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Abstract

The mean e�ective gain (MEG) is one of the most important parameters for

the characterization of antennas in wireless channels. This paper provides an

analysis of some fundamental properties of the MEG and gives corresponding

physical interpretations. Three points are analyzed in detail: (i) we provide

closed-form expressions for MEG in a mixed environment with both stochastic

and deterministic components, showing that the MEG can be written as a

sum of gains for the deterministic and stochastic components, (ii) we show

that under some assumptions the propagation channel and the antenna are

equivalent in the sense that the impact of the channel cross-polarization ratio

(XPR) and the antenna e�ective-XPD on the MEG are symmetrical, (iii)

based on the fact that MEG depends on random variables, such as the XPR

and antenna rotations due to user's movements, we de�ne the average, the

minimum and maximum MEG of antennas, respectively. Finally, we derive

the maximum e�ective gain of antennas and show that it is bounded by 4πηrad,

where ηrad is the radiation e�ciency of the antenna.

1 Introduction

Mobile terminals are vital elements of wireless networks and have a signi�cant impact
on the overall system performance. The e�ciency of the mobile terminal including
the antenna has a strong impact on the link quality in both the downlink and uplink
channels. In particular, the antenna gain directly enters the link budget, and thus
(co-) determines the coverage and/or data rate that can be achieved. In wireless
communication systems with a �single-path� between the receiver and the transmit-
ter, or generally, in systems with a strong LOS (line-of-sight) component, such as
point-to-point links, the impact of the antennas on the link quality is fully quanti�ed
by the Friis equation, [7]. This equation accounts for antenna directivity, radiation
e�ciency and polarization mismatch in the LOS direction. On the other hand, in
wireless systems where none-line-of-sight (NLOS) communications is predominant,
i.e. in multipath channels with no dominant component, a full characterization of
the impact on the link budget is obtained by the partial antenna gain patterns for
orthogonal polarizations combined with the directional and polarization properties
of the propagation channel. However, such a full functional characterization of an-
tenna and channel is too complicated for most practical purposes. It is thus desirable
to use a single parameter that describes antenna, channel, and their interaction.

The mean e�ective gain (MEG), which is a single parameter describing the im-
pact of the antenna on the link budget, has emerged as the way of characterizing the
communication performance of handsets including the antennas in real propagation
environments1. MEG is, in fact, the average received power that in the Rayleigh

1Currently, mainly due to practical reasons, the total radiated power (TRP) isotropically radi-
ated by the mobile terminal is used in the link budget calculations, together with an attenuation
factor accounting for the losses in the user's body. Even if the TRP is an excellent parameter for
the evaluation of the power radiated in free space, it is not a proper measure for the characteriza-
tion of the communication link quality. TRP does not account for the full interaction between the
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fading environment completely de�nes the �rst order statistics of the signal enve-
lope of the small-scale fading. Moreover, MEG is a measure of how a deterministic
device, the antenna, preforms in the stochastic channel. Finally, MEG is the natu-
ral extension of the communication link quality concept introduced by Wheeler2 for
single-path channels, [30], to the more general case of multipath channels.

The concept of MEG was introduced by Taga, [28], who de�ned it as the average
power received by the antenna under test in the propagation channel of interest to the
sum of the average powers that would had been received in that same environment
by two isotropic antennas, vertically and horizontally polarized, respectively3. In
his paper Taga gave a closed form equation for the uncorrelated scattering case
based on the Jakes' signal autocorrelation model given in [10]. Work since then
has concentrated on evaluating the MEG of antennas in di�erent Rayleigh fading
environments, di�erent antenna designs as well as di�erent commercial handsets
have been evaluated using channel models describing the spatial and polarization
response of the channel to the transmitted electromagnetic waves. In many occasions
the variability of the MEG due to the user's body, mainly the head and/or hand, has
also been evaluated from measurements of handsets. Some examples can be found
in the references [2, 6, 8, 9, 11, 13�15, 18�25, 27]. A summary of research results and
further references can be found in [4, 5].

Despite the large number of investigations of the MEG, there are still several
important topics that have not been addressed yet; the current paper aims to close
those gaps.

1. First of all, we investigate the MEG in Rician fading channels, i.e., channels
that contain a line-of-sight component as well as random �elds (all previous
papers considered Rayleigh-fading random �elds only). Rician channels are
gaining more and more importance, for example in communication between
PDA-like devices to wireless local area network (WLAN) access points (WiFi),
picocell base stations (3GPP), or relays (Wimax). We provide closed-form
equations for the MEG in such channels that clearly show the in�uence of the
di�erent �eld components.

2. Next, we provide a physical interpretation of the factors in�uencing the MEG,
and analyze how it can be improved. As discussed above, the MEG accounts
for the in�uence of both the antenna (as given by the polarized antenna pat-
terns) and the channel (described by the directional spreading and depolar-
ization in the channel). We show that the MEG is determined by how well
the polarization characteristics of the antenna and the channel are matched
to each other, and similarly for the directional characteristics; as a matter of
fact, channel and antennas show duality in their impact on the MEG. This

antennas and the channels, e.g., the joint e�ects of polarization and directivity mismatch.
2Wheeler de�ned the communication link quality as the ratio of the received power to the

transmitted power and made use of the Friis equation.
3Amore general de�nition and practical de�nition of MEG is de�ned relative a realistic reference

antenna such as a half-wavelength dipole.
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gives an understanding of how a low MEG is generated, and how it can be
improved.

3. While the MEG has always been treated in the literature as a single, �xed,
number, this is only valid for a certain, �xed orientation of the antenna with
respect to the direction of the multipath components in the propagation chan-
nel. In many practical situations, the orientation of the handset (and thus the
antenna) cannot be reliably predicted. Moreover, channel properties such as
the cross-polarization ratio (XPR) and the angular spread are stochastic vari-
ables by nature. Thus, the MEG becomes a function of the angular spread,
the XPR, the orientation angle relative the incoming wave �eld, etc. We in-
vestigate the properties of this function, including its mean, minimum, and
maximum. The results enable a more realistic link budget that includes mar-
gins and outage probabilities. Finally, we provide closed form expressions for
the optimal link gain, which could be achieved by proper knowledge of the
channel assuming that losses due to matching are minimized.

