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Martin Åkerberg
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Abstract

In this paper a method for the analysis of a frequency selective surface (FSS)
supported by a bianisotropic substrate is presented. The frequency selective
structure is a thin metallic pattern — the actual FSS — on a plane support-
ing substrate. Integral representations of the fields in combination with the
method of moments carried out in the spatial Fourier domain are shown to
be a fruitful way of analyzing the problem with a complex substrate. This
approach results in a very general formulation in which the supporting sub-
strate can have arbitrary bianisotropic properties. The bianisotropic slab
can be homogeneous, stratified, or it can have continuously varying material
parameter as a function of depth. The analysis presented in this paper is
illustrated in a series of numerical examples. Results for isotropic, anisotropic
and bianisotropic substrates are given.

1 Introduction

Frequency selective surfaces (FSSs), used as electromagnetic windows to affect the
transmission and reflection properties for radomes, have been addressed for several
decades [18, 25, 26]. For mechanical reasons, and to reduce the angular sensitiv-
ity [18, 23], it is often embedded in a dielectric medium. For isotropic slabs, the im-
pact of the dielectric medium is traditionally taken into account by either a cascade
technique [5, 6] or by using an appropriate Green’s function [26]. In the cascade tech-
nique, the surface current is calculated without the substrate present. Specifically,
the scattering matrices are calculated for the free-standing FSS and the substrate,
respectively, and the coupling between these two structures is then determined by
simple matrix algebra [26]. However, in the Green’s function approach the surface
current is determined in the presence of the substrate.

More complex substrates have also been addressed. Chang, Langley, and Parker
report experimental results for FSSs printed on ferrite substrates [4]. The main
idea is that a static magnetic field, applied on the ferrite substrate, changes the
permeability of the substrate [2, 14–16]. Chiral substrates have been analyzed in
Refs 7, 10, 11. In many applications, the FSS is located on a glass fiber reinforced
slab. It is a well-known fact that the glass fiber reinforcement introduces anisotropic
effects in the substrate, see e.g., Ref. 21. Recently, uniaxial substrates were also
analyzed [3].

In this paper, a method for the analysis of a frequency selective surface supported
on one side by a bianisotropic substrate is presented. The bianisotropic slab is either
homogeneous, stratified, or it can have continuously varying material parameters as
a function of depth. The method used for the analysis is based on classical integral
representations of the electromagnetic fields and the concept of wave propagators,
which maps the fields from one interface to another. These wave propagators are
used to obtain the reflection and transmission dyadics of the slab [22].

The present method shows several similarities with the Green’s function approach
cited above. The main difference is that, in the present approach, we have to
calculate the reflection and transmission dyadics of the slab, while these effects in
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Figure 1: The geometry of the problem.

the latter approach are accounted for in the calculations of the Green’s function.
The main advantage of the present method is that the reflection and transmission
dyadics can be calculated efficiently, even for stratified bianisotropic slabs [22].

In the derivation below, the scattering object and the incident field are first
arbitrary, e.g., the scatterer is of finite extent and not necessarily a thin screen. This
analysis serves the purpose of being useful for a wider range of scattering problems
than primarily addressed in this paper. Then, in the following section, we restrict
the scatterer to be plane, perfectly conducting screen with a periodic pattern, i.e.,
the scatterer is a FSS. Moreover, the incident field is restricted to be a plane wave.
Finally, in Section 5, the analysis presented in this paper is illustrated in a series
of numerical examples. Results for isotropic, uniaxial, and bianisotropic substrates
are given. Moreover, results for a tripole loop FSS are presented. Predicted and
measured power reflection are compared and excellent agreement is found.

2 General case — arbitrary scatterer

The geometry of interest in this paper is depicted in Figure 1. The sources of the
problem are assumed to be confined to a region Vi (may be at infinity) located to the
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left of the slab, which extends from z = z1 to z = zN−1. The depth parameter z is
defined by the normal of the interfaces as shown in the figure. The bianisotropic slab
is either homogeneous, stratified, or it can can have continuously varying material
parameters as a function of depth. In the lateral directions, however, there are
no variations in the material parameters. The scatterer — at this stage a finite
scatterer — is confined to the volume Vs. This volume is located to the left of
the slab and no parts are intersecting the slab. Moreover, we denote the leftmost
(rightmost) position of the scattering region by z< (z>). The source region, Vi,
does not intersect the scatterer, Vs, or the slab. The space outside the slab and
the source and scattering regions is assumed to be homogeneous and isotropic with
relative permittivity ε and permeability µ, i.e., ε and µ are constants. In all practical
situations of interest in technical applications, these spaces are lossless, i.e., ε and
µ are real numbers.1

This geometry can be relaxed in various ways, e.g., we can have additional sources
and the scatterers located on the right hand side of the slab. Such generalizations
change the result of this paper in several details, but they do not alter the basic
methods we apply to solve this class of scattering problems. We can also treat a
more complex situation with bianisotropic slabs on both sides of the scatterer. These
generalizations will be addressed in a subsequent paper.

We start with a review of the basic equations needed for the analysis in this paper.
In Section 2.1, we review and apply the integral representation of the electric field
in an isotropic medium, and in Section 2.2, we review and apply the plane vector
wave decomposition of the Green’s dyadic for an isotropic medium.

2.1 Integral representation in an isotropic medium

The integral representation of the solution to the Maxwell equations in an isotropic
region, characterized by the relative permittivity ε and permeability µ, and bounded
by the closed surface S (outwardly directed normal ν̂) is [24]

− iη0η

k
∇×

{
∇×

∫∫
S

G(k, |r − r′|) · (ν̂(r′)×H(r′)) dS ′
}

−∇×
∫∫
S

G(k, |r − r′|) · (ν̂(r′)×E(r′)) dS ′ =

{
E(r), r inside S

0, r outside S

(2.1)

where the Green’s dyadic in an isotropic region is

G(k, r) = I3
eikr

4πr
(2.2)

1This assumption is not of vital importance in the treatment below, and it can easily be relaxed.
It is only of importance in the computations of the reflectance and the transmittance of the
structure, since we then are calculating the field far away from the slab. Moreover, it is possible
to have different material parameters to the left of the slab, z < z1, and to the right of the slab,
z > zN−1.
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where k = k0 (εµ)1/2 is the wave number, η =
√
µ/ε is the relative wave impedance,

and k0 = ω/c0 and η0 are the wave number and the wave impedance of vacuum,
respectively. Notice that this Green’s dyadic is a product of the identity dyadic
in three spatial dimensions, I3, and the Green’s function of the scalar Helmholtz
equation. Therefore, it contains a part that is not solenoidal [17]. The lower part of
this integral representation in (2.1) is usually referred to as the extinction theorem.

