
LUND UNIVERSITY

PO Box 117
221 00 Lund
+46 46-222 00 00

Algorithmic Improvements for Stochastic Rasterization & Depth Buffering

Andersson, Magnus

2015

Link to publication

Citation for published version (APA):
Andersson, M. (2015). Algorithmic Improvements for Stochastic Rasterization & Depth Buffering. [Doctoral
Thesis (compilation), Department of Computer Science].

Total number of authors:
1

General rights
Unless other specific re-use rights are stated the following general rights apply:
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors
and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the
legal requirements associated with these rights.
 • Users may download and print one copy of any publication from the public portal for the purpose of private study
or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal

Read more about Creative commons licenses: https://creativecommons.org/licenses/
Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove
access to the work immediately and investigate your claim.

https://portal.research.lu.se/en/publications/3a3dec14-811b-41ad-a424-242a8ab5dd46

Algorithmic Improvements for
Stochastic Rasterization & Depth

Buffering

Magnus Andersson
Department of Computer Science

Lund University

ISBN (Printed) 978-91-7623-442-6
ISBN (Electronic) 978-91-7623-443-3
ISSN 1404-1219
Dissertation 48, 2015
LU-CS-DISS 2015-04

Department of Computer Science
Lund University
Box 118
SE-221 00 Lund
Sweden

Email: magnus.andersson@cs.lth.se
WWW: http://www.cs.lth.se/home/Magnus_Andersson

Typeset using LATEX2ε

Printed in Sweden by Tryckeriet i E-huset, Lund, 2015
c© 2015 Magnus Andersson

Abstract

The field of computer graphics refers to the use of computers to generate realistic-
looking images from virtual scenes. Graphics processing units use an algorithm
known as rasterization to compute images of scenes viewed from a virtual camera.
The commonly used pinhole camera model does not account for the imperfections
that stem from the physical limitations in real-world cameras. This includes, for
example, motion and defocus blur. These two phenomena can be captured using
stochastic rasterization, which is an algorithm that extends upon conventional ras-
terization by being able to handle moving and out-of-focus objects. Using this
approach, the virtual scene is sampled at different instances in time and using
different paths through the camera lens system. Alas, the extended functionality
comes at a higher computational cost and consumes much more memory band-
width. Much of the increased bandwidth usage is due to the increase in traffic
to the depth buffer. The focus of the six papers included in this thesis is three-
fold. First, we have explored ways to reduce the high memory bandwidth con-
sumption inherent in depth buffering, targeting both conventional and stochastic
rasterization. We have evaluated a number of hardware changes, including novel
compression schemes and cache improvements, which efficiently reduce memory
bandwidth usage. We also propose a hardware friendly algorithm which reduces
the pressure on the depth buffering system by culling unnecessary work early in
the pipeline. Second, we propose an algorithm to reduce shading computations
for stochastic rasterization. In our approach, we decouple shading and visibility
determination into two separate passes. The surface color is sparsely evaluated
in the first pass and can be efficiently used in the second pass, when rendering
from the camera. The two-pass approach allows us to adaptively adjust the shad-
ing rate based on the amount of blur resulting from motion and defocus effects,
which greatly reduces rendering times. Third, we propose a real-time algorithm
for rendering shadows cast by objects in motion. Due to the complicated interplay
between moving objects, moving light sources, and a moving camera, rendering
motion blurred shadows is an especially difficult problem. Using our algorithm,
high quality, smooth shadows can be achieved on conventional graphics proces-
sors. Collectively, I believe that our research is a significant step forward for
rendering scenes with motion and/or defocus blur, both in terms of quality and
performance.

i

ii

Acknowledgements

I would like to thank my supervisor Tomas for believing in me and giving me the
opportunity to pursue my PhD, and for providing invaluable help through all of
my projects. A big thank you to Krisztina for her tremendous support and patience
throughout my PhD endeavor, and for bringing snacks to all those late night dead-
lines. Thanks to my colleagues and co-authors at Intel for letting me steal their
precious time with coffee fueled white board discussions; Jon, Jim, Robert, Björn,
Petrik, and last, but not least my assistant supervisor Jacob. I would like to thank
my colleagues at the university; Michael, Rasmus, Carl-Johan, Per, Jim, and Philip
for all the valuable and entertaining discussions during the GrafikasTM and coffee
runs. I am very grateful to the Intel Corporation for funding my research, and to
everyone within the company who supported my studies throughout the years. I
thank my brother Fredrik and my parents Ann and Göran for their support and
encouragement, and my grandfather Ragnar, who unfortunately did not get to see
me cross the finish line.

iii

iv

Preface

The following papers are included:

I. Jon Hasselgren, Magnus Andersson, Jim Nilsson, and Tomas Akenine-Möller,
“A Compressed Depth Cache”,
in Journal of Computer Graphics Techniques, vol. 1, no. 1, pp. 101–118,
2012.

II. Magnus Andersson, Jon Hasselgren, and Tomas Akenine-Möller,
“Depth Buffer Compression for Stochastic Motion Blur Rasterization”,
in High Performance Graphics, pp. 127–134, 2011.

III. Magnus Andersson, Jacob Munkberg, and Tomas Akenine-Möller,
“Stochastic Depth Buffer Compression using Generalized Plane Encoding”,
in Computer Graphics Forum (Proceedings of Eurographics), vol. 32, no.
2, pp. 103–112, 2013.

IV. Magnus Andersson, Jon Hasselgren, and Tomas Akenine-Möller,
“Masked Depth Culling for Graphics Hardware”,
to appear in ACM Transactions on Graphics (Proceedings of SIGGRAPH
Asia), 2015.

V. Magnus Andersson, Jon Hasselgren, Jacob Munkberg, and Tomas Akenine-
Möller,
“Filtered Stochastic Shadow Mapping Using a Layered Approach”,
to appear in Computer Graphics Forum, 2015.

VI. Magnus Andersson, Jon Hasselgren, Robert Toth, and Tomas Akenine-Möller,
“Adaptive Texture Space Shading for Stochastic Rendering”,
in Computer Graphics Forum (Proceedings of Eurographics), vol. 33, no.
2, pp. 341–350, 2014.

The following paper is also published but is not included in this thesis:

• Magnus Andersson, Björn Johnsson, Jacob Munkberg, Petrik Clarberg,
Jon Hasselgren, and Tomas Akenine-Möller
“Efficient Multi-view Ray Tracing using Edge Detection and Shader Reuse”
in Visual Computer, vol. 27, no. 6–8, pp. 665–676, 2011.

v

vi

Contents

1 Introduction . 1

1.1 Real-Time Computer Graphics 2

1.2 Building a Virtual Scene 3

1.3 Thesis Organization . 7

2 Hardware Accelerated Graphics 7

2.1 The Graphics Processing Unit 7

2.2 The Rendering Pipeline 9

3 The Depth Unit . 12

3.1 Computing and Storing Depth 13

3.2 Hardware Architecture 17

4 Advanced Camera Models . 22

4.1 Defocus blur . 23

4.2 Motion blur . 25

4.3 Stochastic Rasterization of Motion and Defocus Blur . . . 26

4.4 Stochastic Depth Buffer Compression 28

4.5 User-space Stochastic Rasterization 29

5 Shadows . 32

5.1 Motion Blurred Shadows 34

6 Reducing Shading . 36

6.1 Texture Space Shading 37

7 Contributions . 38

8 Conclusions . 39

Paper I: A Compressed Depth Cache 41
1 Introduction . 43

2 Previous Work . 43

3 Compressed Depth Cache . 45

vii

3.1 Plane Encoding . 48

3.2 Depth Offset Compression Algorithm 48

4 Results . 50

5 Conclusions and Future Work . 55

Paper II: Depth Buffer Compression for Stochastic Motion Blur Rasteri-
zation 57
1 Introduction . 59

2 Compression Framework . 59

2.1 Framework . 60

2.2 Depth Compression Algorithms 62

3 New Algorithms . 63

3.1 Clustering . 63

3.2 Predictor Functions . 64

3.3 Residual Encoding . 68

4 Implementation . 68

5 Results . 70

6 Discussion . 72

Paper III: Stochastic Depth Buffer Compression using Generalized Plane
Encoding 75
1 Introduction . 77

2 Previous Work . 77

3 Background . 79

4 Generalized Plane Encoding . 80

5 Generalized Depth Function Derivations 81

5.1 Motion Blur . 81

5.2 Depth of Field . 84

6 Implementation . 85

7 Results . 89

8 Conclusions and Future Work . 92

Paper IV: Masked Depth Culling for Graphics Hardware 97
1 Introduction . 99

2 Previous Work . 99

3 Overview of Current Architectures 100

4 Algorithm . 103

viii

4.1 Compression . 107
5 Results . 107
6 Conclusions . 113

Paper V: Filtered Stochastic Shadow Mapping using a Layered Approach117
1 Introduction . 119
2 Previous Work . 120
3 Theory . 122
4 Algorithm . 124

4.1 Shadow Pass . 124
4.2 Lighting pass . 128

5 Implementation . 130
5.1 Dynamic bias for TSM 132

6 Results . 133
7 Conclusions . 136

Paper VI: Adaptive Texture Space Shading for Stochastic Rendering 139
1 Introduction . 141
2 Previous Work . 141
3 Algorithm . 143

3.1 Shading Pass . 144
3.2 Stochastic Rasterization Pass 149

4 Results . 151
4.1 Timings by Render Pass 154

5 Conclusions and Future Work . 154

ix

x

1. INTRODUCTION

Motion blurDefocus blur

Figure 1: Left: a duck is smirking because he is in focus while his friends are blurry in the
background. Right: a butterfly is frivolously flapping its wings, creating trails of motion
blur. (Photographs courtesy of Fredrik Andersson)

1 Introduction

Algorithms in computer graphics are used to generate realistic looking images by
simulating how light behaves and interacts with objects in the real world, before
reaching the eyes of the observer. As a species of avid moviegoers and (mostly)
amateur photographers, we have arguably gotten as used to viewing digital images
indirectly through cameras as directly through our own eyes. Advanced camera
models can be used to model the lens system and the shutter of the camera in order
to achieve effects such as defocus and motion blur, shown in Figure 1.
The human visual system is an intricate interplay of optics and psychology, where
different visual cues are subconsciously processed and interpreted by the brain.
This must also be taken into account when creating realistic-looking images. For
example, the shadows cast by an object can give us information about the size
and shape of the object, the distance to the shadowed surface, and the location of
the light source. Absence of expected phenomena such as shadows may disturb
the viewing experience, which makes the image look artificial, as exemplified in
Figure 2.

1

INTRODUCTION

Figure 2: A simple virtual scene with and without shadows. The sizes and locations of the
spheres are ambiguous when shadows are absent.

As more and more effects, such as defocus blur, motion blur, and shadows are
included in the image generation process, the computational cost unfortunately
increases. In this thesis, we propose several hardware improvements to graphics
processing units (GPUs) to alleviate this cost, primarily by lowering the memory
bandwidth usage. We also present two novel algorithms targeting current gener-
ation GPUs. The first is designed to efficiently calculate motion blurred shadows
and the second is used to quickly compute surface color in presence of motion and
defocus blur.

1.1 Real-Time Computer Graphics

Ideally, the computer generated image or sequence of images, should be indistin-
guishable from viewing the same scene in real life. This is a notoriously difficult
problem, since the light in the real world bounces around and changes properties
when it interacts with the elements in the scene before reaching the viewer. There
are numerous phenomena in the physical world to account for. For example, when
a photon reaches a surface it may be reflected in a seemingly random direction due
to the surface’s micro structure. There is also a possibility that the photon will be
absorbed and thus never reaches the viewer. If the surface is fluorescent, light with
a wavelength different from that of the absorbed photon may be emitted. Materials
can be semi-transparent and the light path can be altered through refractions and
reflections. Even the tiniest speck of dust will interact with some of the light in the
scene and therefore ultimately change the appearance of the image.
The process of converting a scene into an image is referred to as rendering the
scene and the underlying system responsible for performing this task is commonly
called the renderer. To obtain a realistic-looking image, the renderer needs to
utilize accurate physically-based models for how light interacts with everything in
the scene. Preferably in as short amount of time as possible.
In many applications and/or environments, some physical phenomena are subtle
or non-existent, and can therefore be omitted in order to simplify the rendering
process. Since rendering is always time-constrained, sacrificing some physical

2

1. INTRODUCTION

Figure 3: A triangle mesh representing an ogre head.

correctness for simplicity may enable the renderer to spend more compute cycles
on the parts of the light simulation that ends up having a greater impact on the
final image. This is especially important for real-time graphics applications, such
as games and other dynamic and interactive environments. To give the appearance
of fluid motion, the image displayed on the screen should preferably be updated
at rates typically ranging from 30−90 Hz, i.e., a new image (or frame) should be
delivered by the renderer roughly every 11−33 ms.
Although the discussion so far has circled around producing realistic images, re-
alism may not always be the desired result, time constraints aside. In computer
graphics, we are not bound by the physical laws of reality and as such, it is possible
to exaggerate or diminish some effects or to give in to artistic impulses. Perhaps
most important, however, is the prospect of “fooling” the user by getting away
with substituting a complex effect with a simpler one. In many situations it may
be difficult to determine exactly what the correct image should look like, which
gives ample opportunities for the renderer to cut corners and use believable ap-
proximations in place of the real, ground truth effects. For example, it is common
to use the greatly simplified thin lens model (see Section 4) in place of the intricate
lens system of a real camera when rendering defocus blur. This greatly simplifies
computations and the difference is indistinguishable to most users and for most
real-time applications.

1.2 Building a Virtual Scene

Before diving into the details of some of the algorithms used in rendering, we
must first establish some different constructs used to describe a virtual scene. For
the purpose of this thesis, the virtual scene is a collection of three-dimensional
geometric objects, light sources, and cameras, all of which may be animated over
time.

3

INTRODUCTION

Figure 4: A triangle mesh depicting a laughing Buddha statue with various material prop-
erties. The leftmost image shows the finely detailed geometry wire-frame. (Happy Buddha
model courtesy of Stanford University Computer Graphics Laboratory)

Geometry The behavior of light interacting with the surface of opaque geometry
is arguably the most important phenomenon to capture. The simplest primitive
that describes a surface in three-dimensional space is a triangle, which is defined
by its three corner points or vertices. Each vertex, q, is in turn composed of three
coordinates such that q = (qx,qy,qz). Each pair of vertices forms one edge of the
triangle. By joining multiple triangles together along the edges and at the vertices,
a triangle mesh (or mesh for short) can be created. An example of a triangle mesh
is shown in Figure 3. Given sufficiently many triangles, a mesh can be built to
approximate any geometric surface up to any accuracy. Although other geometric
primitives could be used to this effect, due to its simplicity, the triangle is the
predominant primitive of choice for most rendering systems.

Light-surface interaction The appearance of opaque geometric objects is deter-
mined by how light interacts with the surface materials. There is a vast difference
in how different materials interact with light, as illustrated in Figure 4.
The rendering equation [62] is often used to describe the light/surface interactions
within a scene. Following the illustration in Figure 5, given a surface point, px,
observed from another point in space, po, the amount of that light reaching po
from px can be calculated as

Lo(po,px) = v(po,px)

(
Le(po,px)+

∫
s

Li(px,pi) fr(po,px,pi) dpi

)
, (1)

where Lo is the radiance (outgoing light), Li the irradiance (incoming light), and
the term Le is the emitted radiance. The variable pi integrates the set of all surface
points, s, in the scene since all other points have a potential light contribution.
The bi-directional reflectance distribution function (BRDF) [95], fr, describes the
ratio of incoming and outgoing light in the directions of pi and po at the surface

4

1. INTRODUCTION

px

po
pi

Figure 5: A surface point, px, observed from another point, po. The amount of light reaching
po depends the incoming light from all other points in the scene, pi, whether there are
occluding objects between px and po, on the material of the surface, and on the amount of
light that is spontaneously emitted from px.

point. The BRDF is essentially the material description of the surface, which
includes the finer details that are not present in the geometric representation, such
as microscopic roughness and color dye.
There may be opaque or semi-transparent objects located on the path between po
and px occluding the light, which is accounted for by the visibility factor, v. For
scenes containing opaque geometry only, v can only assume the values 0 or 1.
Surfaces with a non-zero emitted radiance, Le 6= 0, act as a light sources. In real-
time graphics, it is common to illuminate the scene using light sources with in-
finitesimal extent, so-called point light sources. The point po is lit directly by the
emissive point situated at px if v = 1, i.e., when there are no objects obstructing the
direct path between the light source and po. Otherwise, the point is in shadow. It
could, however, still be illuminated indirectly by light bouncing off other surfaces.
Other types of light sources commonly used include area lights and environment
maps.
The version of the rendering equation outlined above is an approximation and
omits some intricate effects, such as subsurface scattering and light polarization.
Even so, the equation cannot be solved analytically due to the recursion in the
integral. However, it is possible to iteratively refine the solution, for example by
using Monte Carlo integration, where the integral is point sampled using random
samples [26]. As more samples are used, the result will approach the limit im-
age or ground truth. It is often sufficient to use relatively few recursion steps,
depending on the scene and application. Even a single step can produce plausible
results, since the most significant contribution often comes from surfaces directly
illuminated by the light sources in the scene.

5

INTRODUCTION

a

Virtual image plane
Image plane

Opaque separating plane

Figure 6: The pinhole camera model. The image plane is only exposed to the light coming
through the aperture point a.

Camera The final component needed in our virtual scene description is the cam-
era. It is responsible for capturing the light bouncing around in the scene in order
to produce an image. The simplest and most commonly used type of camera is
the pinhole camera, illustrated in Figure 6. An (infinite) opaque plane separates
the motif from the image plane. The separating plane only has a small opening,
or aperture point a, for the light to travel through. The aperture opening ensures
that light from a particular direction, going through the point, will intersect the
receiver image plane at one specific location. Together, all the incoming light rays
form an image, flipped along both axes, on the image plane. In the virtual world,
it is convenient to introduce an alternative image plane which is placed in front of
point a, instead of behind it. The light rays intersect the virtual image plane as
they travel towards the point a.

Generating an image from a virtual scene With the simple constructs outlined
so far it is possible to describe a virtual scene and convert it into an image. There
are numerous rendering techniques that could be used to accomplish this. Ray
tracing [13, 119] and rasterization [39, 99] are the two most prominent techniques
today and there is a great deal of research on these topics. They are both highly
parallel processes, but they organize the rendering problem in different ways. Ray
tracing is perhaps intuitively easier to understand. Using this method, each pixel
in the image can be processed in isolation. For each pixel, a set of rays are first
created which originate at the camera center (aperture point) and travel through the
pixel. These rays are used to probe the scene, which amounts to searching for the
closest intersection points among the scene geometry. Organizing the geometry
in a data structure that is both fast to construct and quick to traverse, in order to
find an intersection point, is key to good performance for ray tracing. In contrast,
with rasterization the scene geometry is processed in a streaming fashion. For each
triangle, the pixel overlap is determined and the depth and color are subsequently
calculated. Thus, each triangle is processed only once, while each pixel may be
visited multiple times by many different triangles. For real-time graphics, it is
undoubtedly rasterization which is the most predominant technique and is built in
to fixed-function hardware in modern consumer graphics processing units (GPUs).

6

2. HARDWARE ACCELERATED GRAPHICS

1.3 Thesis Organization

This introductory chapter should hopefully give the reader sufficient background
information to understand the papers included this thesis. How the GPU is used to
generate images is explained in Section 2. Concepts such as the rendering pipeline,
shaders, and depth buffers are introduced. Since one of the main areas of this thesis
is depth buffering, the entirety of Section 3 is dedicated to the depth unit, which in-
cludes details on depth computation and representation, hardware implementation,
and occlusion culling. Much of the research requires some insight into stochastic
rasterization for motion and defocus blur, which is explained in Section 4. This
includes a review of the camera models we used, as well as a discussion on how
stochastic sampling affects and complicates depth buffering. In addition, a user-
space stochastic rasterization implementation with motion and defocus blur is out-
lined. The topic of motion blurred shadows is addressed in Section 5, where I give
a brief overview of the shadow mapping algorithm and how it can be extended
to accommodate motion blurred shadows using stochastic rasterization. Section 6
describes how to reduce the computational burden when computing the sample
color for scenes with motion and defocus blur. Brief descriptions of the contribu-
tions in each of the papers are interspersed where appropriate in the text and the
author’s contributions to the papers are summarized in Section 7. Finally, some
conclusions and possible avenues for future work are found in Section 8. The or-
der of the papers was chosen to give a coherent narrative, but were authored and
published in the following chronological order: II, I, III, VI, V, and IV. The lay-
out of the papers have been altered slightly to better fit the format of the thesis.
The individual Bibliography sections for each of the papers have been merged to a
common section, which can be found at the end of the thesis.

2 Hardware Accelerated Graphics

At the time of writing, there is (at least) one dedicated graphics processing unit
(GPU) in nearly every desktop computer, gaming console, and handheld device
produced. As the name implies, the GPU is responsible for the bulk of the graphics
processing in the computer.

2.1 The Graphics Processing Unit

To render an image using a GPU, the scene data is accessed throughout a number
of pipeline stages within the so-called rendering pipeline. By using a combination
of programmable shader cores and fixed-function hardware, the GPU is able to
quickly rasterize triangles and compute their color contribution to each pixel.
On the application side, a graphics API is used to communicate with the GPU. Cur-
rently, the two main APIs used in the industry are OpenGL [107] and DirectX [17],
with many more emerging, such as Metal, Mantle, and Vulkan. Although there are

7

INTRODUCTION

Vertex Puller

Vertex Shader

Tessellation Control Shader

Tessellation Primitive Generation

Tessellation Evaluation Shader

Geometry Shader

Transform Feedback

Rasterization

Fragment Shader

Per-Fragment Operations

Image

Te
xt

ur
es

 &
 B

uff
er

 R
es

ou
rc

es

MSAA Resolve

D
ep

th
 B

uff
er

C
ol

or
 B

uff
er

...

V
er

te
x

Pr
oc

es
si

ng
Te

ss
el

la
tio

n
St

ag
es

Pr
im

iti
ve

Pr
oc

es
si

ng
Fr

ag
m

en
t

Pr
oc

es
si

ng

Figure 7: OpenGL 4.5 pipeline overview. The green stages are the programmable shaders
and the blue stages are fixed-function. Most of the stages are optional, only the ones with
bold, italic typeface are mandatory. It should be noted that compute shaders (not pictured)
bypass the entire rendering pipeline by simply running directly on the shader cores, and
can read and write to buffers in the GPU memory.

differences in the syntax and the programming model used, they serve the same
purpose in controlling the GPU. There are also different versions of each API
which adhere to the hardware capabilities of their contemporary GPUs. A simpli-
fied flow chart of the pipeline used in OpenGL 4.5 is pictured in Figure 7.
Some of the pipeline stages are programmable and are jointly called shaders. As
an example, a fragment shader program is used to describe how to compute the
output color of a pixel. For most rendering algorithms there are no data depen-

8

2. HARDWARE ACCELERATED GRAPHICS

dencies between the pixels and the shader program can therefore be executed in
a highly parallel fashion for many pixels at a time. The shader cores running the
programs are much simpler in their design than full-fledged CPUs and typically
operate at a lower frequency, and only very limited inter-core communication is
offered. Although the shader cores are less versatile than CPUs, they are smaller
and more energy efficient, and many units can therefore be fitted in a small area to
run in parallel, which suits most rendering techniques well. The placement of the
fixed-function stages and intermittent shader stages can be viewed in Figure 7, and
more detailed descriptions of their individual responsibilities are described next,
in Section 2.2.
In addition to the regular rendering pipeline, it is also possible to launch isolated
compute shaders. A compute shader program can read and write to the GPU re-
sources and does not depend on the rest of the fixed-function pipeline. Similar to
compute shaders in OpenGL and DirectX, programs that run directly on the shader
cores can be written in languages such as OpenCL and CUDA.

2.2 The Rendering Pipeline

In the following section, we will outline the rendering pipeline as it is commonly
used in OpenGL to generating an image with a pinhole camera. The first step is
to make the scene resources accessible by the GPU, by uploading them to GPU
memory. The resources include lists of triangles, texture images, transformation
matrices, and so on.

2.2.1 Vertex Processing

The vertex puller reads per-vertex data from the lists of triangles. A vertex shader
program is launched for each vertex, transforming its position to the coordinate
frame of the camera. Additionally, other per-vertex attributes to be interpolated
across the triangle surface are set up by the vertex shader. This includes, for ex-
ample, normals and texture coordinates. Apart from triangles, modern graphics
hardware also support point and line primitives, as well as tessellated surfaces.

2.2.2 Tessellation

In the optional tessellation stage, patch and triangle primitives can be tessellated
to a new set of triangles. A patch is defined by a set of control vertices. They are
interpreted by the tessellation control shader, which is executed once per control
vertex and determines the tessellation rate across the patch. Fixed-function hard-
ware subsequently performs the triangulation of the patch, but the actual positions
of each output vertex is determined by the tessellation evaluation shader program.
Geometric surface displacement effects can also be included in this shader stage.
The entire tessellation stage is optional and can be bypassed.

