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Abstract

The forward scattering sum rule relates the extinction cross section inte-

grated over all wavelengths with the polarizability dyadics. It is useful for

deriving bounds on the interaction between scatterers and electromagnetic

�elds, antenna bandwidth and directivity, and energy transmission through

sub-wavelength apertures. The sum rule is valid for linearly polarized plane

waves impinging on linear, passive, and time translational invariant scatter-

ing objects in free space. Here, a time-domain approach is used to clarify

the derivation and the used assumptions. The time-domain forward scattered

�eld de�nes an impulse response. Energy conservation shows that this impulse

response is the kernel of a passive convolution operator that implies that the

Fourier transform of the impulse response is a Herglotz function. The forward

scattering sum rule is �nally constructed from integral identities for Herglotz

functions.

1 Introduction

The forward scattering sum rule relates the extinction cross section integrated over
all wavelengths with the polarizability of the scatterer de�ned by its electric and
magnetic polarizability dyadics. This sum rule was introduced for spheroidal di-
electrics in [22] and generalized to arbitrary heterogeneous objects in [26]. Related
dispersion relations are considered by several authors, see e.g., [19�21]. In addition
to the insight the identity provides in scattering theory, it o�ers physical bounds
on the interaction between arbitrary obstacles and electromagnetic �elds [26]. For
example, it is useful in the analysis of metamaterials where it shows that an in-
creased interaction is traded against bandwidth [27, 28]. It has also been used to
demonstrate how size and shape a�ect performance in antenna theory [4, 9, 10, 25]
and for extra-ordinary transmission of energy though sub wavelength apertures [12].

Here, a time-domain derivation of the forward scattering sum rule is presented.
The derivation is based on transient scattering of an incident plane wave in the
form of a (Dirac) delta pulse. The scattered �eld of an ordinary incident pulse with
�nite power density is retrieved from convolution between the impulse response
and the pulse shape. Moreover, the corresponding time-harmonic forward scattered
�eld is obtained from a multiplication with the transfer function, i.e., the Fourier
transform of the impulse response. These properties are related to the impulse
response and transfer function that are commonly used in linear system theory [31].
The sum rule relates the extincted (i.e., the scattered and absorbed) power of an
object integrated over all wavelengths with the polarizability of the object times the
incident power �ux. The corresponding physical bounds show that the bandwidth
times the extinction is bounded by the polarizability. Moreover, the polarizability
dyadic of an object is bounded by the high-contrast polarizability dyadic that only
depends on the geometry of the object [26]. This demonstrates that large extinction
cross sections of sub-wavelength objects are only possible over limited frequency
intervals.
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Figure 1: a) a scattering object con�ned to the region [z1, 0] together with a cir-
cumscribing surface, ∂V , with unit normal vector n̂. b) region that contains the
spatial and temporal support of the �eld.

The time-domain analysis shows that, under the assumption of passivity, the
impulse response is the kernel of a passive convolution operator [31]. The corre-
sponding transfer function is then a positive real function [8, 31] or a Herglotz [20]
(or Nevanlinna or Pick [5]) function. This choice depends on the considered right
or upper complex half plane that is often induced by the time conventions ejωt and
e−iωt, respectively, where i2 = −1 and j = −i. Here, Herglotz functions are con-
sidered [20]. They are de�ned as holomorphic mappings from the upper complex
half plane into itself. Integral identities for Herglotz functions are used to derive
the forward scattering sum rule [2, 7, 9, 26]. It is straight forward to transform the
derivation to positive real functions [31] using the time convention ejωt.

This paper is organized as follows. In Sec. 2, the forward scattering impulse
response is introduced and the extincted energy of an incident time-domain plane
wave is derived. The corresponding results in the frequency domain are analyzed
in Sec. 3. Sum rules, related physical bounds, and numerical examples are given in
Sec. 4. Sec. 5 contains the conclusions.

