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MIMO Encoder and Decoder Design for Signal Estimation

Erik Johannesson, Andrey Ghulchak, Anders Rantzer and Bo Bernhardsson

Abstract—We study the joint design of optimal linear MIMO
encoders and decoders for filtering and transmission of a vector-
valued signal over parallel Gaussian channels subject to a real-
time constraint. The objective is to minimize the sum of the
estimation error variances at the receiving end. The design
problem is nonconvex, but it is shown that a global optimum
can be found by solving a related two-stage problem. The
first stage consists of a mixed norm minimization problem,
where the 2-norm corresponds to the error variance in a
corresponding Wiener-Kolmogorov filtering problem and the
1-norm is induced by the channel noise. The second stage
consists of a matrix spectral factorization.

I. INTRODUCTION
The problem studied in this paper lies in the intersection

of estimation, communication and control. It is related to
Wiener-Kolmogorov filtering, real-time coding and feed-
forward compensator design. The problem may be motivated
from each of these three perspectives, depending on which
aspect one wishes to focus on.
The objective of the Wiener-Kolmogorov filtering problem

is to estimate a signal that is measured with additive noise,
under a mean square error criterion [6]. The design of the
optimal estimation filter can be formulated in the frequency
domain as the minimization problem:

‖(z−k−B)F‖22+ ‖BG‖22 (1)

where k is the allowed time delay, F and G represent the
frequency characteristics of the interesting signal and the
measurement noise respectively, and B is the design variable.
In this paper we generalize this problem to a setting

where the measurement and the estimation are performed
in two different locations. The additive white Gaussian
noise (AWGN) channel is used to model the communication
constraint between the two locations. It is shown that the
inclusion of a channel between the two parts of the filter
induces an additional term, a weighted 1-norm of B, in the
cost (1).
The problem under study may also be regarded as a

communication problem since we wish to communicate a
signal over a channel, with minimal distortion, subject to
a real-time constraint. Classical communication theory does
not worry about time delays [15] so information-theoretic
tools seem to be of little use. However, real-time coding
problems have lately been studied with increasing interest.
See for example [8] for an overview.
It is worth noting that there are cases when the real-

time constraint is without importance. For example, under
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certain conditions, it turns out that optimality can be achieved
without coding. For example, this is the case when a white,
Gaussian source is to be sent over an AWGN channel with a
mean square error criterion [3]. When the source is generated
by a linear filter it may be enough to send scaled innovations
over an AWGN channel [10].
These examples are somewhat counter-intuitive since a

large allowed time delay usually makes the communication
problem much easier in practice. Here, the introduction of
additive measurement noise at the coder makes the real-time
constraint important. The reason is that the noise gives an
incentive to filter the signal at the same time that it is coded.
In a control perspective, the problem can be interpreted as

that of designing a feed-forward compensator with access to
remote and noisy measurements of the disturbance that is to
be counteracted. In this context, an encoder filters the mea-
surements and transmits information about the disturbance
to the decoder/controller, which in turn can compensate.

A. Main Result
The main result of this paper is that the joint design of

an optimal linear MIMO encoder-decoder pair for parallel
Gaussian channels can be formulated as a convex optimiza-
tion problem followed by a matrix spectral factorization.
Specifically, it takes the form of a mixed norm minimization
problem, where the relative weight of the two norms is
determined by the maximum transmission power.

B. General Problem Description
The block diagram in Figure 1 gives a schematic represen-

tation of the problem investigated in this paper. A signal is
measured, together with some additive noise, at one location.
An encoder is able to filter and encode information about
the measurements and send it over a noisy communication
channel to a another location, where a decoder then forms
an estimate of the signal.

Signal

Noise
Encoder Decoder

P

Channel

Error

Fig. 1. Schematic illustration of the problem under consideration. The
encoder and the decoder are designed to minimize the error. In the nominal
case P represents a fixed time delay but more general dynamics are allowed.

