dual generator matrix to length M ; this
yields the parity-check matrix of a block code of block
length N = Mc corresponding to a hypergraph with
girth not less than g.

Note, that using voltage Tanner graphs instead of circulant
permutation matrices as in [5] gives the freedom to choose
voltage labels and TB length M independently. Moreover,
it allows us to generalize this construction to parity-check
matrices of convolutional codes with zero entries.

VII. MINIMUM DISTANCE

Clearly, every codeword v of a tailbitten linear block code B
of block-length N =Mc with an M(c−b)×Mc parity-check
matrix HTB fulfills

vHT
TB = 0.

The minimum distance for a linear block code is equal to the
minimal number of columns of HTB that sum up to zero.

Starting with each of the first c columns as a root, c separate
trees can be constructed, where each node ξ at depth ` is
associated with a state column-vector σ(ξ).

Initially assign column hi to the state of the root node
σ(ξroot,i) of the ith tree, i = 1, 2, . . . , c. Then build up a
tree in such a way, that every branch between any two nodes
ξ and ξ′ is labeled by a column hj , j = 1, 2, . . . ,Mc, j 6= i,
such that σ(ξ′) = σ(ξ)+hj , where every branch label on the
path ξroot,i → ξ′ does not occur more than once.

Consider now a certain node ξ with nonzero state σ(ξ).
Assuming that the kth position of σ(ξ) is nonzero, there are
at most K−1 columns which can cancel this nonzero position
in σ(ξ) and have not been considered previously. Therefore,
every node ξ has at most K − 1 children nodes per nonzero
position.

However, such a tree would grow until all possible linear
combinations have been found. Therefore, we limit ourselves
to linear combinations of at most t columns; that is, the
maximum depth of the tree is t−1. Moreover, a node ξ at depth
` will not be extended, if the number of nonzero positions of
its state σ(ξ) is larger than J(t− `−1), since at most J ones
can be canceled by each branch.

Remark: Initially reordering the rows of the tailbitten parity-
check matrix HTB such that each block of M rows contains
not more than a single one per column, strengthens the
stopping criterion as follows: A node ξ at depth ` will not
be extended, if the number of nonzero positions in each block
of M rows in its state σ(ξ) is larger than (t − ` − 1), as at
most one 1 in each block can be canceled by each branch.

VIII. RESULTS

Using the algorithms presented in Sections VI and VII, we
have obtained new regular QC LDPC codes. In Table I, a few
best-known rate R = 2/5 QC LDPC codes [6]–[8] are listed
together with our newly found codes of rate R = 2/5 and
R = 3/6 having almost optimum or optimum girth 8, 10 and
12 and optimum minimum distance 24 (except code #7 with
minimum distance 8).

For each code, the degree matrix W of the parent convo-
lutional code is given together with the TB length M needed
to construct the corresponding (Mc,Mb) block code of block
length N = Mc with girth gT and minimum distance dmin.
Table I also includes the minimum distance for the best-known
examples of rate R = 2/5 QC LDPC codes, which, for the two
longer ones (codes #2 and #3), were previously unknown.

Note, all codes in Table I achieving either the upper bound
on the minimum distance dmin = 24 or on the girth gT = 12
according to (8) and (7), respectively, are marked by ∗.
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Fig. 3. Bit error rate performance for the best known rate R = 2/5 and
the newly found rate R = 2/5 regular QC block codes of various lengths N
using belief propagation with 60 iterations.

IX. BIT ERROR PERFORMANCE

Using belief propagation decoding [4] with 60 iterations,
the bit error rate performance of all regular QC LDPC codes
from Table I is simulated and shown in Figs. 3 and 4. The
best previously known rate R = 2/5 QC LDPC codes are
compared with our newly found ones of the same rate in Fig. 3
and with our newly found codes of rate R = 3/6 in Fig. 4.

As expected, larger girth leads in general to better bit error
rate performance. However, by comparing codes #1 and #4
or codes #2 and #5 in Fig. 3, we can also conclude that a
larger tailbiting length M , and thereby a larger resulting block
length N , yields better performance.

However, comparing codes #1 and #7 in Fig. 4, both of
approximately the same block length N and girth gT = 8
but of rates R = 2/5 and R = 3/6, respectively, as well as
minimum distance dmin = 20 and dmin = 8, respectively,
we conclude that the chosen monomials, and thereby the
underlying edge voltages µuv , seem to play the most important
role in achieving good bit error rate performance. Comparing
codes #2 and #8 supports this assumption, even though their
corresponding block length differ slightly more.

X. CONCLUSION

Using the relation between hypergraphs and LDPC codes,
new searching techniques have been presented. Starting from
a hypergraph, any number of LDPC codes of different rates
can be obtained by tailbiting the corresponding parent convo-
lutional code via its dual generator matrix to different lengths.

By representing hypergraphs in different ways, lower and
upper bounds on the girth as well as on the minimum distance
of the corresponding tailbiting block code have been obtained.

Algorithms for finding hypergraphs with optimum or almost
optimum girth and for determining their minimum distance
have been presented. Their bit error rate performance has been
compared using belief propagation decoding, verifying that a
larger girth result in an overall better code performance.
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