2 Time domain forward scattering

Introduce a coordinate system such that the �nite scattering object is con�ned to
the region z1 ≤ z ≤ 0 leaving z ≥ 0 as free space, see Fig 1a. Consider a transient
incident plane wave in the form of a (Dirac) delta distribution, δ, propagating in
the z-direction, i.e., the incident electric and magnetic �eld intensities are

E
(δ)
i (t, r) = êδ(t− z/c0) and H

(δ)
i (t, r) = η−1

0 ẑ × êδ(t− z/c0), (2.1)

respectively, where ê · ẑ = 0, c0 denotes the speed of light in free space, and η0 is the
intrinsic impedance of free space. The spatial and temporal support (the support
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Figure 2: Snapshots illustrating the scattering of an incident Gaussian pulse by a
dielectric brick with relative permittivity εr = 2 and conductivity ς = 3.5/`η0 using
FDTD. a) total �eld ê ·E(t, r). b) scattered �eld ê ·Es(t, r).

is the region where the �eld is non-zero) of the incident �eld is given by the plane
de�ned by t = z/c0, see Fig 1b. The (total) �eld is equal to the incident �eld until
the pulse reaches the object, i.e., for t < z1/c0. The support of the �eld is more
complex for larger times due to the interaction between the incident �eld and the
object. In general, it requires a solution of the Maxwell equations with an accurate
model of the constitutive relations to determine the �eld and its support, see e.g.,
Fig. 2a and Fig. 3. However, for the purpose of deriving the forward scattering sum
rule, it is su�cient to determine a region that contains the support of the �eld, see
Fig 1b. This region is solely based on the fundamental property that the wavefront
velocity is bounded by the speed of light in free space and that the incident wave
does not reach the object until the time t = z1/c0.

Before speci�c material models of the scattering object and the Maxwell equa-
tions are considered it is important to review the underlying physics that the con-
stitutive relations should ful�ll. A fundamental property is that the propagation of
an electromagnetic wave is limited by the speed of light in free space. Note that this
is a bound on the wavefront velocity and not the phase velocity or group velocity
that are commonly used for time harmonic �elds. The wavefront velocity quanti�es
the speed that the wavefront propagates with in the direction orthogonal to itself.
This is related to the Huygens principle that states that each point of an advancing
wavefront is the center of a new disturbance [6].

Mathematically, it is necessary to consider a set of constitutive relations that
guarantee these properties when used together with the Maxwell equations. Here,
the analysis is restricted to linear, time translational invariant, continuous, passive,
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isotropic, and non-magnetic material models for simplicity. This gives the tempo-
rally dispersive constitutive relations of the form

D(t, r) = ε0ε∞(r)E(t, r) + ε0

∫ ∞
0

χt(t
′, r)E(t− t′, r) dt′ (2.2)

andB = µ0H , where ε0 and µ0 denote the intrinsic permittivity and permeability of
free space, respectively, ε∞(r) ≥ 1 is the instantaneous response, and χt the electric
susceptibility kernel. To guarantee a well posed solution of the Maxwell equations, it
is also assumed that |∂χt

∂t
| is integrable in t. The instantaneous response models the

direct response of the medium whereas the susceptibility kernel models the temporal
dispersion. One can argue that ε∞ = 1 for materials as the medium cannot react
instantaneously to the electromagnetic �eld [13]. However, here the general case
with an arbitrary ε∞ ≥ 1 is considered. This is motivated from a modeling point of
view where ε∞ is the permittivity for su�ciently high frequencies (or equivalently
fast temporal responses) compared with the frequency range of interest [11].

The wave-front velocity in the medium is now given by c0/
√
ε∞(r) ≤ c0. This is

easily understood for the plane-wave solution in a homogeneous medium. General
inhomogeneous objects require further analysis, where the general properties follow
from the analysis of symmetric hyperbolic systems [6, 18] together with the obser-
vation that the principal part of the Maxwell equations determine the propagation
of the wavefront. This reduces the analysis to the case of non-dispersive material
models, i.e., χt = 0 in (2.2).