The field from the source region, Vi, without the influence of the slab or the
scatterer is denoted Ei. The presence of the slab and the scatterer alters this field
by the scattered field Es. The total field E is

E = Ei +Es

A similar notation is used for the magnetic field H .
We now apply the integral representation in (2.1) to the geometry in Figure 1.

Specifically, we get for a volume V that consists of the space to the left of the slab
and outside the source and scattering regions (this result is actually the limit as
the radius goes to infinity from a contribution of a large half sphere in the left half
space, where the fields are assumed to satisfy appropriate radiation conditions)

i
η0η

k
∇×

{
∇×

∫∫
Ss

G(k, |r − r′|) · (ν̂(r′)×H(r′)) dS ′
}

+∇×
∫∫
Ss

G(k, |r − r′|) · (ν̂(r′)×E(r′)) dS ′

− iη0η

k
∇×

{
∇×

∫∫
z′=z1

G(k, |r − r′|) · (ẑ ×H(r′)) dx′y′
}

−∇×
∫∫
z′=z1

G(k, |r − r′|) · (ẑ ×E(r′)) dx′y′

=

{
Es(r), z < z1 and r outside Ss

−Ei(r), r inside Ss or z > z1

(2.3)

where the limits of the fields in the surface integrals are taken as limit values from
the isotropic region, i.e., from the outside of the scatterer and from z = z1− 0. The
unit normal of the scatterer, ν̂, is directed outwards into the isotropic medium as
denoted in Figure 1.

These expressions give a representation of the scattered electric field, Es, outside
the scatterer (and to the left of the slab), and a representation of the incident field,
Ei, inside the scatterer or inside the slab. The associated magnetic fields are easily
found by the Faraday’s law

H(r) =
1

ikηη0

∇×E(r)
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2.2 Plane wave expansion of the Green’s dyadic

In a geometry where the medium is laterally homogeneous, it is natural to decompose
the fields in a spectrum of plane waves, i.e., a Fourier transformation of the fields
with respect to the lateral variable ρ = x̂x+ ŷy. The Fourier transform of a time-
harmonic field E(r) is defined by

E(kt, z) =

∞∫∫
−∞

E(r)e−ikt·ρ dx dy

where
kt = x̂kx + ŷky

is the transverse (tangential) wave vector and

kt =
√
k2
x + k2

y

the transverse (tangential) wave number. The inverse Fourier transform is defined
by

E(r) =
1

4π2

∞∫∫
−∞

E(kt, z)e
ikt·ρ dkx dky (2.4)

Notice that, in order to avoid cumbersome notation, the same letter is used to denote
the Fourier transform of the field and the field itself. The argument of the field shows
what field is intended.

Moreover, the normal (longitudinal) wave number, kz, is defined by

kz =
(
k2 − k2

t

)1/2
=

{√
k2 − k2

t for kt < k

i
√
k2
t − k2 for kt > k

The pertinent expansion (Weyl’s expansion) of the Green’s dyadic in a homoge-
neous, isotropic medium, (2.2), is [1]2

G(k; |r − r′|) =
i

8π2

3∑
j=1

∞∫∫
−∞

ê+
j ê

+
j e

ikt·(ρ−ρ′)+ikz |z−z′|dkx dky
kz

=
i

8π2

3∑
j=1

∞∫∫
−∞

ê−j ê
−
j e

ikt·(ρ−ρ′)+ikz |z−z′|dkx dky
kz

(2.5)

2The Fourier transform G(k;kt, z) = −I3
eikz|z|

2ikz
of G(k; r) w.r.t. ρ satisfies the ODE

−
(
d2

dz2
+ k2

z

)
G(k;kt, z) = I3δ(z);

therefore,

G(k; r) =
1

4π2

∞∫∫
−∞

G(k;kt, z)eikt·ρ dkx dky =
1

4π2

∞∫∫
−∞

(
−I3

eikz|z|

2ikz

)
eikt·ρ dkx dky
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where the (complex) unit vectors ê±j , j = 1, 2, 3, are defined as3 (kt �= 0):


ê±1 = ê±2 × ê±3 =
±ktkz − k2

t ẑ

kkt
= ±kz

k
ê‖ −

kt
k
ẑ

ê±2 =
ẑ × ê±3∣∣ẑ × ê±3 ∣∣ =

ẑ × kt
kt

=
−kyx̂+ kxŷ

kt
= ê⊥

ê±3 =
kt ± ẑkz

k
= ê‖

kt
k
± kz
k
ẑ

where we have introduced two (real) unit vectors in the x-y-plane:{
ê‖(kt) = kt/kt

ê⊥(kt) = ẑ × ê‖(kt)

The plane vector waves are denoted ê±j e
ikt·ρ±ikzz, j = 1, 2, 3. The upper (lower) sign

refers to the right- (left-) going plane vector waves. We refrain from introducing a
special notation for these plane vector waves, since the analysis in this paper does
only use the unit vectors ê±j , j = 1, 2, 3,. This is contrast to the analysis made in
Refs [9, 12, 13]. The decomposition of the Green’s dyadic in (2.5) is in plane vector
waves.

Moreover, the complex unit vector ê±1 (kt) is constructed from ê‖(kt) by the
dyadic γ±(kt). Specifically, we have

ê±1 =
kz
k
γ± · ê‖

where

γ±(kt) = ±
(
I2 ∓

kt
kz
ẑê‖

)
(2.6)

where I2 is the identity dyadic in the x-y-plane. In addition, this dyadic is used to
reconstruct the z-component of a tangential field, see also Section 2.4.