9

INTRODUCTION

2.2.3 Primitive Processing

The geometry shader is another optional shader stage that follows the tessellation
stage. If enabled, the geometry shader program is executed once for every input
primitive, which are either triangles, lines, or points. The output is a new set of
primitives, which may have a different set of vertex attributes than the input mesh.
In addition, primitives may be discarded at this stage. The primitive processing
stage can be useful for generating the faces of a cube when rendering voxels or
for extruding shadow volumes, for example. In Section 4.5, a geometry shader
program is used to bound the blurred image region produced by triangles subjected
to motion and defocus blur. Enabling the transform feedback feature terminates the
pipeline at this stage and outputs the primitive data to a buffer that can be used in a
subsequent pass through the pipeline. Otherwise, the primitives continue onward
to the rasterizer.

2.2.4 Rasterization

The task of the rasterizer is to determine the image region covered by each in-
coming triangle. The coverage is point sampled in image space using one or more
samples per pixel. To determine whether a sample point is overlapping the triangle
or not, an inside test is used, where each of the triangle’s edge equations [80, 99]
are evaluated. The edge equations are derived from the triangle edges projected
onto the image plane. If the equation evaluates to a zero for a sample it lies on
the edge. Otherwise, the sign reveals on which side of the edge it is located. The
sample is covered by the triangle if all three edge equation evaluations have the
same sign.

2.2.5 Fragment Processing

Once triangle coverage is determined, each covered sample is assigned a color and
a depth value. The depth is interpolated from the vertex positions and the color
is computed through a fragment shader program. The color usually depends on
the attributes of the triangle, such as the surface normal for lighting computations,
and texture coordinates for surface color texture lookups. The attributes, which
are defined in the vertices, are interpolated across the triangle surface by the GPU
and the resulting values are accessible through the input arguments of the fragment
shader. The fragment shader can then use these values to compute the color, for
example using a set of light sources interacting with the surface BRDF. Once the
color has been computed, or shaded, for a sample location, the sample is depth
tested before potentially being stored in a color buffer. An example of a color
buffer can be seen to the left in Figure 8. A detailed discussion on attribute and
depth interpolation can be found in Section 3.1.

10

2. HARDWARE ACCELERATED GRAPHICS

Color buffer Depth buffer

Figure 8: The color and depth buffers for a rendering of a dragon statue. Left: the color
buffer stores the shaded color value for each sample. Right: the distance from the camera
to the closest surface point is stored in the depth buffer. The distance is visualized using
a gray scale, where darker shades are closer to the camera and lighter shades are further
away. (Dragon model courtesy of Stanford University Computer Graphics Laboratory).

Depth testing Assuming opaque geometry, it is only the surface closest to the
camera that contributes to the pixel color at each sample location. When rendering
a scene, the triangles may be processed in some arbitrary order, but the resulting
image should be identical regardless of that order. By utilizing a depth buffer, the
distance to the closest surface seen so far at each sample location can be tracked
throughout the rendering. The right image in Figure 8 shows an example of a
depth buffer. The sample color in the color buffer and the depth value in the depth
buffer are only replaced if the rendered surface point passes the depth test. For
most applications a so called less than test is used, which passes if the new sample
depth is closer than the previous entry.

MSAA Although the depth is computed on a per-sample basis, shading the color
is usually done at a lower frequency. Unless otherwise specified by the user, the
fragment shader program is only executed once per triangle within each pixel. In
other words, in each pixel, the color value is replicated among all samples that
overlap the same triangle. This method, which is illustrated in Figure 9, is called
multisample anti-aliasing (MSAA). The additional effort of shading each and ev-
ery sample does not justify the slight improvement in quality in most cases, making
MSAA a useful optimization. In addition to outputting the color for each sample,
the fragment shader can also modify its triangle coverage status, as well as over-
writing the per-sample depth value used in the depth test and stored to the depth
buffer.
Following the fragment shading and depth testing is a series of per-sample oper-
ations, which include blending, dithering, and logical operations, which are de-
scribed in the OpenGL specification [107].

11

INTRODUCTION

Figure 9: Two adjacent pixels with four visibility samples each (solid circles). The left
pixel is completely covered by a blue triangle, and is thus shaded only once when MSAA is
enabled. The right pixel is pierced by an edge and is partially covered by another triangle,
and is thus shaded twice, once for each surface. Here, the color is computed at the pixel
center (dotted circle) for both triangles. On the right side is the final pixel color, after the
MSAA resolve.

2.2.6 MSAA Resolve

If the sample rate exceeds one sample per pixel, the color of the pixel must be
determined from the local sample colors. To achieve this, current GPUs use a
simple box filter spanning the extents of the pixel, which is equivalent to averaging
the sample colors within the pixel, as shown in Figure 9.

2.2.7 Configuring the Pipeline

There is a large number of settings that can be used to configure the functionality
of the pipeline, such as controlling the depth unit, changing how sample colors are
blended together, and specifying the output render target texture, to name a few.
Collectively, these settings constitute the current render state. This configurability
combined with the programmability of the shader stages offer a wide variety of
ways to utilize the pipeline for different rendering techniques. Some algorithms
even require multiple passes through the pipeline, for example to generate data
from different viewing directions. In Paper V, we create a depth buffer from the
light’s point of view (known as a shadow map). The shadow map is processed us-
ing a series of compute shaders and the result is then used to create filtered shadows
when rendering from the camera. In Paper VI, we run through the entire pipeline
to generate shaded information, which is used in a subsequent pass, lowering the
total computational cost of defocus and motion blur rendering.

3 The Depth Unit

The purpose of the depth unit is to determine whether a newly rasterized and
shaded sample is visible or occluded from the camera view. This is accomplished
by using a depth test, which compares the distance of the new sample to the sample

12

3. THE DEPTH UNIT

currently in the depth and color buffers. Maintaining one depth value per sample
was once deemed too brute force of a method due to being “ridiculously expen-
sive” [112]. Today it is an integral part of high-performance rendering on the GPU.
Papers I, II, III, IV, and V all revolve around the depth unit, and this section is
therefore dedicated to describing it in detail.

3.1 Computing and Storing Depth

There are multiple viable choices for how to compute the depth value, d, destined
for the depth buffer [69]. As long as d is proportional to the distance from the
camera, it may seem unimportant which of the alternatives is used. The world
space distance to the camera would be an obvious choice, but as Equation 5 be-
low reveals, it is not linear in image space, (x,y). Linearity is a desirable property
because it is simpler to evaluate and easier to compress. In addition, the distance
from the camera is unbounded since there is no limit on how close or far away an
object might be. In accordance with the OpenGL and DirectX specifications, the
depth buffer should contain values in the [0,1]-range and hardware fixed-function
depth interpolation assumes a linear depth function in image space. In the follow-
ing, a depth function which fulfills these criteria is derived.

Model space to clip space The first step is to transform the triangle vertices to
the camera coordinate frame, which is accomplished in the vertex shader and fixed-
function hardware prior to the rasterizer in the rendering pipeline. Recall that each
triangle in a mesh consists of three vertices, each with its own position q. These
positions are given in the model space coordinate frame, which is common to the
entire object. The camera is a separate entity with its own view space coordinate
frame. In this space, the camera is located in the origin, with the z-axis aligned
with the viewing direction. In order to determine exactly what the camera sees,
the mesh vertices must be transformed from model space to the camera’s view
space. Transforming a vertex position amounts to a matrix-vector multiplication
of the position with a 4×4 affine matrix, M. Note that the matrix may also include
additional transformations and deformations, such as rigid body transforms and
skinning, for example, which may be unique to each vertex.
For a point to appear in the image, the light must travel unoccluded through the
image plane towards the aperture point, as seen in Figure 6. Assume that the image
plane is placed at a distance z = 1 and is parallel to the xy-plane in view space. A
point rview = (rx,ry,rz) in view space can be projected onto the two-dimensional
image plane through perspective division, rimage = (rx

rz
,

ry
rz
). While the image plane

extends infinitely, the output image is a delimited region of that plane. The size of
the image depends on the field of view of the camera. The projection matrix, P,
describes the transform from view space to clip space, which represents the image
coordinates, prior to perspective division. The combined transform, from model

13

INTRODUCTION

space to clip space, can be described as

p = PMq, (2)

where q = (qx,qy,qz,1). The perspective projection is achieved using the w-
coordinate of the clip space coordinates, which is produced by the last row of
P4 = (0,0,1,0), such that pw = (Mq)z. The vertex shader program outputs clip
space coordinates, p, and the perspective divide occurs implicitly when the GPU
sets up interpolation functions for the vertex attributes.

Barycentric coordinates Next, we explore how vertex attributes are interpo-
lated across the triangle. Any point, r, on the triangle surface plane can be written
as a weighted linear combination of its three vertices, pi, such that

r =
3

∑
i=1

Bipi, where
3

∑
i=1

Bi = 1. (3)

Here, Bi are the scalar weights, or barycentric coordinates of the point r. Further-
more, it must hold that all three 0 ≤ Bi < 1 for the point to lie inside the triangle.
Deriving the barycentric weights can be explained in the context of a signed vol-
ume intersection test [64, 96]. The barycentric weight Bi for the surface point,
r, can be obtained by finding the signed volume Vi of the tetrahedron spanned by
the origin (i.e., the camera point), o, the triangle edge p jpk, and r, relative to the
combined volume, V =V0 +V1 +V2. The barycentric coordinate is thus expressed
as Bi =

Vi
V .

Shifting the position from r, away from the triangle surface by some distance t
along the direction d = r− o does not change the ratio of the signed volumes of
the tetrahedra. The image plane coordinate x = r+ td can thus be used to find Bi.
The signed volume of a tetrahedron can be obtained by computing the determinant
Vi =

1
6 det(p jpkx). For simplicity, we can replace Vi with ei = 6Vi since the scale

factor is canceled out anyway when computing the ratios of the volumes. Here,
ei corresponds to edge functions expressed in clip space, rather than image space
as described in Section 2.2. With these observations, the barycentric weights for a
particular sample location in the image, x, as can be computed from the three clip
space vertices as

ei = (p j×pk) ·x = ni ·x,

Bi =
ei

e0 + e1 + e2
. (4)

Linear depth The barycentric coordinates can be used to interpolate any at-
tribute linearly across the triangle surface in clip space. That is, from Equation 4,
we see that the interpolation of an arbitrary attribute, A, can be expressed as a

14

3. THE DEPTH UNIT

division between two plane equations, that is,

A =
3

∑
i=1

BiAi =

(
3
∑

i=1
niAi

)
·x(

3
∑

i=1
ni

)
·x

=
axx+ayy+a0

bxx+byy+b0
. (5)

It is apparent that A does not generally vary linearly with regard to the image
coordinate x. In other words, attributes linearly varying over the triangle in clip
space do not exhibit the same property in image space. When interpolating pw we
note the numerator of Equation 5 does not actually depend on x or y, and thus gives
a constant value for the triangle,(

3

∑
i=1

ni piw

)
·x = det(p0,p1,p2) = D. (6)

One over the clip space coordinate w is thus linear in image space since

1
w

=
bxx+byy+b0

D
= cxx+ cyy+ c0, (7)

which incidentally is the desired behavior for our depth function.

Bounded depth Using the depth d = 1
w does fulfill the linearity criterion but it

is unbounded since it approaches ∞ when w moves close to 0. In order to get
a bounded depth value, some limits on the depth range, [znear,z f ar], must be im-
posed. These bounds correspond to how near and how far away from the camera
objects may lie to be considered part of the view frustum. In modern graphics
APIs [17, 107], the depth buffer expects values in the [0,1]-range and it allows
the depth unit to be oblivious to the chosen znear and z f ar values. The depth, d,
should thus assume d = 0 when the clip space coordinate wclip = znear, and d = 1
when wclip = z f ar, and values outside of this region are not part of the view frus-
tum. Some expression which scales and biases 1

w is therefore sought, such that
d = α + β

w fulfills the bounds criteria. Solving for α and β yields α =
z f ar

z f ar−znear

and β = − znear z f ar
z f ar−znear

. This scale and bias is included in the projection matrix, P,
and constitutes the (previously omitted) z-component of the clip space coordi-
nates. The last two rows of the projection matrix are thus P3 = (0,0,α,β) and
P4 = (0,0,1,0), which multiplied by a camera coordinate yields zclip = αzview+β

and wclip = zview. Finally we have arrived at a linear, bounded depth value,

d =
zclip

wclip
=

αwclip +β

wclip
. (8)

15

INTRODUCTION

100

103

106

10-3

10-9

10-6

10-12

100 101 102 103 104 105

int16
int24
int32
float
1-float
ideal24
ideal32

Distance from camera

R
es

ol
ut

io
n

Figure 10: Depth format precision loglog-plot. The near plane is at a distance of 1 units
and the far plane at 105 units. The jagged appearance of the floating point curves occur
when the exponent changes. The ideal variants use a logarithmic depth function.

Depth formats The required resolution of the depth values depends heavily on
the scene geometry. If two objects lie too close together for their depths to be
resolved, z-fighting artifacts will ensue. Quantization errors can cause geometry
that is, in fact, occluded to shine through the occluding surface, and even worse,
result in flickering when the camera or the geometry moves.
Modern APIs support normalized integer and floating point depth buffer formats.
Normalized integers maps the [0,1] range uniformly with 16, 24, or 32 bit preci-
sion (though the latter is currently not available in DirectX and is not required by
OpenGL). Floating point depth buffers use 32 bits per value, although, since the
depth is clipped or clamped to [0,1], positive exponents and the sign bit are unused.
Depending on which format is chosen, the resolution in depth varies significantly
at different distances from the camera. Figure 10 shows a comparison of the dif-
ferent depth formats and the resolution at a wide range of distances. Floating point
buffers “spend” most of the bit combinations very close to the near plane, since the
format has more precision closer to 0 than to 1. When the depth exceeds d > 0.5,
the resolution is no better than 24-bit integers, since the entire range [0.5,1) is cov-
ered by a single exponent value, leaving only the 23 mantissa bits (and the leading
1). To alleviate this, znear and z f ar can be reversed [69], effectively mapping d = 0
at the far plane and d = 1 at the near plane. This greatly increases the precision for
d < 0.5, which is the majority of the [znear, z f ar] range.
Ideally, the depth resolution at some distance, w, should be proportional to the
projected object size at that distance. Choosing a function proportional to the log-
arithm of w as the depth function will have the desired behavior [121]. Examples
using 24 and 32 bits are shown in Figure 10. However, this type of depth func-
tion does not vary linearly over the triangle surface in image space, and is thus not
natively supported by current graphics APIs.

16

3. THE DEPTH UNIT

ax + by + c
Rasterizer HiZ

Early
depth test

L1 Cache

Compression/
Decompression

RAM

Trivial Pass/
Ambiguous

L1 Cache

Pre-cache
Compression/

Decompression

Post-cache
Compression/

Decompression

Fragment
shader Depth test

Coarse depth buffer

RAM

Depth buffer

Feedback
update

Compression/decompression unit

Memory

Pipeline stage

Figure 11: Depth system hardware architecture overview. The gray boxes show the hard-
ware pipeline stages, white boxes show the caches and RAM, and light blue boxes are the
compression/decompression stages that we have introduced or improved upon. In Paper IV
we improved the HiZ unit and added a compression stage for its coarse depth buffer. Papers
I, II, and III all target improvements in the compression unit for the depth buffer. The green
gauges show where we measured external bandwidth to RAM in Papers I, II, III, and IV. In
Paper I, we measured how frequently compression and decompression occur for different
configurations, as signified by the red gauges. We measured the number of tiles culled by
the HiZ unit in Paper IV at the location of the blue gauge.

3.2 Hardware Architecture

The rendering pipeline, illustrated in Figure 7, describes the graphics hardware
on a functional level, and the function calls exposed by the graphics API reflect
this model. However, the underlying hardware architecture implementing it can
be quite different. In the hardware design, various optimization efforts can be
made, as long as these are non-intrusive to the specified behavior. Throughout our
research we have modeled the depth unit architecture as shown in Figure 11, which
roughly follows the model described by Hasselgren and Akenine-Möller [51].
The input to the depth system is provided by the rasterizer. For each triangle, the
rasterizer performs inside tests for all samples within a tile at a time. For each
tile it outputs a coverage mask and the depth plane of the triangle. Following the
rasterizer, and preceding depth testing and depth buffer updates, is a hierarchical
z unit, or HiZ unit. Its purpose is to relieve the depth testing unit of some of the
unnecessary work by swiftly culling tiles, when possible, using a coarse, conser-
vative depth test. To that end, the HiZ unit maintains its own coarse depth buffer,
which is conservative with regards to the depth buffer. According to the API spec-
ifications, the depth test should be performed after the fragment shader. However,
depending on the current render state, it is often possible to perform the test before
the fragment shader, using an early depth test, which avoids some unnecessary
shading work.

17

INTRODUCTION

Unused

L1 Cache RAM

L1 Cache RAM

C
om

pr
es

si
on

/D
ec

om
pr

es
si

on

Cache lines

Cache lines

Depth tiles
Memory bus

Depth tile
Memory bus

Depth buffer

Depth buffer

Compressed tile

Figure 12: Top: tiles of depth values reside in the depth cache. Each tile occupies one cache
line and are individually transmitted over the memory bus. Bottom: a compression/decom-
pression unit is introduced between the memory bus and the cache. A tile now constitutes
a set of cache lines, which are compressed together when going in and out of the cache to
RAM via the bus. In this example, the compressed representation only occupies 1

4 of its orig-
inal size (i.e., 4:1 compression ratio). Since the depth buffer must support uncompressed
data, the memory consumption of the buffer remains the same, leaving some of the memory
unused when the data is compressed in RAM. (T.rex 2 model courtesy of Joel Anderson)

3.2.1 Caching and Compression

The depth buffer is randomly accessed and updated throughout rendering, which
entails significant memory bandwidth usage and potentially high computational
costs. Memory bandwidth consumption and latency is greatly reduced by intro-
ducing a system of caches to back the buffers. For simplicity, we have only mod-
eled memory systems with a single L1 cache [98] in our research, since more
caches have diminishing returns and are more complicated to implement and tune.
Furthermore, lower-level caches are often shared by multiple units, making their
effectiveness hard to predict without modeling the entire system. Bandwidth usage
can be further reduced if the data can be compressed prior to being transmitted to
RAM via the memory bus. By introducing a compression unit, tiles can be com-
pressed on the fly when leaving the cache and decompressed when read back in
to the cache, as illustrated in Figure 12. It is important to note that depth buffer
compression should be lossless. Errors due to lossy compression could be visible
since correct ordering of objects would not be guaranteed.
The memory bus width constrains the achievable bandwidth gains when using
compression. If the width is 64 bytes, for example, only data packets of that par-
ticular size can be transmitted. By operating on larger tiles, say 256 bytes worth
of depth data, the compression unit can try to compress it down to 64×N bytes,

18

3. THE DEPTH UNIT

where N is an integer, in this case between 1 – 3. How well the data compresses
is given by the compression ratio, which is the ratio of the uncompressed data size
and compressed data size (although it sometimes given as the percentage of the
compressed size compared to the uncompressed). The compression ratio can be
expressed as a local measure to each tile, or refer to the total compression over
all processed tiles. Note that it may be better to use a compression scheme that
is successful for most of the tiles but has a poor local compression ratio, than a
scheme that compresses only a few tiles with a high compression ratio.

Compression schemes There are a number of proposed compression schemes
targeting the depth buffer. Most of these exploit the linear depth plane, which
is domain-specific knowledge, and store the plane equation, possibly in some re-
duced precision format. There are essentially two ways that the plane equation can
be obtained – either by retrieving the depth interpolation used by the rasterizer, or
an estimated plane equation can be constructed from the set of depth samples. As
described later in Section 3.2.2, depending on the architecture, the former method
might not be possible at the time of compression, and the latter must be used.
Since compression must be lossless and a reconstructed predictor plane may be
inexact, per-sample residuals are needed to correct the prediction error. If multi-
ple triangles with different surface planes overlap the tile, using a single plane to
approximate them may give large residuals. In this case, more than one predictor
can be used, with each sample being assigned to the best matching one. The total
number of bits required to store a tile using this format amounts to the cost of the
prediction planes, the per-sample selection mask, and the residuals. This family
of compression schemes are commonly called anchor encoding [51]. If the raster-
izer can provide the plane equation to the compression unit, the depth values will
be exact and no residuals are needed at all. This type of scheme is called plane
encoding.
For highly varying depth data, it may be difficult to fit good prediction planes to
the data. In these cases, replacing the linear predictor functions with constants
will reduce the predictor storage overhead, and may well produce residuals of
the same magnitude as for a poorly fitted plane. Depth offset compression stores
the minimum and maximum depth values in a tile as the predictors, a selection
mask that assigns each sample to the predictors, and the residuals to correct the
prediction error. From our experience, using this type of compression leads to
somewhat worse compression ratios than using anchor encoding, but is very useful
when depth varies greatly.
When considering bandwidth usage, it is important to note that the depth buffer
format can have a great impact. The depth resolution offered at a particular view-
ing distance may be orders of magnitude higher than what is actually required. In
this case, if the predictor function is even slightly off, the estimated values will re-
quire many residual bits to correct, leading to low compression ratios. If bandwidth
is an issue for a particular workload, it might be better to select a lower-resolution
format.

19

INTRODUCTION

Over-fetching As our research demonstrates, compression gives significant band-
width savings in most situations. Counter-intuitively, however, there are cases
where the bandwidth can be negatively impacted by the usage of compression/de-
compression units. When a compressed tile is fetched from RAM, decompressed
and put in the cache, the data will expand to occupy several cache lines, as can
be seen in Figure 12. On the contrary, the optimal tile size for fetching uncom-
pressed depths is equal to the amount of data that fits in to one single cache line,
i.e., a compressed tile covers a larger screen space region than an uncompressed
one. Even though the storage for each individual sample is smaller, more sam-
ples are read and put in the cache unnecessarily, which in this context means that
they do not partake in any depth test/write before being evicted. This is especially
problematic when poor compression ratios are combined with sparse depth buffer
accesses. The hand scene from the results section in Paper III is an example of
such a scenario, where over-fetching is so detrimental that it counteracts and even
exceeds the memory bandwidth savings. For the remainder of the scenes, however,
the gains from depth compression greatly outweighs the over-fetching effect.
Neither prior art [51] nor Paper II identify or address this problem as they both
use a fixed tile size which require several cache lines even for incompressible data.
Papers I and III, however, both explicitly handle incompressible tiles using a sep-
arate, smaller tile size that fits into a single cache line.

3.2.2 Pre- and Post-Cache Compression

In Paper I, we compare how the number of computations and the memory band-
width are affected by employing different depth system configurations. By keeping
data compressed in the cache, we achieve better utilization of the available cache
space and utilize less bandwidth as a result. The downside of using this approach,
however, is that the data needs to be decompressed each time it is read and recom-
pressed when writing back to the cache. The number of transactions between the
depth testing unit and the cache is greater than between the cache and the RAM.
Maintaining compressed data in the cache thus requires more computations than
the alternative.
We refer to the compression/decompression units for the different cache configura-
tions as pre-cache or post-cache codecs because of their placement relative to the
depth testing unit and the cache. Naturally, the compression algorithms used affect
both the memory bandwidth used and the computational burden, which is why we
include numbers for a variety of compression schemes in the paper. In addition,
we propose a hybrid solution between the pre- and post-cache codecs which uses
a simple scheme to introduce new data into an already compressed representation
when the tile is in the cache, and defer the full quality compression for the less fre-
quent cache evictions. Our hope is that the different configurations explored can
provide some insight and serve as a guide in balancing the number of computa-
tions and the memory bandwidth when designing the compression/decompression
and memory systems for depth units.

20

3. THE DEPTH UNIT

HiZ Unit

Coarse
fail testSide effects?

No

Ye
s

Depth output? May discard?Coarse
pass test

Ye
s

Conservative
Update

Update

Ye
s

N
o

Change incoming
depth bounds

Side effects or
Depth output?

Ye
s

Early
depth test

Fragment
shading

Fragment
shading

Depth test

No

No

Feedback
Update

Cull

Discard Test failed

Test failed

Figure 13: Flow chart over how HiZ, the depth unit and the fragment shader operates under
different render states. Note that in this model, depth tests and updates are coupled, which
is why the full depth test unit is run after the fragment shader when side effects are active.

3.2.3 HiZ

The HiZ unit is an optimization used to quickly determine whether all samples
within a tile will pass or fail the depth test, or if a per-sample test is required. By
keeping depth bounds, [zmin,zmax], for each tile in the depth buffer, a quick interval
overlap test can be done with the incoming triangle. Per-sample testing is only
necessary if there is an overlap.
For tiles with depth discontinuities, for example around the silhouettes of an object,
the depth bounds can become large, which reduces the culling potential. Further-
more, determining the exact zmax value requires a pass through all samples in the
tile. Since the tile resides in the depth buffer and the information is needed in HiZ,
a feedback loop is required. The implementation of such a mechanism in hardware
is laden with problems concerning delay and memory design.
In Paper IV, we propose a novel HiZ representation which captures high frequency
depth discontinuities, without requiring a feedback loop to maintain it. Our format
has multiple layers of zmax values and a per-sample selection mask. Furthermore,
it is simple to test against and to keep up to date. We fuse occluder information by
merging incoming surfaces with the layers based on a heuristic.

