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Abstract

The transmission properties of perforated perfectly conducting screens are of
practical interest. The treatment of non-periodical structures by numerical
techniques, such as the method of moments, is very computer intensive. In this
paper it is shown that using well adapted basis functions, the number of unknowns
can be drastically reduced. Advantages and limitations of the method are discussed.
Numerical results are presented illustrating transmission properties of arrays of
square and rectangular apertures.

1 Introduction

Perforated metallic screens and wire mesh screens are often used for electromagnetic
shielding and filtering purposes. The reflection and transmission properties of infinite
wire grids and periodically apertured screens have been analyzed by many authors in the
past, e.g., [1]-[4]. However, the treatment of finite structures is also of practical interest.
During the last decades different numerical methods, such as the method of moments
(MoM) [5], have been successfully applied to aperture problems [6], [7]. An attempt to
apply the MoM to an array of apertures, constituting one wire mesh covered aperture,
was made in Ref. [8]. Truncated period structures have been considered by, e.g., [9] and
[10]. Recursive schemes have recently been suggested to handle finite, non-periodic
structures [11], [12].

However, the performance of numerical methods seems to depend heavily on the ability
to handle the singular behaviour of the fields near the rims of the apertures. The MoM
involves the expansion of the unknown function in terms of a set of basis functions.
Basis functions with correct edge behaviour have successfully been used to calculate the
polarizability of electrically small apertures [13], [14]. Recently, the scattering by a thin
conducting square plate was treated by the author [15]. Basis functions with correct edge
and corner singularities were used, giving greatly enhanced convergence. Here, this
approach is applied to calculate the transmission properties of an array of rectangular
apertures in an infinite, thin, perfectly conducting screen.

In Section 2 the integral equation, the MoM approach and the basis functions are briefly
described. Some relevant transmission quantities are defined in Section 3. In Section 4
numerical results are presented. The enhanced convergence, due to the singular basis
function, is illustrated and the limitations of the method are discussed. The transmission
coefficients and transmission cross sections are calculated for different geometries

varying the distance between the apertures. Finally, some conclusions are given in
Section 5.

2 Integral equation and MoM approach

The diffracted electromagnetic field through apertures in a perfectly conducting, thin,
plane screen can, according to Babinet's principle, be found by solving the
complementary problem, i.e., the electromagnetic scattering by perfectly conducting
plates in free space replacing the apertures. However, in this paper we adopt the well
known formulation using the equivalence principle and magnetic sources, i.e., the
solution is expressed in terms of the equivalent magnetic sources in the apertures [6], [7],



[16]. In this section an integral equation is formulated and the method of moments is
applied.

The integral equation

Let the screen be located in the x-y- plane in a Cartesian coordinate system, cf. Fig. 1a.
The surrounding homogeneous media is characterized by the permeability ¢ and the
permittivity €. The sources are assumed to be located in the half space z < 0, while the
half space z > 0 is source free. Denote by H* the magnetic field of the incident wave in
the absence of the screen. A harmonic time dependence is assumed and the time factor
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Fig. 1. The original aperture configuration (a) and the equivalent half spaces z>0 (b)
and (c).

The diffracted electromagnetic field E4, H? in the half space z > 0 is determined by the
tangential electric field E‘t' in the apertures. The equivalence principle [17] implies that the
original aperture configuration can be replaced by a perfectly conducting screen and a
magnetic surface current M that generates the electric field Ef, cf. Fig. 1b. M is placed
over the short-circuited aperture regions and

M=—-2XE? (1)

The method of image implies that the fields in the half space z > 0 can be expressed as if
they were generated by a magnetic surface current 2M in free space, cf. Fig. lc.
Hence, the diffracted magnetic field H? can be expressed as

Hi=-V®+i@F )

where the magnetic scalar potential @ and the electric vector potential F are given by



o) =L j 2m@r) G(r,r) dS’ 3)
K
and
Fi=¢ sz ) G(r,r) dS’ (4)
S
respectively.