The unit vectors ê±j , j = 1, 2, 3, are the spherical basis functions associated
with the complex vector kt ± ẑkz, i.e., they form a right-hand oriented set of basis
vectors. Index j = 1 denotes TM-fields and j = 2 denotes TE-fields. Index j = 3
does not enter into our analysis due to the fact that the electric and magnetic fields
are solenoidal. From these definitions we easily see that


∇× ê±1 eikt·ρ±ikzz = ikê±2 e

ikt·ρ±ikzz = ikê±1̄ e
ikt·ρ±ikzz

∇× ê±2 eikt·ρ±ikzz = −ikê±1 eikt·ρ±ikzz = −ikê±2̄ eikt·ρ±ikzz

∇× ê±3 eikt·ρ±ikzz = 0

where we have introduced the dual index 1̄ = 2 and 2̄ = 1. From these results,
and the fact that the integral representations in (2.3) always contain a curl operator

3These vectors originate from I3 = ktkt/k
2
t + (ẑ × kt) (ẑ × kt) /k2

t + ẑẑ =
∑3
j=1 ê

+
j ê

+
j =∑3

j=1 ê
−
j ê
−
j which is a decomposition of the unit dyadic in cylindrical coordinates.



7

in front of the integrals, we see that j = 3 does not enter in this electromagnetic
application. The summation in (2.5) is therefore effectively over j = 1, 2.

In this paper, we work in a dyadic notation. Several dyadics are important in
this context. The symmetric projection dyadic P±(kt) defined by

P±(kt) = I3 − ê±3 (kt)ê
±
3 (kt) =

k2
z

k2
ê‖ê‖ + ê⊥ê⊥ ∓

ktkz
k2

(
ẑê‖ + ê‖ẑ

)
+
k2
t

k2
ẑẑ (2.7)

projects out the divergence-free (solenoidal) parts of any vector, i.e., the j = 1, 2
parts. We also have use for the x-y-part of this projector. To this end, we define

Γ(kt) =
k2
z

k2
ê‖ê‖ + ê⊥ê⊥ =

k2I2 − ktkt
k2

which also can be written as

Γ(kt) = (I3 − ẑẑ) ·P±(kt) · (I3 − ẑẑ) = I2 ·P±(kt) · I2

Note also that the projection dyadic P± can be expressed in the dyadic γ± in (2.6).
The result is

P± =
k2
z

k2
γ± · (γ±)t +

k2
t

k2
ê⊥ê⊥

where superscript ()t denotes the transpose of the dyadic.
We also introduce the rotated dyadic Q±(kt) defined by

Q±(kt) = P±(kt)× ê±3 (kt) = ê±2 (kt)ê
±
1 (kt)− ê±1 (kt)ê

±
2 (kt)

= ±kz
k

(
ê⊥ê‖ − ê‖ê⊥

)
− kt
k

(ê⊥ẑ − ẑê⊥)
(2.8)

Note that this dyadic is anti-symmetric.
These projection dyadics are useful in expressing the curl of the Green’s dyadic

in (2.5), viz.,


∇×G(k; |r − r′|) = − k

8π2

∞∫∫
−∞

Q±(kt)e
ikt·(ρ−ρ′)+ikz |z−z′|dkx dky

kz

∇× (∇×G(k; |r − r′|)) =
ik2

8π2

∞∫∫
−∞

P±(kt)e
ikt·(ρ−ρ′)+ikz |z−z′|dkx dky

kz

2.3 Expansion relations

In this section, we apply the result of Section 2.2 to the integral representation (2.3)
in Section 2.1.

For a point r such that z> < z < z1, i.e., between the scatterer and the slab, see
Figure 1, we get

Es(r) =
1

4π2

∞∫∫
−∞

α(kt)e
ikt·ρ+ikzz dkx dky +

1

4π2

∞∫∫
−∞

β(kt)e
ikt·ρ−ikzz dkx dky (2.9)
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where


α(kt) = − k

2kz

{
P+(kt) ·

∫∫
Ss

(ν̂(r′)× η0ηH(r′)) e−ikt·ρ
′−ikzz′ dS ′

+ Q+(kt) ·
∫∫
Ss

(ν̂(r′)×E(r′)) e−ikt·ρ
′−ikzz′ dS ′

}

β(kt) =
k

2kz

{
P−(kt) · (ẑ × η0ηH(kt, z1)) + Q−(kt) · (ẑ ×E(kt, z1))

}
eikzz1

(2.10)
where E(kt, z1) and H(kt, z1) denotes the Fourier transformed field over the inter-
face z = z1. This expression of the scattered field between the scatterer and the slab
is a decomposition of the field into right- and left-going plane vector waves.

The great advantage with the approach used here is that we have an exact
relation between the expansion coefficients, α(kt) and β(kt), and the surface fields
on Ss, E and H , and the Fourier transformed fields, E(kt, z1) and H(kt, z1), on
z = z1. These relations, and the analogous relations below, are in fact the key to
the solution of the entire scattering problem.

Similarly, for a point r such that z < z<, i.e., to the left of the scatterer, we get

Es(r) =
1

4π2

∞∫∫
−∞

f(kt)e
ikt·ρ−ikzz dkx dky (2.11)

where

f(kt) = − k

2kz

{
P−(kt) ·

∫∫
Ss

(ν̂(r′)× η0ηH(r′)) e−ikt·ρ
′+ikzz′ dS ′

+ Q−(kt) ·
∫∫
Ss

(ν̂(r′)×E(r′)) e−ikt·ρ
′+ikzz′ dS ′

}

+
k

2kz

{
P−(kt) · (ẑ × η0ηH(kt, z1)) + Q−(kt) · (ẑ ×E(kt, z1))

}
eikzz1

(2.12)
This expression is a representation of the scattered (reflected) field to the left of the
scattering region. This representation contains only left-going plane vector wave,
due to the fact that all scatterer lie to the right of the observation point. Notice that
this intuitive result is obtained by a systematic use of the integral representation
and a decomposition of the Green’s dyadic in plane vector waves.