The remainder of the paper is organized as follows. Section II provides the deriva-
tion of the generalized MEG that incorporates the LOS component of the received
�eld. Here we also analyze some special or limiting cases of the new MEG equation.
Section III investigates the channel-antenna duality, and shows how the matching
between channel and antenna characteristics in�uences the MEG. In Section IV, we
analyze the maximum and the minimum MEG, more speci�cally we address how
the MEG changes as a function of the antenna orientation, but also as a function of
other parameters. Finally, a summary with conclusions is given Section V.

2 MEG in Ricean Channels

For a receive antenna the MEG is de�ned as the ratio of signal power available
at the antenna, i.e., the power spectral density (PSD) of an underlying wide-sense
stationary stochastic process, and the PSD of a reference signal. The reference
signal is usually measured by a reference antenna with well-de�ned performance
characteristics. In the de�nition by Taga [28], the reference is the mean power that
would be measured by idealized isotropic antennas, which is equivalent to the actual
average power of the incoming �eld. The �eld is assumed to be random, more
speci�cally it is assumed to be the superposition of a large number of multipath
components similar in amplitude but with di�erent, uniformly distributed random
phases. The received power is computed as the ensemble average of the signal
power induced at the antenna by this random �eld. The ensemble is created by
di�erent superpositions of the multipath components, as, e.g., measured at di�erent
locations within a small-scale fading area. Assuming the underlying process to be
ergodic, the ensemble average can be replaced by a temporal or spatial average.
It is furthermore assumed that the �rst-order statistics of the real and imaginary
parts of the �elds are i.i.d. (independent and identically distributed) zero-mean
Gaussian variables; so that the envelope of this random process is then distributed
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according to the Rayleigh probability density. Under this assumption, uncorrelated
fading of orthogonally polarized components follows. In Rayleigh channels, the MEG
completely characterizes the fading statistics of the signal envelope, since MEG is
identical with the only parameter of the Rayleigh distribution, which is the average
power.

Even though the Rayleigh-fading case is the most common in practice, the more
general assumption of a mixture of unpolarized stochastic and polarized determin-
istic components is still of great interest, [17, 29]. Therefore, we will investigate the
MEG of an antenna in di�erent types of �elds depending on whether the �eld is
purely stochastic or it also contains a deterministic component.

2.1 Derivation of MEG in uncorrelated random �eld with one

deterministic component

The MEG is the ratio of the average power received by the antenna under test,
Pr, to the average power received by a reference antenna in the same environment,
Pref , [28],

Ge =
Pr

Pref

. (1)

The average received power is given by the average of the squared magnitude of the
open circuit voltage at the antenna port,

Pr ∝
1

2
〈Voc (t)V ∗oc (t)〉 , (2)

where 〈·〉 indicates averaging over ensemble or space as discussed above and (·)∗
denotes complex conjugate.

The time-dependent complex signal, Voc(t) is given by the open-circuit voltage
induced at the local port of the antenna, [10, 29],

Voc (t) =

∫
F r (Ω) ·Ei (Ω) e−i 2π

λ
u·er(Ω)tdΩ, (3)

where F r (Ω) is the electric far �eld amplitude of the antenna (bold face variables
denote vector magnitudes), Ei (Ω) is the electric �eld amplitude of the plane wave
incident from the direction encompassed by the solid angle Ω, i.e., Ω de�nes the angle
of arrivals (AoA) that are given in spherical co-ordinates, u denotes the absolute
value of the mobile velocity, er (Ω) is the projection of the mobile velocity on the
direction of observation, and t denotes time. The integral is calculated over the
sphere of unit radius.

In multipath environments, the incident �eld is usually described by a random
variable that emulates the stochastic behavior of the received signal. The incident
�eld has, in the general case, a direct or deterministic �eld component4 besides the

4In the presence of several strong specular re�ections, several deterministic �eld components
might exist.
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random �eld component. The resulting �rst order statistics of the signal envelope
are usually described by the Rice distribution.

In order to describe the Ricean fading, we make a generalization of correlation
properties of the received �eld in [10]〈

EiαE
′∗
iβ

〉
= E0αE

∗
0βδ (Ω− Ω0) δ (Ω′ − Ω0) (4)

+
〈
|Eα|2

〉
δ (Ω− Ω′) δαβ,

where Eiα, Eiβ are the complex amplitudes of the random incident electric �eld in
α and β polarizations respectively, δαβ denotes the Kronecker-delta function, while
δ (.) denotes the Dirac-delta. It is important to note that a propagation channel
or incident �eld can be characterized independently of the antenna [26], though of
course the reception and detection of the �eld is done by means of antennas with
speci�c characteristics.

Equation (4) states that: 1) the phases of the co-polarized waves are independent
in di�erent DoAs Ω and Ω′, and 2) the phases of the cross-polarized waves are also
independent in di�erent DoAs Ω and Ω′ but correlated in a �xed direction Ω0.

The autocorrelation function of this stochastic and, in general, ergodic complex
variable is then computed as,

RVoc (∆t) =
1

2
〈Voc (t)V ∗oc (t+ ∆t)〉t . (5)

Substituting (3) in (5) and making use of the conditions given in (4), the autocor-
relation becomes

RVoc (∆t) =
1

2

∫ (
|Frθ (Ω)|2

〈
|Eθ (Ω)|2

〉
(6)

+ |Frφ (Ω)|2
〈
|Eφ (Ω)|2

〉)
ei 2π

λ
u·er(Ω)∆tdΩ

+
(
|Frθ (Ω0)|2 |E0θ (Ω0)|2 + |Frφ (Ω0)|2 |E0φ (Ω0)|2

+2 Re
{
Frθ (Ω0)F ∗rφ (Ω0)E0θ (Ω0)E∗0φ (Ω0)

}
e

i 2π
λ
u·er(Ω0)∆t

where Re (.) denotes the real part of the complex variable. The power angular
distribution is then obtained by averaging the received power over the small-scale
fading, 〈

|Eθ (Ω)|2
〉
∝ 2Pθpθ (Ω) (7)〈

|Eφ (Ω)|2
〉
∝ 2Pφpφ (Ω) ,

where pθ (Ω) and pφ (Ω) denote the weighted power angular spectrum (PAS) (also
known as the weighted probability density function of the AoA) of the stochastic
components in the θ-polarization and φ-polarizations respectively, where θ and φ
are the elevation and azimuth angle in a spherical coordinate system, respectively.
According to the de�nition of probability density function, pθ (Ω) and pφ (Ω) are
normalized as,
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∫
pθ (Ω) dΩ =

∫
pφ (Ω) dΩ = 1. (8)

The available powers of the stochastic components in the θ-polarization and φ-
polarization are denoted by Pθ and Pφ, respectively. It should be noted that Pθ and
Pφ are usually referred to as the powers in the vertical and horizontal polarizations,
respectively. However, this is somewhat misleading if the �eld is purely vertically or
horizontally polarized and the propagation occurs only in the horizontal plane (or,
more generally, in the same plane). In this case it is only correct to assume that the
�eld is either horizontally or vertically polarized.