3.2.4 Render State Dependence

The active render state governs whether an early depth test may be used. In addi-
tion, HiZ culling decisions and updates to the coarse depth buffer must be made
conservatively based on the state. In Papers I, II, and III we only consider the
primary render target of the test scenes, and early depth testing is always enabled.
In Paper IV, however, we run full frames from current games, complete with all
render targets, which means that we encounter a variety of different render states.

21

INTRODUCTION

The order in which culling, depth testing, and fragment shading is executed, and
which update strategies are used is illustrated in the flow graph shown in Figure 13.
The path taken in the graph is based on the three boolean properties listed below,
which are extracted from the render state. These mainly affect the HiZ unit, since
if any of them is true, early depth testing must be disabled.

• Depth output - The fragment shader program can choose to provide the
depth values for the samples, rather than using fixed-function interpolation.
The HiZ unit has no way of knowing what the depth will be for a given
sample and must assume that it could be any value.

• Side effects - The fragment shader may write data to auxiliary buffers other
than the current color and depth buffers. It can thus have side effects that
require it to run, even though the sample may fail the depth test. The coarse
fail test must therefore be disabled in these scenarios, and the depth test must
be performed after the fragment shader.

• May discard - If the fragment shader has a discard operation, the trian-
gle/tile coverage seen by the HiZ unit may be altered. The HiZ unit must
consider that each sample can have either the interpolated depth or if cover-
age is altered, that it retains its previous value.

3.2.5 Power and Latency

By using a software implementation of the system described, we are able to mea-
sure simulated depth buffer bandwidth and gather various statistics. These mea-
surement are the basis for our results and our conclusions in Papers I, II, III, and
IV. Power usage and latency are not considered, save for IV where some pitfalls
relating to delays in the system are discussed. Power and latency are much harder
to predict than bandwidth, since they depend heavily on other parts of the graph-
ics chip. In real depth unit hardware, it is likely that much of the design effort is
spent on latency hiding and power minimization by fine tuning the various parts of
the chip. However, saving memory bandwidth by using compression and efficient
caching is likely to lead to both latency reduction and decreased power usage.

4 Advanced Camera Models

Using a real-world camera, some of the light bouncing around in a scene can be
captured and focused onto its sensors. Due to the various inherent limitations of
the camera, the captured image may contain artifacts such as lens flares, chromatic
aberration, and motion and defocus blur, for example. Depending on the applica-
tion, rendering images which include these imperfections introduced by the cam-
era may be desirable. Examples of motion and defocus blur, which are the effects
which we try to recreate in our research, can be seen in Figure 14.

22

4. ADVANCED CAMERA MODELS

Motion blurDefocus blur

Figure 14: Chess pieces rendered with defocus blur (left) and motion blur (right). (Battle-
field model courtesy of Rasmus Barringer)

Lens

Sharp image

Object at infinity

Image plane Focus plane

Vd = F d = ∞

Figure 15: Left: the light from a point on an object infinitely far away converges to a sharp
image at a distance F from the lens. Right: the focus plane distance is determined by the
location of the image plane. Here, the green point is located on the focus plane and will
thus produce a sharp image. The red point if farther away, and is thus not in focused on the
image plane, creating a blurred region.

4.1 Defocus blur

The pinhole camera model offers a seemingly neat and simple way to construct a
camera. Alas, its real-world applications are limited. According to the model, the
aperture should be infinitely small in order to maintain the one-to-one mapping of
light ray direction to image location. Obviously, the amount of light that would
find its way through such aperture would approach zero. However, diffraction
cannot be disregarded when a small aperture size is used, limiting the resolution
that can be achieved with pinhole cameras. With a larger aperture size, more light
is allowed through the opening, but as a result the image will also become blurrier.
To improve on the camera, some mechanism capable of gathering more light from
the scene, while maintaining a sharp image is needed. To achieve this goal, a series
of optical lenses are introduced which makes it possible to focus the incoming
light. The most obvious limitation of this approach is that the lens system has
limited depth range in which a sharp image can be produced. The lens systems
are often intricate and contain many lens elements, which makes it non-trivial

23

INTRODUCTION

Image plane
Lens

Focus plane
Lens

Out-of-focus
point

CoC

CoC
Projected

CoC

Figure 16: The circle of confusion (CoC) size visualized at a point located some distance
behind the focus plane. Left: the CoC size grows linearly away from the focal plane. (which
corresponds to the numerator in Equation 10). Right: the CoC projected onto the image
plane (the denominator in Equation 10).

to model their exact behavior [65]. To alleviate this problem, the much simpler
thin lens model [101] may be a viable approximation, especially in the realm of
high performance real-time graphics. As shown in Figure 15, given an object at
distance, d, from a lens, the thin lens equation can be used to calculate the related
distance, Vd , where the object produces a (sharp) image as

1
F

=
1
d
+

1
Vd

. (9)

Here, F is the focal length of the lens. For an object infinitely far away, the sharp
image will be produced at the distance F behind the lens, i.e., Vd = F when d = ∞.
The size of the lens is given by the focal length together with the aperture number,
n, as F

n . The image plane in the camera (i.e., where the sensors are) is at a fixed
distance, but where the sharp image is produced for a particular object depends
on its distance from the lens. Hence, the image plane and the sharp image of
the object will only coincide at a particular depth. When these distances differ, the
result will be a blurred region proportional to the difference in distance and the lens
aperture size. Assuming a circular lens, Potmesil and Chakravarty [101] derive the
diameter, C, of the blurred circular region known as the circle of confusion (or
CoC). This is illustrated in Figure 16. By grouping all of the lens parameters, the
equation can be written on the following form

C =

∣∣∣∣c0 + c1d
d

∣∣∣∣ ,
c0 =−Pc1, (10)

c1 =
F2

n(F−P)
.

Here, P is the distance from the lens to the focus plane. For a point in focus, d =
P =− c0

c1
, which yields the expected result C = 0. Depending on the application, it

may be easier to think of defocus blur in these terms, rather than focal lengths and
aperture numbers. The focal plane distance P and the (clip space) lens aperture
size c0 can be directly and intuitively controlled.

24

4. ADVANCED CAMERA MODELS

x

t

x

t

t = 1

t = 0

x

z

Scene
Epipolar plots

Object space
linear motion

Image space
linear motion

Image Image

Figure 17: Left: a scene with a moving line segment with the camera at the bottom. Middle:
the trajectory of the line segment in the image, x, over time, t, is curved. Most of the color
of the object ends up in the left part of the image (when the object is closer to the camera).
Right: approximating the motion linearly in image space produces an incorrect image.

4.2 Motion blur

The camera model described so far can produce convincing still images, complete
with defocus blur, captured at a single instant in time. However, when watching
a movie, playing a video game, or when photographing an object in motion, it
becomes evident that motion blur also plays an important role. Real cameras do
not expose the sensors for an infinitesimal time span, but rather keep the shutter
open for a short period. Objects in the motif and/or the camera itself may move
around during this time, leaving motion trails in the image. Although there are dif-
ferent shutter designs, for most real-time applications it is sufficient to assume that
the shutter opens and closes instantaneously and that the entire image is exposed
equally during the open shutter time.
For the open shutter duration, objects can move along arbitrary paths, leaving in-
tricate motion blurred trails. Although some research approximates the motion
trails using higher order curves, such as Bézier curves [46], most research on the
topic only consider linear vertex motion in clip space or image space. Compli-
cated paths could be approximated using piece-wise linear approximations. With
linear vertex motion, each vertex has a position at the beginning and the end of the
exposure interval. This first-order approximation often works well in practice, and
as discussed in the next section, it greatly simplifies the computational burden.
Linear clip space vertex motion is applied prior to perspective projection. The
vertex paths in image space will also be linear, but the velocity along the path
will vary non-linearly, due to the projection. Image space linear motion is thus a
coarser approximation, since it ignores this shift in velocity. A flat-land example
illustrating the difference using two approaches is shown in Figure 17. A com-
prehensive overview on the topic of motion blur in computer graphics is given by
Navarro et al. [93].

25

INTRODUCTION

t = 0

t = 1

Figure 18: Left: an out-of-focus triangle. Depending on the lens parameters, the triangle
edges will shift within the inner (dotted) and outer (solid) bounds. Right: a triangle which
is translated and rotated over time. While the vertex motions are linear the edge equations
form bilinear patches.

4.3 Stochastic Rasterization of Motion and Defocus Blur

In conventional rasterization specified by current graphics APIs, only a small sam-
ple pattern is repeated throughout the entire image. Stochastic rasterization, on
the other hand, uses randomly placed samples within each pixel. Furthermore, it
is easy to introduce additional dimensions to be sampled, apart from the image
coordinates, (x,y). For motion and defocus blur, the samples are also associated
with time, t, and camera lens coordinates, (u,v). Each sample can then be used to
probe the scene from one particular location on the lens and in the image, at one
particular instant in time. This way, the effects of motion and defocus blur can
be captured, since prolonged exposure times and the spread of the lens are also
taken in to account. In order for the stochastic rasterizer to be able to sample the
added dimensions, a new set of primitives describing the triangle behavior in these
dimensions is required.

Motion and defocus blurred triangle primitives By including the (u,v, t)-de-
pendencies owing to the addition of motion and defocus blur, expressing the clip
space vertex position, p, becomes somewhat more involved [89]:

p(x,y,u,v, t) = p0︸︷︷︸
Static (2D)

+ t(p1−p0)︸ ︷︷ ︸
Motion (3D)

+ u′C0︸︷︷︸
DOF (4D)

+ u′t(C1−C0)︸ ︷︷ ︸
Combination (5D)

. (11)

Here, subscript 0 and 1 denote the beginning and end of the time interval. p is the
vertex position, Ci and is the circle of confusion radius, and the lens is parameter-
ized as u′ = (u,ξ v,0). Here, ξ controls the aspect ratio of the lens. The number
of terms to be included from Equation 11 depends on the desired camera effects.
Motion and defocus blur each require one additional term to the static case, while
all terms must be included for the combination of both effects.
First, we consider only the motion blur effect. The two vertex positions at times
t = 0 and t = 1 can be obtained by having separate transforms p0 = M0q and

26

4. ADVANCED CAMERA MODELS

p1 = M1q. With the approximation that the vertex moves linearly from p0 to p1 it
is easy to see that p(t) = p0 + t(p1−p0).
Next, we consider the lens aperture parameters, (u,v), required for defocus blur.
Assuming a standard projection matrix, where P4 = (0,0,1,0), the clip space ver-
tex w-component depends on the view space depth such that pw = (Mq)z. From
Equation 10, we see that the circle of confusion radius in clip space (i.e., prior to
perspective division), C, depends on the distance d = pw such that C = c0 + c1d.
The lens dependency can be incorporated in a shear matrix, D, operating on the
clip space coordinates in the following manner [102]

D =

1 0 c1u c0u
0 1 c1ξ v c0ξ v
0 0 1 0
0 0 0 1

 . (12)

The clip space vertex position can thus be calculated as p = DPMq for defocus
blur. Examples of motion and defocus triangles can be seen in Figure 18.
The final term in Equation 11 describes the combination of the two effects. Here,
the circle of confusion radius depends linearly on view space depth, pw, which, in
turn, depends linearly on time, t.

Stochastic sampling With the motion and defocus blurred triangle primitives
established, the next step is to determine the color contribution to each pixel.
Stochastic rasterization employs Monte Carlo integration to evaluate the pixel
color integral [6, 26]. Similar to conventional rasterization, each sample is in-
side tested by evaluating edge functions for each triangle prior to shading. Inside
testing is more computationally expensive than for static triangles, because of the
more complex vertex positions, p. There are a number of ways to accelerate the
inside testing when designing a stochastic rasterizer by limiting the number of
per-sample tests that needs to be performed [8, 66, 89, 90].
Another way to save computations is to try to use a lower sample rate, and in-
stead focus on using a well distributed sample set. Instead of using purely random
sample points, quasi-Monte Carlo integration can be used, which trades reduced
noise for aliasing [97]. Yet another way to improve the quality while maintaining
a low sample rate is to try to reconstruct a better color estimate using the local
neighborhood of samples. This approach is explained further in Section 4.5.
Analytical intersections of the higher-order primitives could be used in place of
Monte Carlo sampling. However, while such a solution would be impractically
complicated, a prospect that has been explored in the literature to some degree
is solving at least some of the visibility problem analytically. The intersection
along the t-dimension can be analytically computed for a fixed (x,y)-position [45].
Using line samples in the image [60], it has still proven useful to find the analytical
intersection in the (x,y, t)-domain [44], although keeping track of the intersections
is cumbersome. A similar approach has been proposed which uses line samples
over the lens [114].

27

INTRODUCTION

znear zfar znear zfar

A B

Figure 19: A static scene with a moving camera. The two images to the left show the final
rendered image and its corresponding depth buffer, using four samples per pixel. Here,
each pixel is displayed using the average depth of its samples. A small crop out of the
buffer is shown in inset A. Note the noisy banding resulting from sample coverage in the
transition from the rope to the background. Inset B shows the same region, only the gray
scale is remapped to only show the pixels where all samples are covered by the rope. Here
it becomes apparent that the depth values are irregular due to the samples intersecting the
moving rope at different time instances. (Unigine Heaven benchmark courtesy of Unigine
Corp.)

4.4 Stochastic Depth Buffer Compression

As previously mentioned, most of the depth buffer compression algorithms pro-
posed for static scenes exploit the linearity of triangle faces in image space. With
the additional terms introduced in Equation 11, it is easy to see that the higher
order triangle faces do not abide by this rule. Looking at Figure 19, note that the
depth buffer values become highly incoherent and noisy when viewed in the im-
age domain, (x,y). As Paper III describes, depth is a function of all parameters,
(x,y,u,v, t), for motion and defocus blur. In order to achieve good compression
ratios all of these dimensions must be considered.
In Paper II, we present an extension to the anchor encoding compression scheme,
described in Section 3.2, for handling stochastically sampled motion blur. We use a
set of novel predictor functions which take the time dimension into account. Using
this scheme, tiles containing fairly uniform motion can be efficiently compressed.
Some tiles are overlapped by many triangles, or have highly varying motion vec-
tors, leading to very high frequency depth changes, which is difficult to capture
with our predictor functions. Such tiles can be fairly well compressed using depth
offset compression, however. When combined, these two compression schemes
significantly lower the bandwidth usage for all test scenes compared to previous
work.
Like anchor encoding and depth offset compression, the compression unit used
in Paper II tries to compress the already interpolated depth sample set. In Paper
III, however, we use an approach which is more akin to plane encoding for static
triangles. Here, we assume that the depth function is provided by the rasterizer
unit. The depth is a function not only of the image coordinates, but also of the time
and lens parameters. Instead of interpolating and storing the raw depth values for
a tile, we try to keep a more compact representation by storing the depth functions
and a per-sample selection bitmask for as long as possible. This is made possible

28

4. ADVANCED CAMERA MODELS

by using a pre-cache type architecture, as described in Section 3.2 and in Paper
I. In absence of motion and defocus blur, the higher order depth functions fall
back to the regular, static plane equation described in Section 3.1. We are able to
significantly lower the memory bandwidth usage over a range of test scenes. We
improve further upon the results of Paper II for motion blur, as well as handling
scenes with defocus blur.

4.5 User-space Stochastic Rasterization

At the time of writing there no time- and/or lens-dependent triangle primitives in
the graphics APIs that can be pushed through the conventional rendering pipeline.
However, it is still possible to utilize the pipeline of current generation GPUs to
implement stochastic rasterization and achieve the same results. The particulars
of the motion/defocus primitives must be implemented in the shader stages of the
rendering pipeline or using compute shaders. There are arguably many ways to
implement such a system, but one common approach is to bound the triangle in
screen space in the geometry shader and then to perform a custom inside-test in
the fragment shader [82, 113].
While Papers II, III, and IV simulated a modified hardware pipeline with support
for motion and defocus blurred triangles, user-space stochastic rasterization was
used in Papers V and VI. The following section gives a high-level description of
the implementation used for these two papers.

Vertex shader In the vertex shader, the vertex positions are transformed to clip
space, both for the beginning and for the end of the frame interval. Additionally,
the CoC radius for each vertex is computed for these two time instances. For time-
and lens-independent shading, it is often sufficient to compute the surface color
for a single instant in time [27, 102]. The attributes that are required for shading
can be computed at the middle of the lens and time interval, for example.

Geometry shader The geometry shader is used to ensure that the fragment shader
is executed for all the potentially covered samples, since it there that the sample
coverage status will ultimately be determined. In order to do this, the moving
and/or defocused triangle is bounded in image space, and the resulting region is
outputted as a series of triangles. There are various ways to do this, as illustrated
in Figure 20. Different alternatives for motion blur and defocus blur have been
explored by Akenine-Möller et al. [6], Toth and Linder [113], and McGuire et
al. [82]. The solutions range from creating a bounding box around the primitive,
to computing a tight convex hull around it, which must then be tessellated into a
number of triangles. Ultimately, the cost of performing additional inside tests in
the fragment shader must be weighed against the computational overhead of the
geometry shader. The overhead depends, to some degree, on the number of out-
put vertices. The convex hull method proposed by McGuire et al. optimizes the

29

INTRODUCTION

01

2

3 4

5 6

0

1

2

3

0

1

2

3
4

x

y

x

y

x

y

Figure 20: Different bounding alternatives. Left: an out-of-focus triangle. A triangle strip
can be used to tightly bound the triangle, including the CoC. Middle: a moving triangle.
Constructing the convex hull of the triangle will give good bounds using relatively few
vertices (six at the most, compared to nine for McGuire et al. [82]). Right: a triangle with
simultaneous motion and defocus blur. An oriented bounding box can be used to bound the
affected screen space region fairly well [6]. The average motion vector can be used or the
largest axis can be found using principal component analysis, for example.

geometry shader execution time, but the triangulation outputs a fan of triangles.
Since the geometry shader can only output triangle strips, one of the vertices must
be repeated multiple times to produce a triangle fan. As shown in Figure 20, a
triangle strip can be used instead, which requires fewer output vertices, at the cost
of some additional instructions.

Fragment shader The fragment shader program will be executed for each of
the samples covered by the bounded region set up by the geometry shader. Current
generation APIs do not allow for per-sample depth output if MSAA is enabled. In
order to handle visibility correctly the shader must run on per-sample granularity.
It is, nonetheless, faster to execute a single fragment shader per pixel, and loop
through the samples within it, rather than to invoking N separate shader executions,
where N is the sample rate per pixel.
In order to evaluate the edge equations, each sample must be associated with its
own (u,v, t)-coordinate in addition to its image coordinates. This additional in-
formation can be precomputed and stored in a three channel three-dimensional
texture, which translates a pixel position and a sample index to a (u,v, t)-tuple,
and is read just prior to performing the inside test. The lookup coordinates to the
texture are comprised of the pixel coordinates and the sample index. As for the
image coordinates, either the sample locations provided by the APIs can be used
or, alternatively, two additional channels in the 3D-texture can carry this informa-
tion. Although the sample locations are programmable in modern GPUs, the size
of the allowed patterns is still quite low and thus repeats frequently, which can
cause undesirable aliasing.

30

4. ADVANCED CAMERA MODELS

Figure 21: The quality of noisy stochastic renderings can be greatly improved using recon-
struction [92].

For best performance, as few operations as possible should be used to perform the
inside test. Although not specifically targeted at user-space stochastic rasterization,
Laine and Karras [67] present optimized inside tests that work well in practice.
Because of the (u,v, t)-dependency, vertex attributes can no longer be interpolated
by fixed-function hardware. However, the attributes can be manually interpolated
by using the barycentric coordinates obtained as a byproduct from the inside test.
Computing surface shading for stochastic rasterization is very expensive, even if
correct visibility is sacrificed by using MSAA, as previously explained. This prob-
lem is the topic of Paper VI and is addressed in more detail in Section 6.

Reconstruction The image obtained through the MSAA resolve (i.e., by aver-
aging the samples in each pixel) can be quite noisy at low sample rates, especially
for long motion trails and/or very out of focus regions. It is possible to use the
sampled information to devise a filter in the 3D-5D domain to get a smoother im-
age [33, 73]. The size and shape of the filter centered at some point depends on
the motion of the local samples and the amount of defocus blur. Since the cir-
cle of confusion radius depends on the depth (distance to the focus plane), the
filter size may vary greatly locally in (x,y,u,v) in presence of depth discontinu-
ities. Vaidyanathan et al. [115] propose an algorithm that first splits the samples
into depth layers, similar to Lee et al. [72], and subsequently composites the in-
dividually filtered layers to get the final image. Munkberg et al. [92] extend their
proposed algorithm to include motion blur and using this approach near real-time
performance can be achieved using an optimized, GPU friendly version of the al-
gorithm [54]. An example of a reconstructed image can be seen in Figure 21.

31

INTRODUCTION

A Link to the Past (1991)
International Karate (1986)

Commodore 64
The Legend of Zelda:

Super Nintendo
Benchmark (2013)

Unigine Heaven 4.0

PC

Figure 22: Rudimentary shadows have been used in games as visual cues for a long time.
In games today, high resolution, dynamic shadows are the norm. (International Karate
was developed and published by System 3. The Legend of Zelda: A Link to the Past was
developed and published by Nintendo. Unigine Heaven benchmark courtesy of Unigine
Corp.)

5 Shadows

Shadows have been featured since the early days of video games (see Figure 22).
The sheer amount of research dedicated to the topic attests to the importance of
including shadows in rendering [34, 122].
Revisiting the rendering equation (5), we see that a particular surface point only
receives light if the visibility function has a non-zero value. For real-time graphics,
it is far more efficient to compute the shading resulting from direct illumination
from the light source and omitting indirect illumination. Computing the indirect
light and shadow effects intertwines more with other, more general techniques for
computing scene illumination, such as ambient occlusion and global illumination.
While using point light sources will give the best performance, rendering shadows
from area light sources can increase realism.
The human brain is aided by the shadows in a scene since they give additional
information about the location of objects in relation to each other. Looking at a
static scene lit by a point light source, we expect the shadows to have crisp edges.
Now, suppose the object is instead moving rapidly, leaving motion blur trails in the
image. In order to get a correct and harmonic viewing experience, the shadow of
the object should behave accordingly. Figure 23 shows an example of this scenario,
highlighting the importance of striving for realistic motion blurred shadows.

Shadow mapping The most popular family of shadow algorithms for real-time
graphics is currently shadow mapping [120]. We will only cover it in its most
rudimentary form for a spotlight source.
The algorithm is comprised of two passes. In the first pass, a shadow map is
created by rendering the scene from the light source and storing the distances to

32

5. SHADOWS

Figure 23: Left: a static sphere lit by a point light source. The shadow on the floor below
is crisp. Middle: the sphere is set in motion. The shadow is, incorrectly, computed from the
static sphere, causing conflicting visual cues. Right: the proper shadow cast from the same
moving sphere.

Shadow map Camera view

Light
source

Figure 24: Left: the shadow map is created by rendering from the light source. The distance
is visualized with a gray scale. Right: the distance to the light source is compared to the
depth value found in the shadow map to determine if a point is in shadow or not. In this
example, the same lookup coordinate in the shadow map (green) is encountered twice in
the camera rendering. Thus, these two points lie on the same light ray (orange). The light
source itself is off-screen, above the skeleton. (T.rex 2 model courtesy of Joel Anderson)

the closest hit point for each sample. In the second pass, the scene is rendered
from the camera. Each point visible to the camera is transformed into the light’s
coordinate frame, and to determine whether the point is lit or in shadow, the depth
obtained through a nearest neighbor texture lookup in the shadow map is compared
to the depth of the transformed point. An example can be viewed in Figure 24.
The shadows obtained through shadow mapping are sharp, since the depth com-
parison gives a boolean result – the point is either fully lit or completely in shadow.
In addition, the shadows may appear jagged since they are sampled at a finite reso-
lution. Contrary to texture lookups for color, the depth values of the shadow map

33

INTRODUCTION

Depth map

Layer info Layer
imagesMotion map

Shadow
rendering

Lighting
passLayer setup Mip map

generationReprojection

Filtered shadow map generation pass

Figure 25: Motion blur algorithm overview. Depth and motion maps are created by stochas-
tic rendering from the light source. Depth layers are then created for tiles of samples. Each
tile and depth layer use one motion vector to approximate the local motion. Using the
motion vector, the local samples are reprojected to a common time. Mip maps are then cre-
ated to accommodate filtering. The tile/layer information and the mip mapped, reprojected
images are now ready to be used to compute shadows when rendering from a camera.

cannot be filtered before performing the shadow test. Instead, percentage closer
filtering (PCF) [105] can be used, which blends the results of multiple adjacent
depth tests. However, the number of texture lookups depends on the size of the fil-
ter, which limits its usability. Instead, alternative shadow map representations can
be used which can be filtered prior to the shadow test. This allows for pre-filtering
using a simple mip map hierarchy, for example, which can then be sampled using
a hardware-accelerated trilinear or anisotropic texture lookup.
In recent years, a few filterable shadow map alternatives have been proposed. Vari-
ance shadow maps (VSM) [29] store the distribution of depths, using the first and
second moments, z̄ and z̄2, within the filter footprint. Exponential shadow maps
(ESM) [12] and convolution shadow maps (CSM) [11] approximate the shadow
test with an exponential function or a series of functions.