The task is to design the encoder and the decoder such
that the estimation error becomes as small as possible. The
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estimation has to occur in real-time, as dictated by the
transfer function P. Besides containing a fixed time delay, P
may include general dynamics that the signal passes through
before it is to be estimated. In a feed-forward context, P
describes the propagation of the disturbance between the
measurement and the compensation points.
The communication channel is modeled as a number of

parallel Gaussian channels. That is, there is additive channel
noise and the total power of the transmitted signal is limited.
The relation between the noise variance and the power
constraint determines the maximum amount of information
that can be communicated.

C. Relations to Earlier Work
A lot of research efforts in the control community have

been aimed at problems related to communication limita-
tions. An overview of the research on networked control
systems and control with data rate constraints, as well as a
thorough list of references, can be found in [4] and [12] re-
spectively. Communication channel requirements for stability
of feedback systems was given in [18], [14] and [2], among
others. Fundamental limitations originating from channel
constraints have been found in [9] for feedback systems and
in [10] for disturbance attenuation using side information.
The problem of controller and/or encoder-decoder design
was treated in [1], [5] and [16] for various architectures and
channel models.
This paper is a generalization of the results in [7], in

which we treated the SISO case. This paper contains the
(non-trivial) generalization of the results to the design of
MIMO encoders and decoders, for the case of vector-valued
signals.
The problem setup in [7] and this paper is inspired by

the work in [10], where information-theoretic tools were
used to find a lower bound on the reduction of entropy rate
made possible by side information communicated through
a channel with given capacity. Under stationarity assump-
tions, this was used to derive a lower bound, which is a
generalization of Bode’s integral equation, on a sensitivity-
like function. Even though the problem architectures are
similar, there are some important differences: The main
difference is that [10] gives performance bounds for a general
communication channel while our papers treats synthesis for
a specific channel model. Furthermore, there are differences
in the employed performance metrics: Here, the variance of
the error is minimized. In [10], a lower bound is achieved
on the integral of the logarithm of a sensitivity-like function.
Also, in [10], a feedback controller is placed at the receiving
end. The setup is generalized in our papers with the inclusion
of measurement noise at the sensor as well as the possibility
of general dynamics in P.

D. Organization
The rest of this paper is organized as follows: After some

comments on notation in Section II, the precise problem
formulation is given in Section III. The solution is presented
in Section IV: First the theoretical results are given and then

we outline a procedure for finding a numerical solution.
Finally, concluding remarks are given in Section V. Some
results that we use have been put in the appendix in order
to simplify the exposition.

II. NOTATION

For 1≤ p≤∞, we define the Lebesgue spaces Lp and the
Hardy spaces Hp, over the unit circle, in the usual manner.
For a transfer matrix X we say (somewhat ambiguously) that
X ∈Lp if the elements of X are in Lp, and that X ∈Hp if the
elements of X are in Hp. For more details, consult a standard
textbook such as [13].
A singular value decomposition of a matrix A ∈ Cm×n is

given by A =UΣV ∗, where U ∈ Cm×r, Σ ∈ Cr×r, V ∈ Cn×r

and r = min{m,n}. Moreover, U∗U = V ∗V = I and Σ is
diagonal with diagonal elements σk ≥ 0, k = 1 . . .r
The singular value decomposition of a transfer matrix

X ∈ Lp is defined pointwise and U,V ∈ L∞ and Σ ∈ Lp.
A transfer matrix X is said to be inner if X ∈ H∞ and

X∗X = I. A transfer matrix X ∈Hp is said to be outer if the
set

{Xq : q is a vector of polynomials in z−1}

is dense in Hp. We say that X is co-inner (co-outer) if
XT is inner (outer). If X ∈ Hp there exists an inner-outer
factorization X = XiXo where Xi is inner and Xo ∈ Hp is
outer. Similarly there exists a co-inner-outer factorization
X = XcoXci where Xco is co-outer and Xci is co-inner.
For any matrix A ∈ Cm×n with r = min{m,n}, define the

Nuclear and the Frobenius norms as

‖A‖∗ = tr
√
A∗A=

r

∑
i=1

σi

‖A‖F =
√

tr(A∗A) =

(

r

∑
i=1

σ2i

)1/2

respectively. For transfer matrices, define the norms:

‖X‖1 =
1
2π

∫ 2π

0
‖X(eiω)‖∗dω

‖X‖2 =
(

1
2π

∫ 2π

0
‖X(eiω)‖2Fdω

)1/2

and the relation

〈X ,Y 〉=
1
2π

∫ 2π

0
tr
(

X∗(eiω)Y (eiω )
)

dω

To shorten notation, we will omit the argument eiω to
transfer matrices when it is clear from the context.
Equalities and inequalities involving functions of eiω are

to be interpreted as holding for almost all ω . That is, the set
of ω for which the (in)equality does not hold is of measure
zero.
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Fig. 2. Structure of the system. With F , G and P given, the objective is
to design C and D such that the estimation error E(eT e) is minimized.

III. PROBLEM FORMULATION

The structure of the problem is shown in Figure 2. All
signals are vector-valued and the number of elements in
signal f is denoted by n f etc. The input signals u,v,w are
mutually independent white noise sequences with zero mean
and identity variance.
Every block in Figure 2 represents a linear, time-invariant

system described by a transfer matrix of appropriate dimen-
sions. We assume that F,G,P∈H∞ and that C,D∈H2. Note
that the elements in these transfer matrices do not need to
be rational.
The transfer matrices F and G are shaping filters for the

signal and the measurement noise respectively. P represents
the dynamics that the signal undergoes between the points
where it is measured and where it is to be estimated.
Typically, P consists of fixed time delays, but may contain
more general dynamics. The encoder C and the decoder D
are the design variables.
The communication channel is modeled as nt parallel

additive white Gaussian noise (AWGN) channels with a
constraint on the total transmission power.1 That is,

r(k) = t(k)+w(k)
E(t(k)T t(k))≤ α2 for k ∈ Z (2)

where ti(k) is the transmitted variable, ri(k) is the received
variable, and wi(k) is the channel noise on channel i at
time k. The constant α > 0 determines the maximum total
instantaneous transmission power.
The objective is to find C,D∈H2 that satisfies the channel

constraint (2) and minimizes the estimation error in the
following sense:

ne
∑
i=1
E(e2i ) = ‖(P−DC)F‖22+ ‖DCG‖22+ ‖D‖22 (3)

We assume that F and G have no common zeros on the
unit circle and that the whole system is in stationarity. We
also assume that

nt ≥min{n f ,ne} (4)

We expect to find the optimal linear and causal C,D, but
make no claim that linear solutions are optimal per se.

1For the purposes of this paper, it actually does not matter if the channel
noise w is Gaussian or not.

IV. SOLUTION
The objective (3) is nonconvex, but it is possible to convert

the problem into a convex one by an intermediate step. Note
that the two first terms in (3) only depends on the product
DC. The idea is then to first consider B= DC as fixed and
find the factorization that minimizes the remaining term,
‖D‖22 subject to the channel constraint. Given the value of
the third term in (3) in terms of B, the minimization of (3)
over B turns out to be a convex problem. Once the optimal
B is found, the factorization can be applied to find optimal
C and D.

A. Theoretical Results
In order to simplify the proceeding exposition, we start by

rewriting the channel constraint as described by the following
lemma.
Lemma 1: Consider α > 0, and F,G ∈ H∞ and suppose

that

∃ε > 0 such that FF∗+GG∗ ≥ εI (5)

Then there exists an H ∈ H∞ with H−1 ∈ H∞ such that the
channel constraint (2) is equivalent to

‖CH‖2 ≤ α
Proof: By (5) and Theorem 2 (in appendix), there exists

an outer function H ∈H2 such that

HH∗ = FF∗+GG∗ (6)

and thus
‖CH‖22 = ‖CF‖22+ ‖CG‖22

Since F,G ∈H∞ it follows that H ∈H∞. Moreover, since H
is outer it follows from (5) that H−1 ∈H∞ as well.
In the following, we will use H to represent the channel
constraint.
For a given product of the decoder and encoder, B= DC,

we will now solve the problem of finding the optimal
factorization of this product into its decoder and encoder
part. The solution is given by the following lemma.
Lemma 2: Suppose α > 0, B ∈ H1 and H ∈ H∞ with

H−1 ∈H∞. Then the minimum

min
C,D∈H2

‖D‖22

subject to the constraints

B= DC, ‖CH‖22 ≤ α2

is attained. The minimum value is 1
α2 ‖BH‖21.