Moreover, for a point r such that z > z1 we get an expansion of the incident
field Ei. The result is

Ei(r) =
1

4π2

∞∫∫
−∞

a(kt)e
ikt·ρ+ikzz dkx dky (2.13)
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where

a(kt) =
k

2kz

{
P+(kt) ·

∫∫
Ss

(ν̂(r′)× η0ηH(r′)) e−ikt·ρ
′−ikzz′ dS ′

+ Q+(kt) ·
∫∫
Ss

(ν̂(r′)×E(r′)) e−ikt·ρ
′−ikzz′ dS ′

}

− k

2kz

{
P+(kt) · (ẑ × η0ηH(kt, z1)) + Q+(kt) · (ẑ ×E(kt, z1))

}
e−ikzz1

(2.14)
This is a decomposition of the incident field to the right of the source region, there-
fore, the expansion only contains right-going plane vector waves. Since the incident
field is given, a(kt) is a known quantity.

2.4 Propagation in the stratified region

The Fourier transform of the fields at the interface z = z1 and the fields at z = zN−1

are related [22]. As a first step in finding this relation, we introduce a wave-splitting
technique that decomposes any Fourier transformed field into two components that
transport power in the +z- or the −z-directions, respectively. The wave-splitting
technique in a homogeneous, isotropic medium and the concept of wave propagators
is presented in detail in e.g., [22]. We have(

Exy(kt, z)
ηη0ẑ ×Hxy(kt, z)

)
=

(
I2 I2

−O−1(kt) O−1(kt)

)
·
(
F+(kt, z)
F−(kt, z)

)
(2.15)

where

O−1 =
k

kz

(
I2 +

1

k2
kt × (kt × I2)

)
= ê‖ê‖

k

kz
+ ê⊥ê⊥

kz
k

(2.16)

where, as above, I2 is the identity dyadic in the x-y-plane. The inverse of this dyadic
in the x-y-plane is

O =
kz
k

(
I2 −

1

k2
z

kt × (kt × I2)

)
= ê‖ê‖

kz
k

+ ê⊥ê⊥
k

kz
=
k

kz
I2 −

k2
t

kkz
ê‖ê‖

and we have (
F+(kt, z)
F−(kt, z)

)
=

1

2

(
I2 −O(kt)
I2 O(kt)

)
·
(

Exy(kt, z)
ηη0ẑ ×Hxy(kt, z)

)
(2.17)

To see the physical implications of this transformation, we proceed by eliminating
the transverse magnetic field Hxy(kt, z) in order to get an expression that involves
only the transverse electric fieldExy(kt, z) on the right hand side. In a homogeneous,
isotropic region the electric and the magnetic fields are related by

kηη0H(kt, z) = kt ×E(kt, z)± kzẑ ×E(kt, z)
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depending on whether the z-dependence is exp{ikzz} (upper sign) or exp{−ikzz}
(lower sign), respectively. From this relation we get

kηη0ẑ ×Hxy(kt, z) = ktEz(kt, z)∓ kzExy(kt, z)

= ∓
(

1

kz
kt (kt ·Exy(kt, z)) + kzExy(kt, z)

)
(2.18)

where we have used ∇ ·E(r) = 0 to eliminate the z-component of the electric field.
From this and (2.17) we get


F+(kt, z) =

1

2
Exy(kt, z)±

1

2k
O(kt) ·

(
1

kz
kt (kt ·Exy(kt, z)) + kzExy(kt, z)

)

F−(kt, z) =
1

2
Exy(kt, z)∓

1

2k
O(kt) ·

(
1

kz
kt (kt ·Exy(kt, z)) + kzExy(kt, z)

)
or 


F+(kt, z) =

(
1

2
± 1

2

)
Exy(kt, z) =

{
Exy(kt, z) (exp{ikzz})
0 (exp{−ikzz})

F−(kt, z) =

(
1

2
∓ 1

2

)
Exy(kt, z) =

{
0 (exp{ikzz})
Exy(kt, z) (exp{−ikzz})

From this derivation we see that the upper (lower) sign, which has an exp{ikzz}
(exp{−ikzz}) dependence, represents the part of the field that transports the power
to the right (left). In fact, if the evanescent wave contribution is neglected, the
power flow (Poynting’s vector), averaged over a plane z = constant, see (A.2), is

∞∫∫
−∞

ẑ · S(r) dx dy

=
1

8π2ηη0

∫∫
kt≤k

kz
k

(∣∣γ+(kt) · F+(kt, z)
∣∣2 − ∣∣γ−(kt) · F−(kt, z)

∣∣2) dkx dky
Specifically, the power flow of the incident field is

Pi =
1

8π2ηη0

∫∫
kt≤k

kz
k

∣∣γ+(kt) · axy(kt)
∣∣2 dkx dky (2.19)

2.4.1 Reflection and transmission dyadics

The relation between the F±-fields at z = z1 is the well-known reflection dyadic

F−(kt, z1) = r(kt) · F+(kt, z1) (2.20)

Similarly, the relation between the F+-fields evaluated at z = zN−1 and z = z1 is
the well-known transmission dyadic

F+(kt, zN−1) = t(kt) · F+(kt, z1) (2.21)
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The reflection and transmission dyadics for the tangential electric field, r(kt)
and t(kt), respectively, are found by the method of propagators. For a stratified,
bianisotropic slab the reflection and transmission dyadics are readily found by 4× 4
matrix algebra. This technique is presented in detail in [22], and we here present
the results of this analysis. {

r = −T−1
22 ·T21

t = T11 + T12 · r
where the Tij, i, j = 1, 2 are defined as [22]

2Tij = P11 + (−1)jP12 ·O−1 + (−1)iO ·P12 + (−1)i+jO ·P22 ·O−1 i, j = 1, 2

and where the propagator dyadics Pij, i, j = 1, 2 relates the total fields at z = zN−1

and z = z1 (
Exy(zN−1)

ηη0ẑ ×Hxy(zN−1)

)
=

(
P11 P12

P21 P22

)
·
(

Exy(z1)
ηη0ẑ ×Hxy(z1)

)

The propagator dyadics Pij, i, j = 1, 2 are readily found for a material that is
stratified, e.g., for a homogeneous, isotropic slab we have(

P11 P12

P21 P22

)
= eik0(zN−1−z1)M

where

M =

(
0 −µI2 + 1

εk2
0
ktkt

−εI2 − 1
µk2

0
J · ktkt · J 0

)

From the definition of the wave-spitting, (2.15), and the definition of the reflec-
tion dyadic, (2.20), we get{

Exy(kt, z1) = (I2 + r) · F+(kt, z1)

ηη0ẑ ×Hxy(kt, z1) = O−1 · (r− I2) · F+(kt, z1)
(2.22)