5.1 Motion Blurred Shadows

Efficiently rendering motion blurred shadows is a relatively unexplored research
topic. Akenine-Möller et al. [6] proposed time-dependent shadow maps (TSM)
to render shadows using a stochastic rasterizer. A TSM is composed of several
individual shadow maps, each using samples covering a small non-overlapping
time interval. When shading a camera sample, the shadow map corresponding to
the time interval of the camera sample is used. Similar to conventional shadow
mapping, the nearest point is then used in the shadow test. While this method
can be efficiently implemented, as Paper V demonstrates, it is non-trivial to get a
properly filtered result, rather than a binary outcome per sample.
In Paper V, we present an algorithm for rendering filtered motion blurred shadows
in real time. An overview of the steps in our approach can be viewed in Figure 25.
The algorithm builds on the stochastic color reconstruction work by Munkberg
et al. [92], but is modified in several ways to make it suitable for shadows. Our
algorithm begins by creating a TSM, where each sample is also augmented with
motion vectors. In the next couple of steps, we partition the shadow map into

34

5. SHADOWS

t

x
Tile extents

t

x

Reprojected
image

Moving objec
t

t

x

Reprojected image

Figure 26: Left: an epipolar image of an object moving quickly past a tile. Middle: using
the algorithm by Munkberg et al. [92], the motion length must be clamped, as shown by the
red lines. Otherwise, all samples that hit the object will be reprojected outside the image.
Right: using our proposed algorithm, the reprojected image resolution is lowered, but all
samples found within the tile will contribute to the image. No motion vector clamping is
required.

overlapping tiles and then further partition each tile into a set of depth layers. Each
layer is approximated with a common motion vector. Next, the samples within a
tile are filtered along the motion direction, by reprojecting them to a common time
instant, t = 0.5. This creates an image, which can be translated along the motion
direction in (x,y,z, t)-space to approximate the local geometry. This approximation
is key to the efficiency of the algorithm. Since the (approximated) local motion is
uniform, the costly sample search required by other methods [33, 73] is avoided.
Contrary to Munkberg et al., we reproject samples onto a stretched and oriented
grid along the motion direction, which means that we are able to capture much
larger motion and do not have to limit the length of the motion vectors, albeit we
sacrifice spatial resolution to do so, as is illustrated in Figure 26. In the repro-
jected images, we store a variance shadow map representation, since this format is
filterable.
In the lighting pass, we render the scene from the camera. For each visible point,
we accumulate the contribution from the different layers to obtain the visibility
term. We must handle this step differently than the color reconstruction described
by Munkberg et al. The filter they use is composed of a spatial component in
(x,y) and sheared component in the t-dimension. Both of these filter components
are combined and evaluated simultaneously when the pixel color is sought. In
our case, however, we can only filter along the motion direction, since the lookup
footprint depends on the movement of the camera and the shadow receiver point.
The same shadow map lookup coordinate may be used in several shadow tests
since a light ray can pierce any number of surfaces, each moving in a different
direction and velocity, thus preventing pre-filtering in (x,y).
Using our approach, we are able to render filtered motion blurred shadows in real-
time performance. We handle many of the cases where other methods struggle,
such as having moving shadow receivers and a moving camera.

35

INTRODUCTION

Figure 27: Left: a shared edge between two triangles. The light green pixels show where
the fragment shader potentially runs twice (depending on whether or not both triangles
cover samples within the same pixel). Middle: adding a small defocus blur to the triangles
increases the number of pixels overlapped by both triangles, as indicated by the red pixels.
Right: similarly, adding motion results in a greater number of pixel overlaps.

6 Reducing Shading

To improve realism, it may be desirable to use a high quality surface shading with
varying material properties across the surface while having many light sources.
This, however, requires long and complicated fragment shaders which can be
very computationally expensive. MSAA can be used to lower the shading rate
to roughly once per pixel, rather than once per sample. However, the shader must
run more than once for pixels containing multiple triangles. Unfortunately, in the
case of defocus and motion blur, triangles that are in motion and/or are far away
from the focal plane will be blurry, which means that they overlap more pixels. As
Figure 27 shows, the number of shader executions grows quickly as a consequence,
and the benefits of using MSAA diminish.
Instead of relying on MSAA, some other means of reducing the shading rate must
be found when rendering with motion and defocus blur. Prior art make a sim-
ple observation that the color of a surface point does not vary significantly when
viewed from different points on the lens or at different time instances within the
frame [27]. Although this is an approximation, the image quality is maintained
in most cases, which means that shaded values can be efficiently reused. Since
there is no longer any lens- or time-dependence, shading can now be performed in
a separate shading space, which is parameterized over the triangles of the object,
rather than in image space.
In order to reuse shading across multiple samples, a shading cache can be used.
Shading is performed on demand as rendering progresses and the shaded colors
are stored in a data structure. Before performing a potentially expensive shading
operation, the data structure can be queried using the parameterized triangle coor-
dinates in order to reuse shading information that is already computed. The data
structure can be implemented as a hardware cache [24, 102] or in user-space using
conventional GPUs [74]. At the time of writing, shading caches are not realized in
actual hardware, and there are no API extensions to support them.
Another important observation that can be used to reduce shading operations is that

36

6. REDUCING SHADING

Figure 28: The left, purple inset shows a part of the wing intersecting the focus plane. The
detail of the texture used is visible. In contrast, the region shown in the right, green inset
is blurry and can thus be shaded less than once per pixel [117]. If MSAA is enabled, the
region will be shaded multiple times per pixel, which essentially is the same behavior as
super-sampling.

as motion and defocus blur increases, less and less of the high frequency features
remain. In these cases, performing shading at the same rate as for still objects in
focus is wasteful, as shown in Figure 28. To combat this problem, Vaidyanathan
et al. [117] derive bounds on the image space sampling rate required to maintain
image quality.

6.1 Texture Space Shading

In Paper VI, we present an algorithm for efficiently reusing shaded color when
rendering scenes with defocus and motion blur. The algorithm is implemented
using APIs targeting current generation GPUs. With our approach, we are able to
render scenes with very expensive shading in real-time.
Contrasting prior art, we do not perform shading on the fly and nor do we defer it
to a later pass. Instead, our approach is more reminiscent of light map rendering.
For each object, we first construct a texture parameterized in shading space, which
we populate with the shaded information. In the subsequent pass, the object is
rendered from the camera and the shaded values are used. The rendering pipeline
is used to quickly rasterize triangles directly into the shading space texture. By
employing a mip map hierarchy, we can adaptively choose which level to rasterize
to, and thereby execute fragment shading more or less frequently for different
triangles. We select an appropriate shading rate based on the perspective projection
and defocus blur of each triangle.
When rendering from the camera, the fragment shader is minimal, containing only
a single texture lookup apart from inside testing and depth interpolation. Our algo-
rithm is increasingly effective as shading complexity increases, compared to prior
methods which approach super-sampling for increasingly blurred triangles [82].
For low-to-moderate shader complexity, we substantially outperform contempo-
rary GPU based shading caches [74].

37

INTRODUCTION

Since the publication of Paper VI, Clarberg and Munkberg [23] combined ideas
from Clarberg et al.’s previous work [24] and our work to achieve a very efficient
user-space shading system for motion and defocus blur. Like our method, they
populate the shading space buffers by using fragment shading initiated by conser-
vative rasterization. Contrasting our work, their parameterized shading space is
based on the current camera view, rather than pre-computed shading space coordi-
nates.

7 Contributions

I was the first author for all but Paper I in this thesis. The research was conducted
in collaboration with Tomas Akenine-Möller, Jon Hasselgren, Jacob Munkberg,
Jim Nilsson, and Robert Toth. I have been active in every aspect in crafting all the
papers, including writing text, algorithmic design, implementation, and evaluation.
In order to understand the problems that arise with depth buffering, I implemented
a depth unit simulator (described in Section 3) with extensive visualization fea-
tures, such as detailed per-tile history information, cache contents, bandwidth
tracking, and so on. This tool helped us in identifying unanticipated problems
and behaviors, and to quickly experiment with ideas.
For Paper I, I was mainly responsible for implementation and evaluation work us-
ing the simulator and visualization tool. In addition, I contributed with the variable
tile size cache optimization for uncompressed tiles described in Section 3. Paper II
was the first paper in which we used the simulator and visualizer, and was my first
encounter with depth buffer compression. I did most of the algorithmic design and
implementation. For the following paper, III, my main goal was to demystify ex-
actly how the depth function behaves for triangles with motion and defocus blur.
I derived the depth function for 3D (motion blur) and 4D (defocus blur). Jacob
tackled the 5D problem (combined motion and defocus blur) based on my 3−4D
derivations. Once again, I did all of the implementation and evaluation work using
the simulator and visualizer. The simple, yet effective idea in Paper IV sprung
from my realization of the potential problems with delayed feedback HiZ updates,
and the limitations of the forward HiZ update strategy. The HiZ coarse buffer
representation and merge heuristic found in the published paper is the result of
extensive discussions with my co-authors who helped me test out and improve on
my initial ideas. The algorithm was implemented and evaluated in Intel proprietary
software simulating the entire rendering pipeline.
The basis for Paper VI was initiated by me as a small experiment, with the basic
idea that a separate shading space could be rendered before primary visibility, in
order to reduce shading. Jon joined the project, and was very involved in helping
me with the implementation and design of the final algorithm. The extensions
to the motion blur texture filter by Loviscach [77] to 4D and 5D was done by
Robert. Together we generalized it to ND, which is the version presented in the

38

8. CONCLUSIONS

paper. For Paper V, I explored a myriad of ideas for rendering real-time motion
blurred shadows, before finally landing on the approach presented in the paper. As
Jon and Jacob were concurrently working on ways to improve their reconstruction
algorithm [54], a lot of fruitful conversations transpired, mainly regarding various
compute shader optimizations.

8 Conclusions

It is not unthinkable that stochastic rasterization for motion and defocus blur can
find its way into fixed-function hardware at some point in the future, given the
attention the field has enjoyed in recent years. If this is ever to be realized, mem-
ory bandwidth reduction techniques such as our depth buffer compression, are a
must. We do not claim, by any means, that we have found the optimal compres-
sion schemes for stochastically sampled depth buffers with motion and defocus
blur, but we have taken the first steps into an important research field. In Paper II,
we included the time dimension as a linear term in the predictor functions, but as
Paper III later revealed, the depth function is much more complicated. Should the
compressed cache approach be too computationally expensive to realize, perhaps
a better post-cache compression scheme can be invented based on our depth func-
tion derivations. It might also be possible to design a hybrid pre- and post-cache
compression scheme for stochastic depth buffers, similar to what we presented for
static scenes in Paper I. Hopefully, we have sparked some interest in the subject,
and should stochastic rasterization find its way into hardware, we hope that our
research could provide some valuable insight.
Even without hardware support, it would be possible to include a compression
codec targeting stochastically sampled buffers in the compression/decompression
units found in hardware today. There are already API support for alpha-to-cov-
erage, which stochastically alters the coverage mask based on the alpha value
of a shaded fragment, which could benefit from the same compression scheme,
stochastically sampled motion and defocus blur in user-space.
As the results in Paper IV indicate, our proposed HiZ algorithm works well on
stochastic buffers. However, when objects are moving along the viewing axis or
if the camera is dollying, there may not be a sufficient separation between layers,
which would result in poor culling rates. In the future, we would like to explore
how our HiZ algorithm can be extended to include this kind of problematic motion.
Power is often a limiting factor when designing GPUs. In future work, it would
also be interesting to try to include latency and power usage in the model used in
our depth buffer simulations. The model could be made even more complete by
including a full cache hierarchy, possibly with different compression schemes at
the different levels.
The natural extension of the layered motion blurred shadow approach, presented
in Paper V, is to include area light sources. The area light can be sampled much
like the lens for defocus blur, so the filters derived by Munkberg et al. [92] could

39

INTRODUCTION

possibly be used for this purpose as well. In turn, it would be interesting to see if
their color reconstruction could benefit from the rotated grid, tile smoothing and
streak reduction techniques used in Paper V.
In Paper VI, conservative rasterization is used in one of the passes to fill in miss-
ing shaded data. The implementation relies on the geometry shader and requires
the vertex attributes to be replicated for multiple vertices [52]. This pass makes
up about 6%− 19% of the execution time of the entire algorithm, which is a sig-
nificant portion. At the time of writing, a new OpenGL extension has been in-
troduced which enables hardware accelerated conservative rasterization in modern
GPUs [18]. Using this extension, the performance of our algorithm could be fur-
ther improved.
As workloads become more advanced and as display resolution continue to in-
crease, the amount of fragment shading work that needs to be performed increases
proportionally. In recent years, there has been a number of research papers that
attempt to lower the amount of shading [23, 102, 116]. Our texture space shad-
ing technique, presented in Paper VI, could be used to lower the shading cost
for applications other than motion and defocus blur. For instance, highly tessel-
lated static meshes will also get diminishing returns from MSAA, due to the sheer
number of triangles overlapping each pixel. Using our texture space shading ap-
proach, for example by parameterizing over the pre-tessellated patches, shaded
values would be reused over triangle edges, thus potentially increasing overall per-
formance. Another possible use for our algorithm is to try to reuse shaded values
between frames, and perhaps progressively refine the shading over several frames,
in order to improve quality over time. For stereoscopic rendering, our technique
could be used to reuse shading for both eyes.

40

Pa
pe

rI

Paper I

A Compressed Depth Cache

Jon Hasselgren Magnus Andersson Jim Nilsson Tomas Akenine-Möller

Lund University Intel Corporation

ABSTRACT

We propose a depth cache that keeps the depth data in compressed
format when possible. Compared to previous work, this requires a
more flexible cache implementation where a tile may occupy a vari-
able amount of cache lines depending on whether it can be com-
pressed or not. The advantage of this is that the effective cache size
increases proportionally to the compression ratio. We show that the
depth buffer bandwidth can be reduced by on average 17%, compared
to a system compressing the data after the cache. Alternatively, and
perhaps more interestingly, we show that pre-cache compression in all
cases increases the effective cache size with a factor of two or more,
compared to a post-cache compressor, at equal or higher performance.

Journal of Computer Graphics Techniques, vol. 1, no. 1, pp 101–118, 2012.

1. INTRODUCTION

1 Introduction

Reducing memory bandwidth usage in graphics processors is getting increasingly
important, both from a performance perspective and from a power efficiency per-
spective. The data traffic to and from the depth buffer consumes a significant
amount of bandwidth, and it is therefore important to reduce this traffic as much as
possible. Common approaches include Zmax-culling [43], Zmin-culling [7], depth
caching, and depth compression [50, 87].
We approach this problem by looking at the interplay between the depth cache and
depth compression, and propose a system where the content in the depth cache is
kept compressed when possible. The implication of this is that tiles (rectangular
regions of samples/pixels) that can be compressed in the cache will utilize less
storage there, and hence, the effective cache size is increased, with better perfor-
mance as a result. Alternatively, the cache size can be reduced with unaffected
cache performance. By using a compressed level one depth cache, we show that
our system can reduce the depth buffer bandwidth by, on average, 17%, and this
suggests that it can be potentially important to further study compressed cache
architectures for graphics.
We suspect systems similar to ours have already been implemented, or at least
considered, by graphics hardware vendors. However, we have not found any pre-
viously published work on such a system, and as such, this paper aims to fill that
gap by describing the implementation alternatives and evaluating the expected per-
formance.

2 Previous Work

The amount of public work in terms of depth compression is relatively sparse.
Morein [87] presented a depth buffer compression system, which included a depth
cache, using differential differential pulse code modulation (DDPCM) for com-
pression. It is important to note that depths are required to be lossless by con-
temporary graphics APIs, and therefore, there is always a fallback that represents
uncompressed depth data in a tile.
Hasselgren and Akenine-Möller presented a survey of depth compression algo-
rithms [50]. This information was obtained from patent databases. In addition,
they presented a twist of an existing compression algorithm that improved com-
pression a bit. In their survey, a method called depth offset compression was pre-
sented, and it is likely the most simple depth compression algorithm available. The
idea is to find the minimum, Zmin, and the maximum, Zmax, of the depths in a tile
and to cluster the depth values into two groups, namely, one for the depths closest
to Zmin and another for the depths closest to Zmax. The depths are then encoded
relative to either Zmin or Zmax, and often, it is possible to use relatively few bits for
these residuals.

43

PAPER I: A COMPRESSED DEPTH CACHE

Another interesting algorithm is plane encoding [50], where the rasterizer provides
exact plane equations to the compressor. As a result, only a bitmask is needed
per sample/pixel to identify which plane equation a sample/pixel belongs to, and
hence, the residuals will always be zero. Anchor encoding is a variant, which uses
a set of plane equations that are derived from the depths in the tile. The residuals
are then encoded relative to one of these planes.
Lloyd et al. [75] develop a logarithmic shadow mapping algorithm, and realized
that planar triangles become curved in their space, and hence, most previous depth
compression algorithms could not be used. They compute first-order differentials
and then use anchor encoding on the differentials. Ström et al. [111] presented
the first public algorithm for compressing floating-point depths. The depth values
are reinterpreted as integers in order to represent differences without loss. They
use a predictor function based on a small set of the depths in the tile and then
Golomb-Rice entropy encoding on the residuals. Pool et al. [100] present a general
algorithm for floating-point data, which compresses the differences between a run
of floating-point numbers, and uses a Fibonacci encoder for entropy encoding.
However, any algorithm involving serialized entropy encoding is, in general, too
expensive for our purposes. Inada and McCool [58] use a B-tree index to support
random access for lossless texture compression with variable bit-rate. However,
their tile cache, which is closest to the shading pipeline, is still uncompressed.
Andersson et al. [10] were the first to attack the problem of compressing depth
buffers generated using stochastic motion blur rasterization. By incorporating the
time dimension, t, into the predictor functions, better predictions were possible.
They also noted that most previous algorithms for depth compression break down
because they exploit that the depths of triangles are linear. This does not hold when
triangles start to move. Interestingly, the depth offset encoding method performed
reasonably well even for motion blur.
Compression of cached data in CPUs has received some attention. In general,
CPU-based compression targets integer workloads, and in particular zero or near-
zero values. Some techniques also try to detect repeating patterns. Lee et al. [71]
first described a dynamic approach to compressed cache contents. They introduced
a cache architecture capable of simultaneously handling both compressed and un-
compressed lines. The core idea was to avoid cache set aliasing by including an
extra bit in the index. By doing so, they avoid data expansion, resulting from pre-
viously compressed lines expanding to cover (in their case) two lines, and relax fat
writes, which happens when two ways are written to in the same set.
Alameldeen and Wood [9] present a CPU system with uncompressed first level
cache, while compressing second level data when possible. They introduce fre-
quent pattern compression, which is a method for detecting and compressing a
number of predefined data patterns. A three-bit prefix, stored with cache line tag
data, designates one of eight possible compression encodings. Most modes are
either covering lower-than-word resolution data types (five of eight), beside runs
of zeroes or repeating byte values, and one mode designates uncompressed cache
lines. For integer applications the single most useful mode is zero run, account-

44

3. COMPRESSED DEPTH CACHE

depth
comparison

unit

depth cache

compressor

decompressor

next level
in the memory

hierarchy

write

read

depths

pi
xe

l
pi

pe
lin

es

combined
depth comparison

compressor/decompressor

compressed
depth cache

next level
in the memory

hierarchy

write

read

depths

pi
xe

l
pi

pe
lin

es

Figure 1: Top: the usual setup in a compressed depth architecture. From left to right: the
pixel pipelines compute depths, which are delivered to a depth comparison unit. This unit
communicates with a depth cache that can hold six tiles of depth data in this illustration.
When depth data is communicated between the depth cache and the next level in the memory
hierarchy, it will be compressed/decompressed on the fly when possible. Bottom: our pro-
posal is to keep the content in the depth cache compressed when possible, and to efficiently
perform the comparison, and compression/decompression between the pixel pipelines and
the compressed depth cache.

ing for about 85% of all compressible patterns. Compression ratios for the integer
applications were in the range 1.4–2.4. The compression ratio for the floating
point applications was 1.0–1.3. It is clear that previous work on compressed CPU
caches is not particularly applicable to depth compression. In particular, depth data
rarely resembles the simplified patterns assumed by the compressed CPU cache
approaches.

3 Compressed Depth Cache

An illustration of how our system compares to a common depth cache system with
compression [50] is shown in Figure 1. In the common system, we use post-cache
codecs which means that we only keep full and uncompressed tiles in the first-level
depth cache, and place the compressor/decompressor (codec) between the cache
and the next level in the memory hierarchy. The cache line size in the common
system is therefore always equal to the tile size. Whenever a tile is evicted from
the cache, we update the per-tile header data, which is a memory area separate
from the depth buffer that flags the compression mode used for each tile. Typi-
cally, the Zmin and Zmax values are also stored in this area for hierarchical occlu-
sion culling [7, 43]. The advantage of this system is that it has very simple cache
logic, as the cache line size will be equal to the size of a tile. However, a drawback
is that the tile size must be picked so that the compressed tile is large enough to
efficiently burst when writing to or reading from RAM (or the next level in the
memory hierarchy). This typically means that an uncompressed tile may be un-
necessarily large, leading to wasted memory transactions and increased bandwidth
when compression fails.

45

PAPER I: A COMPRESSED DEPTH CACHE

8{{
8

A

A

4:1 2:1 4:3 Failed Raw

B

Compression resultRasterizer input Cache contents

B

Figure 2: An example scene with two triangles being rasterized. Left: the input from the
rasterizer (after z testing). Middle: the results and compression rates generated by the
codec. Right: the final data stored in the cache. The tile size in this example is 8×8 pixels,
equal in storage to four cache lines when not compressed. This indicates that this example
system may compress to 25%, 50%, and 75%. For the first triangle, it is worth noting that
tile A could also be stored as a single RAW cache line, which actually requires less data
than the compressed representation (2:1 in this case). However, we keep the compressed
representation as our system does not allow recompressing tiles that have been reverted to
uncompressed format. The assumption is that the compressed representation will be useful
the next time we rasterize a triangle covering that tile. In this example, tile B completely
fails compression and is stored in RAW format, but still only 3 cache lines are required.

We propose using a more flexible cache where the line size is decoupled from the
tile size and simply reflects what is efficient for a memory transaction. Further-
more, in contrast to the common setup, we put the compression/decompression
logic before the cache, and we call this a pre-cache codec. The benefits of this
system are twofold. First, we can store compressed tiles in the cache, thereby
growing the effective cache size proportionally to the compression ratio. Second,
the tiles that cannot be compressed may more easily be split into a number of cache
lines, and we can update only the lines touched by a triangle. This pass-through
compressor, which stores cache lines that cover smaller screen-space regions than
the full tile, is called RAW in this paper. The challenge in this solution is that we
complicate the logic involved in depth testing and updating of a tile. Furthermore,
since our compression algorithm is now placed before the cache, it needs to have
lower latency and higher throughput than if placed after the cache. However, at
the same time, the required throughput between the depth comparison unit and
the depth cache (see Figure 1) decreases as the data is compressed in the cache.
For example, if we get an average compression rate of 50% we could harvest the

46

3. COMPRESSED DEPTH CACHE

halved throughput by, e.g., reducing the data path width or reducing the clocking
of the cache.
The algorithmic flow of our depth system is illustrated in Figure 2. The rasterizer
generates input tiles of samples for the current triangle. When a tile is received,
we first perform hierarchical depth culling to determine whether the tile can be
trivially discarded or accepted. For trivially accepted tiles, we attempt to compress
the input tile data and allocate the appropriate number of lines in the cache. If the
depth culling result is ambiguous, the tile header data is first accessed to deter-
mine whether the frame buffer depth data is compressed or not. For uncompressed
tiles, the coverage mask of the input tile is used to read the appropriate lines into
the cache, and then depth testing is done. In our implementation, we assume that
tiles incrementally become more difficult to compress and therefore, we do not
attempt to re-compress tiles that already failed compression unless the current tri-
angle overwrites the entire tile. This also greatly simplifies the implementation as
recompression would have to consider cases when a tile only partially exists in the
cache. For compressed tiles, we read the full compressed tile from the cache and
decompress the data. After that, depth testing is done followed by an attempt to
merge the resulting data into the compressed representation. If the merge fails, we
first attempt a full recompression, and if that also fails, the data is stored uncom-
pressed (RAW). We experimented with partially reading compressed tiles, only
accessing the cache lines required to decompress the samples overlapped by the
input tile coverage mask. However, most compression algorithms require global
header data, and in practice, the more complex implementation was not motivated
by the very modest bandwidth gains.
In practice, the required changes to the depth system and cache logic are quite
small. We need to compute cache keys on a per-line granularity, rather than a
per-tile granularity, so the codecs should use actual memory addresses rather than
a tile index. The biggest challenge occurs when a tile that only partially exists
in the cache is evicted. Some operations, such as computing per-tile Zmin and
Zmax values, requires the full tile data. We solve this by performing hierarchical
depth culling on a per cache line granularity, thus guaranteeing that the cache line
will always exist in the cache. Also, if we want to combine pre-cache and post-
cache codecs in the same system, we must verify that the full tile exists in the
cache in order to perform post-cache compression. We accomplish this by allow-
ing peeking into the cache and check if the whole tile is present before evicting
it. Since evictions are relatively infrequent, we believe this will be reasonably ef-
ficient. However, an alternative approach is to allocate one extra bit per cache line
in the per-tile header data, and directly flag which parts of the tile are present in
the cache. This operation is very efficient, but at the cost of a slight bandwidth
increase for the tile headers.
In this paper, we focus only on the plane encoding and depth offset compression
algorithms. The reason is that they have simple implementations, and therefore,
we have been able to design efficient and incremental compression methods, which
makes them good candidates for pre-cache codecs. Although we leave it for fu-

47

PAPER I: A COMPRESSED DEPTH CACHE

ture work, we would like to mention that other traditional compression algorithms,
such as anchor encoding [50], could also potentially be adapted for pre-cache com-
pression. In our pipeline, we use a clear mask per tile that indicates which samples
are cleared, so the minimum, Zmin, and maximum, Zmax, depth values for a tile are
computed using only valid samples.