Decompose the (total) �eld into incident and scattered �elds as

E(δ)(t, r) = E
(δ)
i (t, r) +E(δ)

s (t, r) and H(δ)(t, r) = H
(δ)
i (t, r) +H(δ)

s (t, r), (2.3)

see also the numerical example in Fig. 2. The surface integral representation (.6)
of the scattered �eld is used to determine the co-polarized scattered far-�eld in the
forward direction as ê · F (δ)(t, ẑ) = −∂ht

∂t
/4πc0, where

ht(t) = ê ·
∫
∂V

ẑ×
(
n̂(r)×E(δ)

s (t+ z/c0, r)
)

+ η0n̂(r)×H(δ)
s (t+ z/c0, r) dS . (2.4)

It is realized that the �eld of an incident δ-pulse does not decay according to the
inverse square law. However, the far-�eld of an incident square integrable pulse is
determined by convolution of the pulse shape with the impulse response as outlined
in 5.

The surface representation (2.4) is used to show that ht is causal, i.e., ht(t) = 0
for t < 0. Here, it is convenient to consider the scattered �eld on the surface de�ned
by z = 0 with n̂ = ẑ, that simpli�es the surface integral representation (2.4) into

ht(t) = −
∫

R2

ê ·E(δ)
s (t, r) + η0(ẑ × ê) ·H(δ)

s (t, r) dS, (2.5)

where r · ẑ = 0. It is seen that ht is the component of the scattered �eld that is
co-polarized with the incident �eld at z = 0. The properties of ht(t) can hence be
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Figure 3: Snapshots of the spatial support of the �eld E(δ)(t, r). a) at t = z1/c0,
i.e., the pulse reaches the object. b) at t = 0, i.e., the pulse has passed the object.

obtained from the corresponding properties of the scattered �eld. It is obvious that
ht(t) is quiescent for t < 0 as the same holds for the scattered �eld as well as for the
total �eld.

The impulse response in the forward direction ht(t) is now used to express the
extincted energy, cf., the time-domain optical theorem [3, 15]. A compactly sup-
ported smooth pulse shape, E(t), is considered to ensure that the extincted energy
is well de�ned. The total and scattered �elds induced by the incident �eld,

Ei(t, r) = êE(t− z/c0) (2.6)

is represented as a convolution between the impulse response, E(δ)
s , and the incident

pulse shape, i.e.,

Es(t, r) =

∫
R
E(δ)

s (t− τ, r)E(τ) dτ (2.7)

and similarly for Hs. The extincted energy, Wext, is the sum of the absorbed and
scattered energies. The scattered energy at time T with respect to the region V is
de�ned as the energy of the scattered �eld outside V , i.e.,

1

2

∫
R3\V

ε0|Es(T, r)|2 + µ0|Hs(T, r)|2 dV

=

∫ T

−∞

∫
∂V

(
Es(t, r)×Hs(t, r)

)
· n̂(r) dS dt, (2.8)

where the equality follows from conservation of energy in the form of the Poynting's
theorem [13, 30]. Similarly, the absorbed energy is de�ned as the di�erence between
the total energy and the incident energy in V∫ T

−∞

∫
V

E · ∂D
∂t

+H · ∂B
∂t
− ε0Ei ·

∂Ei

∂t
− µ0H i ·

∂H i

∂t
dV dt

= −
∫ T

−∞

∫
∂V

(
E(t, r)×H(t, r)−Ei(t, r)×H i(t, r)

)
· n̂(r) dS dt. (2.9)
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Note that the absorbed and scattered energies at a time T depend on the considered
region V . Now the extincted energy can be written as an integral of the energy �ux
through the surface ∂V , i.e.,

Wext(T )

= −
∫ T

−∞

∫
∂V

(
E(t, r)×H(t, r)−Es(t, r)×Hs(t, r)−Ei(t, r)×H i(t, r)

)
·n̂(r) dS dt

= −
∫ T

−∞

∫
∂V

(
Ei(t, r)×Hs(t, r) +Es(t, r)×H i(t, r)

)
· n̂(r) dS dt. (2.10)

This form is used in the time-domain version of the optical theorem [15]. It is
observed that Wext(T ) is independent of T for large times as Ei and H i in (2.10)
are quiescent after the incident pulse has passed the region V . In particular, this
implies that Wext(∞) ≥ 0 is independent of the considered region V . The sign
Wext(∞) ≥ 0 follows directly from the non-negative signs of (2.8) and (2.9), where
the passivity of the constitutive relations (2.2) and the �nite support of E(t) are
used.

