
LUND UNIVERSITY

PO Box 117
221 00 Lund
+46 46-222 00 00

Convex programming-based resource management for uncertain execution platforms

Lindberg, Mikael

2010

Link to publication

Citation for published version (APA):
Lindberg, M. (2010). Convex programming-based resource management for uncertain execution platforms.
Paper presented at Workshop on Adaptive Resource Management (WARM 2010), Stockholm, Sweden.

Total number of authors:
1

General rights
Unless other specific re-use rights are stated the following general rights apply:
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors
and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the
legal requirements associated with these rights.
 • Users may download and print one copy of any publication from the public portal for the purpose of private study
or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal

Read more about Creative commons licenses: https://creativecommons.org/licenses/
Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove
access to the work immediately and investigate your claim.

Download date: 18. May. 2025

https://portal.research.lu.se/en/publications/423ea063-2c04-4f86-b02b-f85fa3046d8b


Convex Programming-Based Resource Management
for Uncertain Execution Platforms

Mikael Lindberg
mikael.lindberg@control.lth.se

Department for Automatic Control, Lund University

Abstract—An approach to constrained resource allocation for
real time software components executing on nondeterministic
hardware is considered. A model for resource consumption
based on execution rate is investigated together with an event-
based measurement and parameter estimation scheme. Finally,
an algorithm for real time constrained optimization of resources
is presented together with results from a case study with synthetic
software components.

I. I NTRODUCTION

The consolidation of telephony, media and general utility
computing into modern smart phones has led to increased
focus on managing limited resources to make devices flexible
while also robust, powerful and yet efficient. A large number
of components are integrated to make up a complex platform
that must function in a variety of use cases and in different
working environments. More and more often, functionality
is implemented in software running on a general purpose
CPU rather than as discrete hardware components. As a
consequence, the method for allocating the CPU resource to
competing subsystems becomes central to the performance of
the product.

A CPU is normally seen as a resource where utilization
must be multiplexed, but recently reservation based scheduling
techniques have led to models more related to fluid resource
sharing. This approach allows for more component oriented
design and simplifies testing and integration. In most cases
however, the underlying framework still utilizes classic re-
altime scheduling results, depending on conservative worst
case properties of the concerned software. With the increasing

Application
CPU

OS
Scheduler

3rd Party
Software

GSM
Stack

Video
Encoder

Audio
Encoder

Fig. 1. Overview of the intended target system displaying some typical
components.

gap between average and worst case performance, this is a
growing concern when designing consumer devices. Unit cost
is a driving factor and over-provisioning of resources is highly
undesirable.

Another reason why classic results are hard to employ is
that they rely on knowing many of the software properties
in advance. This becomes especially difficult to handle for
media type application such as video decoders or games, as
the software behavior is very much determined by the specific
usage. For instance, a low resolution video can consume orders
of magnitude less computational power to decode than one
in high definition. Designs derived from a-priori knowledge
are often static in nature and a sudden change in available
resources or resource need, could render such solutions unus-
able.

The combination of uncertainty and time variability suggests
a solution based on feedback and estimation techniques. Linear
feedback controllers, which are most commonly used, are well
suited for situations with unconstrained dynamics. However,
the type of system discussed in this paper will be working
close to or on the limit of resource availability, something
that is difficult to handle using purely linear designs. In-
stead, optimization-based schemes are often employed for
constrained dynamics. Particularly convex optimization lends
itself well to online use, as the convexity properties make it
easier to design efficient and robust solvers.

This paper presents a framework for constrained resource
management for real-time computer systems, with focus on
resource heavy applications that perform some repeated com-
putation, such as media playback or Model Predictive style
control. These types of applications can be calledtiming
sensitive, meaning that they have timing constraints but rather
than break down if a constraint is not met, performance is
degraded.

The framework consists of three parts:
• a component-based system model,
• an event-based parameter estimation scheme and
• a convex programming-based allocation scheme.

The paper will demonstrate how feedback control and convex
optimization theory can be used to pose the allocation problem
for an uncertain computation platform running software com-
ponents with time varying parameters. A model for uniform
rate components, which can be considered the analogue to pe-
riodic tasks in traditional realtime theory, is presented together
with a technique for online parameter estimation. Providedas



proof of concept are also experimental results from running
the framework on an unmodified Linux kernel.