Moreover, if B= 0 then the minimum is achieved by D= 0
and any function C ∈H2 that satisfies ‖CH‖22 ≤ α2.
If B is not identically zero, let B = BiBo be an inner-

outer factorization and BoH = UoΣV ∗ be a singular value
decomposition. Then C,D ∈H2 are optimal if and only if

B= DC, ‖CH‖22 = α2, DD∗ =
1
α2

‖BH‖1BiUoΣU∗
o B

∗
i

Proof: If B= 0 the proof is trivial, so we assume from
now that B is not identically zero. It follows that neither C
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nor D are identically zero and that β = ‖CH‖2 > 0. Now,
suppose that C,D are feasible and that β < α . Then

Ĉ =
α
β
C, D̂=

β
α
D

are feasible and ‖D̂‖2 < ‖D‖2. Hence, a necessary condition
for optimality is that ‖CH‖2 = α .
The remainder of this proof is divided into three parts.

First, the dual problem is considered. Then, it is shown that
there is a saddle point and the optimality criteria are derived.
Finally, existence is proven by construction of a solution.

Dual Problem: In order to avoid dealing with analytic-
ity constraints, we will now relax the search toC,D ∈ L2 and
show later that there are C,D ∈H2 that satisfy the optimality
criteria. For λ ≥ 0 and Φ ∈ L∞, introduce the Lagrangian

L(C,D,λ ,Φ) = ‖D‖22+λ
(

‖CH‖22−α2
)

−〈Re Φ,Re DC−B〉− 〈Im Φ, Im DC−B〉
= ‖D‖22+λ

(

‖CH‖22−α2
)

−Re 〈Φ,DC−B〉

=
∫ 2π

0

[

‖D‖2F +λ‖CH‖2F−Re tr(Φ∗(DC−B))
] dω
2π

−λα2

The integrand in L can be rewritten, by a completion of
squares, as

‖D‖2F +λ‖CH‖2F−Re tr(CΦ∗D−Φ∗B)
= ‖D− 1

2ΦC
∗‖2F +λ‖CH‖2F− 1

4‖CΦ
∗‖2F +Re tr(Φ∗B)

= ‖D− 1
2ΦC

∗‖2F + tr [C (λHH∗− 1
4Φ

∗Φ)C∗]+Re tr(Φ∗B)

Only the first term in the integrand depends on D. The
contribution of this term to the integral is minimized if and
only if

D= 1
2ΦC

∗ (7)

If (7) holds, then the integral in L only depends on C through
the second term, which has the pointwise infimum

inf
C
tr [C (λHH∗ − 1

4Φ
∗Φ)C∗] =

{

0 if 4λHH∗ ≥Φ∗Φ

−∞ otherwise

Moreover,

tr(Φ∗B) = tr(Φ∗DC) = 1
2 tr(CΦ

∗ΦC∗) = 1
2‖ΦC

∗‖2F (8)

Thus, tr(Φ∗B) is real and

inf
C,D∈L2

L=

{

∫ 2π
0 tr(Φ∗B) dω2π −λα2 if 4λHH∗ ≥Φ∗Φ

−∞ otherwise

so the dual problem is:

maximize
λ≥0,Φ∈L∞

1
2π

∫ 2π

0
tr(Φ∗B)dω−λα2

subject to

Φ∗Φ≤ 4λHH∗ (9)

If λ ,Φ are dual feasible then

tr [C (4λHH∗−Φ∗Φ)C∗] = 0

and integration gives

‖ΦC∗‖22 = 4λ‖CH‖22 = 4λα2. (10)

It follows from (8) and (10) that
1
2π

∫ 2π

0
tr(Φ∗B)dω = 1

2‖ΦC
∗‖22 = 2λα2. (11)