Finally, we can proceed to calculate the received average power and therefore the
MEG. Taking into account that the antenna pattern is proportional to the squared
magnitude of the electric �eld and Eqs. (7-8), the autocorrelation function of the
signal received by an antenna in a mixed stochastic and deterministic �eld can be
computed as

RVoc (∆t) =

∫
(PθGθ (Ω) pθ (Ω) + PφGφ (Ω) pφ (Ω)) ei 2π

λ
u·er(Ω)∆tdΩ (9)

+

(√
P0θGθ (Ω0) +

√
P0φGφ (Ω0)

)2

e
i 2π
λ
u·er(Ω0)∆t

.

In Eq. (9), P0θ = 1
2
|E0θ (Ω0)|2 and P0φ = 1

2
|E0φ (Ω0)|2 denote the powers of the de-

terministic �eld in θ̂ and φ̂ polarizations5, respectively. Hence, the received average

power is obtained from (9) using the relationship Pr = RVoc (0) =
〈Voc(t)V ∗oc(t)〉t

2
,

Pr =

∫
PθGθ (Ω) pθ (Ω) + PφGφ (Ω) pφ (Ω) dΩ

+

(√
PθKθGθ (Ω0) +

√
PφKφGφ (Ω0)

)2

, (10)

where Kθ and Kφ are the Ricean K-factors of the vertical and the horizontal polar-
ization components, respectively, de�ned as,

Kθ =
P0θ

Pθ
, Kφ =

P0φ

Pφ
. (11)

The antenna gains are normalized with respect to the radiation e�ciency, ηrad, as∫
Gθ (Ω) +Gφ (Ω) dΩ = 4πηrad, (12)

where the radiation e�ciency is de�ned as the ratio total radiated power (TRP),
Prad, to the input power at the antenna port, Pin, [3]

ηrad =
Prad

Pin

(13)

5We associate the vertical and horizontal polarizations to the θ̂ and φ̂ polarizations, respectively
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and TRP is given by,

Prad = Pin

∫
Gθ (Ω) +Gφ (Ω)

4π
dΩ. (14)

The amount of polarization power imbalance of the RF electromagnetic �eld is given
by the cross-polarization ratio (XPR), χ. The XPR is de�ned as the ratio of the
average received power of the vertically polarized component to the average power
received in the horizontal component. From Eq. (11) the XPR in Ricean channels
can be computed as,

χ =
P0θ + Pθ
P0φ + Pφ

= χunpol
1 +Kθ

1 +Kφ

, (15)

where χunpol is the corresponding XPR of the stochastic (unpolarized) components.
The XPR in the LOS scenario given by (15) is valid as long as Kθ and Kφ are �nite.

In our case the reference power is the total available power that stems from the
random �eld and the deterministic components received by isotropic antennas, i.e.

Pref = Pθ + P0θ + Pφ + P0φ. (16)

It is worthwhile to note that the isotropic antenna is an ideal antenna that
cannot be constructed in practice. Usually, a calibrated dipole antenna is used as
reference both for anechoic chamber measurements, [1], as well as mean e�ective
gain measurements.

By (1) and (10-16), we can after some algebraic manipulations obtain an expres-
sion for the MEG in Ricean channels:

Proposition 1. In a multipath environment characterized by a mixed �eld with
both uncorrelated random, unpolarized, component and one deterministic, polarized,
component, the mean e�ective gain of an antenna is given by,

Ge =
1

1 + χ

∫
χGθ (Ω) pθ (Ω)

1 +Kθ

+
Gφ (Ω) pφ (Ω)

1 +Kφ

dΩ

+
1

1 + χ

√χKθGθ (Ω0)

1 +Kθ

+

√
KφGφ (Ω0)

1 +Kφ

2

(17)

= GNLOS
e +GLOS

e .

Proof. See the analysis above.

In (17) the mean e�ective gain is basically the sum of the mean e�ective gains
due to the NLOS (unpolarized) component and the LOS (polarized) component of
the incident �eld. Note that even though it is convenient to express the MEG as a
sum of gains of the NLOS and LOS components it should not be assumed that it
actually is the sum of two independent parameters. Indeed, the total available power
acts as a common reference. However, it is straightforward to show that when Kθ

and Kφ both are zero, the MEG is completely de�ned by the stochastic, unpolarized
NLOS component, on the other hand, when Kθ and Kφ both tend to in�nity the
MEG is completely de�ned by the deterministic, polarized LOS component.
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Moreover, just like in the Rayleigh-fading case, the MEG is the same as the
average received power. However, since the Rician probability density is a function
of two parameters, besides the average power, the K-factor must be de�ned in order
to fully characterize the signal envelope statistics.

2.2 MEG of an antenna in correlated deterministic �eld

As a sanity check, we look at the limit case when no scattered �eld components are
present, i.e., Kθ →∞ and Kφ →∞. The MEG is given by

Ge =
1

1 + χ

(√
χGθ (Ω0) +

√
Gφ (Ω0)

)2

, (18)

where χ = P0θ

P0φ
= |Eθ|2

|Eφ|2
is the cross-polarization ratio of the LOS component. Further,

the MEG equation can be then rewritten as

Ge =

(
|Eθ|

√
Gθ (Ω0) + |Eφ|

√
Gφ (Ω0)

)2

|Eθ|2 + |Eφ|2
(19)

=

(
|Eθ|2 + |Eφ|2

)
(Gθ (Ω0) +Gφ (Ω0))

|Eθ|2 + |Eφ|2
cos2 (p̂r, p̂t)

= G (Ω0) cos2 (pr,pt) ,

where the unit vectors p̂r and p̂t are the polarization vectors of the receiving and the
transmitting antennas respectively. Equation (19) states that MEG in a LOS sce-
nario with no random �eld component is basically the gain of the receiving antenna
(or, due to reciprocity, the transmitting one) in the direction of the LOS, times the
polarization matching e�ciency. This equation can also be directly obtained from
the Friis equation, [7].