The intended target system is a cellular phone with multi-
media functionality or similiar embedded device.

II. RELATED RESEARCH

The ideas presented in this paper rely on the existence of a
reservation based scheduling layer that can be used to partition
the CPU-resources predictably. Theory for reservations can
be derived from traditional EDF scheduling, resulting in for
instance the Constant Bandwidth Server (CBS) formulation
proposed by Buttazzo in [2]. The concept has been extended
to include constrained resource situations through Elastic
Reservations in [4] and [5]. The work in this paper differs
primarily in that it allows a more general formulation of the
resource tradeoff and puts more focus on online estimation of
unknown parameters.

Resource allocation is often posed as a optimization prob-
lem, with a prominent example in R. Rajkumar’s work on
Q-RAM, which was originally described in [14]. This has
since been extended to include multi-resource cases in [9].
This paper takes a similar approach, but special care is taken
so that the optimization is solvable in realtime and also focuses
more on parameter estimation.

Historically, allocation is often seen as knapsack- or bin-
packing problems (see e.g. [10]), but the difficulty of solving
these types of problems makes the formulation ill suited for
use in embedded systems.

A promising approach, using convex optimization in real-
time, has been discussed in recent publications by S. Boyd
[12]. While these algorithms can be used to solve much more
general problems, they rely on code generation to produce
specialized solvers. This imposes restrictions on how the
structure of the problem can vary over time. The proposed
framework in this paper allows the problem to be modified
over time by adding or removing components and makes very
few assumptions on the individual utility functions, allowing
heterogeneous problems to be solved.

Using control theory for computer systems is a strong
emerging trend. This has successfully been done by e.g. Tarek
Abdelzaher, who treats it in several publications, including
[1]. This work is very relevant for the problem studied in this
paper, but more focused on computer server farms than the
embedded space.

III. SYSTEM MODEL

Consider a system of software componentsCi that are part
of a computational system and executing on the same CPU,
as exemplified in Figure 1. A component can be monolithic
and correspond to a single operating system thread or process,
or it can be an aggregate set of other components. From the
outside, the component is opaque and is assigned resources
as a single entity. The component produces some relevant
results of work and it is assumed that each component uses
all assigned resources for that. In order to make decisions
regarding how to allocate resources, a model is needed of how

resources are converted into results. As it is assumed that the
components have unknown characteristics a-priori, it mustbe
possible to estimate the parameters online.

A. Rate-based processing

For media applications, the quality of the output is strongly
connected to the processing rate. Higher frame-rates means
more fluid video playback, higher bit-rates means more infor-
mation in each frame. Similarly, in a control system, control
performance is related to sample-rate. Control systems and
media can be seen as a special cases of data flow or stream
processing. Data is often contained in packets or tokens that
are processed by a network of computational elements. The
rate at which data tokens are processed is a tangible metric
for the application performance. This supports making rate
an basis for resource allocation decisions in heterogenous
systems.

In this paper, rate is defined as the number of occurrences of
some event per time period. The pertinent choice of event and
counting period is highly situational. Consider for instance
the difference between digital audio and video. The ear is
much more sensitive to audio jitter than the eye is to frame
jitter. The audio stream is sampled at a significantly higher
rate than the typical video stream (16 kHz vs 25 Hz). Loosing
a few movie frames during a second may not be noticeable
for the viewer, while loosing the same percentage of audio
samples will make the audio sound very distorted. In order
to make resource allocations in time to preserve quality, the
audio stream will need to be monitored using a much shorter
counting period than for the movie stream.

As computations and changing scheduling parameters in-
troduces latency in the control loop, it can even be necessary
to introduce predictive filters. In both the case of audio and
video, the events are expected to be evenly distributed over
the counting period. This is not required in general, but
non-uniform distributions will make the rate estimator more
complex to design. Section III-C will discuss in more detail
how to pose the estimation problem.