Use (2.6) and the relation (2.7) of the scattered �eld to rewrite the extincted
energy as

Wext(T ) = −
∫ T

−∞

∫
∂V

ẑ ·
(
ê×Hs(τ, r)

)
+
(
Es(τ, r)× (ẑ × ê)

)
· ẑ/η0 dSE(τ) dτ

= −
∫ T

−∞

∫
R

∫
∂V

(ẑ × ê) ·H(δ)
s (τ − t, r) + ê ·E(δ)

s (τ − t, r)/η0 dSE(τ)E(t) dt dτ

=
1

η0

∫ T

−∞

∫
R
E(t)ht(τ − t)E(τ) dt dτ, (2.11)

where the surface is chosen as the surface z = 0 and ht is identi�ed from the surface
integral representation of the scattered �eld in the forward direction (2.5). This
relation is valid for all compactly supported smooth functions E(t), and Wext(∞) ≥
0 classi�es the impulse response, ht(t), as a (tempered) distribution of positive
type [23]. Passivity and the �nite speed of propagation is now used to show that
Wext(T ) ≥ 0 for all E(t). The extincted energy (2.10) is �rst rewritten as a volume
integral over the exterior region, i.e.,

Wext(T ) =
1

2

∫
R3\V

ε0
(
|Ei(T, r)|2 + |Es(T, r)|2 − |E(T, r)|2

)
+ µ0

(
|H i(T, r)|2 + |Hs(T, r)|2 − |H(T, r)|2

)
dV . (2.12)

Using (2.12) with R3 \ V as the region z ≥ 0, it follows that Wext(T ) ≥ 0. This
characterizes ht(t) as the kernel of a passive convolution operator [31], that has the
general representation [31]

ht(t) = Bδ′(t) + θ(t)

∫
R

cos(ξt) dβ(ξ), (2.13)
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where B ≥ 0, θ(t) = 0 for t < 0, θ(t) = 1 for t > 0, and dβ(ξ)/(1 + ξ2) is a �nite
measure, i.e.,

∫
R(1 + ξ2)−1 dβ(ξ) <∞.

The constant B in (2.13) is further restricted. The �nite speed of propagation
restricts the surface integral (2.5) to the projection of the geometrical cross section
on the surface z = 0 for short times, i.e., as t → 0. It also creates a shadow zone,
denoted by A in Fig. 3b, where E(δ)(t, r) = η0H

(δ)(t, r) = 0, behind impenetrable

objects or objects with ε∞ > 1, causing E(δ)
s (t, r) = −E(δ)

i (t, r) = −êδ(t) and

H(δ)
s (t, r) = −H(δ)

i (t, r) = −η−1
0 ẑ × êδ(t) as t → 0 in this region. This gives a

short time behavior of the form ht(t) ≈ 2Aδ(t) as t → 0 for these types of objects,
where A =

∫
A dS denotes the area of A, cf., the extinction paradox. This shows

that B = 0 in (2.13).

3 Fourier domain forward scattering

The derivation of the forward scattering sum rule is based on integral identities in
the Fourier domain [26]. A Fourier transform of the impulse response, ht, de�nes
h(k) as

h(k) = i

∫
R
ht(t)e

iktc0 dt, (3.1)

where k = ω/c0 with Im k > 0 denotes the wavenumber and the multiplication
with the imaginary unit, i, is used to rotate the range to the upper complex half
plane. The Fourier (Laplace) transform of ht(t) de�ned by (2.13) classi�es h(k) as
a (symmetric) Herglotz function [2, 5, 20], that can be represented by the integral

h(k) = Bk +

∫
R

1

ξ − k
− ξ

1 + ξ2
dβ(ξ) = Bk +

∫
R

k

ξ2 − k2
dβ(ξ), (3.2)