3.1 Plane Encoding

In plane encoding, the representation for a tile is a list of plane equations, which
can reconstruct triangle depth exactly, and a per-sample bit mask that indicates
which plane a sample belongs to. On-the-fly decompression from such a represen-
tation residing in the cache is straightforward. Assume we would like to decom-
press the depth of a certain sample/pixel location, (xs,ys). The bit mask value is
used as an index, i, into the set of plane equations, and the plane equation is sim-
ply evaluated as z = ci

0 +ci
x ·xs +ci

y ·ys, where the constants ci
0, ci

x, and ci
y together

define plane equation i.
When a triangle is being rasterized, the rasterizer forwards the plane equation to
the pre-cache codec. Depth comparisons are done by decompressing depth values
as described above. If at least one depth value passes the depth test, the incoming
plane equation is added to the compressed representation in the cache, and the bit
masks are updated for each affected sample/pixel. Note that the size of the com-
pressed tile will dictate how many plane equations can be stored in a compressed
tile, and when there are no more available indices for new plane equations, the tile
has to be decompressed and put into the cache again in uncompressed format.
There are different strategies for adding a new plane. In the simplest implementa-
tion, the planes are just added to the list of planes and compression fails when too
many planes overlap a tile. However, better compression is possible by deleting
unused planes from the header, either by scanning the index bitmask for unused bit
combinations, or by keeping counters of how many samples belong to each plane.
In such an implementation, the compressor must be able to work with one more
plane than is representable by the compressed format.

3.2 Depth Offset Compression Algorithm

Depth offset is a very simple compression algorithm, but it works surprisingly well.
It does not enable high compression ratios, but it successfully manages to compress
many tiles with moderate compression ratios. This makes it rather efficient overall.
In addition, it is a simple algorithm from an implementation perspective. Recall
that the compressed representation consists of two reference values, Zmin and Zmax,
a bit, mxy, per sample that indicates whether a sample’s residual is relative to Zmin
or Zmax, and then an n-bit per-sample residual, rxy. The depth values are recon-
structed as z(x,y) = Zmin + rxy if mxy = 0, and otherwise as z(x,y) = Zmax− rxy.
It should be noted that the best bit distribution depends on the cache line size and

48

3. COMPRESSED DEPTH CACHE

min/max

z0 z1

min0 max0

min

min/max

z2 z3

min1 max1

min

min

Zmin

min/max

z4 z5

min2 max2

min/max

z6 z7

min3 max3

max max

max

Zmax

Figure 3: Computation of Zmin and Zmax using tree of comparisions for eight incoming
depth values, zi, i ∈ {0, . . . ,7}.

the tile size. However, we find that it is often sufficient to quantize Zmin and Zmax
to 16 bits precision, and use the remaining bits for the residuals. For compression,
there are more options, and below, we present two different ways to compress the
depth in a tile when a new triangle is being rasterized.

3.2.1 Brute-force Approach

In this approach, we first decompress all depth values in the tile, as described
above, perform depth tests, and update the depths that pass. Then the Zmin and Zmax
of these depths are found using, for example, a tree-like evaluation as shown in
Figure 3. In general, for s depths, such a tree will use s/2+2(s/2−1) = 3s/2−2
comparisons to compute both Zmin and Zmax.
The residuals, rxy, and the selector bit, mxy, are straightforward to compute. We
just compute residuals from Zmin and Zmax, respectively. If either residual is small
enough to encode in the given budget, we set mxy to flag the appropriate reference
value. Otherwise, the tile fails compression and needs to be stored in uncom-
pressed form.
In the next subsection, we present a conservative and less expensive approach to
updating Zmin and Zmax. The rest of the algorithm is intact though.

3.2.2 Opportunistic Approach

We base this compressor on the assumption that the depth pipeline supports hi-
erarchical Zmin and Zmax-culling [7, 43]. These algorithms require conservative
estimates of the minimum Ztri

min, and the maximum depth, Ztri
max, of a triangle in-

side a tile. Regardless of exactly how they are computed, we can assume they
are readily available since the hierarchical culling unit is placed before the depth
compression unit in the pipeline.

49

PAPER I: A COMPRESSED DEPTH CACHE

We can exploit these estimates during compression by assuming that Zmin =
min(Zmin,Ztri

min), and Zmax = max(Zmax,Ztri
max) are good estimates for the true min-

imum and maximum values of the tile. We then compute all residuals as in Sec-
tion 3.2.1. As a small optimization, we use only the triangle values if the current
triangle overwrites the entire tile.
In practice, this will, in the majority of cases, cause our depth range to grow until
a tile can no longer be compressed. However, the implementation is more efficient
as we can avoid the rather costly Zmin and Zmax computations. We suggest that this
implementation is combined with a post-cache brute force compressor. The sim-
pler pre-cache codec will handle the high throughput data and keep it compressed
in the cache for as long as possible. If the compression fails, the more expensive
post-cache codec will refine the Zmin and Zmax values and re-compress the tile if
possible. When the data is read back into the cache, the pre-cache codec can use
the refined values as a starting point.
As a further optimization, we note that the residual computations can be done in
two passes. First, the residuals are computed from Zmin, and in the following pass
from Zmax. The second pass is conditional and can be skipped if all samples can
be encoded relative to Zmin. Our tests indicate that it is sufficient with one refer-
ence value for 55% of the tiles, which may save substantial power in a hardware
implementation.

4 Results

We evaluated our system using a functional simulator, written in C++, where it
is possible to change cache settings, tile sizes, and configure the compression al-
gorithms. Our simulator implements common depth buffer optimizations, such as
Zmin- and Zmax-culling, and fast clears [50]. These optimizations are used for all
our measurements, even for the uncompressed reference bandwidth, so the band-
width gains presented here come strictly from the compression algorithm and the
cache system described in this paper. Also, we only present figures for the depth
buffer bandwidth, since the bandwidth for tile header data (Zmin, Zmax, and clear
mask) is the same regardless of which type of cache (pre/post) is used.
DirectX 11 supports 32-bit floating point and 24/16-bit integer data. Of these
formats, the 24-bit integer is still by far the dominating use case, and is used by all
our workloads. Looking at codecs for 32-bit floating point depth data is interesting
future work, but outside the scope of this paper. DirectX 11 only supports 24-bit
integer depth when coupled with a stencil buffer, we therefore assume that most
hardware vendors rely on their depth compression to reduce the bandwidth, and
store the full 32 bits (D24S8) when a tile fails compression, even if the stencil is
unused. Alternatively, stencil can be compressed along with the depth data, but we
have also left this for future work. Therefore, the bandwidth figures presented for
the RAW algorithm include 32-bit reads and writes per sample.
For the evaluation, we used the scenes shown in Figure 4 rendered at 1920×1080

50

4. RESULTS

Heaven A - 158K tris, 23 ppt. Heaven B - 346K tris, 45 ppt.
Cache RAW Post DO Pre DO Post C Pre C Cache RAW Post DO Pre DO Post C Pre C
16 kB 28.9M 47% 40% 35% 26% 16 kB 59.0M 51% 46% 34% 29%
32 kB 23.6M 47% 41% 34% 27% 32 kB 52.4M 51% 47% 34% 29%

Heaven C - 283K tris, 25 ppt. Stone Giant A - 447K tris, 23 ppt.
Cache RAW Post DO Pre DO Post C Pre C Cache RAW Post DO Pre DO Post C Pre C
16 kB 38.9M 49% 42% 36% 29% 16 kB 36.9M 47% 41% 38% 32%
32 kB 32.9M 49% 45% 36% 32% 32 kB 31.9M 47% 42% 38% 34%

Stone Giant B - 218K tris, 34 ppt. Dragon - 168K tris, 25 ppt.
Cache RAW Post DO Pre DO Post C Pre C Cache RAW Post DO Pre DO Post C Pre C
16 kB 44.5M 44% 40% 37% 34% 16 kB 27.3M 47% 40% 35% 27%
32 kB 40.9M 44% 39% 37% 33% 32 kB 22.1M 48% 44% 34% 29%

Figure 4: The test scenes used in this paper were taken from the Heaven 2.0 benchmark by
Unigine, the Stone giant demo by Bitsquid, and a Dragon scene created in house. We show
the number of triangles and average triangle area in pixels (ppt) for each test scene. The
tables show bandwidth figures, as a fraction of the RAW (no compression) bandwidth, for
post/pre-cache depth offset (Post/Pre DO), and post/pre-cache plane encoding combined
with depth offset (Post/Pre C). We used 8×8 sample tiles with 512-bit cache lines (4 lines
per tile).

pixels resolution. We experimented with varying the tile size and bus parameters,
but since the results were very similar, we only present numbers for a system using
8×8 sample tiles with 512-bit cache lines, which means that an uncompressed tile
occupies four cache lines. We show the performance of two different configura-
tions. The first (Post/Pre DO) uses only a depth offset codec, which compresses the
data to either one or two cache lines (25% or 50%), where we use 6 and 14 bits, re-

51

PAPER I: A COMPRESSED DEPTH CACHE

Depth Raw Post DO 2048 B

 0 B

 1024 B

 1536 B

 512 B

Pre DO Post C Pre C

Figure 5: False color coding of the bandwidth for each 8× 8 tile using the different com-
pression schemes described in this paper. The images show Heaven A with a 32 kB cache.
The black areas are cleared.

spectively, for the residuals. The second configuration (Post/Pre C) combines both
depth offset and plane encoding. Here, we found that using plane encoding, with
up to 4 planes per tile, for the 25% mode and depth offset for the 50% mode gave
the best blend. This combination was just 1% from the bandwidth of using all pos-
sible combinations of plane encoding and depth offset compression. It should be
noted that plane encoding is not well-suited as a post-cache codec since it commu-
nicates directly with the rasterizer. In order to generate post-cache results for the
plane encoder, we still performed the compression pre-cache, but reserved enough
cache lines to keep the tile data uncompressed in the cache. An alternative would
be to compare with a post-cache anchor codec, but we feel that the results are more
representative when comparing the exact same codec post- and pre-cache.
As can be seen from the results (Figure 4), post-cache depth offset rarely manages
to compress below 50%, but we still get a significant 11% relative bandwidth gain
from using a compressed cache, which amounts to 5.5% of the total RAW band-
width. For the second configuration, with plane encoding (25%) combined with
depth offset (50%), the pre-cache approach is even more successful, and here we
see a 17% relative bandwidth gain or 6.0% of the total RAW bandwidth. In Fig-
ure 5 the per tile bandwidth of the different compression schemes for the Heaven
A test scene can be viewed.

Cache size As can be seen in Figure 6, increasing the size of the depth cache
gives diminishing returns. Typically, the “knee” of the curve indicates the most
efficient cache size in terms of performance versus implementation cost. An en-
couraging result is that the pre-cache codecs do not only outperform the post-cache
codecs significantly for a given cache size, but also seem to push the knee of the
bandwidth curve to a lower cache size. For example, the knee for the pre-cache
combined codec seems to lie around 10 kB, whereas the knee for the post-cache
lies at around 16 kB and with higher bandwidth usage. An alternative way of read-

52

4. RESULTS

5

10

15

20

25

30

0 16 32 48 64 80 96 112 128

B
an

dw
id

th
 (M

B
)

Cache Size (kB)

Post DO
Pre DO
Post C
Pre C

Figure 6: The average depth buffer bandwidth for the six test scenes with varying cache
size. The graph compares post- and pre-encoding with depth offset, and post- and pre-
encoding with combined plane encoding and depth offset. The dashed lines show identical
bandwidths for the post-cache and pre-cache codec for the combined compressor (Post/Pre
C).

ing the diagram is to decide on a target bandwidth and design the cache around
that. The dashed lines in Figure 6 show an example of this, where we can reduce
the cache size to roughly 40% for the pre-cache codec, which is directly propor-
tional to the compression ratio of about 40%.

Opportunistic depth offset The impact of using the opportunistic depth offset
compression algorithm (Section 3.2.2) was also measured. We found that it re-
sults in a bandwidth increase of 4.2% compared to the brute-force approach, or
1.8% of the RAW bandwidth. However, we still see a worthwhile improvement
over the post-cache codecs by 8.3%, or 3.7% of the RAW bandwidth. Depending
on the pipeline architecture, it may be beneficial to consider the opportunistic ap-
proach if the cost of passing around Zmin/max values are considerably lower than
recomputing them.

Recompression frequency With pre-cache codecs, the number of times a tile
is compressed and decompressed will increase as a function of the cache size.
In Figure 7, we show how pre-cache compression affects the number of tiles the
compressor and decompressor must be able to process per frame. Larger cache
sizes means that a tile needs to be compressed and decompressed more times with
the pre-cache codecs. This is due to the fact that the tiles stay in the cache longer,
and therefore they will be accessed more times before being evicted.
We note that compression scales better than decompression, which is good since
compression is usually the more costly operation. For our design points of a
cache around 16–32 kB, the opportunistic depth offset approach only requires

53

PAPER I: A COMPRESSED DEPTH CACHE

0 16 32 48 64 80 96 112 128

C
om

pr
es

si
on

 fr
eq

ue
nc

y

Cache Size (kB)

Post DO
Pre DO
Opportunistic

1 x

2 x

3 x

4 x

5 x

6 x

7 x

8 x

1 x

2 x

3 x

4 x

5 x

6 x

7 x

8 x

0 16 32 48 64 80 96 112 128

D
ec

om
pr

es
si

on
 fr

eq
ue

nc
y

Cache Size (kB)

Post DO
Pre DO
Opportunistic

Figure 7: The average compression and decompression frequencies (i.e. the number of
times a tile is compressed and decompressed) for the six test scenes with pre-cache, post-
cache, and the opportunistic depth offset approach. The figures are normalized so that the
post cache depth offset frequency is always 1×.

around 2.5× higher compression throughput and about 3.75× higher decompres-
sion throughput. This is very low considering that we use tessellated benchmark
scenes which tend to use more and smaller triangles than most games.
With an increased focus on energy efficiency for graphics processors (see, for ex-
ample, the work by Johnsson et al. [59]), we argue that the trade-off in our pro-
posed system is very attractive. The reasons for this are as follows. First, our
compressors and decompressors are very simple, using only a number of integer
math operations that is largely proportional to the number of samples in a tile.
Second, a memory access to DRAM uses more than three orders of magnitude the
power of an integer operation [28]. Third, there are signs [63] that memory band-
width development slows down even more than what we are used to. Hence, the
motivation for a system with pre-cache codecs is clear, and could be even more
relevant in the future.

54

5. CONCLUSIONS AND FUTURE WORK

5 Conclusions and Future Work

We have shown that using a flexible depth cache may enable pre-cache data com-
pression and that such compression will roughly increase the cache size by the
effective compression ratio. This can either be used to reduce bandwidth to RAM
(or to the next level in the memory hierarchy), or to reduce cache size and free up
silicon area without affecting bandwidth. In our implementation, we have shown
a significant 17% average relative bandwidth reduction for reasonable pipelines,
when compared to a post-cache codec. Similarly, we have shown that the cache
size can be reduced by the effective compression ratio with no impact on perfor-
mance. In fact, for all our measurements, the effective cache size was more than
doubled when going from a post-cache codec to a pre-cache codec. This is true for
the depth offset only configuration, and to an even larger extent for the combined
depth offset and plane encoding configuration.
For future work, we would like to explore other existing depth compression algo-
rithms and see how they perform in our system. Furthermore, it could be interest-
ing to attempt to make the hardware implementations of complex codecs simpler
(perhaps at the cost of reduced compression ratios). Also, since depth offset com-
pression works rather well for stochastic motion blur rasterization [10], it will be
interesting to see what happens to its performance in our system.

Acknowledgements

The authors thank Aaron Lefohn, Charles Lingle, Tom Piazza, and Aaron Coday
at Intel for supporting this research. The benchmark scenes used in this paper are
courtesy of Unigine and Bitsquid. Tomas Akenine-Möller is a Royal Academy
of Research Fellow supported by a grant from the Knut and Alice Wallenberg
Foundation.

55

PAPER I: A COMPRESSED DEPTH CACHE

56

Pa
pe

rI
I

Paper II

Depth Buffer Compression for Stochastic Motion Blur
Rasterization

Magnus Andersson Jon Hasselgren Tomas Akenine-Möller

Lund University Intel Corporation

ABSTRACT

Previous depth buffer compression schemes are tuned for com-
pressing depths values generated when rasterizing static triangles. They
provide generous bandwidth usage savings, and are of great impor-
tance to graphics processors. However, stochastic rasterization for
motion blur and depth of field is becoming a reality even for real-
time graphics, and previous depth buffer compression algorithms fail
to compress such buffers due to the irregularity of the positions and
depths of the rendered samples. Therefore, we present a new algo-
rithm that targets compression of scenes rendered with stochastic mo-
tion blur rasterization. If possible, our algorithm fits a single time-
dependent predictor function for all the samples in a tile. However,
sometimes the depths are localized in more than one layer, and we
therefore apply a clustering algorithm to split the tile of samples into
two layers. One time-dependent predictor function is then created per
layer. The residuals between the predictor and the actual depths are
then stored as delta corrections. For scenes with moderate motion,
our algorithm can compress down to 65% compared to 75% for the
previously best algorithm for stochastic buffers.

High Performance Graphics, pp 127–134, 2011.

1. INTRODUCTION

1 Introduction

In general, graphics processors are dependent on a number of techniques to reduce
memory bandwidth usage. A memory access may cost several orders of magni-
tudes more in terms of power consumption than an arithmetic operation [28], and
the gap between compute power and the available bandwidth continues to grow.
Hence, it is well worth the silicon to add fixed-function units for those techniques.
Over the past few years, a lot of effort [6, 21, 37, 82, 113] has been put into getting
stochastic rasterization [27] of motion blur and depth of field closer to interactive
or even real-time rendering. The characteristics of stochastic rasterization is likely
to influence some of the techniques for reducing usage of memory bandwidth,
especially the ones based on compression.
Depth buffer compression is one very important technique [87] to reduce memory
bandwidth usage. We review the known algorithms [50, 75, 87, 111] in the last part
of Section 2. Note that lossy compression of other depth buffer representations
can also be done [45, 106], but these do not solve the problem of compression of
stochastically generated buffers.
Most existing algorithms depend of the fact that depth, z, is linear over a triangle,
and this is exploited to construct inexpensive compression and decompression al-
gorithms. One of the state-of-the-art algorithms, called plane encoding (described
by Hasselgren and Akenine-Möller [50]), is particularly good at exploiting this.
Briefly, the rasterizer feeds exact plane equations to the compressor, and hence do
not need any residual terms. However, for motion blur, where each vertex may
move according to a linear function, the depth function at a sample is a rational
cubic function [45]. This fact makes it substantially harder to predict depth over
an entire tile using a simple predictor function. As a consequence, the standard
depth buffer compression techniques, especially the ones exploiting exact plane
equations, will in many cases fail to compress such “noisy” buffers.
We present a novel technique for compression of stochastic depth buffers gener-
ated with motion blur. Our technique is able to compress a substantial amount
of blocks of pixels, where previous techniques break down. This can be seen in
Figure 1. One of the best algorithms, plane encoding, for static scenes breaks
down completely. The best existing algorithm for compressing noisy depth buffers
is called depth offset compression, and as can be seen in the same figure, that
algorithm has decent performance for motion blur renderings. We believe our
technique could become important in order to bring stochastic rasterization into
fixed-function units in graphics processors.

2 Compression Framework

Here, we present a very simple general framework (Section 2.1) that can be used
to describe all existing depth buffer compression schemes that we know of, which
is done in Section 2.2.

59

PAPER II: DEPTH BUFFER COMPRESSION FOR STOCHASTIC MOTION BLUR
RASTERIZATION

PE
D

O
O

ur
+

D
O

Figure 1: False color visualizations of depth buffer compression ratios of some scenes,
where our algorithm outperforms the competition for compressing stochastic motion blur
depth buffers. Plane encoding (PE) is one of the best algorithms for compressing static
scenes, and depth offset (DO) compression is the best existing scheme for handling “noisy”
buffers. As can be seen, plane encoding breaks down completely due to that plane equa-
tions turn into higher order rational polynomials when motion is introduced. Depth offset
compression is substantially better, but the combination of our novel time-dependent com-
pression algorithm with DO is even better. The color scale is, from low compression ratio
(good) to high compression ratio (bad), blue, cyan, green, yellow, and red (which represents
uncompressed).

2.1 Framework

Let us start with some assumptions. A block of w× h pixels, sometimes called
a tile, is processed independently, and we assume that each pixel has n samples.
The i:th sample is denoted by si = (si

x,s
i
y,s

i
t ,s

i
z), where the first two components

are the x- and y-coordinates of the sample inside the tile, and the third component,
si

t ∈ [0,1], is the time of the sample. It is also possible to add more components, for
example, (si

u,s
i
v), for the lens position for depth of field rendering. Current depth

compression schemes do not handle motion blur and depth of field explicitly, and
hence do not have the time component nor the lens parameters. Note that all of
(si

x,s
i
y,s

i
t) are fixed for a particular sample. It is only the depths that results from

the rasterization process, and as a consequence, it is only the depth values, si
z, that

needs to be compressed. Our notation for depth here is si
z = zc/wc, where zc and

wc are the z- and w-components of a sample in clip-space, as usual. In general,
a compression algorithm may attempt to exploit the fixed components for better
compression.
From studying the sparse set of previous work on depth buffer compression [50, 75,
87, 111], we realized that all known schemes share three common steps, namely:

60

2. COMPRESSION FRAMEWORK

depth

x x x

depth depth

Figure 2: Illustration of the three steps of a depth buffer compression algorithm. These are,
from left to right, 1) clustering, 2) predictor function generation, and 3) residual encoding.

1. clustering,

2. predictor function generation, and

3. residual encoding.

These three steps are illustrated in Figure 2. It should be noted, though, that an
algorithm may choose not to have one or two of the steps above. A high level
description of each of the steps follows.
Clustering is needed when there are, for example, a set of samples in a tile that
belongs to a background layer, and the rest of the samples in the tile belongs to
a foreground layer. In these cases, it is very hard to compress all depths in the
tile using the same predictor function. The clustering step therefore attempts to
separate the samples of a tile into two or several layers, where the samples in each
layer typically should share some characteristics (e.g., lie in a common plane).
The goal of splitting the samples into two or more layers is that each layer should
ideally become simpler to compress compared to compressing all samples as a
single layer. For a tile with only foreground samples though or when only one
triangle covers an entire tile, clustering may not be needed. In general, a bitmask
or several bitmasks are needed to indicate which layer a sample belongs to.
As the next step, each layer generates its own predictor function. The goal here
is to use the depth samples and possibly their fixed (x,y, t)-coordinates to create a
predictor function, z(x,y, t), whose task is to attempt to predict the depth at each
sample using an inexpensive (in terms of storage, generation, and evalation) func-
tion. For example, assume that a rectangle with small per-pixel displacements has
been rendered to a tile. As a predictor function, one may use the plane of the
rectangle, since it probably is a good guess on where the displaced depths will be.
This guess will not be 100% correct, and so it is up to the next step to correct this.
Residual encoding must make sure that the exact depths, si

z, can be reconstructed
during decompression of the tile, since a common requirement by graphics APIs
is that the depth buffer is non-lossy. The residual, which is the difference between
the predictor function, z(x,y, t), and a sample’s depths, is computed as:

δi = z(x,y, t)− si
z. (1)

61

PAPER II: DEPTH BUFFER COMPRESSION FOR STOCHASTIC MOTION BLUR
RASTERIZATION

Given a good predictor function, the residuals, δi, between the depth of the samples
and the predictor function should be small. As a consequence, the deltas can be
encoded using few bits. Good compression ratios can be achieved if there are
a small number of layers, storage (in bits) for predictor function is small, and if
the deltas can be encoded using few bits as well. Another success factor of a
compression scheme is that the algorithm should succeed in compressing many
tiles during rendering.