The analysis presented so far in this paper is simplified with the use of the
following useful relation:



P+(kt) ·O−1 + Q+(kt) · J = 0

P+(kt) ·O−1 −Q+(kt) · J = 2
kz
k

I2 − 2
kt
k
ẑê‖ = 2

kz
k
γ+

P−(kt) ·O−1 + Q−(kt) · J = 2
kz
k

I2 + 2
kt
k
ẑê‖ = −2

kz
k
γ−

P−(kt) ·O−1 −Q−(kt) · J = 0

These equations are readily derived from the definitions of the P± and Q± dyadics,
(2.7) and (2.8), the definition of the wave-splitting dyadics O−1, (2.16), and the
definition of the γ± dyadics in (2.6). We have also introduced the dyadic J = ẑ×I2,
which is a rotation of π/2 in the x-y-plane. This implies

P±(kt) · (J · η0ηH(kt, z)) + Q±(kt) · (J ·E(kt, z)) = −2
kz
k
γ± · F±(kt, z) (2.23)
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3 Special case — Flat metallic screen

In this section we specialize the scatterer to a perfectly conducting thin sheet located
at z = z0, i.e., z< = z0 = z>. The scatterer can be a single scatterer, such as a
patch antenna, or many scatterers, e.g., infinite arrays. We get∫∫

Ss

(ν̂(r)×H(r)) e−ikt·ρ−ikzz0 dx dy = JS(kt)e
−ikzz0

where

JS(kt) =

∫∫
R2

(ẑ × (Hs(ρ, z0 + 0)−Hs(ρ, z0 − 0))) e−ikt·ρ dx dy

Here JS(kt) denotes the sum of Fourier transformed surface currents (exist only on
the metallic parts) on the left and right sides of the plane z = z0.

We collect the relevant equations, see (2.10) and (2.14) and use wave-split fields,
see (2.22), to replace the fields ẑ×E(kt, z1) and ẑ×H(kt, z1). We get using (2.23)



a(kt) =
kη0η

2kz
P+(kt) · JS(kt)e−ikzz0 + γ+ · F+(kt, z1)e

−ikzz1

α(kt) = −kη0η

2kz
P+(kt) · JS(kt)e−ikzz0

β(kt) = −γ− · r · F+(kt, z1)e
ikzz1

Especially, the x-y-components are, see (2.6) and (2.7)


axy(kt) =
kη0η

2kz
Γ(kt) · JS(kt)e−ikzz0 + F+(kt, z1)e

−ikzz1

αxy(kt) = −kη0η

2kz
Γ(kt) · JS(kt)e−ikzz0

βxy(kt) = r · F+(kt, z1)e
ikzz1

(3.1)

The Fourier transform of the transverse scattered electric field in the region
z0 < z < z1 is, see (2.9)

Es
xy(kt, z) = αxy(kt)e

ikzz + βxy(kt)e
−ikzz

= αxy(kt)e
ikzz + r · F+(kt, z1)e

ikz(z1−z)

=
(
I2e

ikzz + reikz(2z1−z)
)
·αxy(kt) + r · axy(kt)eikz(2z1−z)

This field is evaluated at z = z0. We have

Es
xy(kt, z0)e

−ikzz0 =
(
I2 + re2ikzh

)
·αxy(kt) + r · axy(kt)e2ikzh

where h = z1 − z0 > 0. Moreover, we have, see (2.13)

axy(kt) = Ei
xy(kt, z0)e

−ikzz0
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We therefore get

Es
xy(kt, z0) = −kη0η

2kz

(
I2 + re2ikzh

)
· Γ(kt) · JS(kt) + r ·Ei

xy(kt, z0)e
2ikzh (3.2)

We introduce the transverse vector field

x(kt) =
kη0η

2kz
Γ(kt) · JS(kt)

and (3.2) is reduced to

Es
xy(kt, z0) = −

(
I2 + re2ikzh

)
· x(kt) + r ·Ei

xy(kt, z0)e
2ikzh (3.3)

3.1 Transmittance and reflectance

The field at a point r such that z < z0 is given by (2.11)

Es(r) =
1

4π2

∞∫∫
−∞

f(kt)e
ikt·ρ−ikzz dkx dky

where, see (2.12), (2.20), and (2.23)

f(kt) = −kη0η

2kz
P−(kt) · JS(kt)eikzz0 − γ− · r · F+(kt, z1)e

ikzz1

The x-y-components are

fxy(kt) = −x(kt)e
ikzz0 + r · F+(kt, z1)e

ikzz1 (3.4)

and from (3.1) we get

fxy(kt) = −x(kt)e
ikzz0 + r ·

(
axy(kt)− x(kt)e

−ikzz0) e2ikzz1
The power flow of this field is (contains only a F−-part)

Pr = − 1

8π2ηη0

∫∫
kt≤k

kz
k

∣∣γ−(kt) ·
(
−x(kt)e

ikzz0

+r ·
(
axy(kt)− x(kt)e

−ikzz0) e2ikzz1)∣∣2 dkx dky
The reflected power divided by the incident power, Pi, see (2.19), is the reflectance
R, i.e.,

R =
Pr
Pi

The transmitted field z > zN−1 is determined by, see (2.21)

F+(kt, zN−1) = t(kt) · F+(kt, z1)
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z

z = z1 z = zN−1

ε µ

Stratified bianisotropic slab

ε µ

z = z0

FSS

Figure 2: The geometry of the FSS and the slab.

Use (3.1) and we get

F+(kt, zN−1) = t(kt) ·
(
axy(kt)e

ikzz1 − x(kt)e
ikzh

)
The power flow of this field is

Pt =
1

8π2ηη0

∫∫
kt≤k

kz
k

∣∣γ+(kt) · t(kt) ·
(
axy(kt)e

ikzz1 − x(kt)e
ikzh

)∣∣2 dkx dky
The transmitted power divided by the incident power, Pi, see (2.19), is the trans-
mittance T , i.e.,

T =
Pt
Pi

4 Special case — FSS

In the previous sections, we started with a general formulation where the scatterer
enclosed inside the surface Ss was a general body (metallic or permeable). This
assumption was relaxed in Section 3 where we specialized the scatterer to a thin
metallic sheet. We now restrict our scatterer further, so that in addition to being
flat, we also assume it to be periodic in the plane z = z0, see Figure 2. Moreover,
in this section we treat only the patch case — the corresponding aperture case is
treated by the duality principle [18].