B. Uniform rate component model

The typical model of media processing or control appli-
cation is a periodic real-time task. The constant job release
intervalT and completion deadlined correspond to a uniform
rate of completed calculations. In the scheduling formulation
of the problem, knowledge about job worst case execution time
w is assumed in order to test if all jobs meet their deadlines
under some assumptions on the scheduler and task dependan-
cies. The price one pays for this very strong guarantee is
that w needs to be a true upper bound, which on uncertain
hardware and highly data dependent software can be very
pessimistic. It has been demonstrated that feedback control is
robust to jitter in sampling and setting of control signal (see
e.g. [6]). Similarly, a video playback can suffer both jitter
and the occasional frame loss without significant degradation
in quality [7]. In this paper, these types of applications will



be considered timing sensitive rather having than hard real-
time timing properties. Using these properties and relaxing
the requirement that all deadlines must be met, it is instead
possible to formulate a desired average completion interval,
which would in turn correspond to a rate of execution.

A rate-based processing task is then modeled by the follow-
ing parameters:

• r - desired execution rate
• y - actual execution rate
• ρ - assigned CPU share (bandwidth)

Depending on the application, the units of these parameter
vary. For a video playback system running on a Constant
Bandwidth Server (CBS) resource scheduler,r and y would
be the desired and actual frame rate of the video stream
respectively, andρ would be a real number in the interval[0, 1],
denoting the quota between budget and period,Q/T . If instead
the resource scheduler would be the Completely Fair Scheduler
(CFS) now part of the Linux kernel,ρ would be an unsigned
integer value use as a weight in the proportional share-based
scheme. This paper makes the assumption that the processing
system consists of a setC1, ..., CN of independent CPU-bound
components, which means that the mean execution rateyi
of the component depends primarily on the allocated CPU
resourceρi and can be approximated by a functionfi(ρi).
In resource management this is called theutility function and
is a positive monotonically increasing function with parameter
domainR+. For most rate-based applications, utility gains will
decrease when the amount of afforded resource grows very
large and it is reasonable to assume thatfi is a concave func-
tion. In the case where the task repeats the same calculation
over and over again, a simple piecewise linear (PWL) model
such as (1) can be sufficient.

fi(ρi) = yi =

{

kiρi 0 ≤ ρi ≤ ri/ki,

ri ρi ≥ ri/ki
(1)

Figure 2 shows two cases which were produced using MPEG-
4 video streams and the free MPlayer software. The video
streams are encoded at a fixed rate, in this case 30 frames per
second (fps). When throttling the CPU bandwidth available
to the player below what is required for full rate playback, it
starts to skip frames to keep up.

C. Event based estimation

Estimating the parameterski in (1) would be straight
forward if the ratey was a continuous signal that could be
sampled. As it is, there is only new information about the
execution rate when a calculation cycle completes or when
an expected event is missing. There are two main alternatives
to estimate the execution rate from this, sliding time window
event counting and event based filtering. It is worth noting
that a benefit from measuring the rate through the completion
events is that this poses a very mild requirement on the
software. Since in cellular phone design, it is common to use
3rd party components, this is highly desirable as it reduces
the cost and complexity of the components. The methods of
event based estimation is discussed further in the chapter IV.

0 0.2 0.4 0.6 0.8 1
0

5

10

15

20

25

30

35

40
Mean fps for righ−res movie

ρ

F
ps

 

 

0 0.2 0.4 0.6 0.8 1
0

5

10

15

20

25

30

35

40
Mean fps for low−res movie

ρ

F
ps

 

 
Piecewise linear approx
Datapoints

Piecewise linear approx
Datapoints

Fig. 2. Experimental results of throttling CPU-share for the MPlayer decoder
using Linux 2.6.27 and Control Groups. The diagrams show howthe frame
rate per second (fps) depends on the amount of CPU share allocated to the
decoder. The rate increases linearly with share until the movie can be played
back at encoded rate.

IV. EVENT BASED ESTIMATION

This section will discuss two approaches to form an estimate
of the ratey and the parameterk from (1). The following
properties are considered important for the resulting algorithm

• Time complexity
• Space requirements
• Sensitivity to noise
• How fast it can detect a change in rate

The following assumptions will be made on the component
• The rate is constant over a small interval of timets
• k can in ts be considered to be the mean of a weak

stationary stochastic process.

A. Sliding window event counting

Using the definition of rate (events/time period) it is natural
to consider an approach where the number of events occurring
over a predetermined time period is mechanically counted.
Given a suitable window length, the method is straight forward
in implementation, but suffers from needing an unknown
amount of memory to keep the events and that the time com-
plexity is proportional to the rate, i.e. unknown beforehand.