2.2 Depth Compression Algorithms

In this subsection, we will briefly describe the existing depth buffer compression
algorithms in terms of our introduced framework. We will use the same names
of the algorithms as introduced in the survey of depth buffer compression algo-
rithms [50], and we will also describe Lloyd et al’s algorithm [75].
The depth offset algorithm uses the zmin and zmax of the tile to cluster the samples
into two layers; one being closer to zmin and the other with samples being closer to
zmax. The predictor functions are as simple as they could be — for the closer layer,
the differences between the sample’s depth and zmin is encoded, and vice versa. In
the differential differential pulse code modulation (DDPCM) algorithm, the idea
is to compute first-order and second-order differentials, which essentially gener-
ate a plane equation as the predictor function. The differences between this plane
equation and the actual depth values are encoded using two bits per sample. An ex-
tension is discussed, where a search for two different layers is performed, and each
layer is encoded using a plane equation. Hence, this is a clustering step. Anchor
encoding is very similar to DDPCM. As a predictor function, a plane equation
is created from an anchor position in the tile, and two delta depth values stored
as part of the plane equation. The residuals are encoded using five bits, and so
could potentially be more useful for scenes rendered with lots of small triangles.
Clustering is not used in this algorithm.
Plane encoding uses information from the rasterizer to create the clustering and
exact plane equations. The rasterizer can assist the compression algorithm with
bitmasks indicating which samples are covered by the triangle being rasterized,
which means that clustering is done implicitly. In addition, the rasterizer can also
provide full accuracy plane equations, meaning that there will be no residuals to
encode, and so this is an example where the last step is missing. If the rasterizer is
disconnected from the compression unit, a search algorithm for clustering into two
layers can be used [50]. Each layer is then encoded using a plane equation with
only a single bit as a correction factor, which gives a bit better performance.
Ström et al. [111] presented the first public algorithm for compressing floating-
point depth buffers. The floating-point numbers were interpreted as integers in
order to be able to encode differences. They used small set of previously decom-
pressed depth values to feed a predictor function, and Golomb-Rice for entropy
encoding of the residuals.

62

3. NEW ALGORITHMS

Lloyd et al. [75] develop a compression algorithm specifically for logarithmic
shadow maps. In this case, the planar triangles become curved, and linearity can-
not be exploited. Instead, first-order differentials are first computed, as done in
DDPCM, and then anchor encoding is used on the differentials. No clustering is
done for this method.
As can be seen, most of these algorithms use some kind of plane equation of the
geometry as predictor functions. With motion blur, the depth at each sample for
a single triangle is a cubic rational polynomial [45], and so it should be clear that
they stand little chance at being successful at compressing scenes with stochastic
motion blur (or depth of field). Some of the efficiency of these algorithms also stem
from the assumption that the samples are positioned in a regular grid in xy, which
is not true for stochastic samples. Depth offset does not use any such assumptions,
but on the other hand, that algorithm uses the simplest possible clustering and
also the simplest predictor functions. Akenine-Möller et al. [6] ran some initial
tests on using depth offset compression for stochastic buffers, and found that it
worked reasonably well, but conjectured that better algorithms should be possible.
In the following sections, we will present new ways to approach stochastic depth
compression using our framework.

3 New Algorithms

In this section, we describe our new contributions to the field of depth compres-
sion. First, we describe a simple clustering technique that can be applied to both
stochastic depth buffers and to depth buffers rendered without blur. In Section 3.2,
we introduce time-dependent predictor functions, and finally, we also describe how
residual encoding is done in Section 3.3.

3.1 Clustering

In this subsection, we present a novel clustering technique, which is extremely
simple and rather inexpensive to implement in hardware. Usually, two depth layers
within a tile are separated by a large gap in depth. To find this separation, a simple
approach would be to sort the samples according to their depths, and then find
the largest depth difference between two successive samples. However, this is
much too expensive for a hardware implementation, which needs to avoid sorting
in order to reduce complexity. Instead, we propose a more pragmatic approach,
which is not optimal, but tends to give good results. First, we split the depth
interval between zmin and ẑmax for the tile into n bins, where ẑmax is the maximum
z-value of non-cleared samples. For each bin, we store one bit, which records
whether there is at least one sample in the bin. The bits are initiated to zero.
Each sample is then classified to a bin based on the sample’s depth value, and
the corresponding bit set to one. Samples that are cleared may be ignored in this
step. When all samples have been processed, each 0 signals a gap in depth of at

63

PAPER II: DEPTH BUFFER COMPRESSION FOR STOCHASTIC MOTION BLUR
RASTERIZATION

z

zmin, zmax binning clustering

z z

zmin

zmax 1

1

1
1
1

0
0

0

z

largest gap
of zeroes

Figure 3: Illustration of our new clustering technique. From left to right: the depth values
are marked as red crosses on the depth axis, and these depth values are then bounded by
zmin and zmax. Then follows binning where, in this case, eight small bins between zmin and
zmax are created, and bins with at least one depth sample are marked with 1, and otherwise
marked with 0. Finally, the largest gaps of zeroes is found, and this separates the depths
into two layers.

least (ẑmax− zmin)/n. By finding the largest range of consecutive zeroes, a good
approximation of the separation of the two depth layers is obtained. This entire
process is illustrated in Figure 3. Each of the sample clusters produced by this step
is then processed independently as a layer by the predictor function generation
step. In addition, the clustering process implicitly generates one or more bitmasks
that indicate which layer each sample belongs to. The bitmask(s) will be part of
the compressed representation of a tile. If needed, the samples can be clustered
into more layers simply by finding the second and third (and so on) longest ranges
of consecutive zeroes.

3.2 Predictor Functions

At this point, we have a bitmask, generated from the previous step, indicating
which of the tile’s w× h× n samples that should be compressed for the current
layer. Note that we may have only one layer, in which case all samples are in-
cluded.
As mentioned earlier, most depth buffer compression schemes rely on that depth,
z = zc/wc, is linear in screen space across a triangle. This means that a planar
predictor function, such as the one shown below, is frequently used.

z(x,y) = a+bx+ cy. (2)

However, as soon as the time dimension is included so that motion blur is rendered,
this is no longer ideal. We approach the problem of compressing stochastic buffers
generated with motion blur by adding the time, t, to the predictor, but also combine
x, y and t in different permutations. In general, we can use a predictor function,

64

3. NEW ALGORITHMS

z(x,y, t) as follows:
z(x,y, t) = ∑

mno
amnoxmynto. (3)

For a hardware compressor, it is not feasible to try all possible combinations when
performing compression, and having too many terms makes it very expensive to
compute the predictor function. Based on the equation above, we propose to use
three predictor functions, which have not been used in depth compression before.
They were chosen due to their simple nature (few coefficients and low degree of
the terms). For future work, it may be interesting to attempt to use other predictor
functions, with higher degree polynomial terms, as well. Our new modes are listed
below:

Mode Equation
0: Patch(x,y) z0(x,y) = a+bx+ cy+dxy
1: Plane(x,y, t) z1(x,y, t) = a+bx+ cy+dt

2: Patch(x,y, t) z2(x,y, t) = (1− t)(a0 +b0x+ c0y+d0xy)
+t(a1 +b1x+ c1y+d1xy)

Our three modes have predictor functions with 4 or 8 unknown coefficients (a,
b, etc). These can be obtained in a number of ways. However, instead of us-
ing conventional solutions with a high computational cost, we will instead use an
inexpensive, approximate method to do this.
Since each tile contains many samples, it is possible to set up an over-constrained
linear system when determining the coefficients of the predictor functions. For the
predictor function, z1(x,y, t) = a+bx+cy+dt (mode 1 above), this would be done
as shown below (where a has been removed, because it is computed in the final
stage of the algorithm):

s0
x s0

y s0
t

s1
x s1

y s1
t

...
sm−1

x sm−1
y sm−1

t

︸ ︷︷ ︸

M

b
c
d

︸ ︷︷ ︸

k

=

s0

z
s1

z
...

sm−1
z

︸ ︷︷ ︸

z

⇔Mk = z, (4)

where m is the number of samples in the current layer.
At a first glance, it may seem like a good idea to use least-squares fitting to solve
this problem. The unknown is k, and such an over-constrained system is often
solved by performing a (costly) multiplication with the transpose of M, which
gives a square (and hence, possibly invertible) matrix: MT Mk = MT z. The so-
lution is then: k = (MT M)−1MT z, which is often called a pseudo-inverse [40],
and gives us a solution in the least-squares sense (i.e., minimizing the errors in the
2-norm). Note that for the example in Equation 4, we need to invert a 3×3 matrix
to solve for b, c, and d. This can be done with Cramer’s rule,
While this would make for a decent estimation, our real goal is to minimize the
maximum difference between the samples’ depths and the predictor function, since

65

PAPER II: DEPTH BUFFER COMPRESSION FOR STOCHASTIC MOTION BLUR
RASTERIZATION

this minimizes number of bits needed for the residual encoding (see Section 3.3).
This can be done using minimax fitting [57], which is an even more expensive
algorithm than least squares fitting. Since both these approaches are too expensive,
we propose instead to use a heuristic data reduction technique. We reduce the
samples in a layer into a more manageable number of representative points, which
can then be used to solve a small 3× 3 linear system. These points should be
selected in a manner such that the resulting prediction function lies as close to the
minimax solution as possible.1

Data reduction: The following algorithm is used to compute the representative
sample points. When time, t, is not included (e.g., for mode 0), the first step is to
find the bounding box in x and y for all the samples in the layer. The bounding
box is then split into 2× 2 uniform grid cells. For each cell, we find the two
samples with the minimum and maximum depth values. The mid-point of these
two samples (in xyz) is then computed. This gives us four representative points,
ri j = (ri j

x ,r
i j
y ,r

i j
t ,r

i j
z), with i, j ∈ {0,1}, where i and j are grid cell coordinates in

our 2×2 grid. There will be at most four representative points, and these will be
used to compute the predictor function inexpensively. Analogously, for modes that
takes t into account (mode 1 & 2), we can compute the bounds in t as well, and
instead split the bounding box into 2× 2× 2 grid cells. This results in at most 8
representative points, ri jk, with i, j,k ∈ {0,1}. An illustration of the data reduction
algorithm for the 2×2 case can be found in Figure 4.
Next, we describe how we compute each mode’s predictor function from these
reduced representative data points.
Common step: All our three modes share a common step when computing their
predictor functions. They all need to solve one or two 4× 4 systems of linear
equations to get the coefficients for the predictor function. To simplify this, we
first move the origin to one of the representative points, and instead compute a
later in the residual encoding step (see Section 3.3). This leaves three coefficients
left to solve, and three remaining representative points. Any method suitable for
solving 3×3 linear systems, such as Cramer’s rule, can be used to compute these.
Mode 0: This mode was added mainly for static geometry, i.e., for parts of the
rendered frame without motion blur. Therefore, it does not contain the time pa-
rameter. However, it will also be used in mode 2, as will be seen later. We propose
to use a bilinear patch, which is described by z0(x,y) = a+ bx+ cy+ dxy. The
motivation for this mode, compared to using just plane equations (see Section 2),
is that the bilinear patch is somewhat more flexible, since it is a second-degree
surface, and hence has a higher chance of adapting to smoother changes of the
surface.

1Some experimental results were obtained by comparing our solution for a 4D plane (mode 1) to
Matlab’s least squares (backslash operator) and minimax (fminimax) solutions of the over-constrained
system. A set of random tiles were retrieved from our test scenes, and the mean error span was calcu-
lated using all three methods. We were well within 10% of the minimax error, and on par with the least
squares solution.

66

3. NEW ALGORITHMS

Mode 1: This mode describes a plane in four dimensions, i.e., z1(x,y, t) = a+
bx+ cy+dt. This representation is useful for moving geometry, since it contains
the dt term. In this case, we can use any four representative points, ri jk, where
at least one has k = 0 and at least one has k = 1 in order to capture time depen-
dence. Although a plane in four dimensions is not enough to capture all possible
triangle movements, this approximation works surprisingly well, as we will see in
Section 5.
Mode 2: This mode linearly interpolates two bilinear patches (P0 and P1) posi-
tioned at t = 0 and at t = 1, to capture a surface moving over time. The resulting
equation becomes: z2(x,y, t) = P0 + t(P1−P0). To compute this representation,
we first perform data reduction to produce 2× 2× 2 representative points, ri jk.
For k = 0, the four representative points, ri j0, i, j ∈ {0,1}, are used to compute
the P0 patch in the same way as done for mode 0. A similar procedure is used to
compute P1. Each patch, Pk, now approximately represents the tile data at the time

tk =
max(ri jk

t)+min(ri jk
t)

2 . We now have all eight coefficients needed for this mode.
In a final step, the two patches are positioned at times t0 = 0 and t1 = 1 through
extrapolation, which gives us z2(x,y, t).
Missing data: Due to clustering and cleared samples, some grid cells in the data
reduction step may end up without any samples, which means that representative
points, ri j(k), for such grid cells cannot be computed. To be able to compute the
predictor functions, we choose to make reasonable estimations of the missing rep-
resentative points using the existing representative points. For simplicity, we only
fill in missing data over the xy neighbors, and not in t. Hence, for time-dependent
modes, we use the same technique twice. If only one representative point is miss-
ing, i.e., one grid cell is missing samples, we create a plane from other three points,
and evaluate it at the center of the empty grid cell.
If there are only two representative points, e.g., r00 and r01, and two empty grid
cells, we create a new point, r10, as shown below:

e = r01− r00,

r10 = (r00
x − ey,r00

y + ex,r00
t ,r00

z), (5)

where the first two components of r10 are created by rotating the difference vector,
e, 90 degrees in the xy-plane and adding it to the x and y of r00. The other compo-
nents are simply copied from r00. This extrudes a plane from the vector from r00

to r01. When this third representative point has been created, we proceed as if only
one representative point is missing. Finally, if only one representative point exists,
this implies that the layer only contains a single sample. In such a case, only the
a-coefficient is needed since it encodes a constant function, which is all we need to
reconstruct a single depth value. As a consequence, the representative points are
not needed in this case.

67

PAPER II: DEPTH BUFFER COMPRESSION FOR STOCHASTIC MOTION BLUR
RASTERIZATION

x

y

x

y

x

y

Figure 4: All our predictor functions uses a similar data reduction step. This figure illus-
trates how a set of samples are reduced to 2×2 representative points. (left) We start with a
set of irregular samples. The grayscale of the samples indicate their depths. (middle) The
bounding box of the samples is found. The box is split in half in x and y. In each result-
ing sub-region, the samples with the maximum (blue) and minimum (red) depths are found.
(right) The mean position and depth for each pair of min- and max-samples is used as a
new representative point for the sub-region.

3.3 Residual Encoding

In a final step, we compute correction terms that encode how a specific sample can
be recreated from the predictor functions. We need to store two values for every
sample. The first is a layer index, which associates that sample with a certain layer,
as described in Section 3.1. Typically, we use only between one and two layers,
so we need at most one bit per sample for this index. If a tile can be compressed
using a single layer, we do not have to store these indices.
The second per-sample values to store are the correction terms, δi. These are found
by looping over all of samples in the layer and computing the difference between
the predicted value, z(x,y, t), and the actual depth of the sample, si

z. During this
phase, we track the required number of bits to store the correction terms, and also
compute the a-constant for our predictor functions. The a-constant is set so that
we only get unsigned correction terms (i.e., all samples lie above the predictor
function).
Our correction terms are used in a slightly new way. For k correction bits per
correction term, we reserve the value 2k− 1 as a clear value, and can hence only
use correction terms of up to (and including) 2k−2. However, we get the benefit
of being able to signal whether a particular sample is cleared in a very inexpensive
way. Otherwise, this is usually done using a particular value in the layer index,
which is more costly.

4 Implementation

We use a depth compression architecture with a tiled depth buffer cache and a tile
table [50]. This has been implemented in a software rasterizer in order to gather
statistics about different algorithms and configurations. In order to reduce the
dimensionality of the evaluation space, we decided to use 512 bits, that is 64 bytes,

68

4. IMPLEMENTATION

as the cache line width in our simulations. This implies that when we compress a
tile, the compressed representation is always padded to the next 512-bit alignment
regardless of the size of the desired memory transaction. In all of our tests, we use
32-bit fixed-point depth values in the depth buffer.
Furthermore, we have experimented with different tile sizes (w×h× t), and have
arrived at two resonable sizes, namely, 4× 4× 4 and 8× 8× 4 samples per tile.
We use these tile sizes both for m = 4 and m = 16 samples per pixel (SPP) rates.
For m = 16, this means that 4×4 pixels would need 4×4×16 samples, i.e., four
4×4×4 tiles. Hence, the samples in a 4×4 pixel region are split along the time
dimension. For 4×4×4 tiles, the number of samples sums to ns = 64 samples per
tile, which fits in 4 cache lines in uncompressed form. Similarily, a tile of size of
8×8×4 has ns = 256, which occupies 16 cache lines in uncompressed form.
For each tile, we store 64 bits of tile table header information, which includes
zmin and zmax and various mode bits. The involved memory bandwidth usage for
this data is typically around a few percent of the total depth memory bandwidth
usage, and so this layout has been left mostly unoptimized. In our results section,
we will compare to the depth offset compression algorithm (see Section 2.2), and
also to the combination of depth offset and our algorithm, since their strengths are
somewhat complementary. The tile table header bit layouts for depth offset, our
algorithm, and their combination are shown below.

ns N Mode Mode zmin/zmaxbits 1 bits 2

Depth offset 64 2 0 0 31 + 31
256 4 0 0 30 + 30

Our algorithm 64 2 2 2 29 + 29
256 4 2 2 28 + 28

Combination 64 2 2 2 29 + 29
256 4 2 2 28 + 28

Here, N is a two or four-bit number that indicates how many cache lines that the
current tile has been compressed to, where N = 0 indicates that the tile is uncom-
pressed. Hence, if the value of N is 8 (and ns = 256), the tile has been compressed
down to 50% of its original size, for example. As can be seen in the table above,
the depth offset algorithm uses its remaining tile table header bits to encode zmin
and zmax at 31 or 30 bits each. For our algorithm, we store N as done for depth
offset, and then we store two bits for the first layer, where 00 indicates that all
the samples in the tile are cleared, 01 indicates that the layer is compressed using
mode 0 (Patch(x,y)), 10 indicates mode 1 (Plane(x,y, t)), and 11 indicates mode 2
(Patch(x,y, t)). These modes are described in Section 3.2. The second two mode
bits are used to describe layer 2, where 00 indicates that there is no second layer,
and the rest is the same as for mode bits 1. This leaves 29 or 28 bits for each of zmin
and zmax, which we have found to be sufficient precision for all our test scenes.
For the combination of the two algorithms, we can use the header layout from our
algorithm with a small modification. If the Mode bits 1 are 00, either we have a
cleared tile or a tile compressed with depth offset, and this is determined by Mode

69

PAPER II: DEPTH BUFFER COMPRESSION FOR STOCHASTIC MOTION BLUR
RASTERIZATION

bits 2 being set to 00 for a cleared tile and 01 for depth offset. In our algorithm,
the Mode bits 2 are unused if Mode bits 1 are 00, and therefore, we simply exploit
unused bit combinations to fit depth offset compression into our tile header. This
leaves us the same number of zmin and zmax bits as for our algorithm.
In our rasterizer, the zmin value for a tile is updated each time a sample depth,
which is smaller than the current zmin, passes the depth test. The zmax value, on the
other hand, requires that all samples are compared, and is thus updated only when
the tile is evicted from the tile cache, prior to compression. We employ a tile cache
of 64 kB and a tile table cache of 4 kB.
In the following, we describe the format of a compressed tile. The predictor func-
tion coefficients (a, b, c, etc) are stored in 32 bits each. For mode 0 and 1, this
sums to 128 bits, while for mode 2, it amounts to 256 bits. When a single layer is
used to compress a tile, we therefore need either p = 128 or p = 256 bits to encode
the predictor. This leaves k = bN·512−p

ns
c bits for the residual, δ , for each sample.

If the tile contains two layers, two predictor functions must be encoded. The cost,
denoted by p1 and p2, of each of these is either 128 or 256 bits. In addition,
an extra bit per sample for the layer index must be stored, which costs ns bits.
Thus, for the two-layer mode, we have k = bN·512−ns−∑ pi

ns
c bits for the per-sample

residual, δ .
We want to minimize the number of cache lines, N, needed to compress each tile
in order to reduce memory bandwidth usage as much as possible. The value of N
is calculated as follows:

N =

ns maxki︸ ︷︷ ︸

M

+ns(nl−1)︸ ︷︷ ︸
I

+∑ pi︸︷︷︸
P

/512

 , (6)

where nl ∈ {1,2} is the number of layers. The M term is the maximum correction
bits needed for any layer, the P term is the sum of the predictor coefficients, and I
is the predictor index (only used for two layers). The division by 512 is to convert
the number of bits into number of cache lines. In our implementation, we simply
evaluate N for all compression combinations and pick the best one.

5 Results

Using the test scenes in Figure 5, we evaluated depth offset compression, which is
described in Section 2.2, our algorithm, and the combination of our algorithm and
depth offset. This combination is described in Section 4. We used tiles of either
4×4×4 (w×h× t) or 8×8×4 samples when measuring compression rates. This
means that the time dimension is split into four groups for 16 samples per pixel.
We do not claim to have found the optimal tile configurations, but they worked
well for our scenes and memory system, and gave consistent results.

70

5. RESULTS

Airship Cannon Spiders Stone Giant Spheres

Sc
re

en
Sh

ot
Z

-B
uf

fe
r

Figure 5: Images from the test scenes used to generate our results. The images are taken
from the Heaven benchmark and Stone Giant demo and feature highly tessellated geometry.
The Spheres scene is a synthetic benchmark scene intended to stress test highly varying
motion. The top row contains reference screenshots without motion (except for the Spheres
scene which includes motion), and the bottom row shows depth buffers, rendered using our
rasterization framework, including motion blur. All images were rendered at 1920× 1080
pixels resolution. The images Airship and Cannon images are courtesy of Unigine Corp.,
and the Spiders and Stone Giant images are courtesy of BitSquid.

Compression ratios for the algorithms are presented in Figure 6, where compres-
sion ratio is defined as the total compressed z-bandwidth for a frame divided by
the total uncompressed z-bandwidth. The best improvement occurs for the Cannon
scene, with 4 samples per pixel and 8×8×4 samples per tile. In this case, depth
offset compresses down to about 75%, while our algorithm manages to compress
down to 55%, which is a substantial difference. The combination of depth offset
and our algorithm is consistently better than our algorithm, which implies that they
are somewhat complementary. In general, the combination of the two algorithms
improves upon depth offset compression by between 3–20%.
When compressing tiles with our algorithm, more than one mode could often be
used to achieve the best compression. For mode 0, this happens around 75% of
the time, for mode 1 around 85%, and mode 2 lands on about 60%. 20–50% of
the time (depending on scene and if one or two layers are used), a tile can be best
compressed with one mode exclusively. Again, mode 1 is by far the most impor-
tant, and can be used roughly 60–70% of the time to achieve the best compression,
where as mode 0 is used for 10–30% of the tiles. Mode 2 is only used up to 5%
of the time for 4× 4× 4 tile sizes. For 8× 8× 4 tiles, however, this figure raises
slightly to 5–15%.
We present results for both 4× 4× 4 and 8× 8× 4 tile configurations. The rea-
son for this is that, while our algorithms performs better on configurations with
more samples in a tile, the larger tile sizes gave a larger overall bandwidth for the
highly tessellated scenes (roughly 50% higher in our framework). The tile size of a
hardware architecture will most likely be based on balancing a number of factors,
such as the rasterizer, shader unit, memory controller, and so on. Therefore, the
two configurations are presented in order to give a sense of how the compression
efficiency scales with tile size.
In Figure 7, we study the performance of the algorithms as a function of increasing
motion. As can be seen in the diagrams, our algorithm is substantially better than

71

PAPER II: DEPTH BUFFER COMPRESSION FOR STOCHASTIC MOTION BLUR
RASTERIZATION

4 Samples Per Pixel 16 Samples Per Pixel
Ti

le
si

ze
4
×

4
×

4

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

Airship Cannon Spiders Stone Giant Spheres

Depth Offset

Our

Combined

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

Airship Cannon Spiders Stone Giant Spheres

Depth Offset

Our

Combined

Ti
le

si
ze

8
×

8
×

4

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

Airship Cannon Spiders Stone Giant Spheres

Depth Offset

Our

Combined

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

Airship Cannon Spiders Stone Giant Spheres

Depth Offset

Our

Combined

Figure 6: Effective compression ratios for depth offset compression, our algorithm, and the
combination of depth compression and our algorithm. We present compression results for 4
and 16 samples per pixel, as well as for two different tile configurations, namely, 4×4×4
and 8×8×4.

depth offset compression for small amounts of motion, and then for larger amounts
of motion, the gap is somewhat reduced.