Introduce
Ψ=

1
2
√
λ
ΦH−∗

The constraint (9) can then be written as Ψ∗Ψ≤ I and
1
2π

∫ 2π

0
tr(Φ∗B)dω = 2

√
λ
1
2π

∫ 2π

0
tr(HΨ∗B)dω . (12)

From (11) and (12) we see that
1
2π

∫ 2π

0
tr(Ψ∗BH) dω =

√
λα2

and thus the dual function can be written as
1
2π

∫ 2π

0
tr(Φ∗B)dω−λα2 = λα2 =

1
α2

(
√
λα2)2

=
1
α2

(

1
2π

∫ 2π

0
tr(Ψ∗BH)dω

)2
. (13)

We will now perform pointwise maximization of the
integrand in (13). Recall that BH = BiBoH = BiUoΣV ∗.
Assume that Bo has n rows. Then Σ is diagonal with diagonal
elements σk ≥ 0, k= 1 . . .n. Since BoH is wide (it has n f ≥ n
columns) it follows that Uo is square and thus it is unitary.
Let U = BiUo and introduce Ψ̃=U∗ΨV . Then it follows

from Ψ∗Ψ≤ I and UU∗ ≤ I that

Ψ̃∗Ψ̃=V ∗Ψ∗UU∗ΨV ≤V ∗Ψ∗ΨV ≤V ∗V = I.

Using Ψ̃, we can obtain an upper bound for the maximum:

max
Ψ∗Ψ≤I

tr(Ψ∗BH) = max
Ψ∗Ψ≤I

tr(Ψ∗UΣV ∗) = max
Ψ∗Ψ≤I

tr(V ∗Ψ∗UΣ)

≤ max
Ψ̃∗Ψ̃≤I

tr
(

Ψ̃∗Σ
)

=
n

∑
k=1

max
|Ψ̃kk|≤1

σkΨ̃kk =
n

∑
k=1

σk

which is achieved if and only if Ψ̃ = I. Therefore, Ψ is
a maximizer if and only if U∗ΨV = I and Ψ∗Ψ ≤ I. The
solutions can be parametrized as:

Ψ=UV ∗+Ψ0 = BiUoV ∗+Ψ0
0=U∗Ψ0V =U∗

o B
∗
iΨ0V (14)

I ≥Ψ∗Ψ (15)

Pre-multiplying (14) with Uo gives

B∗iΨ0V = 0. (16)

The upper bound of the maximum is achieved (for example
with Ψ0 = 0), so the value of the dual problem is

max
Ψ∗Ψ≤I

1
α2

(

1
2π

∫ 2π

0
tr(Ψ∗BH) dω

)2
=
1
α2

‖BH‖21.

The maximizing dual variables are given by

Φ= 2
√
λΨH∗ = 2

√
λ (BiUoV ∗+Ψ0)H∗ (17)
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where Ψ0 is such that (15) and (16) hold, and

λ =

(

1
α2

‖BH‖1
)2

. (18)

Saddle Point: We will now show that there is a saddle
point, which implies that the duality gap is zero.
In the following, assume that (15), (16), (17) and (18)

hold. Then λ and Φ are dual feasible and (C,D,λ ,Φ) is a
saddle point if and only if C,D ∈H2 are primal feasible,

λ
(

‖CH‖22−α2
)

= 0 (19)

and

L(C,D,λ ,Φ) = inf
C̄,D̄∈H2

L(C̄, D̄,λ ,Φ). (20)

The saddle point conditions imply that ‖CH‖2 = α since
λ > 0 and that D= 1

2ΦC∗ as we have seen earlier that this
follows from minimization of the Lagrangian.
Suppose that C,D satisfy B= DC and D= 1

2ΦC∗. Then

DD∗ = 1
2DCΦ

∗ = 1
2BΦ

∗ =
√
λBiBoH(VU∗

o B
∗
i +Ψ∗

0)

=
√
λ (BiUoΣU∗

o B
∗
i +BiUoΣV ∗Ψ∗

0)