B. Event based filtering

An alternative approach is to see the problem as a prediction
problem, where the objective is to at any given time estimate
the time between the last and the yet not arrived event. If
∆(k) denotes the time between eventk andk − 1, using the
assumed stationarity stochastic properties ofk, a predictor can
be written on the discrete time shift operator form

∆̂(k + 1) =
B(q−1)

A(q−1)
∆(k) (2)

ŷ(k) =
1

∆(k + 1)
(3)



The selection of the polynomialsB andA makes it possible
to filter out specific noise components of the sequence and
as long as the filter has unit stationary gain(B(1)/A(1) = 1)
the proper mean will be obtained. There is one caveat however
when dealing with a decreasing rate. If the prediction states
that an event should occur but there is none, the estimate must
be updated to reflect this. In this work the update is done
through noting that ift time has passed since the last event
occurred andt > ∆̂(k + 1), then the highest possible current
rate would be sustained if an event would arrive at the time
t + ǫ. A way to check for this is to tentatively update the
prediction as if an event had occurred at the timet and check
if the estimated rate would be lower. Iftk denotes the arrival
time of eventk and ∆e(k) denotes the extended sequence
{...,∆(k− 1),∆(k), (t− tk)}, the resulting estimator fory(t)
would then be

∆̂(k + 1) =
B(q−1)

A(q−1)
∆(k)

∆̂e(k + 1) =
B(q−1)

A(q−1)
∆e(k)

ŷ(t) =
1

max(∆̂(k + 1), ˆ∆e(k + 1))

(4)

Advantages with this approach is that the filter is fixed in
time and space complexity. There is also the added degree of
freedom in selecting the filter polynomials, but the downside is
that badly chosen polynomials can yield a very noisy estimate.

C. k-parameter estimation

Given an estimate of the current execution rateŷ(t), falling
back on the model (1) results in the following estimate:

k̂(t) =
ŷ(t)

ρ(t)
(5)

Unfortunately, this estimate assumes that the amount of re-
source fed to the component is constant. Due to scheduler
dynamics and control actions, this is rarely the case and the
estimate would have bad convergence properties. Instead, as
accumulated resource use for any specific component can be
measured directly through system calls, a better estimatoris

k̂(t) =
ŷ(t)

uacc(t1)− uacc(t0)
(6)

if uacc(t) is the accumulated amount of resource at timet and
t0 and t1 are such that the events used to formŷ(t) occur in
the interval(t0, t1).

V. CONSTRAINED ALLOCATION

Allocating resources under constrained conditions requires a
compromise in performance for the component set. To evaluate
such a compromise, a global performance metric is needed.
For a set of independent components, a natural choice would
be an aggregate of the individual utility functions. Finding
an aggregate that well represents the user perceived system
performance will be situation dependent and the task of the

system designer. In this paper, some restrictions are posedon
the selection of aggregate in order to fit the target platform.

The primary restriction is on the component utility function
in that is should fit the convex framework presented in
section V-A. This allows for simplified solver algorithm design
without putting too severe limits on the choices available to
the designer. A secondary restriction is numerical simplicity.
Computing the value of the function and its derivative must
be relatively inexpensive on a limited precision platform.For
evaluation purposes, one such choice will be suggested in the
next section.

A. A Convex Formulation

The proposed problem structure in this paper is

min J =
N
∑

i=1

wiJi(ρi)

ρ ≥0
∑

ρi ≤ρtot

(7)

under the restriction thatJi(ρi) is a convex differentiable
function. Assuming that a componentCi have a known desired
execution rateri, let ei = ri − yi denote the rate error. It is
then assumed that it is desirable to minimize the aggregate
rate error, resulting in the cost function

J =

N
∑

i=1

wie
2
i =

N
∑

i=1

wi(ri − fi(ρi))
2 (8)

where fi(ρi) is taken as (1). While the rate errorei is
a convex function ofρi and thus fits in the framework, it
is perfectly possible to use a mix of utility functions when
models for more complex components have been derived. This
formulation is much like the water filling problem (see [3, pp
245]) used for power allocation in communications theory,
with the main difference in that the set of utility functionscan
be heterogenous.