Here § is the surface of the apertures in the screen. The magnetic surface charge density
m is related to surface divergence of M through the equation of continuity,

Ve- M
i

®)

The surface divergence Vg M is here oM, + dyM, since § is a surface in the x-y-plane.
The free space Green function G(r,r") is defined as

iklr-r'l

G(r,r)= f‘m (6)

where the wave number &k = ay\| te = 27/A.

The geometry of the original configuration implies that the induced currents on the
conducting surface of the screen produce no tangential magnetic field in the aperture
regions. Hence, the tangential magnetic field in the apertures is not changed due to the
presence of the screen. An integral equation can now be formulated as

Ix(-V®+ioF)=% xH", ron$ )

where @ and F are given by Egs. (3) and (4), Hi is the magnetic field of the incident
wave and S is the surface of the apertures.

Notice that the limits on the left-hand side of Eq. (7) are well-defined quantities, since
F(r) and the tangential derivatives 2 x V& are continuous on the surface S. The
mathematical details of these limits can be found in, e.g., [18].

This integral equation is mathematically identical to the one obtained in Ref. [15] solving
the complementary scattering problem, hence the same numerical solution method can be

applied. A short outline of this approach is given below. The reader interested in more
details is referred to Ref. [15].

The matrix equation

The MoM is applied to Eq. (7) and an approximation of the integral equation is obtained.
The magnetic surface current M and the magnetic surface charge m are expanded in terms
of a set of vector basis functions Jf, with unknown coefficients a, ie.,

M=Y a,f, (8)
P

1
=— V- 9
m l.w%ap Sfp ()



Let w, be a set of testing functions tangential to the surface S and define a symmetric
product as

<fg>= [fgds (10)
S
Testing of Eq. (7) yields
- <VO,w,> + io<F,w,> = <Hi",wq> (11
Choose the testing functions W, such that
A
wa n, =0 onL (12)

where L is the boundary of S and ;\'L is the outward pointing unit normal to L. This
property of w, implies [15]

<VOw> =~ Sj @ Vgw, ds (13)

The matrix equation can now be explicitly expressed as
r 2 r r ’
2a, | [CVsfyr) Vsw o) = K £,(r)w () ) G(r,r) dS'dS =
p S §

i .
=-TijHln(r)wq(r) dS q= 1,2,3... (14)

2 2
where £~ = 0" eu.

Basis functions

In Ref. [15] the scattering by a perfectly conducting square plate is calculated. At the
edges and corners of a thin, perfectly conducting plate the fields and source distributions
have known singular behaviour, see, e. g., [19]. It is shown in Ref. [15] that the use of
basis functions with correct edge and corner behaviour greatly enhance the convergence
of the scattering problem compared to the use of ordinary “rooftop” functions.

The aperture problem, as it is formulated in this paper, leads to an equation and to
singular behaviour of the fields that are similar to the scattering problem [15]. As a
consequence of that, the singular basis functions used in Ref. [15] can be used also in
this aperture problem. We give here just a short description of these basis functions, for
more details cf. [15].

Subdomain basis functions are used, i.e., basis functions with support only in
subsections of the domain. To assure continuity of the magnetic current density in the
direction of flow an overlapping technique is used. This prevents fictitious magnetic line
charges at the boundaries of the subsections.



In the interior of the domain the current is approximated by ordinary rooftop basis
functions, cf. Fig. 2.

Fig. 2. The interior basis functions. The magnetic current is approximated by
rooftop functions.

At the edges two kinds of basis functions are used, cf. Fig. 3. The magnetic surface
current tangential to an edge is expanded in basis functions with the singularity 1//d,
where d represents the perpendicular distance to the edge, but have rooftop character in
the direction of flow. The current flowing perpendicular to the edge is approximated by
basis functions that go to zero as Vd near the edge, which agrees with the singularity 1/Vd
for the magnetic charge.

(a) (b)

Fig. 3. The basis functions used to approximate the magnetic current tangential (a)
and perpendicular (b) to an edge.