Clearly, DD∗ and BiUoΣU∗
o B∗i are Hermitian. Accordingly,

A= BiUoΣV ∗Ψ∗
0 must be Hermitian. Now, by (16),

ABi = BiUoΣV ∗Ψ∗
0Bi = 0

⇒ 0= ABi = A∗Bi =Ψ0VΣU∗
o B

∗
i Bi =Ψ0VΣU∗

o

Hence,

DD∗ =
√
λBiUoΣU∗

o B
∗
i (21)

Now, suppose instead that C,D ∈ H2 satisfy B = DC,
‖CH‖2= α and (21). Then C,D are primal feasible and (19)
is satisfied. Moreover,

L(C,D,λ ,Φ) = ‖D‖22 =
√
λ
2π

∫ 2π

0
tr(BiUoΣU∗

o B
∗
i )dω

=

√
λ
2π

∫ 2π

0
tr(Σ)dω =

1
α2

‖BH‖21,

so (20) holds and thus the saddle point conditions are satis-
fied. Since these assumptions and the saddle point conditions
imply each other, they are equivalent.
To conclude, we have shown that (C,D,λ ,Φ) is a saddle

point (and C,D are thus optimal) if and only if C,D ∈ H2
satisfy B= DC, ‖CH‖2 = α and (21).

Existence of Solution: We will now construct a solution
that satisfies the optimality conditions.
Define M=

√
λUoΣU∗

o ∈ L1, which is Hermitian with real
diagonal. BoH is outer because both Bo and H are outer.
Since Uo is unitary it follows that σk > 0, k = 1 . . .n and
that M is positive definite. From Lemma 3 (in appendix) it
follows that logσk ∈ L1 and therefore

logdetM =
n
2
logλ +

n

∑
k=1
logσk ∈ L1

According to Theorem 2 there is an outer transfer matrix
Do ∈ H2 such that M = DoD∗

o. Let D̃ = BiDo ∈ H2 and
C̃ = D−1

o Bo. Then

C̃ = D−1
o BoHH−1 = D−1

o UoΣV ∗H−1

= D−1
o UoΣU∗

oUoV
∗H−1 =

1√
λ
D∗
oUoV

∗H−1 ∈ L2

Since Do is outer it follows that C̃ ∈H2.
We can now verify that C̃ and D̃ satisfy the optimality

conditions:

D̃C̃ = BiDoD−1
o Bo = BiBo = B,

‖C̃H‖22 = ‖D−1
o BoH‖22 =

1
2π

∫ 2π

0
tr
(

H∗B∗oD
−∗
o D−1

o BoH
)

dω

=
1
2π

∫ 2π

0
tr
(

VΣU∗
oM

−1UoΣV ∗)dω

=
1
2π

∫ 2π

0

1√
λ
tr(Σ)dω = α2

and

D̃D̃∗ = BiDoD∗
oB∗i =

√
λBiUoΣU∗

o B∗i .

If the rank of B is smaller than nt , then C̃ and D̃ are not
of the required size. We have that C̃ is n× n f and that D̃ is
ne× n, where n ≤min{ne,n f } ≤ nt . Meanwhile, we require
C to be nt × n f and D to be ne× nt . Therefore, let

D=
[

D̃ 0ne×nt−n
]

, C =

[

C̃
0nt−n×n f

]

Noting that DC = D̃C̃ = B, that ‖CH‖2 = ‖C̃H‖2 and that
DD∗ = D̃D̃∗ we conclude that C,D are optimal.
Using Lemma 2, we can state the main result of this paper,
which shows that the design problem can be solved using
convex optimization techniques. The theorem is more or less
the same as the corresponding theorem in [7], although the
optimality conditions have changed to reflect that the systems
are MIMO.
Theorem 1: Suppose that α > 0, that F,G,P ∈ H∞ and

that

∃ε > 0 such that FF∗+GG∗ ≥ εI.