As previously stated, an important property of the problem
is that the parameters are expected to change over time. It is
therefore not possible to solve for the optimal allocation once
and leave it at that. Changes to the setup can come in many
different ways, including

• a new component becomes active
• a component changes its internal structure thereby chang-

ing its utility function
• the total amount of resources decreases due to e.g. CPU

becoming too hot and needs to be throttled
• properties of the data processed lead to changes in utility

function parameters
The solver thus needs to run continuously, making it desirable
that it

1) takes minimal system resources,
2) accounts for changing parameters as quickly as possible,

3) produces results in deterministic time and memory and
4) can improve upon a previous allocation even if aborted

before optimum was computed



VI. I NCREMENTAL OPTIMIZATION

In response to the properties 1 - 4, it seems that an incremen-
tal approach is suitable, meaning that the algorithm computes
the answer as a sequence of relatively simple operations, where
each operation improves the solution a bit. As parameters
can change at any time, it makes sense to try to use small
increments so that as little work as possible is wasted if
parameters change in mid increment. A guiding principle
behind the proposed solution is that computers are generally
good at doing simple things over and over again. This has
implications on cache usage, compiler optimizations and stack
memory requirements.

Assume that two componentsCi, Cj are picked from the set
during thek:th step of the algorithm. LetJ(k) be the cost at
the beginning of the step andJi,j(k) denote the contribution
byCi, Cj to J(k). Consider now what happens if an amount of
resourceδ is transferred fromCi to Cj so that their combined
contribution toJ(k + 1) is minimized, i.e. by solving

min
δ

Ji,j(k + 1) =wiJi(ρi(k) + δ) + wjJj(ρj(k)− δ)

s.t.− ρi(k) ≤ δ ≤ ρj(k)
(9)

This ensures that
J(k + 1) ≤ J(k) (10)

In other words, by in each step solving a subproblem to
the original allocation problem, performance will improve
incrementally. Solving this minimization problem for gen-
eral convex functionsJi(ρi) can be done by modifications
to unconstrained methods such as Newton-Rhapson or even
bisection. In the case of components modeled by (1), near
closed form expressions can be obtained for some common
cost function, see [11] for some.

Selecting the pairCi, Cj for each step is the last element
of the algorithm. The proposed strategy is derived from the
Karush-Kuhn-Tucker (KKT) conditions (see e.g. [3]). Posing
(7) on standard form, the Lagrangian becomes

L(ρ, λ, ν) =

N
∑

i=1

wiJi(ρi) +

N
∑

i=1

−λiρi + ν

N
∑

i=1

ρi (11)

The KKT-conditions state that∇L(ρ, λ, ν) is 0 in an optimal
point. By studying the expression

∂L(ρ, λ, ν)

∂ρi
= wi

∂Ji(ρi)

∂ρi
− λi + ν = 0 (12)

it can be seen that in an optimal point, eitherρi = 0 or
−wi∂Ji(ρi)/∂ρi = ν. Let ψi(ρi) = −wi∂Ji(ρi)/∂ρi. If
ρi = 0 and thereforeλi > 0, thenψi(ρi) must be less than
ν. In other words, a point whereψi(ρi) > ψj(ρj) andρj > 0
does not minimize (9).

• If the algorithm tries to selectCi, Cj so thatψi(ρi) >
ψj(ρj) andρj > 0, solving (9) results inJ(k+1) < J(k).

• If there is no such pair to select, then that point satisfies
the KKT-conditions of (7) and the allocation is optimal.

It follows that such a strategy will make the algorithm con-
verge to the optimum. The convergence speed will obviously

depend on the specific transfer sequence. As the intended
domain is real-time allocations, an efficient strategy is needed.
It is desirable that each step reducesJ(k) as much as possible
and from (9) it is evident that the size of the gain depends on

• the difference inψ(ρ) between the two tasks and
• the amount of resource available to redistribute.

The two criteria can be in conflict, particularly if there is a
strong correlation between lowψi(ρi) and low but non-zero
ρi. It will in this paper be assumed that the components require
resources of the same magnitude. A conflicting situation
should then only exist initially before the allocation evens out.