In this section, we assume the incident wave to be a plane wave, i.e.,

Ei(r) = Ei
0e
iki·r

where ki is the wave vector of the incident wave, andEi
0 is a constant complex vector

such that Ei
0 · ki = 0. The Fourier transform of this field evaluated at z = constant
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Figure 3: The unit cell E with the sides a and b.

is
axy(kt)e

ikzz = Ei(kt, z) = 4π2Ei
0e
ikizzδ2(kt − kit)

where kiz = ki · ẑ and kit = I2 · ki. The spherical angles of ki are denoted θ (polar
angle) and φ (azimuth angle) and the components of ki in the x-y-plane are denoted
by kix and kiy, respectively.

The periodicity of the scatterer (FSS) in the x-y-plane is a and b, respectively,
see Figure 3. The periodic pattern can be obliquely oriented and φ0 denotes the
angle between the axes of periodicity. We denote the unit cell by E (area AE), and
the metallic parts in the unit cell by Sσ.

4.1 Integral equation for the surface current

We employ the Floquet’s theorem [8] to the surface current JS and the result is [20]

JS(ρ) = ẑ × (Hs(ρ, z0 + 0)−Hs(ρ, z0 − 0)) =
1

AE

∞∑
m,n=−∞

JE(kmn)e
ikmn·ρ

where ρ ∈ R2, and kmn = x̂αm + ŷβmn with

αm =

2πm

a
+ kix

βmn =
2πn

b sinφ0

− 2πm

a
cotφ0 + kiy
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and where JE(kmn) is the Fourier transform of JS(ρ) over the unit cell E evaluated
at kmn. The Fourier transform of the current is

JS(kt) =
4π2

AE

∞∑
m,n=−∞

JE(kmn)δ
2(kt − kmn), kt ∈ R2 (4.1)

Insert (4.1) into (3.3) and take an inverse Fourier transform. The result is

Es
xy(r)

∣∣
z=z0

= −
∞∑

m,n=−∞

(
I2 + r(kmn)e

2ikzmnh
)
· xmneikmn·ρ

+ r(k00)e
2ikz00h · Ei

xy(r)
∣∣
z=z0

(4.2)

where

kzmn =




√
k2 − |kmn|2 for |kmn| < k

i

√
|kmn|2 − k2 for |kmn| > k

and where we have introduced the vector field

xmn =
kη0η

2AEkzmn
Γ(kmn) · JE(kmn)

to simplify the notation.
For a ρ on Sσ we get from (4.2)

(
I2 + r(k00)e

2ikz00h
)
·Ei

xy(r)
∣∣
z=z0

=
∞∑

m,n=−∞

(
I2 + r(kmn)e

2ikzmnh
)
·xmneikmn·ρ (4.3)

This relation is the basic equation used for the determination of the unknown quan-
tity xmn. Once this quantity is determined, all other fields can be obtained.

4.2 Galerkin’s procedure

The current in the unit cell, JE(ρ), can be expanded with arbitrary precision in a
pertinent complete set of entire domain basis functions jp(ρ), i.e.,

JE(ρ) =
∑
p∈χ

Cpjp(ρ) (4.4)

where χ is a set of indices (countable set) and the scalars Cp are the unknown
expansion coefficients. We also have from (4.4) by taking the Fourier transform

xmn =
∑
p∈χ

Cpxmn,p (4.5)

where

xmn,p =
kη0η

2AEkzmn
Γ(kmn) · jp(kmn)
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We make a scalar multiplication of (4.3) with j∗q(ρ), where ∗ denotes the complex
conjugate, and integrate over the conducting part of the unit cell, Sσ. Then, the
left and right hand side can be identified as a Fourier transform, i.e.,

j∗q(k00)·
(
I2 + r(k00)e

2ikz00h
)
·Ei

xye
ikizz0

=
∞∑

m,n=−∞
j∗q(kmn) ·

(
I2 + r(kmn)e

2ikzmnh
)
· xmn

q ∈ χ

Finally, we replace the unit cell current with its basis function expansion (4.5).
We have

j∗q(k00) ·
(
I2 + r(k00)e

2ikz00h
)
·Ei

xye
ikizz0

=
∞∑

m,n=−∞

∑
p∈χ

Cpj
∗
q(kmn) ·

(
I2 + r(kmn)e

2ikzmnh
)
· xmn,p

q ∈ χ

If χ is an infinite set of indices, the above equation is an infinite system of linear
equations for the unknown current coefficients Cp. We assume that if this infinite
system is truncated, the solution to the truncated system approximates the exact
solution. When the linear system is truncated, it can be written

AC = b

where A is a square matrix, C is a vector containing the unknown coefficients Cp,
and b is a known vector.

4.3 The reflection and transmission coefficients

We assume that the solution of (4.3), xmn, is known, e.g., it is obtained by the
Galerkin method presented in Section 4.2. Therefore, the current JE(ρ) is known
or even more appropriate its Fourier transform JE(kmn). The relation to the Fourier
transform of the current JS(kt) is, (4.1)

x(kt) = 4π2

∞∑
m,n=−∞

xmnδ
2(kt − kmn), kt ∈ R2

The field at a point r such that z < z< is given by (2.11) as

Es(r) =
1

4π2

∞∫∫
−∞

f(kt)e
ikt·ρ−ikzz dkx dky

where, see (3.4),

f(kt) = −kη0η

2kz
P−(kt) · JS(kt)eikzz0 − γ− · r · F+(kt, z1)e

ikzz1
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Moreover, from (3.1) we get

F+(kt, z1) = eikzz1
(
axy(kt)−

kη0η

2kz
Γ(kt) · JS(kt)e−ikzz0

)

and thus, f(kt) is simplified to

f(kt) =
kη0η

2kz
eikzz0

{
e2ikz(z1−z0)γ− · r · Γ(kt)−P−(kt)

}
· JS(kt)

− eikz(z1+z0)γ− · r · axy(kt)

We introduce the wave vector of the transmitted and reflected field as k±mn = kmn±
ẑkzmn. Then, from (4.1) we obtain

Es(r) =
(
S− ·Ei

xy

)
eik
−
00·r +

∞∑
m,n=−∞

G−mn · JE(kmn)e
ik−mn·r z < z<

where 


G−mn =
kη0η

2AEkzmn
eikzmnz0

[
e2ikzmnhγ−mn · rmn · Γmn −P−mn

]
S− = −eikz00 (h+2z0)γ−00 · r00

where, as before, h = z1 − z0. We have also introduced the notation γmn = γ(kmn)
and similarly for the other quantities with indices mn.