At the corners the electric and magnetic fields have different singular behaviour. We use
two kinds of basis functions corresponding to these two singularities.

The first kind is used to expand the magnetic current flowing in the radial direction
towards the corner. The singularity of the related accumulated magnetic charge density
r” corresponds to the singular behaviour of the magnetic field. Here r denotes the
distance to the corner and the approximate value v=0.30 according to [19]. The x and y
components of these magnetic current basis functions are shown in Fig. 4. Note the
correct edge behaviour and the linear parts used to connect the corner subsection with the
adjacent edge subsections.



(b)

Fig. 4. The comer basis functions used to obtain the correct magnetic singularity.
The Cartesian components of the basis functions for the radial magnetic current are
illustrated.

The second kind of corner basis functions expands the tangential magnetic current near
the corner. This current has the same singularity as the electric field, r . The
approximate value of the exponent is given by Ref. [19] as 7=0.82. Besides the correct
corner and edge behaviour these basis functions are also solenoidal. Hence, no magnetic
charge is accumulated which otherwise would influence the expansion of the magnetic
field. The tangential current basis functions are illustrated in Fig. 5. The discontinuity of
the current density that can be seen in Fig. 5 is due to computational considerations, cf.
[15].

(b)

Fig. 5. The comer basis functions used to obtain the correct electric singularity. The
Cartesian components of the basis functions for the tangential magnetic current are
illustrated.



Testing functions

We use Galerkin’s method, i.e., the testing functions are identical to the basis functions.
This is possible as the above described basis functions fulfil the requirements for the
testing functions specified by Eq. (12).

Numerical treatment of the matrix equation

The use of complicated basis and testing functions like those described above, makes it
essential to find numerically efficient methods to calculate the matrix elements given by
Eq.(14). A multipole expansion technique to calculate the non self-patch terms of the
matrix elements is described by the author in Refs. [15] and [20]. The translation
properties of the spherical scalar wave functions [21] imply that the matrix elements can
be expressed as a series of multipole moments. Moreover, this technique can be used to
calculate the right side of Eq. (14) and the diffracted field. This subject is, however, not
pursued in the present paper. The reader is referred to the above mentioned references.

3 Transmission quantities
The far diffracted field and the transmission quantities are conveniently expressed in the
following vector function K

. A !
—ikror

K@) =rx( jM(r') e ds' x ) (15)
S

This vector function can easily be computed using the multipole technique, cf. [15].
It can be shown that the diffracted field, given by Eq. (2), can be expressed in the far
zone as

ikirl

Hir) = ioeS— K& 16
) lw£27dr| (r) (16)

In the following we consider plane wave incidence. Let the incident wave be specified by

Hin=Hye*" (17)
where Hy is a constant complex vector, and which is the field in the absence of the
screen.

We define the transmission cross section 7, cf. e.g. [6], as

a2
26,6) = lim 27 |H4|

r—>00 |Hin|2

(18)

where H? is the diffracted field at the observation point (r,6,¢) (z>0).
Using Eq. (16), the transmission cross section T can be expressed



o & K
2 H,f

7(6,0) = (19)

We define the transmission coefficient T of an array of apertures as the ratio of the power
transmitted through the apertures to the power incident on the apertures, cf. [17]. Hence,
for the configuration given by Fig. 1a, we have

Re [ (E4 x HIH.Z2 dS
S

T = (20)

Re [ (Ein Hin").%2 ds
S

In this expression the numerator should be evaluated in the right half space, i.e., z=0+.
Using Egs. (1), (15), (17) and the continuity of the electric and magnetic fields in the
apertures, one obtains

Re(K(k)-Hy")

T=- P
\]u/eIHOI Sk-z

21)

where § is the area of the apertures.

4 Numerical results

Convergence

To check the validity of the method we first study the convergence of the transmission
coefficient T for a configuration consisting of two square apertures and normal incidence.
The length of the side of each aperture is 0.1A. The results are highly dependent on the
polarization of the incident wave. We assume in the following that the apertures are
placed in the x-y-plane along the x-axis.