An intuitive strategy would be to sort the components
according toψi(ρi) and select the two furthest apart, skipping
the ones with zero resources on the lower end. The proposed
implementation uses a red-black tree that makes finding the
pair an O(1) operation and inserting them back after the
transfer anO(log n) operation (see e.g. [8] for complexity
analysis of red-black trees). As the algorithm uses an iterative
loop and the persistent data allocated scales linearly withthe
problem size, memory need for a system with a known max
size can easily be calculated.

To illustrate the workings of the algorithm, consider a
case with three components. Let componentCi be repre-
sented by the tuple(ri, ki, ρi, ∂Ji/∂ρi), unit weights are
assumed for all components. In the example, the components
C0 = (25, 30, 1, 300), C1 = (25, 40, 0,−2000), C2 =
(15, 20, 0,−600) will be used.

Step 1,J = 875.0. The algorithm finds that the highestψ
component isC0 (with ψ0 = 300) and the lowestψ component
is C1 (with ψ1 = −2000). The subproblem to solve then
becomes

min J0,1 =(25− 40(1− δ))2 + (15− 20δ)2 (13)

1 ≥ δ ≥ 0 (14)

which gives the new allocationC0 = (25, 30, 0.540,−528),
C1 = (25, 30, 0.460,−528), C2 = (15, 20, 0,−600).

Step 2, J = 346.0. C2 is now the worst of compo-
nent while ψ0 = ψ1. The implementation used for this
paper uses the component index as secondary sorting crite-
ria, so C0 is selected. After solving the new subproblem,
the allocation becomesC0 = (25, 30, 0.512,−578), C1 =
(25, 30, 0.460,−528), C2 = (15, 20, 0.0277,−578).

Subsequent steps are done in the same way, resulting in the
sequence

J (ρ0, ψ0) (ρ1, ψ1) (ρ2, ψ2)
345.0 (0.512,−578) (0.448,−568) (0.0401,−568)
344.7 (0.514,−574) (0.445,−574) (0.0401,−568)
344.7 (0.514,−574) (0.447,−569) (0.0390,−569)

Note that whileJ seems to have converged, the real criteria
for termination must be the difference inψ:s, as derived from
the KKT-conditions.

VII. I MPLEMENTATION ASPECTS

For experimental purposes, an implementation of the frame-
work has been done for Linux 2.6 using the CFS scheduler



TASKSETALLOCATOR

PARAMETER
ESTIMATOR

r ρ

y

k

Fig. 3. Proposed control structure.

and control groups [13] for resource allocation. The resulting
experiment platform can be said to consist of three major parts.

A. Component Set

The components are in this case Linux processes running
code to emulate the behavior of periodic tasks that can adapt
to varying resource availability by reducing execution rate.
They communicate the completion of a calculation cycle by
sending a unix datagram packets with the current time stamp
and accumulated resource usage. The reason the sampling of
resource usage is done by the process and not some other part
of the system is to better synchronize the two measurements.
Each packet is annotated with the sending process id, so that
the estimator can distinguish the data. By means of the /proc
file system, other process parameters are discovered, such as
control group membership. The processes are multi-threaded
in order to support command signals for changing parameters,
but the cost of receiving these commands is negligible.

B. Parameter Estimator

The estimator is an application with a data collection socket
that receive the incoming completion events. Upon collecting
an event, the event based estimation algorithm updates the
relevant parameter estimate.

C. Allocator

The allocation algorithm is in this application execute as
a thread in the same process as the estimator application.
Periodically, it uses the current estimates to calculate an
updated allocation by means of the algorithm described in VI.

VIII. S IMULATION AND EXECUTION RESULTS

A. Event based estimation

In order to validate the parameter estimation scheme an
experiment was run where the objective was to control the rate
of a single component. A comparison between a sliding time
window approach and an FIR-structure event filter approach
can be seen in Figure 4 and Figure 5. The sliding time window
is less noisy for high rates, which is to be expected as it is
using a larger number of events to form the estimate. However,
the quantization noise can be troublesome when running on
low rates. The FIR-estimator on the other hand is more noisy
on high rates, but at a rate where the two use the same amount

0 2 4 6 8 10 12 14
time (s)

10

20

30

40

50

60

70

ra
te

 (
e
v
e
n
ts

/s
)

Estimated rate using sliding time window (1s)

estimated rate
bw / set point

Fig. 4. Event based estimation using a sliding time window. The estimated
parameterk is used in feedforward control to show that the model can be
used to accurately control the process.