where Im k > 0 and
∫

R(1 + ξ2)−1 dβ(ξ) < ∞ [20, 31]. The cross symmetry h(k) =
−h∗(−k∗) used in (3.2), where a star denotes the complex conjugate, follows from
the real valued ht. It is observed that dβ(ξ) = Imh(ξ) dξ/π if Imh(ξ) is su�ciently
regular [5] o�ering a simple relation with the Hilbert transform and the Kramers-
Kronig relations [13, 16]. A Herglotz function is holomorphic in Im k > 0 and its
imaginary part is non-negative, Imh(k) ≥ 0, i.e., h(k) maps the upper half plane
into itself. The high frequency limit is h(k)/k → B ≥ 0 as k→̂∞, where →̂ is a
shorthand notation for limits such that α ≤ arg(k) < π − α for some α > 0.

The Plancherel formula expresses the extincted energy (2.11) as

Wext(∞) =
c0

2πη0

∫
R

Imh(k)|Ẽi(k)|2 dk =
c0

2πη0

∫
R
σext(k; k̂, ê)|Ẽi(k)|2 dk, (3.3)

where σext(k) = Imh(k) is the extinction cross section. The extinction cross section
of an object is also related to the forward scattering of the object via the optical
theorem [19, 20], i.e., σext(k) = Imh(k), where h(k) = 4πê · F̃ (δ)(k; k̂)/k and F̃ (δ)

denotes the far-�eld amplitude. The function h(k) can hence be considered as a
holomorphic continuation of σext(k) into Im k > 0.
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The surface integral representation of the electromagnetic �eld expresses the far
�eld in the scattered �eld on the surface z = 0, cf., (2.5). Written in the function
h(k) it reads

h(k) = −i

∫
R2

ê · Ẽ(δ)
s (k, r) + η0(ẑ × ê) · H̃(δ)

s (k, r) dS, (3.4)

where the incident wave is the unit-amplitude time-harmonic plane wave Ẽ
(δ)
i (k, r) =

eikzê and Ẽ
(δ)
s and H̃

(δ)
s denote the Fourier transforms of E(δ)

s andH(δ)
s , respectively.

The low-frequency asymptotic expansion of the far �eld is well known and e.g.,
analyzed in [17]. Here, a simpli�ed derivation based on the volume integral rep-
resentation (.2) is presented, see [17] for a more general derivation. It is valid for
the constitutive relations (2.2) without a static conductivity. The low-frequency

asymptotic expansions e−ikk̂·r = 1+O(k) and Ẽ(δ) = Ẽ
(δ)
0 +O(k) as k → 0 together

with the induced current η0J̃
(δ)(k, r) = −ik(εr(k, r)− 1)Ẽ(δ)(k, r) inserted into the

volume integral representation (.2) are used to get

h(k) = iη0

∫
V

ê · J̃ (δ)(k, r)e−ikk̂·r dV = kê ·
∫
V

(εr(0, r)− 1)Ẽ
(δ)
0 (r) dV +O(k2)

= kê · γe · ê+O(k2) as k → 0, (3.5)

where γe denotes the electric polarizability dyadic [17, 30].
The high frequency asymptotic is more involved. Obviously, the high-frequency

response depends on the corresponding high-frequency limit of the constitutive re-
lations. As discussed above it is sometimes argued that the constitutive relations
reduce to their free space values in this limit. This would simplify the analysis,
however, here the general constitutive relations (2.2) are considered. The represen-
tation (3.2) shows that it is su�cient to consider the high frequency asymptote on
the imaginary axis k′ = 0 as k′′ → ∞, where k = k′ + ik′′. The high-frequency
asymptotic is hence related to the short time behavior of ht(t) since

h(ik′′) = i

∫ τ1

0

e−k
′′tc0ht(t) dt+ ie−k

′′τ1c0

∫ ∞
0

e−k
′′tc0ht(t+ τ1) dt (3.6)

for any τ1 > 0. The second integral decays exponentially with k′′, so the high
frequency asymptotic is given by the �rst integral with an arbitrary small τ1. The
short time response of (2.5) shows that ht(t) ≈ 2Aδ(t) as t → 0 for impenetrable
objects and hence h(k) → 2Ai as k′′ → ∞, where A denotes the cross section area
of the shadow zone A, see Fig. 3.