3 Physical interpretation of the MEG in Rayleigh

fading

We now turn to the physical interpretation of the MEG in a Rayleigh-fading en-
vironment, i.e., in the absence of an LOS component. We will focus on the po-
larization properties and show that the overall MEG depends on the polarization
discrimination of both channel and antenna. Here, it is worthwhile to remember
that �intermixing� of orthogonal polarizations can occur due to two reasons: (i) the
channel can change the polarization of an electromagnetic �eld, while LOS preserves
the polarization, each re�ection process leads to a depolarization of the waves, (ii)
an antenna does not perfectly distinguish between orthogonal polarizations. We will
show in the following that both the antenna and the channel polarization discrimi-
nation have an impact on the mean e�ective gain, and that the two phenomena are
duals of each other.
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In a Rayleigh-fading environment, MEG is [28],

Ge =

∫
χ

χ+ 1
Gθ (Ω) pθ (Ω) +

1

χ+ 1
Gφ (Ω) pφ (Ω) dΩ. (20)

This result also follows from Sec. II with Kθ = Kφ = 0 (the power of the total �eld
as it would be measured by two ideal isotropic antennas is given by Pref = Pθ +Pφ.)

Let us introduce the mean partial gains [8], [9], in the θ-polarization, γθ and the
φ-polarization, γφ, respectively,

γθ =

∫
Gθ (Ω) pθ (Ω) dΩ, γφ =

∫
Gφ (Ω) pφ (Ω) dΩ. (21)

Further, we introduce the e�ective cross-polar discrimination (e�ective XPD) of the
antenna, κ ,

κ =
γθ
γφ

=

∫
Gθ (Ω) pθ (Ω) dΩ∫
Gφ (Ω) pφ (Ω) dΩ

, (22)

and the total average gain γt, i.e., the sum of partial gains of the antenna,

γt = γθ + γφ. (23)

The interpretation of the mean partial gain is straightforward, it quanti�es the
actual mean gain for each polarization in a multipath environment. Hence the
e�ective XPD6 is a measure of the polarization imbalance of the antenna weighted
by the channel in a multipath environment.

This result can be summarized in the following proposition,
Proposition 2. In a multipath environment characterized by uncorrelated ran-

dom electromagnetic �elds only, the mean e�ective gain of an antenna is a symmetric
function of the antenna e�ective cross-polar discrimination, κ ≥ 0, and the channel
cross-polarization ratio, χ ≥ 0 and directly proportional to the total average gain γt

of the antenna given by

Ge = γt
χκ+ 1

(χ+ 1) (κ+ 1)
. (24)

Proof. See the analysis above where Eqs. (20-23) are used in Eq. (24).

The physical interpretation of this proposition is that in multipath environments,
MEG will evaluate any change in channel XPR in the same way as it evaluates any
change in antenna e�ective XPD provided that the total average channel gain is
kept constant. In this sense, the antenna and the channel are equivalent. Hence,
Eq. (24) is a result of the �antenna-channel duality�.

Proposition 3. In a multipath environment characterized by uncorrelated ran-
dom electromagnetic �elds only, the mean e�ective gain of an antenna is upper
bounded by the largest of the partial gains of the antenna, i.e.,

Ge ≤ max {γθ, γφ} . (25)

6It should be observed that the e�ective XPD substantially di�ers from the traditional de�nition
of the antenna XPD, which is evaluated at the maximum gain direction of the antenna as the ratio
of the partial gains in the E- and H-planes.
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Equality Ge = γφ holds i� χ+ κ = 0 or Ge = γθ i�
1
χ

+ 1
κ

= 0, where κ ≥ 0 is the
antenna e�ective cross-polar discrimination in the isotropic environment and χ ≥ 0
is the channel cross-polarization ratio.

Proof. Rearrange (24) with κ ≥ 0 and χ ≥ 0,

Ge = γt
1

1 + 1
1

1
χ+ 1

κ
+ 1
χ+κ

≤ γt.

The physical interpretation is that �perfect� polarization matching in multipath
environments is only possible for purely polarized channels, and antennas, i.e., when
both are vertically polarized ( 1

χ
+ 1

κ
= 0) or horizontally polarized (χ + κ = 0). In

any other cases there will be a polarization mismatch loss quanti�ed by the term
0 ≤ χκ+1

(χ+1)(κ+1)
≤ 1. A closer inspection of this term reveals that it is an e�ective

polarisation mismatch loss coe�cient similar to that found for the deterministic case
(see Eq. (19)).

Proposition 4. In a multipath environment characterized by uncorrelated ran-
dom electromagnetic �elds only, the mean e�ective gain of an antenna equals exactly
half the total average gain of the antenna, i.e.,

Ge =
1

2
γt, (26)

if either (i) κ = 1 (γt = 2γθ = 2γφ) for all χ ≥ 0 or (ii) if χ = 1 for all κ ≥ 0 and
γt = γθ + γφ, where κ is the antenna e�ective cross-polar discrimination and χ is
the channel cross-polarization ratio.

Proof. The proof is straightforward and follows from Proposition 2.

The physical interpretation here is that if the antenna has completely balanced
polarizations, the polarization mismatch loss in multipath environments is on av-
erage always 1

2
(of the total average gain of the antenna) independently of the po-

larization power balance of the incoming waves, since the antenna can not sense
the actual polarization state. Similarly, if the channel is power balanced in the two
orthogonal polarizations, the antenna has a power loss of 1

2
relative the power of two

isotropic antennas sensing the channel.
The antenna gain pattern is by de�nition the product of the radiation e�ciency

of the antenna, ηrad, and the antenna directivity pattern,

Gθ (Ω) = ηradDθ (Ω) , Gφ (Ω) = ηradDφ (Ω) . (27)

In this case the MEG can be expressed as the product of the radiation e�ciency
and the mean e�ective directivity (MED), De (see, e.g., [12] for further reference),

Ge = ηradDe. (28)
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The mean e�ective directivity is introduced in order to further discern between the
di�erent factors that might impact on the communication link quality. In this case,
the radiation e�ciency and the directivity properties of the antenna at two orthogo-
nal polarizations are separately assessed. In practice the radiation e�ciency and the
directivity of a radiating system, like for instance a mobile terminal, are interrelated
in a very complex way. Obviously, for hundred percent e�cient antennas, the mean
e�ective directivity is identical with the mean e�ective gain.