When the incident magnetic field is polarized in the j’\—direction, the convergence is fairly
independent of the distance between the plates, cf. Fig. 6a. At zero distance the
transmission coefficient agrees completely with the transmission coefficient of a
corresponding, single, rectangular aperture. The magnetic current distribution, which
corresponds to the tangential electric field in the aperture, is illustrated in Fig. 7a. As the
distance between the apertures vanishes, the singular behaviour of the magnetic current
flowing along the adjacent rims of the two apertures should disappear. However, as seen
in Fig. 7a, the singular source distributions prescribed by the basis functions cause
nonphysical oscillations. Still, using singular basis functions the convergence of the
transmission coefficient is, as seen from Fig. 6, greatly enhanced compare to the use of
ordinary, linear basis functions.

A different situation arises when the incident magnetic field is polarized in the 3-
direction. When the apertures get close to each other the convergence becomes very slow,
cf. Fig. 6b. This is due to the increasing edge singularities of the sources as the distance
between the apertures decreases. The corresponding phenomenon has recently been
reported in the literature when calculating scattering by strips [12]. This type of



phenomena is, however, not mentioned in Ref. [8] for an aperture with a wire grid. The
magnetic current distribution is shown in Fig. 7b. Notice that the curves representing the
distances d=0 and d=0.02a are not valid, since the convergence at these distances is to
slow, while the other curves correspond to convergent solutions, cf. Fig. 6b. The current
distribution of the limiting case, a single rectangular aperture, is also shown. Obviously,
the slow convergence at small distances may cause misleading results.

We have also made some studies of the convergence of the transmission coefficient at
higher frequency, a=0.5A. The above described characteristics seem to remain, although
less accentuated. It is conjectured that this is due to the decreased influence from the
singular magnetic charge distribution at higher frequencies, cf. the term Vsif, Vsw,in
Eq. (14). We therefore refrain from depicting this higher frequency case since the main
features of the problem are illustrated at low frequency.

Numerical examples

The fast convergence achieved with the singular basis functions makes the described
method well suited for calculating the transmission properties of arrays of apertures. As
just a few unknowns are needed for each aperture to obtain reasonable accuracy,
configurations with multiple apertures can be treated with limited computational effort.
(All computations presented have been carried out on a Sun 3/80 work station).

Figs. 8-9 illustrate the variation of the transmission coefficient T as the distances
between apertures, arranged in a row, are varied. In the computation each aperture was
divided into 7x7 “sub-squares”. Note that the transmission coefficient shows a small
maximum for the transverse polarization, while it is a monotonic function for the parallel
polarization at the lower frequency a=0.1A.

In Figs. 10-17 a series of numerical computations of the transmission cross section is
given for four apertures oriented along a line. Two different incident angles (normal and
oblique) at both polarizations are depicted for two different frequencies (a=0.14 and
a=0.51),

Figs. 18-21 show transmission cross sections for a more complicated configuration
consisting of six rectangular apertures. The size of each aperture is 0.54 x 14 and the
distances between the apertures are 0.251. Both polarizations as well as normal and
oblique incidence are illustrated. Notice the excellent convergence in all cases that are
shown; especially Fig. 18 where even the most coarse discretization gives a good result.

5 Summery and conclusions

We have presented a moment method approach to calculate the transmission properties of
arrays of rectangular apertures in a perfectly conducting screen. Basis functions with
correct singular behaviour were used to enhance the convergence and thus reducing the
necessary truncation size of the moment method matrix. Numerical results were presented
illustrating the performance of the method.