Then the minimum

min
C,D∈H2

‖(P−DC)F‖22+ ‖DCG‖22+ ‖D‖22 (22)

subject to

‖CF‖22+ ‖CG‖22 ≤ α2 (23)

is attained and is equal to the minimum of the convex
optimization problem

min
B∈H2

‖(P−B)F‖22+ ‖BG‖22+
1
α2

‖B
[

F G
]

‖21 (24)

which is attained by a unique minimizer.
Further, suppose B ∈ H2 minimizes (24). If B = 0, then

(22) subject to (23) is minimized by D= 0 and any function
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C ∈ H2 that satisfies (23). If B is not identically zero, then
C,D ∈H2 minimize (22) subject to (23) if and only if

B= DC, ‖C
[

F G
]

‖22 = α2,

DD∗ =
1
α2

‖B
[

F G
]

‖1BiUoΣU∗
o B

∗
i ,

where Bi is defined by an inner-outer factorization B= BiBo
and Uo is given by a singular value decomposition
BoH =UoΣV ∗, with H ∈ H∞ satisfying H−1 ∈ H∞ and
HH∗ = FF∗+GG∗.

Proof: By Lemma 1 there exists H ∈ H∞ with the
specified properties and the channel input constraint (23) will
henceforth be written as ‖CH‖2 ≤ α . Define the sets:

Θ= {(C,D) :C,D ∈H2, ‖CH‖2 ≤ α}
ΘB = {(C,D) : (C,D) ∈ Θ, B= DC}

and the functional

ϕ(C,D) = ‖(P−DC)F‖22+ ‖DCG‖22+ ‖D‖22.

The infimum of (22) subject to (23) can be written

inf
C,D∈Θ

ϕ(C,D) = inf
B∈H1

inf
C,D∈ΘB

ϕ(C,D)

= inf
B∈H1

(

‖(P−B)F‖22+ ‖BG‖22+ inf
C,D∈ΘB

‖D‖22
)

= inf
B∈H1

‖(P−B)F‖22+ ‖BG‖22+
1
α2

‖BH‖21. (25)

The first equality comes from the fact that a product of
two functions in H2 is in H1, and that any function in H1
can be written as a product of two functions in H2. In the
third equality, Lemma 2 was applied to perform the inner
minimization.
We will now show that the minimum in (25) is attained

by a unique B ∈ H2. To this end, perform a completion of
squares:

ψ(B) = ‖(P−B)F‖22+ ‖BG‖22+
1
α2

‖BH‖21

= ‖BH−PFF∗H−∗‖22+
1
α2

‖BH‖21+ const.

Let X = BH ∈ H1 and R = PFF∗H−∗ ∈ L∞. Minimizing
ψ(B) is then equivalent to minimizing

ρ(X) = ‖R−X‖22+
1
α2

‖X‖21 (26)

over X ∈ H1. However, since we want to minimize ρ(X) it
is enough to consider X with ρ(X)≤ ρ(0) = ‖R‖22. Hence,

‖X‖2 ≤ ‖R−X‖2+ ‖R‖2 ≤
√

ρ(X)+ ‖R‖2 ≤ 2‖R‖2
def
= r.

Now, in the weak topology, ρ(X) is lower semicontinuous
on L2 and the set {X : ‖X‖2 ≤ r} is compact. This proves the
existence of a minimum. Moreover, ρ(X) is strictly convex,
and thus the minimum is unique.
Since ‖X‖2 ≤ r, we can restrict the search to X ∈ H2

without loss of generality. Because H−1 ∈H∞ it follows that
B= H−1X ∈H2 and that (25) is equal to (24).

Since ρ(X) attains a unique minimum in H2, so does ψ(B)
and hence the minimum (22) subject to (23) is attained,
since it is equal to the minimum of ψ(B). The optimality
conditions follow from the application of Lemma 2.
The cost function (24) consists of three terms, which can

be given the following interpretations: The sum of the first
two are equal to the cost in the situation where the channel
is noise-free and has unlimited capacity, which is the error
variance in the Wiener-Kolmogorov problem (1), if the time
delay is replaced by the more general filter P. The third term
is the error induced by the channel noise. It is interesting to
note that the first two terms are 2-norm functions of the
decision variable B, while the third term is a weighted 1-
norm of B. Thus, the problem is equivalent to a mixed norm
minimization problem with the parameter α determining the
relative importance of the two norms.
It was noted earlier that the solution is not unique. To

clarify, the optimal B is unique but there are multiple
factorizations of B into C and D that achieve the optimal
value. For example, a second solution is trivially found by
changing the sign of both C and D.