3.1 The λ/2-dipole in the isotropic environment

The omnidirectional radiation pattern and high e�ciency of the half-wavelength
dipole antenna has madeit attractive as a reference for studying the performance
of handset antennas, [1]. This simple, yet versatile antenna has also been used in
numerous wireless communication devices, such as cellular handsets. In contrast to
the isotropic antenna, the half-wavelength dipole antenna is a realistic antenna that
can actually be constructed.

We de�ne the antenna power patterns for the vertical polarization, Gθ (θ, φ),
the horizontal polarization, Gφ (θ, φ) and their sum, i.e. the total gain G (θ, φ). It
is further assumed that the antenna is hundred percent e�cient, ηrad = 1. The
polarization sensitivity changes with tilting of the antenna. Hence the e�ective
cross-polar discrimination of the two orthogonal polarizations is a function of the
antenna inclination with respect to the vertical axis.

Usually, di�erent models of the propagation channel are used in order to statis-
tically account for the impact of the distribution of the AoA (or AoD if the uplink
is considered) at the mobile antenna position. The simplest, yet useful, model is
the isotropic model (or 3D-uniform model). The isotropic model describes, as the
name indicates, a scenario in which the AoAs (or AoDs) are equally probable in all
directions,

pθ (θ, φ) = pφ (θ, φ) = 1/4π. (29)

It is straightforward to show, from (21-24) and (29), that in this case the MEG is
then given by,

Gei = ηrad
χκ+ 1

(χ+ 1) (κ+ 1)
. (30)

The physical meaning of Eq. (30) is again the �antenna-channel duality�, which was
stated in Proposition 2.

In general the e�ective XPD, κ is a function of the antenna orientation in space,
i.e., a tilted antenna will sense the vertical and horizontal polarizations di�erently
depending on the tilting angle with respect to the coordinate system. For the hun-
dred percent e�cient λ/2-dipole in an isotropic environment this dependence is
plotted in Fig. 1. As can be seen from this �gure the e�ective XPD goes to in�nity
for a vertical dipole since no sensing is possible in the horizontal polarization. The
e�ective XPD further decreases monotonically with the tilt angle and changes sign
at 55◦(since the e�ective XPD is given in dB in the plot). At this angle the average
partial gains in the two orthogonal polarization are equal, i.e., the e�ective XPD in
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dB equals zero. The MEG in this case, as plotted in Fig. 2, will be constant and
equal to -3 dBi for all XPRs, χ, of the channel. Another clear observation from Fig.
2 is that the MEG is always less than or equal to 0 dBi in the isotropic environment
for all e�ective XPD and all XPR. Equality is achieved only in the limit, when both
the channel and the antenna are vertically polarized or when both are horizontally
polarized.
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Figure 1: Average partial gains and average XPD v.s. antenna tilt angle.

Proposition 3 takes the form Gei ≤ ηrad, where equality is achieved if χ+ κ = 0
or if 1

χ
+ 1

κ
= 0, with the physical interpretation given above.

Proposition 4 in this case means that if either the channel or the antenna has com-
pletely balanced polarizations, the polarization mismatch loss in multipath environ-
ments is always 1/2 independently of polarization power balance of the other param-
eter, since it cannot sense the actual polarization state. Therefore, Gei = ηrad/2 if
either κ = 1 for all χ ≥ 0 or if χ = 1 for all κ ≥ 0, where κ is the antenna e�ective
cross-polar discrimination and χ is the channel cross-polarization ratio.

4 MEG variability

MEG is, as discussed, a measure of antenna performance in the channel fading, where
the channel statistics and the antenna orientation are assumed to be stationary. This
assumption means that the channel XPR, the AoA in both orthogonal polarizations,
as well as the orientation of the antenna remain constant relative the environment
during that period of time or positions in space along the mobile path. However, in
practice this situation will seldom be observed due to the fact that the orientation
of the user with respect to the incident �eld can change, in other words, the user can
turn. Furthermore, the cross-polarization ratio observed in the channel can change
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Figure 2: Mean E�ective Gain v.s. antenna tilt angle for di�erent values of the
channel XPR.

as the mobile station moves over distances of several meters. This is clearly of
paramount importance to a wireless network service provider since the performance
variability will impact network dimensioning in terms of both coverage and capacity.
We are therefore interested in evaluating the anticipated variability span of the
MEG.

4.1 Average MEG

First, we evaluate the average (over the distribution of the antenna orientation)
MEG conditioned on the channel XPR and the PAS of the AoA in both the θ−and
φ−polarizations. Hence, we are only interested in the variations resulting from
di�erent antenna orientations in space. Models that provide the probability of usage
at di�erent tilt angles are for example given in [4]. However, in order to exemplify
our point we now assume that the orientation (tilt and rotation) of the antenna is
uniformly distributed on the unit sphere, i.e., all tilts and rotations are equiprobable.
Hence, the average MEG conditioned on the channel XPR and the PAS of the AoA
is given by

EΩ′ {Ge|χ, pθ, pφ} =

∫
Ge (θ′, φ′)

4π
dΩ′

=
1

4π

∫ ∫
χ

χ+ 1
Gθ (θ, θ′, φ, φ′) pθ (θ, φ) +

1

χ+ 1
Gφ (θ, θ′, φ, φ′) pφ (θ, φ) dΩdΩ′

=
1

4π

∫
χ

χ+ 1
γθ (θ′, φ′) +

1

χ+ 1
γφ (θ′, φ′) dΩ′ = γta

χκa + 1

(χ+ 1) (κa + 1)
,
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where

κa =

∫
γθ (θ′, φ′) dΩ′∫
γφ (θ′, φ′) dΩ′

, (31)

and

γta =
1

4π

∫
(γθ (θ′, φ′) + γφ (θ′, φ′)) dΩ′. (32)

If the channel is isotropic, then

〈Ge〉 =
1

4π

∫ ∫
χ

χ+ 1
Gθ (θ, θ′, φ, φ′)

+
1

χ+ 1
Gφ (θ, θ′, φ, φ′) dΩdΩ′ (33)

=
ηrad

2
, (34)

where we have used the following identity

1

4π

∫ ∫
Gθ (θ, θ′, φ, φ′) dΩdΩ′ = (35)

1

4π

∫ ∫
Gφ (θ, θ′, φ, φ′) dΩdΩ′ =

ηrad

2
.