4 Sum rules and physical bounds

Integrate h(k) over a line in the upper complex half plane and use the low-frequency
asymptote (3.5) to get the sum rule [2, 26]

lim
ε→0

lim
y→0

2

π

∫ ∞
ε

σext(k + iy; k̂, ê)

k2
dk =

2

π

∫ ∞
0

σext(k; k̂, ê)

k2
dk = ê · γe · ê, (4.1)
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Figure 4: Illustrations of the polarizability dyadics (a) and extinction cross section
(b) for perfectly conducting square patches and split rings with k̂ = ẑ.

where, if necessary, the integral in the center is a generalized integral de�ned as
the limit of the integral to the left. It is often convenient to use the wavelength
λ = 2π/k to express the identity as the integrated extinction [26]

1

π2

∫ ∞
0

σext(λ; k̂, ê) dλ = ê · γe · ê, (4.2)

where the symbol σext is reused to denote the extinction cross section as a function
of the wavelength. This shows that the extinctions cross section integrated over all
wavelengths is proportional to the polarizability ê · γe · ê.

It is known that γe is monotone in the material parameters [14, 24]. That is
γe1 ≤ γe2 if ε1(r) ≤ ε2(r) for all points r in the object, where the inequality means
γe1 ≤ γe2 if ê · (γe2− γe1) · ê ≥ 0 for all ê ∈ R3. It is hence convenient to introduce
the high contrast polarizability dyadic γ∞ such that γe ≤ γ∞ for all objects con�ned
to the same volume [26]. The high contrast polarizability dyadics are illustrated for
a square patch and a square split ring resonator in Fig. 4a. Note that γ∞ is larger
for the patch than for the split ring as the patch can be constructed from the split
ring by adding material. The variational principle together with the sum rule (4.2)
show that the integrated extinction is monotone in the material parameters.

Bound the integral (4.2) as

|Λ|min
λ∈Λ

σext(λ; k̂, ê) ≤ π2ê · γe · ê, (4.3)

where Λ = [λ1, λ2] and |Λ| = λ2− λ1 to get a simple bound on the bandwidth times
the extinction cross section [26]. The bounds are illustrated by the shaded boxes
in Fig. 4, that are constructed to have similar total areas as the areas under the
corresponding curves. An interpretation of the bound is that it is not possible to
design a scatterer with σext(λ) that does not intersect the box.
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A second example is provided by spherical scatterers composed of aluminum
(Al), silver (Ag), gold (Au), and copper (Cu), using the permittivity models in [29].
The extinction cross sections for spheres with radius a = 50 nm are depicted in
Fig. 5 as functions of the wavelength λ. It is observed that σext is large compared
to the cross section area πa2 at some resonance wavelengths and that σext is small
for λ > 1µm and σext(λ) → 0 as λ → 0. The polarizabilities of the spheres are
γe = γ∞ = 4πa3I as they have a static conductivity. This is also con�rmed by
numerical integration of the sum rule (4.2). The areas under the curves de�ned by
σext(λ) are hence given by the radii of the spheres. The dispersion characteristics
of the materials distribute the area to di�erent wavelengths. The large values of
σext(λ) for silver around λ ≈ 0.4µm must hence be compensated by reduced values
at other wavelengths as seen in the �gure. A comparison with the bound (4.3) shows
that

λ2
minλ∈Λ σext(λ; k̂, ê)

πa2
≤ 4π2a ≈ 2µm (4.4)

if λ1 = 0 is used. This gives a rough estimate of the average distribution of σext,
e.g., σext/πa

2 = 3 gives λ2 = 2/3µm.
The polarizabilities of hollow and solid metallic spheres are identical due to the

static conductivity of metals [17]. This imply that the integrated extinctions (4.2)
are identical for hollow and solid spheres composed of metallic materials. The ex-
tinction cross sections of hollow silver spheres with outer radius a = 50 nm and inner
radii 0.5a and 0.9a are depicted in Fig. 6. Note that the increased values of σext(λ)
around 0.7µm are compensated by low values at the shorter wavelengths.