6 Discussion

We have presented an algorithm that preserves the benefits of traditional depth
buffer plane encoding algorithms while also being robust for stochastically sam-
pled depth data, which previous algorithms have not even attempted to target.
To generate our results, we opted to split the time dimension into different tiles
when working with 16 samples per pixel. When motion grows large relative to the
triangle size, the rasterizer access pattern will become increasingly random which,
in turn, makes the frame buffer cache less efficient. It is therefore important to
design the whole frame buffer and rasterizer with this in mind, and to find a good
balance which gives low bandwidth for static scenes, while scaling gracefully with
increasing motion. We leave a detailed study of this for future work.
In our research, we have taken a first step towards efficient depth buffer com-
pression of motion blur renderings. However, we believe that our work can be
improved further, and in a near future, we will investigate various optimizations
of our basic algorithms. For future work, we also want to look into how our algo-
rithms can be extended to handling depth of field, as well as the combination of
motion blur and depth of field at the same time.

72

6. DISCUSSION

Increasing Motion

16 Samples Per Pixel4 Samples Per Pixel

4x4x4

8x8x4

0.5

0.6

0.7

0.8

0.9

1

0.5

0.6

0.7

0.8

0.9

1

0.5

0.6

0.7

0.8

0.9

1

0.5

0.6

0.7

0.8

0.9

1

Depth Offset

Our

Combined

Figure 7: Effective compression ratios for depth offset compression, our algorithm, and the
combination of depth offset with our algorithm, with varying amounts of motion blur. Note
that our algorithm performs better than depth offset across all amounts of motion for each
configuration, and that the combination of the two algorithms is even a bit better for the
4×4×4 tile configuration. In general, all three algorithms have stable performance with
varying amounts of motion, which is in contrast to traditional planar encoders that typically
break down when motion is introduced.

Acknowledgements

Thanks to Tobias Persson from BitSquid for letting us use the StoneGiant demo,
and to Denis Shergin from Unigine for letting us use images from Heaven 2.0.
Tomas Akenine-Möller is a Royal Swedish Academy of Sciences Research Fellow
supported by a grant from the Knut and Alice Wallenberg Foundation. In addition,
we acknowledge support from the Swedish Foundation for strategic research.

Errata

Omitting a and using the least-squares method on the system described in Equa-
tion 4 will not yield the b, c and d coefficients as intended. Instead, the equation
should read

1 s0
x s0

y s0
t

1 s1
x s1

y s1
t

...
1 sm−1

x sm−1
y sm−1

t

︸ ︷︷ ︸

M

a
b
c
d

︸ ︷︷ ︸

k

=

s0

z
s1

z
...

sm−1
z

︸ ︷︷ ︸

z

⇔Mk = z.

73

PAPER II: DEPTH BUFFER COMPRESSION FOR STOCHASTIC MOTION BLUR
RASTERIZATION

74

Pa
pe

rI
II

Paper III

Stochastic Depth Buffer Compression using Generalized
Plane Encoding

Magnus Andersson Jacob Munkberg Tomas Akenine-Möller

Lund University Intel Corporation

ABSTRACT

In this paper, we derive compact representations of the depth func-
tion for a triangle undergoing motion or defocus blur. Unlike a static
primitive, where the depth function is planar, the depth function is a
rational function in time and the lens parameters. Furthermore, we
show how these compact depth functions can be used to design an
efficient depth buffer compressor/decompressor, which significantly
lowers total depth buffer bandwidth usage for a range of test scenes.
In addition, our compressor/decompressor is simpler in the number
of operations needed to execute, which makes our algorithm more
amenable for hardware implementation than previous methods.

Computer Graphics Forum (Proceedings of Eurographics), vol. 32, no. 2, pp
103–112, 2013.

1. INTRODUCTION

1 Introduction

Depth buffering is the standard technique to resolve visibility between objects in
a rasterization pipeline. A depth buffer holds a depth value for each sample, rep-
resenting the current closest depth of all previously rendered triangles overlapping
the sample. In a stochastic rasterizer with many samples per pixel, the depth buffer
bandwidth requirements are much higher than usual, and the depth data should be
compressed if possible. The depth value, d, can be defined in a number of ways.
In current graphics hardware APIs, the normalized depth, d =

zclip
wclip

, is used since
it is bounded to [0,1], and distributes much of the resolution closer to the viewer.
Alternatively, the raw floating-point value, wclip, can be stored. The former rep-
resentation has the important property that the depth of a triangle can be linearly
interpolated in screen space, which is exploited by many depth buffer compression
formats. Unfortunately, for moving and defocused triangles, this is no longer true.
Therefore, we analyze the mathematical expression for the depth functions in the
case of motion blur and depth of field. We show that although the expressions may
appear somewhat complicated, they can be effectively simplified, and compact
forms for the depth functions can be used to design algorithms with substantially
better average compression ratios for stochastic rasterization. Our method only tar-
gets motion or defocus blur, but for completeness, we also include the derivation
for simultaneous motion blur and depth of field in Appendix A.
In general, we assume that the compressors and decompressors exist in a depth
system, as described by Hasselgren and Akenine-Möller [50]. Compression/de-
compression is applied to a tile, which typically is the set of depth samples inside
a rectangular screen-space region. Due to bus widths, compression algorithms,
and tile sizes, only a few different compression ratios, e.g., 25% & 50%, are usu-
ally available. Typically, a few bits (e.g., two) are stored on-chip, or in a cache,
and these are used to indicate the compression level of a tile, or whether the tile is
uncompressed or in a fast clear mode.

2 Previous Work

Previous depth compression research targeting static geometry typically exploits
that the depth function, d(x,y) = z(x,y)

w(x,y) , is linear in screen space, (x,y), and this can
be used to achieve high compression ratios. Morein was the first to describe a depth
compression system, and he used a differential-differential pulse code modulation
(DDPCM) method for compression [87]. By examining patent data bases on depth
compression, Hasselgren and Akenine-Möller presented a survey on a handful of
compression algorithms [50].
One of the most successful depth compression algorithms is plane encoding [50],
where the rasterizer feeds the exact plane equations to the compressor together
with a coverage mask indicating which samples/pixels inside a tile that are covered
by the triangle. The general idea is simple. When a triangle is rendered to a tile,

77

PAPER III: STOCHASTIC DEPTH BUFFER COMPRESSION USING
GENERALIZED PLANE ENCODING

first check whether there is space in the compressed representation of the tile for
another triangle plane equation. If so, we store the plane equation, and update
the plane-selection bit mask of the tile to indicate which samples point to the new
plane equation. When there is not enough space to fit any more plane equations, we
need to decompress the current depths, update with the new incoming depth data,
and then store the depth in an uncompressed format. To decompress a tile, just
loop over the samples, and look at the plane selection bit mask to obtain the plane
equation for the sample, and evaluate that plane equation for the particular, (x,y),
of the sample. A compressed tile will be able to store n plane equations together
with a plane selection bit mask with dlogne bits per sample, where n depends
on the parameters of the depth compression system, and the desired compression
ratio. In this paper, we generalize this method so that it works for motion blur and
defocus blur, and we optimize the depth function representations.
Anchor encoding is a method similar to plane encoding. It uses approximate plane
equations (derived from the depth data itself, instead of being fed from the raster-
izer), and encodes the differences, also called residuals, between each depth value
and the predicted depth from the approximate plane equation. Depth offset encod-
ing is probably one of the simplest methods. First, the minimum, Zmin, and the
maximum, Zmax, depths of a tile are found. Each sample then uses a bit to signal
whether it is encoded relative to the min or the max, and the difference is encoded
using as many bits that are left to reach the desired compression ratio.
The first public algorithm for compressing floating-point depth [111] reinterpreted
the floats as integers, and used a predictor based on a small set of depths in the tile.
The residuals, i.e., the difference between the predicted values and the real depths,
were then entropy encoded using Golomb-Rice encoding. A general method for
compressing floating-point data was presented by Pool et al. [100]. The differences
between a sequence of floating-point numbers is encoded using an entropy encode
based on Fibonacci codes.
A compressed depth cache was recently documented [53], and some improvements
to depth buffering were described. In particular, when data is sent uncompressed,
smaller tile sizes are used compared to when the tiles are compressed. We will
also use this feature in our research presented here.
Color buffer compression algorithms [103, 104, 111] are working on different data
(color instead of depth), but otherwise, those algorithms operate in a similar system
inside the graphics processor as do depth compression.
Gribel et al. [45] perform lossy compression of a time-dependent depth function
per pixel. However, this approach requires a unique depth function per pixel, and
does not solve the problem of compressing stochastically generated buffers over
a tile of pixels. They derive the depth function for a motion blurred triangle and
note that when the triangle is moving, the linearity of the depth in screen space is
broken. From their work, we know that the depth is a rational cubic function of
time, t, for a given sample position (x,y).
Recently, higher-order rasterization, i.e., for motion blur and depth of field, has

78

3. BACKGROUND

become a popular research topic. All existing methods for static geometry, except
depth offset encoding, break down in a stochastic rasterizer [6, 10]. In the depth
compression work by Andersson et al. [10], the time dimension was incorporated
in the compression schemes, which led to improved depth buffer compression for
stochastic motion blur. By focusing on both motion blur and defocus blur, we solve
a much larger problem. In addition, we analyze the depth functions and simplify
their representations into very compact forms.

3 Background

In this section, we give some background on barycentric interpolation and show
how the depth function, d = z

w , is computed for static triangles. Towards the end of
this section, we show a generalized version of the depth function without deriving
the details. All this information is highly useful for the understanding of the rest
of the paper.
Suppose we have a triangle with clip space vertex positions pk = [pkx , pky , pkw],
k ∈ {0,1,2}. In homogeneous rasterization, the 2D homogeneous (2DH) edge
equation, ek = nk · x, corresponds to a distance calculation of an image plane po-
sition, x = [x,y,1]T, and the edge plane, which passes through the origin, with, for
example, n2 = p0×p1.
Let us introduce an arbitrary per-vertex attribute, Ak, that we wish to interpolate
over the triangle. McCool et al. [80] showed that each of the barycentric coordi-
nates, B0,B1,B2, of the triangle can be found by evaluating and normalizing the
corresponding 2DH edge equation, such that Bk =

ek
e0+e1+e2

. The interpolated at-
tribute, A, for a given sample point, x, can then be found by standard barycentric
interpolation:

A(x,y) =
2

∑
k=0

AkBk =
A0e0 +A1e1 +A2e2

e0 + e1 + e2
. (1)

The depth value, d, is formed by interpolating z and w individually, and then per-
forming a division:

d(x,y) =
z(x,y)
w(x,y)

=
∑zkBk

∑wkBk
=

∑zkek

∑wkek
. (2)

If we look at the denominator, we see that:1

2

∑
k=0

wkek = (
2

∑
k=0

wk pi×p j) ·x (3)

= [0,0,det(p0,p1,p2)] ·x = det(p0,p1,p2),

which is independent of (x,y). This is six times the signed volume of the tetra-
hedron spanned by the origin and the triangle, which can be used to detect if a
triangle is backfacing.

1Throughout the paper, we will sum over k, k ∈ {0,1,2} and use the notation i = (k+1) mod 3 and
j = (k+2) mod 3.

79

PAPER III: STOCHASTIC DEPTH BUFFER COMPRESSION USING
GENERALIZED PLANE ENCODING

If we use a standard projection matrix, such that the transformation of (zcam,1)
to clip space (z,w) can be expressed as (c.f., the standard Direct3D projection
matrix):

z = a zcam +b, w = zcam, (4)

then the depth function can be simplified. The coefficients a and b depend solely
on znear and z f ar. Combining Equations 2 and 4 and simplifying gives us:

d(x,y) =
z(x,y)
w(x,y)

= a+
b∑ek

∑wkek
. (5)

We have now derived the 2D depth function, which is widely used in rendering
systems today. However, Equation 5 can be augmented so that it holds for depth
sampled in higher dimensions. For example, adding motion blur and depth of field
means that z, w, and the edge equations are functions of shutter time, t, and lens
position, (u,v). Thus, we can write the depth function on a more general form:

d(x,y, . . .) = a+
b∑ek(x,y, . . .)

∑wk(x,y, . . .)ek(x,y, . . .)
, (6)

where . . . should be replaced with the new, augmented dimensions.

4 Generalized Plane Encoding

In Section 2, we described how the plane encoding method works for static triangle
rendering. For higher-order rasterization, including motion blur and defocus blur,
static plane equations cannot be used to represent the depth functions, because the
depth functions are much more complex in those cases. For motion blur, the depth
function is a cubic rational polynomial [45], for example. Therefore, the goal of
our work in this paper is to generalize the plane encoding method in order to also
handle motion blur and defocus blur.
Our new generalized plane encoding (GPE) algorithm is nearly identical to static
plane encoding, except that the plane equations for motion blurred and/or defo-
cused plane equations use more storage, and that the depth functions are more
expensive to evaluate. This can be seen in Equation 6, which is based on more
complicated edge equations, ek, and wk-components. However, in Section 5, we
will show how the required number of coefficients for specific cases can be sub-
stantially reduced, which makes it possible to fit more planes in the compressed
representation. This in turn makes for higher compression ratios and faster depth
evaluation.
Similar to static plane encoding, the compression representation for generalized
depth (motion and defocus blur, for example) includes a variable number of gen-
eralized plane equations (Section 5), and a plane selector bitmask per sample. If
there are at most n plane equations in the compressed representation, then each
sample needs dlogne bits for the plane selector bitmask. Next, we simplify the
depth functions for higher-order rasterization.

80

5. GENERALIZED DEPTH FUNCTION DERIVATIONS

5 Generalized Depth Function Derivations

In the following subsections, we will derive compact depth functions for motion
blurred and defocused triangles. Some readers may want to skip to the results
in Section 7. Since we ultimately could not simplify the combined defocus and
motion blur case, we skip that derivation in this section and refer interested readers
to Appendix A.

5.1 Motion Blur

We begin the depth function derivation for motion blur by setting up time-depend-
ent attribute interpolation in matrix form. Then, we move on to reducing the num-
ber of coefficients needed to exactly represent the interpolated depth of a triangle.
The naïve approach to store the depth functions for a motion blurred triangle is
to retain all vertex positions at t = 0 and t = 1, which are comprised of a total of
4× 3× 2 = 24 coordinate values (e.g., floating-point). If the projection matrix is
known, and can be stored globally, then only 3×3×2 = 18 coordinate values are
needed, as z then can be derived from w. In the following section, we show how
the depth function can be rewritten and simplified to contain only 13 values, which
enables more efficient storage.

Time-dependent Barycentric Interpolation In the derivation below, we as-
sume that vertices move linearly in clip space within each frame. Thus, the vertex
position, pk, becomes a function of time:

pk(t) = qk + tdk, (7)

where dk is the corresponding motion vector for vertex k. Akenine-Möller et al. [6]
showed that since the vertices depend on time, the 2DH edge equations form 2nd
degree polynomials in t:

ek(x,y, t) = (pi(t)×p j(t)) ·x = (hk +gkt + fkt2) ·x, (8)

where
hk = qi×q j, gk = qi×d j +di×q j, fk = di×d j. (9)

For convenience, we rewrite the edge equation in matrix form:

ek(x,y, t) = t2Ckx, where Ck =

 hkx hky hkw
gkx gky gkw
fkx fky fkw

 , (10)

where t2 = (1, t, t2) is a row vector and x = (x,y,1)T is a column vector. By com-
bining the matrix notation and Equation 1, we have a general expression of how to
interpolate a vertex attribute, Ak, over a motion blurred triangle:

A(x,y, t) =
t2(∑AkCk)x

t2 ∑Ckx
. (11)

81

PAPER III: STOCHASTIC DEPTH BUFFER COMPRESSION USING
GENERALIZED PLANE ENCODING

However, if the attribute itself varies with t, e.g., Ak(t) = Ao
k + tAd

k , we obtain a
general expression for interpolating a time-dependent attribute over the triangle,
with a numerator of cubic degree:

A(x,y, t) =
t2 ∑((Ao

k + tAd
k)Ck)x

t2 ∑Ckx
=

t3CAx
t2 ∑Ckx

, (12)

where t3 = (1, t, t2, t3), and the vertex attributes, Ak, are multiplied with each Ck
and summed to form the 4×3 coefficient matrix CA.
To compute the depth function d = z

w , we perform barycentric interpolation of
the z- and w-components of the clip space vertex positions, which are now linear
functions of t, e.g., z(t) = qz + tdz and w(t) = qw + tdw.
Let us consider the depth function, d(x,y, t):

d(x,y, t) =
z(x,y, t)
w(x,y, t)

=
t2 ∑((qkz + tdkz)Ck)x
t2 ∑((qkw + tdkw)Ck)x

=
t3Czx
t3Cwx

, (13)

where:

Cz = ∑(qkz

 Ck

0 0 0

︸ ︷︷ ︸

Ck

+dkz

0 0 0

Ck

︸ ︷︷ ︸

Ck

), (14)

and Cw is defined correspondingly. We now have the depth function in a conve-
nient form, but the number of coefficients needed are no less than directly storing
the vertex positions. We will now examine the contents of the coefficient matrices,
Cz and Cw, in order to simplify their expressions.
Using Equation 14 and the definition of Ck, we can express the first and last row
of Cw as:

Cw0 = ∑qkw hk = ∑qkw qi×q j = [0,0,det(q0,q1,q2)],

Cw3 = ∑dkw fk = [0,0,det(d0,d1,d2)], (15)

where, in the last step, the terms cancel out to zero for the x- and y-components.
The two remaining rows can be simplified in a similar fashion:

Cw1 = ∑(qkwgk +dkwhk)

= ∑(qkw(di×q j +qi×d j)+dkw(qi×q j))

= (0,0,∑det(dk,qi,q j)), (16)

Cw2 = ∑(qkw fk +dkw gk) = (0,0,∑det(qk,di,d j)).

Using these expressions, we can formulate t3Cwx as a cubic function in t indepen-
dent of (x,y):

t3Cwx = ∆0 +∆1t +∆2t2 +∆3t3, (17)

82

5. GENERALIZED DEPTH FUNCTION DERIVATIONS

where:
∆0 = det(q0,q1,q2),

∆1 = ∑det(dk,qi,q j),

∆2 = ∑det(qk,di,d j),

∆3 = det(d0,d1,d2).

Expressed differently, the denominator t3Cwx is the backface status for the moving
triangle, e.g., det(p0(t),p1(t),p2(t)) [90].
As a result of these simplifications, we reveal that t3Cwx has no dependency on x
and y and is reduced to a cubic polynomial in t, needing only 4 coefficients. Thus,
with this analysis, we have shown that the depth function can be represented by 12
(for Cz) +4 (for Cw) = 16 coefficients, which should be compared to the 24 coef-
ficients needed to store all vertex positions. Our new formulation is substantially
more compact.

Further optimization If we use a standard projection matrix, according to Equa-
tion 4, we can simplify the depth function further. If we return to Equation 14,
and insert the constraint from the projection matrix, i.e., qz = aqw + b and dz =
zt1 − zt0 = a(wt1 −wt0) = adw, we obtain:

Cz = ∑
(
qkz Ck +dkz Ck

)
= ∑

(
(aqkw +b)Ck +adkw Ck

)
= aCw +b∑Ck. (18)

We combine this result with Equation 13 to finally arrive at:

d(x,y, t) =
t3Czx
t3Cwx

=
t3(aCw +b∑Ck)x

t3Cwx
= a+b

t3(∑Ck)x
t3Cwx

= a+b
t2(∑Ck)x

∆0 +∆1t +∆2t2 +∆3t3 . (19)

As can be seen above, we have reduced the representation of the depth function
from 24 scalar values down to 13 (with the assumption that a and b are given by the
graphics API). Later, we will show that this significantly improves the compression
ratio for depth functions with motion blur.

Equal Motion Vectors Next, we consider an extra optimization for the special
case of linear translation along a vector, since this is a common use case in some
applications. In the examples below, we assume that a standard projection matrix
is used (i.e., Equation 4). The transformed clip space positions, p′ = (p′x, p′y, p′w),
of each triangle vertex are: p′k = qk +d, where d = (dx,dy,dw) is a vector in clip
space (xyw).
With all motion vectors equal for the three vertices of a triangle, we can derive a
simplified depth function. Note that the coefficients fk = 0, and

det(d0,d1,d2) = det(d,d,d) = 0,
det(qi,d j,dk) = det(qi,d,d) = 0. (20)

83

PAPER III: STOCHASTIC DEPTH BUFFER COMPRESSION USING
GENERALIZED PLANE ENCODING

Furthermore, it holds that:

∑gk = ∑d× (q j−qi) = d×∑(q j−qi) = 0. (21)

The depth function can then be simplified as:

d(x,y, t) = a+b
x ·∑hk

∆0 +∆1t
. (22)

We have reduced the representation of the depth function from 18 scalar values
down to 5 (again with the assumption that a and b are given by the graphics API).

5.2 Depth of Field

There are not as many opportunities to simplify the depth function for defocus blur
as there are for motion blur. If we simply store all vertex positions, then 4×3 = 12
coordinate values are needed. If, however, the projection matrix is known, the
number is reduced to 3× 3 = 9. We assume that the camera focal distance and
lens aspect are known globally. In the following section, we will show how to
reduce the storage requirement of the depth function to 8 scalar coefficients for a
defocused triangle.
When depth of field is enabled, a clip-space vertex position is sheared in xy as a
function of the lens coordinates (u,v). The vertex position is expressed as:

pk = qk + cku′, (23)

where ck is the signed clip space circle of confusion radius, u′ = (u,ξ v,0), and ξ

is a scalar coefficient that adjusts the lens aspect ratio. Note that ck is unique for
each vertex and is typically a function of the depth. We use these vertices to set up
the edge equations:

ek(x,y,u,v) = (pi(u,v)×p j(u,v)) ·x
= (qi×q j +u′× (ciq j− c jqi)) ·x
= (hk +u′×mk) ·x,

where we have introduced mk =(ciq j−c jqi) and hk = qi×q j to simplify notation.
With u = (u,ξ v,1), we can write the edge equation in matrix form as:

ek(x,y,u,v) = uCkx, (24)

where:

Ck =

 0 −mkw mky

mkw 0 −mkx

hkx hky hkw

 . (25)

Analogous to the motion blur case, we can express the depth function as a rational
function in (x,y,u,v) as follows:

d(x,y,u,v) =
z(x,y,u,v)
w(x,y,u,v)

=
uCzx
uCwx

, (26)

84

6. IMPLEMENTATION

where Cz = ∑qkz Ck and Cw = ∑qkw Ck. By combining the observation that:

∑qkw mkw = ∑qkw(ciq jw − c jqiw) = 0, (27)

and the top row in Equation 15, Cw is reduced to a single column, similar to the
motion blur case. Thus, the denominator can be written as:

uCwx = u

 0 0 ∑qkwmky

0 0 −∑qkwmkx

0 0 det(q0,q1,q2)

x = ∆uu+∆vv+∆0. (28)

This is equal to det(p0(u,v),p1(u,v),p2(u,v)), which is also the backface status
for a defocused triangle [90].
If we introduce the restrictions on the projection matrix from Equation 4, then Cz
can be expressed in the following manner:

Cz = ∑qkz Ck = ∑((aqkw +b)Ck) = aCw +b∑Ck. (29)

If we further assume that the clip-space circle of confusion radius follows the thin
lens model, it can be written as ck = α pkw +β . With this, we see that:

∑mkw = ∑(ciq jw − c jqiw)

= ∑((αqiw +β)q jw − (αq jw +β)qiw) (30)

= α ∑(qiw p jw −q jw piw)+β ∑(q jw −qiw) = 0,

and ∑Ck takes the form:

∑Ck =

 0 0 ∑mky

0 0 −∑mkx

∑hkx ∑hky ∑hkw

 . (31)

With this, we have shown that:

d(x,y,u,v) =
uCzx
uCwx

= a+b
∑hk ·x+∑mkyu−∑mkx ξ v

∆uu+∆vv+∆0
, (32)

which can be represented with 8 scalar coefficients (given that a and b are known).
Note that the denominator is linear in each variable.