The above computations proves the following proposition
Proposition 5. In a multipath environment characterized by uncorrelated ran-

dom electromagnetic �elds only, the mean e�ective gain of an antenna equals exactly
half the radiation e�ciency, when the angle of arrivals are isotropically distributed
and the probability that the antenna would be oriented at some angle relative to a
reference coordinate system is also uniform on the unit sphere.
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We now turn to averaging over the channel XPR distribution. It has been
established by measurements that the channel XPR often can be modelled as a
lognormal variable, [4], with probability density function,

pχ (χ) =
1

χσχ
√

2π
e
− (ln(χ)−µχ)2

2σ2
χ . (36)

Hence, the average MEG conditioned on the antenna orientation and probability
density functions of the AoA pθ and pφ, is

Eχ {Ge|Ω′, pθ, pφ} = 〈Ge〉 =

∫
pχ (χ)Ge (θ′, φ′) dχ

=

∫
pχ (χ)

(
χ

χ+ 1
γθ +

1

χ+ 1
γφ

)
dχ

= γθ + (γφ − γθ)
∫

1

χ+ 1
pχ (χ) dχ

= γθ + (γφ − γθ)
∞∑
n=1

(−1)n+1 e−2nµχµnχ,

where µnχ = enµχ+
n2σ2

χ
2 is the n-th moment of χ. The computation of the integral∫

1
χ+1

pχ (χ) dχ is given in the Appendix.

4.2 Minimum, maximum, in�mum, and supremum MEG

In this section we de�ne the maximum and minimum (over di�erent orientations
in space) of the MEG of an antenna. If the antenna is tilted at angle θ′ from the
z-axis (vertical) and then rotated an angle φ′ from the the x-axis, the shape of the
antenna gain pattern will remain the same, however, the shape of the partial gains
will change since the polarization state of the antenna will change as the antenna is
tilted, [16]. The MEG of the rotated antenna in an uncorrelated �eld is a function
of the rotation angles θ′and φ′,

Ge (θ′, φ′) =

∫
χ

χ+ 1
Gθ (θ, θ′, φ, φ′) pθ (θ, φ)

+
1

χ+ 1
Gφ (θ, θ′, φ, φ′) pφ (θ, φ) dΩ. (37)

We de�ne the maximum MEG, GeM as

max {Ge} = GeM =
χγθM + γφM

χ+ 1
, (38)

where the maximum partial gains γθM and γφM are de�ned as

γθM =

∫
Gθ (θ, θM, φ, φM) pθ (θ, φ) dΩ (39)

γφM =

∫
Gφ (θ, θM, φ, φM) pφ (θ, φ) dΩ,



16

where [
θM φM

]
= argθ′,φ′ maxGe (θ′, φ′) . (40)

The minimum MEG, Gem is de�ned in a similar way,

min {Ge} = Gem =
χγθm + γφm

χ+ 1
, (41)

where the minimum partial gains γθm and γφm are de�ned as

γθm =

∫
Gθ (θ, θm, φ, φm) pθ (θ, φ) dΩ, (42)

γφm =

∫
Gφ (θ, θm, φ, φm) pφ (θ, φ) dΩ,

where [
θm φm

]
= argθ′,φ′ minGe (θ′, φ′) . (43)

The minimum, the maximum and average MEG versus the channel XPR are
shown in Fig. 4. The depicted plots apply to the half-wavelength dipole with
AoAs distributed according to the 3D-uniform probability density distribution (29).
Clearly, when the XPR equals 0 dB, MEG equals -3 dBi for all the dipole orienta-
tions. Hence, the variability of the link is minimized.
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Figure 4: Average, minimum and maximum MEG as function of XPD

Another interesting result is obtained by de�ning the in�mum and supremum
MEG. Namely, for directive antennas, these two magnitudes can serve as a �quick
and dirty� estimate of the variability of MEG which is independent from the PAS
but still takes the channel XPR into account.

We will show that this supremum MEG bounds the maximum MEG from above.
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Consider the MEG equation,

Ge =

∫
χ

χ+ 1
Gθ (Ω) pθ (Ω) +

1

χ+ 1
Gφ (Ω) pφ (Ω) dΩ.

Now, since Gθ (Ω), pθ (Ω), Gφ (Ω), pφ (Ω) are all nonnegative over the sphere of unit
radius it is valid to write,∫

χ

χ+ 1
Gθ (Ω) pθ (Ω) +

1

χ+ 1
Gφ (Ω) pφ (Ω) dΩ

≤ supGθ (Ω)
χ

χ+ 1

∫
pθ (Ω) dΩ

+ supGφ (Ω)
1

χ+ 1

∫
pφ (Ω) dΩ

=
χ

χ+ 1
supGθ (Ω) +

1

χ+ 1
supGφ (Ω) .

By using similar arguments for the in�mum of the partials gain and for the minimum
and the supremum of MEG given in Proposition 3, the following inequality is valid,

min {inf Gθ (Ω) , inf Gφ (Ω)}
≤ Ge inf (44)

=
χ

χ+ 1
inf Gθ (Ω) +

1

χ+ 1
inf Gφ (Ω)

≤ Ge

≤ χ

χ+ 1
supGθ (Ω) +

1

χ+ 1
supGφ (Ω)

= Ge sup ≤ max {supGθ (Ω) , supGφ (Ω)} .

We now establish the following �MEG inequalities�,
Proposition 6. The mean e�ective gain of an antenna satis�es the following

inequalities,

I) min {inf Gθ (Ω) , inf Gφ (Ω)}
≤ min {γθ, γφ}
≤ Ge (45)

≤ max {γθ, γφ}
≤ max {supGθ (Ω) , supGφ (Ω)} .

II) min {inf Gθ (Ω) , inf Gφ (Ω)} (46)

≤ Gem ≤ Ge ≤ GeM

≤ max {supGθ (Ω) , supGφ (Ω)} . (47)

Proof. The proof of inequality I ) follows from

inf Gθ (Ω) ≤ γθ ≤ supGθ (Ω) , inf Gφ (Ω) ≤ γφ ≤ supGφ (Ω) .
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The proof of inequality II) follows from

Gem ≥ min {γθm, γφm} ≥ min {inf Gθ (Ω) , inf Gφ (Ω)}

and
GeM ≤ max {γθM, γφM} ≥ max {supGθ (Ω) , supGφ (Ω)} .

The physical interpretation is straightforward: the MEG of the antenna is al-
ways bounded by the in�mum (the smallest) of the partial antenna gains and the
supremum (the largest) of the partial antenna gains, i.e., when the AoA of a sin-
gle plane wave coincides with the direction of the smallest and the largest partial
antenna gain, respectively. Equality is achieved in the LOS scenario with only one
deterministic wave impinging at the antenna.