0 2 4 6 8 10 12 14
time (s)

10

20

30

40

50

60

70

ra
te

 (
e
v
e
n
ts

/s
)

Estimated rate using FIR-estimator (m=15)

estimated rate
bw / set point

Fig. 5. Event based estimation using an event filter with FIR structure. The
estimated parameterk is used in feedforward control to show that the model
can be used to accurately control the process.

of events to form the estimate (the middle section where the
rate is around 15 events/second), it seems a lot more stable.
(4) suggests that the filter could have other structures, but
that would require a model of the process noise and sensor
dynamics to exploit.

B. Optimization solver performance

The optimization problem solver was implemented in ANSI
C using an of the shelf implementation of a red-black binary
tree. The correctness of the solver has been verified against
the QP-solver available in MATLAB (quadprog). A simulated
simple case with 3 components can be seen in Figure 6 The
algorithm has been benchmarked using large sets of random
components. The algorithm was run 10 times for each set. The



0 2 4 6 8
0

5

10

15

20

Iterations

su
m

(e2 )/
e qp

Normalized Cost J = sum(e2)/e
qp

 over time

 

 
QP Inc
QP Baseline
Fair

Fig. 6. Solver running over a set of 3 random components with the qp
baseline solution computed by MATLAB as a baseline and the fair allocation
provided for comparison.

0 50 100 150 200 250 300
0

10

20

30

40

50

60

70
Iteration time

Nbr of tasks

tim
e 

(µ
s)

Fig. 7. Iteration time as a function of components in problem.

0 50 100 150 200 250 300
0

5

10

15

20
Termination time

Nbr of tasks

tim
e 

(m
s)

Fig. 8. Optimization time as a function of components in problem.

0 2 4 6 8 10 12 14
time (s)

0

5

10

15

20

25

30

ra
te

 (
e
v
e
n
ts

 /
 s

)

11263
11267
11264

Fig. 9. 3 random components running in a constrained resource environment.
Each component changes its dynamics every 3 seconds after which it takes
about 1 second for the estimator to converge and a new allocation is calculated.

fluctuations in completion times is most likely due to sorting
artifacts and cache misses. Figure 7 shows how the iteration
time increases as the number of components in the problem
grows, while Figure 8 displays how long it takes to complete
the optimization. Even for a fairly large number of tasks, the
time is reasonable and running it as part of a periodic controller
is deemed reasonable.

C. Online allocation

Figure 9 displays the results of an experiment running three
components with the same reference rate but with time varying
k. Every 3 seconds, the components randomly changes their
resource demands, resulting in a new allocation to maximize
total system utility. The newk parameters are drawn from a
uniform random interval, wherekmax/kmin = 2. The setup is
not unlike that from Figure 1. The quadratic cost function
displays good robustness properties in that a small change
in the parameter set only changes the optimum by a small
amount. Figure 10 displays the cost function over time for
the same experiment. It compares the cost using the dynamic
convex programming based allocation (DCA) compared with
a theoretical static worst case allocation (SWA) baseline.The
DCA setup can provide a substantial improvement over SWA
as long as the actual execution time is less than the worst
case. As can be expected, the advantage decreases in the last
portion of the experiment where the actual execution time is
closer to the worst case.

As a final comparison between the DCA and SWA, Figure
11 shows the average cost for a number of setups correspond-
ing to different ratios betweenkmax andkmin. For determinis-
tic cases (kmax = kmin) the DCA actually underperforms the
SWA. This is because the DCA algorithm relies onk̂, which
is initially unknown and will vary over time due to noise.
The resulting allocation will therefore likely be suboptimal,
even if there was enough resources to satisfy all components.



0 2 4 6 8 10 12 14 16
time (s)

2000

3000

4000

5000

6000

7000

8000
C

o
st

 J

DCA
SWA

Fig. 10. The performance cost function over time for DynamicConvex
Allocation (DCA) compared with the Static Worst-case Allocation (SWA)
baseline.

1 2 3 4 5 6 7 8 9
k_max / k_min

0

5000

10000

15000

20000

25000

n
o
rm

(J
)

SWA
DCA

Fig. 11. A comparison between DCA and SWA for different variability of
execution time.