5 Conclusions

A time-domain approach is used to derive the forward-scattering sum rule. The time-
domain analysis highlights the used assumptions such as causality and passivity.
The use of causality is clearly observed in the de�nition of the forward-scattering
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Figure 6: Extinction cross sections for layered silver spheres with outer radius
a = 50 nm and inner radii 0.5a and 0.9a.

impulse response. It follows from the fact that the wave-front speed cannot exceed
the speed of light in free space. Passivity enters though conservation of energy that
states that the extincted energy is non-negative. This also shows that the impulse
response is the kernel of a passive convolution operator, and, hence, constructs a
Herglotz function in the Fourier domain [31].

The forward scattering sum rule has previously been used to derive bounds on
scattering and absorption of metamaterials [27, 28], antenna bandwidth and direc-
tivity [9, 10], and extraordinary transmission of power though sub-wavelength aper-
tures [12]. Here, the sum rule and bounds are exempli�ed for resonant perfectly
conducting structures and spheres composed of various metals. It is observed that
the sum rule o�ers simple estimates of the overall behavior of the extinction-cross
section, σext(λ), in a way that the dispersion characteristics of the metals determine
the resonances but the (long-wavelength) polarizability dyadic determines the total
area under the curve σext(λ). This is particularly important in e.g., cloaking of
objects in free space [1], where it is noted that the cloaking material increases the
polarizability as it adds material [14, 24] and hence the area under σext(λ). Reduc-
tion of σext(λ) at some desired wavelengths must then be compensated by increased
values of σext(λ) at other wavelengths.

Integral representation of the scattered �eld Here, some classical integral repre-
sentations are summarized, see e.g., [30]. The electric �eld is

Ẽs(k, r) = eikr F̃ (k, r̂)

r
+O(r−2) as r →∞ (.1)

in the far-�eld region. The volume integral representation of the far �eld from a
current distribution is

F̃ (k, r̂) =
ikη0

4π
r̂ ×

(∫
V

e−ikr̂·rJ̃(k, r) dV×r̂
)

(.2)

that is used in the derivation of the low-frequency asymptotic expansions (3.5).
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The surface integral representation is used in the de�nition of the impulse re-
sponse, ht in (2.4) and the transfer function h(k) = 4πê · F̃ (δ)(k, k̂)/k, in (3.4). It
is given by

F̃ (δ)(k, k̂) =
ik

4π
k̂×
∫
∂V

(
n̂(r)×Ẽ(δ)

s (k, r)−η0k̂×(n̂(r)×H̃(δ)
s (k, r))

)
e−ikk̂·r dS (.3)

that gives the function (ê · k̂ = 0)

h(k) = iê · k̂ ×
∫
∂V

(
n̂(r)× Ẽ(δ)

s (k, r)− η0k̂ × (n̂(r)× H̃(δ)
s (k, r))

)
e−ikk̂·r dS

= iê ·
∫
∂V

(
k̂ × (n̂(r)× Ẽ(δ)

s (k, r)) + η0n̂(r)× H̃(δ)
s (k, r)

)
e−ikk̂·r dS (.4)

in the Fourier domain. The corresponding time-domain case is obtained by an
inverse Fourier transform, i.e.,

Es(t, r) =
c0

2π

∫
R
Ẽs(k, r)e−iktc0 dk (.5)

that gives

F (δ)(t, k̂) = − ∂

∂t

k̂×
4πc0

∫
∂V

n̂(r)×E(δ)
s (t+

r · k̂
c0

, r)

− η0k̂ × (n̂(r)×H(δ)
s (t+

r · k̂
c0

, r)) dS . (.6)

The time-domain co-polarized case in the forward direction is

ê · F (δ)(t, k̂) = − 1

4πc0

∂ht

∂t
, (.7)

where

ht(t) = ê ·
∫
∂V

k̂×
(
n̂(r)×E(δ)

s (t+
r · k̂
c0

, r)
)

+ η0n̂(r)×H(δ)
s (t+

r · k̂
c0

, r) dS . (.8)
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