4.3 Maximum E�ective Gain

In the previous sections we were interested in analyzing the mean e�ective gain of
an antenna in a given propagation environment. The total power received by the
antenna was compared to the total available power averaged over the small-scale
fading. In this sense we were in fact estimating the mean e�ective performance (gain)
of the antenna. However, from the communication point of view it is also relevant
to evaluate the maximum link quality, or more precisely, the optimum total power
received by the antenna in a random �eld. We will show below that the maximum
e�ective gain is achieved when channel knowledge is available and the antenna can
be adapted to the incident �eld (e.g., beamforming), i.e., the maximum is obtained
when the antenna far-�eld equals the conjugate of the complex amplitudes of the
incident waves. This means that both the polarization, the direction of arrivals of
incoming waves and the mobile speed must be known to the receiver in order to
maximize the link gain i.e. the received power. The gain de�ned now refers to
an instantaneous e�ective gain from which an average or �mean maximum e�ective
gain� (MMEG) can still be inferred.

Proposition 7. In a multipath environment characterized by uncorrelated ran-
dom electromagnetic �elds only, the maximum e�ective gain of an antenna is a sym-
metric function of the antenna e�ective cross-polar discrimination, κ ≥ 0 and the
instantaneous channel cross-polarization ratio in the isotropic environment, χi ≥ 0
and directly proportional to the radiation e�ciency ηrad of the antenna and is inde-
pendent from the PAS of the incoming waves, i.e.

Go = 4πηrad

(√
χiκ+ 1

)2

(χi + 1) (κ+ 1)
. (48)

The proof of Proposition 7 is given in the Appendix.
It should be observed that (47) is an instantaneous e�ective gain in a multipath

environment and therefore a stochastic parameter that depends on the short term
fading statistics (small-scale fading) through the instantaneous channel XPR χi. On
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the other hand the MEG (24) depends on the long term statistics (large-scale fading
or shadowing) through the channel XPR χ.

Proposition 8. In a multipath environment characterized by uncorrelated ran-
dom electromagnetic �elds only, the maximum e�ective gain of an antenna is upper
bounded by the area of the unit sphere times the radiation e�ciency ηrad, i.e.

Go ≤ 4πηrad. (49)

Equality is achieved i� χi = κ, where κ ≥ 0 is the antenna e�ective cross-polar dis-
crimination in the isotropic environment and χi ≥ 0 is the channel cross-polarization
ratio.

Proof. The proof is straightforward. It becomes clear by means of the �rst and
second derivatives tests of the maximum e�ective gain (47) relative the antenna
e�ective XPD κ ≥ 0 for �xed channel XPR χ ≥ 0.

The physical interpretation is that in the �maximum e�ective regime� (i.e., beam-
forming), �perfect� polarization matching in multipath environments is achieved if
and only if the e�ective XPD of the antenna equals the XPR of the channel, and not
only for purely vertically or horizontally polarized channels and antennas as in the
case of MEG. In all other cases there will be a polarization mismatch loss quanti�ed

by the term
(√χiκ+1)

2

(χi+1)(κ+1)
. Furthermore, in this case the maximum e�ective gain equals

the integral of the total gain over the unit sphere,

max {Go} = 4πηrad =

∫
Gθ (Ω) +Gφ (Ω) dΩ. (50)

Proposition 9. In a multipath environment characterized by uncorrelated ran-
dom electromagnetic �elds only, the maximum mean e�ective gain of an antenna is
bounded by

16πηrad

√
χκ

(χ+ 1) (κ+ 1)
≤ Geo ≤ 8πηrad

χκ+ 1

(χ+ 1) (κ+ 1)
, (51)

where κ ≥ 0 is the instantaneous channel cross-polarization ratio in the isotropic
environment, χi ≥ 0 and directly proportional to the radiation e�ciency ηrad of
the antenna and is independent from the PAS of the incoming waves. Equality is
achieved i� χ = κ = 1.

The proof of Proposition 9 is given in the Appendix C.

5 Summary

In this paper fundamental properties of the mean e�ective gain (MEG) of antennas
were presented. The MEG is a measure of the interplay of the antenna with the
propagation channel. Therefore, the results of this paper are of value when assessing
the in-network performance of wireless handsets. New closed-form formulae for
the MEG in mixed �elds, i.e., �elds with both stochastic and the deterministic
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components, are provided with corresponding physical interpretation. We showed
that the MEG in uncorrelated random �elds with deterministic components can be
expressed as the sum of two terms, each denoting the contribution of each component
to the MEG. We then showed that the MEG computed by Taga, i.e., MEG in
uncorrelated �elds, is a special case of the mixed �elds case. In the uncorrelated
case MEG is a symmetric function in the channel cross-polarization ratio (XPR,
χ) and the antenna e�ective cross-polar discrimination (e�ective XPD, κ), which is
an expression of the channel/antenna duality or equivalence under these conditions.
We showed further that the MEG in uncorrelated random �elds is upper bounded
by the largest of the two average partial gains in theta and phi-polarizations. We
also showed that when either the channel or the antenna are power-balanced in
polarization, i.e., χ = 1 or κ = 1, the MEG is always one-half of the radiation
e�ciency. We de�ned and analyzed the in�mum, minimum, average, maximum
and supremum MEG with the objective of characterize the span of variability of
MEG as function of the antenna orientation in space and the long terms statistics
of the channel variability that a�ect the XPR. We showed that in an environment
characterized by uncorrelated random �elds the average over both the XPR and the
antenna orientation equals the half of the radiation e�ciency of the antenna. We
proved the MEG inequalities that showed the lower and upper bounds of MEG, i.e.
the span of variation of MEG. Finally, we showed that the maximum e�ective gain is
achieved with �beamforming� and equals 4πηrad, where ηrad is the radiation e�ciency
of the antenna, when κ = χi, where is the instantaneous XPR of the channel. We
also provided bounds for the average of the maximum e�ective gain and showed that
the bound is achieved.