50 experiments were run for each ratio and the plot shows
the average of the results. This demonstrates that it is quite
possible to do the allocation based on no a-priori knowledge
about the execution time and with a substantial performance
gain compared to the SWA solution.

IX. FUTURE WORK

This paper treats systems of software components, but
in order to do systemwide resource management, hardware
aspects need to be brought into the model. An important
direction therefore must be to see how to model a system
with mixed software and hardware (typically power) and
generate the computational resources needed for the software
components. It then directly follows that the model must also
be extended to include cases where the components depend

on resources from other components.
Mixing software and hardware components will make it

hard to maintain global state knowledge and it is therefore
reasonable to pursue distributed formulations.

For estimation performance, in the general case little can
be said about event to event dynamics but under some as-
sumptions on the resource consumption on the components
and process noise, better performance in parameter estimates
should be possible.

Finally, admitting new components onto a running system
must be investigated as newly arriving components will have
uncertain parameters in the utility function. One possibility
is to apply reinforcement learning methods to promote active
probing.

X. ACKNOWLEDGEMENTS

This research has partially been funded by the VIN-
NOVA/Ericsson project ”Feedback Based Resource Manage-
ment and Code Generation for Real-time System” and partly
by the EU ICT project CHAT (ICT-224428)

REFERENCES

[1] Tarek Abdelzaher, Yixin Diao, Joseph L. Hellerstein, Chenyang Lu, and
Xiaoyun Zhu. Chapter 7 introduction to control theory and its application
to computing systems.

[2] L. Abeni and G. Buttazzo. Integrating multimedia applications in
hard real-time systems. InRTSS ’98: Proceedings of the IEEE Real-
Time Systems Symposium, page 4, Washington, DC, USA, 1998. IEEE
Computer Society.

[3] Stephen Boyd and Lieven Vandenberghe.Convex Optimization. Cam-
bridge University Press, March 2004.

[4] G. C. Buttazzo, G. Lipari, and L. Abeni. Elastic task model for adaptive
rate control. InRTSS ’98: Proceedings of the IEEE Real-Time Systems
Symposium, page 286, Washington, DC, USA, 1998. IEEE Computer
Society.

[5] Giorgio Buttazzo and Luca Abeni. Adaptive workload management
through elastic scheduling.Real-Time Syst., 23(1/2):7–24, 2002.

[6] Anton Cervin, Bo Lincoln, Johan Eker, Karl-Erik̊Arzén, and Giorgio
Buttazzo. The jitter margin and its application in the design of real-time
control systems. InProceedings of the 10th International Conference
on Real-Time and Embedded Computing Systems and Applications,
Göteborg, Sweden, August 2004. Best paper award.

[7] Mark Claypool and Jonathan Tanner. The effects of jitteron the
peceptual quality of video. InMULTIMEDIA ’99: Proceedings of the
seventh ACM international conference on Multimedia (Part 2), pages
115–118, New York, NY, USA, 1999. ACM.

[8] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford
Stein. Introduction to Algorithms, Second Edition. The MIT Press,
September 2001.

[9] S. Ghosh, J. Hansen, R. Rajkumar, and J. Lehoczky. Integrated resource
management and scheduling with multi-resource constraints. In Real-
Time Systems Symposium, 2004. Proceedings. 25th IEEE International,
pages 12–22, Dec. 2004.

[10] H. Kellerer, U. Pferschy, and D. Pisinger.Knapsack Problems. Springer,
2004.

[11] M. Lindberg. Febid 2009: Constrained online resource control using
convex programming based allocation. InProceedings to Fourth Inter-
national Workshop on Feedback Control Implementation and Design in
Computing Systems and Networks, 2009.

[12] J. Mattingley and S. Boyd. Automatic code generation for real-time
convex optimization, Dec 2009. http://www.stanford.edu/∼boyd/papers/
rt cvx opt.html.

[13] P. Menage. Linux kernel documentation :: cgroups, Dec 2009. http:
//www.mjmwired.net/kernel/Documentation/cgroups.

[14] Ragunathan Rajkumar, Chen Lee, John Lehoczky Y, and DanSiewiorek.
A resource allocation model for qos management. InIn Proceedings of
the IEEE Real-Time Systems Symposium, pages 298–307, 1997.