The method is less suited when treating apertures very close to each other, due to the
special singular behaviour of the sources in those cases. Thus, an attractive extension of
the technique would be to incorporate this behaviour into the basis functions. Another
approach, would be to combine the presented method with some recursive technique, and
thus, possibly, further reduce the computational costs.
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Fig. 6. Convergence of the transmission coefficient T for two square apertures, each
with length of side ¢=0.1A. Nommal incidence. Each aperture is divided into NxN
“sub-squares”. The convergence is shown for different distances d between the

apertures. The polarization of the incident magnetic field is (a) transverse / (3)]
parallel to the row of apertures.
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Fig. 7. The dominant component of the magnetic current density in one of two
adjacent square apertures. Normal incidence. The mean values of the current density
on “sub-squares” in the middle row parallel to the row of apertures are shown. The
length of the side of each aperture is 0.1 A. The apertures are divided into 11x11
“sub-squares”. The polarization of the incident magnetic field is (a) transverse / (b)
parallel to the row of apertures.
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magnetic field transverse (a) and parallel (b) to the row of apertures. The length of
the side of each aperture is 0.1A.
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Fig. 10. Transmission cross section of an array of four apertures oriented along the
x-axis. Normal incidence and the polarization of the magnetic field parallel to the y-
axis. The length of the side of each aperture is 0.1 A.
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Fig. 11. Transmission cross section of an array of four apertures oriented along the
x-axis. Normal incidence and the polarization of the magnetic field parallel to the x-
axis. The length of the side of each aperture is 0.1 A.
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Fig. 12. Transmission cross section of an array of four apertures oriented along the
x-axis. The plane of incidence is equal to the x-z-plane and the incidence angle is 45
degrees. The polarization of the magnetic field is parallel to the y-axis. The length of
the side of each aperture is 0.1A.
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Fig. 13. Transmission cross section of an array of four apertures oriented along the
x-axis. The plane of incidence is equal to the x-z-plane and the incidence angle is 45
degrees. The polarization of the magnetic field is perpendicular to the y-axis. The
length of the side of each aperture is 0.14.
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Fig. 14. Transmission cross section of an array of four apertures oriented along the
x-axis. Normal incidence and the polarization of the magnetic field parallel to the y-
axis. The length of the side of each aperture is 0.5 A.
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Fig. 15. Transmission cross section of an array of four apertures oriented along the
x-axis. Normal incidence and the polarization of the magnetic field parallel to the x-

axis. The length of the side of each aperture is 0.5 A.
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Fig. 16. Transmission cross section of an array of four apertures oriented along the
x-axis. The plane of incidence is equal to the x-z-plane and the incidence angle is 45
degrees. The polarization of the magnetic field is parallel to the y-axis. The length of
the side of each aperture is 0.5A.
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Fig. 17. Transmission cross section of an array of four apertures oriented along the
x-axis. The plane of incidence is equal to the x-z-plane and the incidence angle is 45
degrees. The polarization of the magnetic field is perpendicular to the y-axis. The
length of the side of each aperture is 0.54.
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Fig. 18. Transmission cross section of a configuration of six apertures. The size of
each aperture is 0.5Ax1A and the distances between the apertures are 0.254. The
results of three different discretizations of the apertures are illustrated. Normal
incidence and polarization of the magnetic field parallel to y-axis.
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Fig. 19. Transmission cross section of a configuration of six apertures. The size of
each aperture is 0.54x14 and the distances between the apertures are 0.25A. The
results of three different discretizations of the apertures are illustrated. Normal
incidence and polarization of the magnetic field parallel to x-axis.
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Fig. 20. Transmission cross section of a configuration of six apertures. The size of
each aperture is 0.54x12 and the distances between the apertures are 0.254. The
results of three different discretizations of the apertures are illustrated. The plane of
incidence is equal to the x-z-plane and the incident angle is 45 degrees. The

polarization of the magnetic field is parallel to the y-axis.
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Fig. 21. Transmission cross section of a configuration of six apertures. The size of
each aperture is 0.5Ax14 and the distances between the apertures are 0.25. The
results of three different discretizations of the apertures are illustrated. The plane of
incidence is equal to the x-z-plane and the incident angle is 45 degrees. The
polarization of the magnetic field is perpendicular to the y-axis.
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