Appendix A. Computation of an integral

By making use of the Mclaurin series expansion,

1

1 + f (x)
=
∞∑
n=0

(−1)n f (x)n ,

where, |f (x)| < 1, the integral is obtained as follows,∫
1

χ+ 1
pχ (χ) dχ =

1

σχ
√

2π

∫ ∞
0

1

(χ+ 1)χ
e
− (ln(χ)−µχ)2

2σ2
χ dχ

=
1

σχ
√

2π

∫ ∞
−∞

e−t

1 + e−t
e
− (t−µχ)2

2σ2
χ dt

=
1

σχ
√

2π

∞∑
n=0

(−1)n
∫ ∞
−∞

e−(n+1)te
− (t−µχ)2

2σ2
χ dt

=
∞∑
n=1

(−1)n+1 e−nµχ+
n2σ2

χ
2 =

∞∑
n=1

(−1)n+1 e−2nµχµnχ,

where µnχ = enµχ+
n2σ2

χ
2 is the n-th moment of χ.
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Appendix B. Proof of Proposition 7

Proof. Consider Eq. (3). Let's compute the signal power,

|Voc (t)|2 =

∣∣∣∣∫ F r (Ω) ·Ei (Ω) e−i 2π
λ
u·er(Ω)tdΩ

∣∣∣∣2 .
By the triangle inequality,

|Voc (t)|2 ≤
(∫
|F r (Ω) ·Ei (Ω)| dΩ

)2

.

By the triangle inequality,

|Voc (t)|2 ≤
(∫
|Frθ (Ω)Eiθ (Ω)| dΩ +

∫
|Frφ (Ω)Eiφ (Ω)| dΩ

)2

.

By the Cauchy-Schwarts-Buniakowsky inequality and observing that equality is
achieved for Frθ (Ω) = cθE

∗
iθ (Ω) ei 2π

λ
u·er(Ω)t and Frφ (Ω) = cφE

∗
iφ (Ω) ei 2π

λ
u·er(Ω)t

|Voc (t)|2 ≤

(√∫
|Frθ (Ω)|2 dΩ

√∫
|Eiθ (Ω)|2 dΩ

+

√∫
|Frφ (Ω)|2 dΩ

√∫
|Eiφ (Ω)|2 dΩ

)2

=

(√∫
Gθ (Ω) dΩ

√∫
|Eiθ (Ω)|2 dΩ

+

√∫
Gφ (Ω) dΩ

√∫
|Eiφ (Ω)|2 dΩ

)2

=

(
√
γθ

√∫
|Eiθ (Ω)|2 dΩ +

√
γφ

√∫
|Eiφ (Ω)|2 dΩ

)2

,

which gives us the maximum received signal |Voc (t)|2opt in the �beamforming� sense
since for each time t the far-�eld amplitude must satisfy the following conditions,

Frθ (Ω, t) = E∗iθ (Ω) ei 2π
λ
u·er(Ω)t,

Frφ (Ω, t) = E∗iφ (Ω) ei 2π
λ
u·er(Ω)t.

Under this conditions, the maximum e�ective gain is de�ned relative the instanta-
neous available power of the electromagnetic �eld

Go =

(
√
γθ

√∫
|Eiθ (Ω)|2 dΩ +

√
γφ

√∫
|Eiφ (Ω)|2 dΩ

)2

∫
|Eiθ (Ω)|2 dΩ +

∫
|Eiφ (Ω)|2 dΩ

=

(√
γθPiθ +

√
γφPiφ

)2

Piθ + Piφ

= 4πηrad

(√
χiκ+ 1

)2

(χi + 1) (κ+ 1)
,
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where Piθ = 1
2

∫
|Eiθ (Ω)|2 dΩ , Piφ = 1

2

∫
|Eiφ (Ω)|2 dΩ and χi = Piθ

Piφ
, where Eiθ (Ω)

and Eiθ (Ω) are the instantaneous complex amplitudes of the random electromagnetic
�eld incident at the antenna and is the instantaneous cross-polarization ratio (XPR)
of the channel.

Appendix C. Proof of Proposition 9

Proof. The upper bound on the maximum mean e�ective gain can be derived from

〈
|Voc (t)|2opt

〉
=

〈(
√
γθ

√∫
|Eiθ (Ω)|2 dΩ +

√
γφ

√∫
|Eiφ (Ω)|2 dΩ

)2〉

=

〈
γθ

∫
|Eiθ (Ω)|2 dΩ + γφ

∫
|Eiφ (Ω)|2 dΩ

+2
√
γθγφ

√∫
|Eiθ (Ω)|2 dΩ |Eiφ (Ω)|2 dΩ

〉
.

By Cauchy's mean theorem (arithmetic mean-geometric mean inequality),〈
|Voc (t)|2opt

〉
≤

〈
γθ

∫
|Eiθ (Ω)|2 dΩ + γθ

∫
|Eiθ (Ω)|2 dΩ

+ γφ

∫
|Eiφ (Ω)|2 dΩ + γφ

∫
|Eiφ (Ω)|2 dΩ

〉
By the Jensen's inequality for convex functions,

≤ 2

(
γθ

∫ 〈
|Eiθ (Ω)|2

〉
dΩ + γφ

∫ 〈
|Eiφ (Ω)|2

〉
dΩ

)
= 4

(
γθPθ

∫
pθ (Ω) dΩ + γφPφ

∫
pφ (Ω) dΩ

)
= 4 (γθPθ + γφPφ) ,

and therefore the upper bound on the maximum e�ective gain is given by,

Geo ≤
2 (γθPθ + γφPφ)

Pθ + Pφ
= 8πηrad

χκ+ 1

(χ+ 1) (κ+ 1)
.

Observe that for χ = κ = 1, Geo ≤ max {Go}.
The lower bound on the maximum mean e�ective gain can now be derived from,

〈
|Voc (t)|2opt

〉
=

〈(
√
γθ

√∫
|Eiθ (Ω)|2 dΩ +

√
γφ

√∫
|Eiφ (Ω)|2 dΩ

)2〉
.

By the Jensen's inequality,〈
|Voc (t)|2opt

〉
≥ 4
√
γθγφ

〈√∫
|Eiθ (Ω)|2 dΩ

∫
|Eiφ (Ω)|2 dΩ

〉
.
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By the Jensen's inequality for concave functions,

〈
|Voc (t)|2opt

〉
≥ 4

√
γθγφ

√∫ 〈
|Eiθ (Ω)|2

〉
dΩ

∫ 〈
|Eiφ (Ω)|2

〉
dΩ

= 8
√
γθγφ

√
Pθ

∫
pθ (Ω) dΩPφ

∫
pφ (Ω) dΩ

= 8
√
γθγφPθPφ.

Hence,

Geo ≥
4
√
γθγφPθPφ

Pθ + Pφ
= 16πηrad

√
χκ

(χ+ 1) (κ+ 1)
.

Observe that for χ = κ = 1, Geo ≥ max {Go} .
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