B. Procedure for Numerical Solution
Working along the lines of Theorem 1, it is possible to

numerically solve the design problem, described in Section
III, by the following procedure: First, minimize (26). In
practice, this is done approximately using a finite basis
representation of X and sum approximations of the integrals.
This minimization can then be cast a quadratic program with
second-order cone constraints.
Then perform a matrix spectral factorization to find

H ∈H∞ with H−1 ∈H∞ that satisfies (6). Perform an inner-
outer factorization of B = XH−1 to obtain B = BiBo and a
singular value decomposition to obtain BoH =UoΣV ∗. Let

M =
1
α2

‖BH‖1UoΣU∗
o

and perform a matrix spectral factorization to obtain Do ∈H2
which is outer and satisfies DoD∗

o =M. Finally let D= BiDo
and C = D−1

o Bo.
It is possible that the obtained D and C are of incorrect

size (if the rank of B is lower than the number of channels
nt). In this case just add columns of zeros to D and rows of
zeros to C until they are of correct size.

V. CONCLUSIONS
This paper treats the joint design of optimal linear MIMO

encoders and decoders for filtering and transmission of a
signal over parallel Gaussian channels subject to a real-time
constraint. The problem can be motivated as a distributed
estimation problem, as a real-time communication problem
or as a feed-forward compensator design problem.
In [7], we studied the SISO version of this problem and

found that it can be formulated as a mixed H1 and H2
problem. In this paper, these results have been extended
to the MIMO case. Perhaps as expected, the results are
very similar, especially the main theorem. The factorization
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problem seems however to be more difficult for multi-
variable systems, both in theory and in practice.
The assumption (4) may deserve some explanation: If

there are too few channels, the maximum rank of the product
of C and D may become smaller than the smallest dimension
of B. Then not all B would be realizable as a product of C
and D. Thus some rank condition would have to be imposed
on B in Theorem 1, which is very difficult to handle.
This work provides several topics for further research, that

we plan to investigate in the future:
• If P, F and G are rational, will the optimalC and D also
be rational (that is, implementable with finite memory)?
Preliminary results suggest that the answer is negative.

• Are linear solutions optimal? Under what conditions?
• Is the method used in this paper applicable to other
structures, such as feedback loops?

APPENDIX
Lemma 3: Suppose that m< n and that the m×n transfer

matrix X ∈Hp is outer. Then the singular values of X satisfy
logσk ∈ L1, where k = 1 . . .m.

Proof: A co-inner-outer factorization gives X = XcoXci,
where Xco is m×m. It is well-known that if a matrix function
Y ∈Hp is square then it is outer if and only if detY is outer.
Also, if a scalar function is outer, then the logarithm of the
absolute value is L1. Thus if Y is square and outer then
log |detY | ∈ L1.
For the singular values of X , it holds that

m

∑
k=1
logσk = 1

2 log
m

∏
k=1

σ2k = 1
2 logdetXX

∗

= 1
2 logdetXcoXciX

∗
ciX

∗
co =

1
2 logdetXcoX

∗
co

= log |detXco| ∈ L1.

Now, logσk < σk ∈ L1 and so
∫ 2π

0
logσk dω <

∫ 2π

0
σk dω < ∞

Since the sum of the logarithms is L1 and every term has an
integral bounded from above, it follows that

∫ 2π

0
logσk dω >−∞

and hence logσk ∈ L1.
The following theorem, given in [11], is the matrix gener-

alization of a spectral factorization theorem by Szegő [17].
Theorem 2 (Matrix Spectral Factorization): Suppose that

Y ∈ L1 is m×m and positive definite on the unit circle. If
logdetY ∈L1 then there exists an outer m×m transfer matrix
X ∈H2 such that

Y = XX∗
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