In the absence of the slab, i.e., r = 0, and with the FSS located at z0 = 0, we
have 

G−mn = − kη0η

2AEkzmn
P−(kmn)

S− = 0

no slab

In order to identify the reflection dyadic of the FSS and the substrate, we intro-
duce the dyadic C−mn implicitly defined by

C−mn ·Ei
xy = G−mn · JE(kmn)

This definition enables us to define the reflection dyadic Rmn of the FSS and the
slab as

Rmn = S−δm,0δn,0 + C−mn

The co- and cross-polarized components of the reflection dyadic are

êi(kmn) ·Rmn · êj(kmn)

The i = 1 (i = 2) and j = 1 (j = 2) are the co-polarized TM (TE) contributions. The
off diagonal parts give the cross-polarizations. The fundamental mode corresponds
to m = n = 0.

Only the homogeneous part of the field (kt < k) contributes to the far field. If
kmn > k for all (m,n) �= (0, 0), we have no grating lobes. This is the case of most
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technical interest. Assuming this is the case, we have the reflectance R of the FSS
defined as

R = lim
z→−∞

|Es(r)|2∣∣Ei
0

∣∣2
=

∣∣S− ·Ei
xy + G−00 · JE(k00)

∣∣2∣∣Ei
0

∣∣2 =

∣∣R00 ·Ei
xy

∣∣2∣∣Ei
0

∣∣2 , no grating lobes

We now proceed and calculate the transmitted field. On the right side of the
slab, z > zN−1, the fields only propagate in the positive z-direction, thus F+(kt, z) =
Et
xy(kt, z). We obtain the relation between F+(kt, zN−1) and F+(kt, z1) in terms

of the transmission dyadic t(kt) from (2.21).

F+(kt, zN−1) = t(kt) · F+(kt, z1)

The field F+(kt, z1) is derived from the quantity xmn and are therefore assumed
known, see (3.1), i.e.,

F+(kt, z1) = axy(kt)e
ikzz1 − kη0η

2kz
Γ(kt) · JS(kt)eikzh

All three components of the field (including the z-component) is obtained from
the field Et

xy by a multiplication by the dyadic γ+(kt). Take the inverse Fourier
transform and we obtain the transmitted field in the region z > zN−1

Et(r) =
1

4π2

∫∫
γ+(kt) · F+(kt, zN−1)e

ikt·ρeikz(z−zN−1)dkxdky

Finally, (4.1) gives the final expression

Et(r) =
(
S+ ·Ei

xy

)
eik

+
00·r +

∞∑
m,n=−∞

G+
mn · JE(kmn)e

k+
mn·r

where 
G+

mn = − kη0η

2AEkzmn
eikzmn(h−zN−1)γ+

mn · tmn · Γmn

S+ = eikz00 (h−2z0−zN−1)γ+
00 · t00

Analogous to the reflection dyadic defined above, we introduce the transmission
dyadic of the FSS and the substrate. To this end, the dyadic C+

mn is implicitly
defined by

C+
mn ·Ei

xy = G+
mn · JE(kmn)

This definition enables us to define the transmission dyadic Tmn of the FSS and the
slab as

Tmn = S+δm,0δn,0 + C+
mn

The co- and cross-polarized components of the transmission dyadic are

êi(kmn) ·Tmn · êj(kmn)
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The i = 1 (i = 2) and j = 1 (j = 2) are the co-polarized TM (TE) contributions. The
off diagonal parts give the cross-polarizations. The fundamental mode corresponds
to m = n = 0.

As before, only the homogeneous part of the field (kt < k) contributes to the
far field. In the absence of grating lobes, we have the transmittance T of the FSS
defined as

T = lim
z→∞

∣∣Et(r)
∣∣2∣∣Ei

0

∣∣2
=

∣∣S+ ·Ei
xy + G+

00 · JE(k00)
∣∣2∣∣Ei

0

∣∣2 =

∣∣T00 ·Ei
xy

∣∣2∣∣Ei
0

∣∣2 , no grating lobes

5 Results

We illustrate the theory presented in this paper by a series of numerical computations
for a set of standard element patterns and a multitude of slabs. In some cases the
computations are compared with experimental measurements. These computations
are not meant to be good candidates for a FSS design, but merely an illustration of
what we can accomplish with the method.

As a first example, we illustrate the effect of an isotropic, homogeneous dielectric
substrate on the transmission properties of the FSS in Figure 4. The geometry of the
elements and periodicity are given in the captions and in Figure 5. The broken line
shows the numerical computations and the solid line shows the measured results. A
similar case for oblique incidence is given in Figure 6.

In a multitude of applications, the substrate is reinforced by a glass fiber layer
for mechanical reasons. The glass fiber introduces an uniaxial effect that in most
practical situations can be modelled by a homogenized layer, see e.g., Ref. 21. To
illustrate the effect of the presence of a uniaxial substrate, we compute the resonance
frequency for a series of different values of the permittivity of the substrate. The
shift in the resonance frequency is depicted in Figure 7. We observe that the shift
in the resonance frequency due to the anisotropy is small for small anisotropies,
but larger for a larger value on the permittivity. We also note that the transverse
components of the permittivity dyadic effect the resonance frequency more than the
z-component.

The effect of a bianisotropic substrate is illustrated in Figure 8. The constitutive
relations used here are [22]


D = ε0 {ε ·E + η0ξ ·H}

B =
1

c0
{ζ ·E + η0µ ·H}
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Figure 4: Power transmission (in dB scale) at normal incidence of the co-
polarization at 8.2–12.4 GHz for a hexagonal pattern of loaded tripoles on an
isotropic slab. The tripoles are 9 mm long with 3 mm long ends, see Figure 5.
The width of the metallic strips is 0.5 mm. The elements are arranged in an equi-
lateral lattice with side a = b = 16.5 mm. The polarization of the incident field is
perpendicular with one of the sides in the hexagonal pattern. The thickness of the
isotropic substrate is d = 0.12 mm and the permittivity is ε = 4.3(1 + i0.021). The
broken line shows the numerical computations and the solid line shows the measured
results.
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Figure 5: The geometry of the loaded tripoles.
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Figure 6: Power transmission (in dB scale) of the co-polarization at 8.2–12.4 GHz
for a hexagonal pattern of loaded tripoles on an isotropic slab. The geometry is
same as in Figure 4, but the angle of incidence is θ = 60◦ and φ = 0◦, and the
polarization is TE. The broken line shows the numerical computations and the solid
line shows the measured results.
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Figure 7: The relative change in the resonance frequency for crossed dipoles versus
the degree of relative anisotropy of the slab relative an FSS without substrate. The
left side of the graph corresponds to the shift in the resonance frequency due to
the presence of an isotropic substrate. The thickness of the substrate is d = 5 mm.
The arms of the dipoles are 9 mm long and 1 mm wide, and the crossed dipoles are
arranged in a oblique pattern tilted φ0 = 45◦ with a = 14.1 mm and b = 10 mm.
The angle of incidence is θ = 0◦ and φ = 45◦.

The material parameters of the slab is [19]

ε =


3 0 0

0 εyy 0
0 0 3


 µ =


1 0 0

0 1 0
0 0 1


 ξ =


0 0 0

0 0 iΩ
0 0 0


 ζ =


0 0 0

0 0 0
0 −iΩ 0



(5.1)

6 Conclusion and discussion

In this paper we present a new method to compute the reflection and transmission
properties of FSSs supported by bianisotropic substrates. The elements of the FSS
are arbitrary, and the substrate, located on one side of the FSS, consists of an arbi-
trary bianisotropic material, which is stratified (piecewise constant parameters) or
has continuously varying parameters with respect to depth. The method presented
in this paper relies on a systematic use of the integral representation of the elec-
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Figure 8: The same element and unit cell geometry as in Figures 4 and 6 but the
substrate is bianisotropic and the frequency range is larger. The material parameters
is given in (5.1) and the thickness of the substrate is d = 6 mm. The curves that
correspond to the co-polarization are given by lines without crosses and the cross-
polarization curves are given by lines with crosses. The solid lines show the cases
where εyy = 3 and Ω = 0 (i.e., an isotropic substrate), and the dashed lines show
the cases where εyy = 10 and Ω = 0.9. The angle of incidence is θ = 30◦ and φ = 0◦,
and the polarization is TE.
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tromagnetic fields outside the slab. The unknown current on the FSS is obtained
by an application of the method of moments, and from its solution all other quan-
tities are calculated. In a series of numerical computations the performance of the
method is illustrated. These illustrations are not intended to be candidates for an
actual design, but merely an illustration of the performance of the method and its
potential.

The method applies to a slab located on one side of the FSS, but with appropriate
generalizations it will apply to the situation where we have a bianisotropic slab
on each side of the FSS, as well as the situation of multi-layered FSSs. These
generalizations will be addressed in a subsequent paper.
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Appendix A Power flow

The average power in the z-direction is determined by the integral of Poynting’s
vector over a plane z = constant. Provided the material parameters are constant
on the plane z = constant, we have a Fourier representation of the fields. Using the
Parseval’s identity, we get

∞∫∫
−∞

ẑ · S(r) dx dy =
1

2
Re

∞∫∫
−∞

ẑ · (E(r)×H∗(r)) dx dy

= − 1

8π2
Re

∞∫∫
−∞

Exy(kt, z) ·
(
ẑ ×H∗xy(kt, z)

)
dkx dky

We rewrite the integrand with the wave-splitting, (2.15)

− Re
{
Exy(kt, z) ·

(
ẑ ×H∗xy(kt, z)

)}
= Re

{
1

ηη0

(
F+∗(kt, z) + F−

∗
(kt, z)

)
·O−1(kt) ·

(
F+(kt, z)− F−(kt, z)

)}

Two types of components occur{
Re

(
F+∗ ·O−1 · F+ − F−∗ ·O−1 · F−

)
Re

(
F−

∗ ·O−1 · F+ − F+∗ ·O−1 · F−
) (A.1)

The first term in (A.1) has the form, see (2.16)

F± ·O−1 · F±∗ = F± ·
(
ê‖ê‖

k

kz
+ ê⊥ê⊥

kz
k

)
· F±∗ =

kz
k

(
|F±‖ |2

k2

k2
z

+ |F±⊥ |2
)
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where the projections F±⊥ and F±‖ are defined by F±⊥ = ê⊥ · F± and F±‖ = ê‖ · F±.

From (2.6), we get for kt ≤ k

∣∣γ± · F±∣∣2 =

∣∣∣∣ê‖F±‖ + ê⊥F
±
⊥ ∓ ẑF±‖

kt
kz

∣∣∣∣
2

=

(
|F±‖ |2

k2

k2
z

+ |F±⊥ |2
)

and we have

ReF± ·O−1 · F±∗ =
∣∣γ± · F±∣∣2 kz

k
, kt ≤ k

Similarly for the second term in (A.1). We get (O−1 is a symmetric dyadic)

Re
(
F−

∗ ·O−1 · F+ − F+∗ ·O−1 · F−
)

= 2 Re
(
iF−

∗ · Im
(
O−1

)
· F+

)
=− 2

(
Im

k

kz
Im

(
F+
‖ F

−
‖
∗
)

+ Im
kz
k

Im
(
F+
⊥F

−
⊥
∗))

Finally, we get

∞∫∫
−∞

ẑ · S(r) dx dy

=
1

8π2ηη0

∫∫
kt≤k

kz
k

(∣∣γ+(kt) · F+(kt, z)
∣∣2 − ∣∣γ−(kt) · F−(kt, z)

∣∣2) dkx dky
− 1

4π2ηη0

∫∫
kt≥k

(
Im

k

kz
Im

(
F+
‖ F

−
‖
∗
)

+ Im
kz
k

Im
(
F+
⊥F

−
⊥
∗))

dkx dky

(A.2)
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