6 Implementation

We have implemented all our algorithms in a software rasterizer augmented with
a depth system [50] containing depth codecs (compressors and decompressors), a
depth cache, culling data, and a tile table, which will be described in detail below.
To reduce the design space, we chose a cache line size of 512 bits, i.e., 64 bytes,

85

PAPER III: STOCHASTIC DEPTH BUFFER COMPRESSION USING
GENERALIZED PLANE ENCODING

t

x

y

lens

x

y

u

v

defocus blurmotion blur

Figure 1: Left: motion blur for 4×4 pixels where there are four samples per pixel (indicated
by the four different layers). In total, there are 4×4×4 samples here. If n layers are used
we denote such a tile 4× 4× n. As an example, if each layer is compressed as a separate
tile, then we denote these tiles by 4× 4× 1. Right: we use the same notation for defocus
blur, but with a different meaning. Here, the lens has been divided into 2× 2 smaller lens
regions, and as before, there are four samples per pixel (again indicated by the four layers).
However, for defocus blur, 4×4×n means that n lens regions are compressed together as
a tile.

which is a reasonable and realistic size for our purposes. The implication of this
choice is that a tile, which is stored using 512 ·n bits, can be compressed down to
512 ·m bits, where 1≤ m < n in order to reduce bandwidth usage.
For our results, we present numbers for both 24b integer depth as well as for the
complementary depth (1− z) [69] representation for 32b floating-point buffers.
The reason is that this technique has been widely adopted as a superior method
on the Xbox 360 (though with 24 bits floating point), since it provides a better
distribution of the depths. For all our tests, we use a sample depth cache of 64 kB
with least-recently used (LRU) replacement strategy.
Even though motion blur is three-dimensional, and defocus blur uses four dimen-
sions, we are using the same tile notation for both these cases in order to simplify
the discussion. An explanation of our notation can be found in Figure 1. We per-
form Z-max culling [43] per 4× 4× 1 tiles for 4 spp and 2× 2× 4 for 16 spp,
where we store zmax of the tile using 15 bits. If all of the samples within the tile are
cleared, we flag this with one additional bit. If an incoming triangle passed the Z-
max test, the per-sample z-test is executed, and the tile’s zmax is recomputed if any
sample pass the per-sample test. For complementary depth zmin is used instead.
The tile table, which is accessed through a small cache or stored in an on-chip
memory, stores a tile header for each tile. For simplicity, we let the header store
eight bits, where one combination indicates that the tile is stored uncompressed,
while the remaining combinations are used to indicate different compression modes.
In Section 7, we describe which tile sizes have been used for the different algo-

86

6. IMPLEMENTATION

Static Dolly Translation
(3) (5) (5)

Per-vertex motion DOF Per-vertex+DOF
(13) (8) (18)

Figure 2: Different configurations of motion blur and depth of field on a simple scene.
Below each image, the number of coefficients needed to store the generalized depth function
is shown.

rithms. Using a 32kB cache, we have seen that the total memory bandwidth usage
for culling and tile headers is about 10% of the total raw depth buffer bandwidth
in general, and approximately the same for all algorithms. Note that culling is es-
sential to performance and is orthogonal to depth buffer compression. Therefore,
we chose to exclude those numbers from our measurements and instead just focus
on the depth data bandwidth.
Our implementation of the generalized plane encoder, denoted GPE, is straight-
forward. For motion blur, the rasterizer forwards information about the type of
motion applied to each triangle. The three different types of motion that we sup-
port are static (no motion), only translation, and arbitrary linear per-vertex motion.
In each case, the encoder receives a set of coefficients, representing the depth func-
tion for the current triangle. In addition, the rasterizer forwards a coverage mask,
which indicates which samples are inside the triangle. The depth is evaluated for
these samples, and depth testing is performed. A depth function of a previously
drawn triangle is removed if all of its sample indices are covered by the incoming
triangle’s coverage mask. The depth of field encoder works in exactly the same
way, except that there are no special types for defocus blur that are forwarded.
As shown in the four leftmost images in Figure 2, the number of coefficients
needed per triangle is a function of the motion type and varies per triangle from

87

PAPER III: STOCHASTIC DEPTH BUFFER COMPRESSION USING
GENERALIZED PLANE ENCODING

Figure 3: Left: a false-color visualization of the different GPE modes for the Chess scene.
Pure red represents uncompressed regions, and blue the modes with the highest compression
ratio (16:1). Right: the stochastic depth buffer for the chess scene.

3 (static), 5 (translation) to 13 (per-vertex motion). Recall that these reductions
in the number of coefficients were derived in Section 5. A compressed tile may
include x static plane equations, y depth functions for translated triangles, and z
depth functions with arbitrary per-vertex motion. The total storage for the depth
function coefficients is then 3x+5y+13z floats. Additionally, for each sample, we
need to indicate which depth function to use (or if the sample is cleared), which
is stored with dlog2(x+ y+ z+1)e bits per sample. We work on 16×16×1 tiles
for 4 spp and 8× 8× 4 tiles for 16 spp, or 16 cache lines, which can be com-
pressed down to one cache line in the best case. Total storage for motion blur is
then (3x+5y+13z)×32+dlog2(x+ y+ z+1)e×256. If this sum is less than 16
cache lines, we can reduce the depth bandwidth usage. To simplify the exposition
in this paper, we allow only compression to 1, 2, 3, 4, and 8 cache lines, and only
use one set of functions for each tile. It is trivial to extend the compressor to the
intermediate compression rates as well. Figure 3 shows an example on the usage
of the modes in one of our test scenes.
For defocus blur, the expression is simplified, as the depth function is always stored
with 8 coefficients per triangle (see Figure 2). If the number of depth functions
in a mode is denoted n, the number of bits per mode is given by 8× n× 32+
256dlog2(n+ 1)e. The set of modes we have used in this paper is listed in Ap-
pendix B.
Note that all coefficients are stored using 32b float, regardless if the depth buffer is
24 or 32 bits. While this precision will not produce the same result as interpolating
the depth directly from the vertices, we also would like to note that there is cur-
rently no strict rules for how depth should be interpolated in a stochastic rasterizer.
If we use the same (compressed) representation in the codec and for depth inter-
polation, we are guaranteed that the compressed data is lossless. Using the same
representation for compression and interpolation makes the algorithms consistent,
which is perhaps the most important property. However there is still a question if
the interpolation is stable and accurate enough to represent the depth range of the
scene. Unfortunately we have not done any formal analysis, and have to defer that
to future work.

88

7. RESULTS

In absence of any compression/decompression units, it makes more sense to use
a tile size that fits into a single cache line [53]. Therefore, we allow keeping raw
data in cache line sized tiles if the compression unit was unable to compress data
beyond the raw storage requirement. However, for compressed tiles, we only allow
memory transactions from and to the cache of the entire tile. Our baseline, denoted
RAW, simply uses uncompressed data on cache line size tiles, which is a much
more efficient baseline than previously used [10, 53] (where the RAW represents
uncompressed on the same tile size as the compressed tiles). Since the baseline is
more efficient, it means our results are even more significant compared to previous
work.

7 Results

In this section, we first describe the set of codecs (compressor and decompressor)
we use in the comparison study and then report results on a set of representative
test scenes.

Codecs We denote the uncompressed method as RAW below. Note that the RAW

mode include Z-max culling and a clear bit per tile, as described in Section 6. An
uncompressed 4×4×1 (4 spp) or 2×2×4 (16 spp) tile occupies one cache line,
i.e., 16×32 = 512 bits. Our method is denoted GPE, and a detailed implementa-
tion description can be found in Section 6.
We compare against a depth offset (DO) codec, working on 8× 8× 1 tiles for 4
spp, and 4× 4× 4 tiles for 16 spp, where the min and max values are stored in
full precision and a per-sample bit indicates if the sample should be delta-encoded
w.r.t. the min or the max value. We use three different allocations of the delta bits
per sample: 6, 14, and 22. With these layouts, we can compress the four cache
lines of depth samples down to one (4:1), two (4:2), and three (4:3) cache lines,
respectively. The two bits needed to select one of the three modes or if the sample
is cleared are stored in the tile header.
By including time, t, in the predictor functions for a plane encoder, better com-
pression ratios could be achieved for motion blur rasterization [10]. This tech-
nique analyzes all samples in the tile and fits a low-order polynomial surface to
the depth samples and encode each sample with an offset from this surface. We
include this encoder (denoted AHAM11) in our results and refer to the cited paper
for a detailed description of this compression format. We use the same tile sizes as
for the DO compressor. Note that unlike GPE, the AHAM11 encoder does not rely
on coefficients from the rasterizer, but works directly on sample data. The draw-
back, however, is that the derivation of the approximate surface and subsequent
delta computations are significantly more expensive than directly storing the exact
generalized depth function. AHAM11 cannot handle defocus blur.

89

PAPER III: STOCHASTIC DEPTH BUFFER COMPRESSION USING
GENERALIZED PLANE ENCODING

In a post-cache codec the compressor/decompressor is located between the cache
and the higher memory levels. In a pre-cache codec the compressor/decompressor
is located between the Z-unit and the cache, which means that data can be stored
in compressed format in the cache, at the cost that the compressor/decompressor
is invoked more often. Note that AHAM11 is a post-cache codec, while DO is a
pre-cache codec2. GPE is a pre-cache codec as well, similar to plane encoding for
static triangles. For a more detailed overview of pre- vs post-cache codecs, we
refer to the paper by Hasselgren et al. [53].

Test Scenes The Chess scene contains a mix of highly tessellated geometry
(chess pieces) and a coarse base plane. All objects are animated with rigid body
motion. The DOF chess scene (32k triangles) has more pieces than the motion blur
chess scene (26k triangles). The Airship scene (157k triangles) is taken from the
Unigine Heaven 2 DX11 demo (on normal tessellation setting), and has been en-
hanced with a moving camera. This is the only scene tested which uses the depth
functions optimized for camera translation. Dragon (162k triangles) shows an an-
imated dragon with skinning and a rotating camera. Sponza is the CryTek Sponza
scene with a camera rotating around the view vector. The scene has 103k triangles
for motion blur and 99k triangles for DOF. Finally, the Hand scene (15k trian-
gles) is a key-frame animation of a hand with complex motion. All triangle counts
are reported after view frustum culling. Furthermore, in Airship and Dragon, the
triangle counts are after backface culling. All scenes are rendered at 1080p.
The results for motion blur can be seen in Table 1, where the resulting bandwidth
for each algorithm is given relative to the RAW baseline. While the numbers reveal
substantial savings with our algorithm, it is also interesting to treat the previously
best algorithm (which is AHAM11 for most scenes) as the baseline, and see what
the improvement is compared to that algorithm. For example, for a complementary
depth floating point buffer (F32) at four samples per pixel (spp), we see that the
relative bandwidth on the Chess scene is 37/64≈ 58%, which is a large improve-
ment. For Airship, this number is 64%, while it is about 77-80% for Dragon and
Sponza. The Hand scene is extremely difficult since it only has per-vertex motion
(most expensive) on a densely tessellated mesh, and GPE is unable to compress
it further. For 16 spp F32, the corresponding numbers are (from Chess to Hand):
64%, 60%, 80%, 68%, and 89%.
For defocus blur, the results can be found in Table 2. The results are even more
encouraging. The relative bandwidth, computed as described above for motion
blur, compared to the best algorithm (DO) is (from Chess to Hand): 44%, 74%,
70%, 49%, and 88% for 4 spp. For 16 spp, the corresponding numbers are: 35%,
67%, 66%, 34%, and 67%.
Encoder Complexity Analysis Here, we attempt to do a rough comparison of the
complexity of the encoder of GPE vs AHAM11, where we assume that there are
n samples per tile. AHAM11 starts by finding min and max of the depths, which

2DO can be either pre- or post-cache codec, but we use pre-cache since it gives better results [53].

90

7. RESULTS

Chess Airship Dragon Sponza Hand
MB 4 spp 16 spp 4 spp 16 spp 4 spp 16 spp 4 spp 16 spp 4 spp 16 spp

RAW (MB) 59.7 256 84.9 355 80.4 366 155 721 36.1 152

DO F32 84% 75% 100% 95% 92% 89% 93% 88% 100% 98%
U24 54% 56% 68% 64% 59% 56% 62% 58% 99% 95%

AHAM11 F32 64% 58% 96% 84% 87% 83% 87% 81% 102% 99%
U24 52% 44% 73% 62% 62% 60% 65% 59% 97% 95%

GPE 37% 37% 62% 50% 70% 66% 67% 55% 100% 88%

Table 1: Motion blur depth buffer memory bandwidth for both 4 samples per pixel (spp)
and 16 spp compared to the baseline, RAW. For the comparison methods, we show results
for both 32b float, stored as 1− depth (F32) and 24b unsigned int (U24) depth buffers.
By design, the GPE scores are identical for 32b float and 24b unsigned int buffers. We
disabled the 4:3 compression mode for DO float in the hand scene, because otherwise the
bandwidth usage rose to 107% and 103%. DO did, however, benefit from the 4:3 mode
in all of our other test scenes. As can be seen, our method (GPE) provides substantial
bandwidth savings compared to the previous methods in most cases.

Chess Airship Dragon Sponza Hand
DOF 4 spp 16 spp 4 spp 16 spp 4 spp 16 spp 4 spp 16 spp 4 spp 16 spp
RAW (MB) 102 460 118 413 85.1 413 116 486 40.1 171

DO F32 88% 86% 100% 99% 93% 92% 86% 82% 99% 95%
U24 64% 62% 73% 72% 62% 58% 59% 55% 91% 81%

GPE 39% 30% 74% 66% 65% 61% 42% 28% 87% 64%

Table 2: Depth of field results. Notice that AHAM11 is not included here, since it cannot
handle defocus blur. Similar to motion blur, we disabled the 4:3 mode for DO for 4 spp F32
for the hand scene, because otherwise it used 101% of the RAW bandwidth. Note again
that our method (GPE) provides significant savings in most test cases. For the comparison
method, we show results for both 32b float, stored as 1−depth (F32) and 24b unsigned int
(U24) depth buffers. By design, the GPE scores are identical for 32b float and 24b unsigned
int buffers.

results in ≈ 2n operations. Each depth value is then binned (n ops), and the largest
gap in the bins is found, where the last step is excluded in our complexity esti-
mate, since it is hard to estimate. For the whole set of samples, and for each of the
bins, a bounding box in x and y is found (4n ops), and the box is split into 2× 2
regions, or 2×2×2 regions (depending on which mode is used). In each region,
the min and the max depth is found (≈ n ops). For each of the two bins and the
whole set of samples, the three modes in AHAM11 uses Cramer’s rule to compute
the predictor function. We estimate this to about 25 FMA (fused multiply-add)
operations. The residuals are found by evaluating the predictor and computing
the difference. For the three modes, the predictor evaluation costs 4n, 4n, and 9n
ops respectively (including residual computation). Since each sample belongs to

91

PAPER III: STOCHASTIC DEPTH BUFFER COMPRESSION USING
GENERALIZED PLANE ENCODING

the whole set, as well as to one of the two bins, the steps after binning are per-
formed twice per sample. An under-conservative estimation of AHAM11 is then
n(2+1)+2n(4+1+4+4+9) = 47n ops plus 9 ·25 = 225 ops for Cramer’s rule,
i..e, a total of 47n+ 225 ops. GPE computes the coefficients, which for the most
expensive case (per-vertex motion) costs about 130 FMA ops, and then updates
the selection masks, which we estimate to be 5n to 13n operations, depending on
which depth function is used. Since 47n+ 225� 13n+ 130 (for n = 8× 8 sam-
ples), we conclude that our encoder is more efficient. In fact, for reasonable tile
sizes, the constant factors are insignificant, which means that AHAM11 approxi-
mately uses between 4 and 9 times more operations. Furthermore, if the stochastic
rasterizer performs a backface test, most of the computations needed for the depth
function coefficients can be shared. In that scenario, we estimate the constant fac-
tor for GPE to be only 20 ops.

8 Conclusions and Future Work

We have presented a generalized plane encoding (GPE) method, where we opti-
mized the depth function representation significantly for motion blur and depth of
field separately. GPE provides substantial depth buffer bandwidth savings com-
pared to all previous methods. Our research can have high impact, since we be-
lieve that it gets us a bit closer to having a fixed-function stochastic rasterizer in a
graphics processor with depth buffer compression.
At this point, we have not been able to provide any positive results for the com-
bination of motion blur and DOF. In future work, we would like to use the theory
developed in Appendix A to design more efficient predictors. Although we con-
cluded that the generalized depth function for the case of simultaneous motion
blur and depth of field is too expensive in practice, we could analyze the size of
each coefficient for a large collection of scenes, and obtain a lower order approx-
imation. As a final step, the residuals would be encoded. Yet another avenue for
future research is to explore the depth function for motion blur with non-linear
vertex paths.

Acknowledgements

The authors thank Aaron Coday, Tom Piazza, Charles Lingle, and Aaron Lefohn
for supporting this research. The Advanced Rendering Technology team at Intel
provided valuable feedback. Thanks to Denis Shergin from Unigine for letting
us use images from Heaven 2.0. Tomas Akenine-MÃűller is a Royal Swedish
Academy of Sciences Research Fellow supported by a grant from the Knut and
Alice Wallenberg Foundation.

92

APPENDIX

Appendix A - Motion Blur + Depth of Field

Following the derivation for motion blur and depth of field, we want to create
general depth functions for the case of triangles undergoing simultaneous motion
blur and depth of field. We first consider the 5D edge equation [91]:

ek(x,y,u,v, t) = (nk(t)+u′×mk(t)) ·x, (33)

where u′ = (u,ξ v,0), nk(t) = pi(t)× p j(t), and mk(t) = ci(t)p j(t)− c j(t)pi(t).
The interpolation formula becomes:

A(x,y,u,v, t) =
∑Akek(x,y,u,v, t)

∑ek(x,y,u,v, t)
. (34)

Our first goal is to derive a compact formulation of the denominator in Equation 6:

∑ pkw(t)ek(x,y,u,v, t)

= ∑ pkw(t)nk(t) ·x+∑(pkw(t)u
′×mk(t)) ·x. (35)

From Equation 17, we have: ∑ pkw(t)nk(t) ·x = ∑3
0 ∆it i. Similarly, by generalizing

Equation 27, we obtain:
∑ pkw(t)mkw(t) = 0, (36)

which can be used to simplify the term below:

∑(pkw(t)u
′×mk(t)) ·x

=
(
0,0,u∑ pkw(t)mky(t)−ξ v∑ pkw(t)mkx(t)

)
·x

= u
3

∑
0

γit i +ξ v
3

∑
0

δit i. (37)

Simplification for the thin lens model If we assume that the clip space circle of
confusion radius follows the thin lens model, it can be written as ck(t) =α pwk(t)+
β . We use the equality:

∑(pkw(t)u
′×mk(t)) ·x = u′ ·∑ck(t)pi(t)×p j(t), (38)

and see that:

u′ ·∑ck(t)pi(t)×p j(t)

= u′ ·∑((α pkw(t)+β)pi(t)×p j(t)) (39)

= βu′ ·∑(pi(t)×p j(t)) = u
2

∑
0

γit i +ξ v
2

∑
0

δit i.

We have shown that the denominator can be expressed as:

∑ pkw(t)ek(x,y,u,v, t) = u
2

∑
0

γit i +ξ v
2

∑
0

δit i +
3

∑
0

∆it i, (40)

93

PAPER III: STOCHASTIC DEPTH BUFFER COMPRESSION USING
GENERALIZED PLANE ENCODING

Mode x y z c cache lines
0 29 0 0 1 8
1 0 17 0 1 8
2 0 0 8 0 8
3 0 0 7 1 8
4 10 0 0 1 4
5 0 8 0 0 4
6 0 7 0 1 4
7 0 0 3 1 4
8 8 0 0 0 3
9 7 0 0 1 3
10 0 4 0 1 3
11 0 0 2 1 3
12 4 0 0 0 2
13 0 3 0 1 2
14 0 0 1 1 2
15 2 0 0 0 1
16 0 1 0 1 1
17 0 0 1 0 1

Table 3: GPE compression modes for motion blur.

which can be represented by 10 coefficients. The numerator:

∑e(x,y,u,v, t) = (∑nk(t)+u′×∑mk(t)) ·x, (41)

can be represented by 18 coefficients, but again, if we assume that the clip space
circle of confusion radius follows the thin lens model, we can generalize Equa-
tion 31 and see that ∑mkw(t) = 0. Then we obtain (u′×∑mk(t)) ·x = u∑mky(t)−
ξ v∑mkx(t) = u∑2

0 λit i +ξ v∑2
0 κit i.

Thus, we can represent the depth function, d = z/w, with 25 coefficients. Note that
simply storing the vertices, (x,y,w), would require 3×3×2 = 18 values, which is
a more compact representation. We conclude that for the combination of motion
and defocus blur, the raw vertex representation is a better alternative in term of
storage. Our derivation was still included in order to help others avoid going down
this trail of simplifying the equations.

Appendix B - Compression modes for GPE

The total storage cost of a compressed block is: (3x+ 5y+ 13z)× 32 bits for the
depth function coefficients plus dlog2(x+ y+ z+1)e×256 bits to indicate which
depth function to use for each of the 256 samples (or if the sample is cleared). As
an additional optimization, if no samples are cleared, we skip the clear bit in some
modes. If a clear bit is present in the mode, this is indicated as c = 1 in Table 3.
Similarly, we show the modes for defocus blur in Table 4. We empirically found
a reasonable subset of the large search space of possible predictor combinations
that worked well in our test scenes.

94

ADDENDUM

Mode number of planes c cache lines
0 12 1 8
1 5 1 4
2 4 0 3
3 3 1 3
4 2 1 2
5 1 1 1

Table 4: GPE compression modes for defocus blur.

Addendum

After the publication of this paper we were able to further simplify the depth func-
tion for depth of field (Equation 32).
With the thin lens model, the CoC radius is defined as ck = αqwk +β . First, we
note that the difference of two such radii can be written as

ck− ci = αqwk +β −αqwi +β = α(qwk −qwi).

In Equation 25 note that mky = ciq jy − c jqiy . Expanding ∑myk yields

∑myk = qy0(c1− c2)+qy1(c2− c0)+qy2(c0− c1)

= α
(
qy0(qw1 −qw2)+qy1(qw2 −qw0)+qy2(qw0 −qw1)

)
. (42)

Next, we expand ∑hxk , such that

∑hxk = qy0(qw1 −qw2)+qy1(qw2 −qw0)+qy2(qw0 −qw1). (43)

Comparing Equations 42 and 43 it is easy to see that

α ∑hxk = ∑myk

Similarly, α ∑hyk = ∑mxk . With α globally known, storing ∑mxk and ∑myk is
superfluous, and the final expression can instead be written as

d(x,y,u,v) =
uCzx
uCwx

= a+b
∑hk ·x+α

(
∑hkyu−∑hkx ξ v

)
∆uu+∆vv+∆0

,

which amounts to 6 coefficients.

95

PAPER III: STOCHASTIC DEPTH BUFFER COMPRESSION USING
GENERALIZED PLANE ENCODING

96

Pa
pe

rI
V

Paper IV

Masked Depth Culling for Graphics Hardware

Magnus Andersson Jon Hasselgren Tomas Akenine-Möller

Lund University Intel Corporation

ABSTRACT

Hierarchical depth culling is an important optimization, which
is present in all modern high performance graphics processors. We
present a novel culling algorithm based on a layered depth represen-
tation, with a per-sample mask indicating which layer each sample
belongs to. Our algorithm is feed forward in nature in contrast to
previous work, which rely on a delayed feedback loop. It is simple
to implement and has fewer constraints than competing algorithms,
which makes it easier to load-balance a hardware architecture. Com-
pared to previous work our algorithm performs very well, and it will
often reach over 90% of the efficiency of an optimal culling oracle.
Furthermore, we can reduce bandwidth by up to 16% by compressing
the hierarchical depth buffer.

to appear in ACM Transactions on Graphics (Proceedings of SIGGRAPH Asia),
2015.

1. INTRODUCTION

0%

10%

20%

30%

40%

50%

60%

70%

0%

20%

40%

60%

80%

100%

Culled tiles Total Bandwidth (HiZ + Z)

INSTANT FEEDBACKFORWARD OurHeaven Benchmark, ship

Figure 1: Best case culling performance and bandwidth of our algorithm as compared to
previous work. Our algorithm performs similarly to an idealized version of the more com-
plicated feedback algorithm, while keeping the simplicity of the much less efficient forward
culling approach. By compressing the depth representation, we show that we achieve sig-
nificantly less bandwidth than competing algorithms.

1 Introduction

Over 400 million graphics processors were sold in the notebook and desktop seg-
ments in 2014. In each of these GPUs, there is a highly optimized fixed-function
hierarchical depth culling unit that uses occlusion culling techniques on a per-tile
basis [43, 87]. Substantial engineering efforts have been spent fine-tuning such
units, in order to minimize memory traffic to the depth buffer, which, in turn, im-
proves performance and/or reduces power. Occlusion culling is integrated trans-
parently in GPUs, i.e., most users enjoy its benefits without ever knowing it is
there. The large number of units shipped each year and the performance/power
benefits that comes with hierarchical depth culling makes it very important not
only to increase efficiency, but also to make the implementation simpler and more
robust to different use cases.
We present a novel culling algorithm that uses a layered depth representation with
a selection mask that associates each sample to a layer. In our algorithm, culling
and updating the representation is very inexpensive and simple, and unlike previ-
ous methods we compute accurate depth bounds without requiring an expensive
feedback loop [51]. Furthermore, we have greater freedom in choosing tile size
since we do not require scanning the depth values of all samples in the backend.
This, in turn, makes it easier to load-balance the graphics pipeline. See Figure 1
for an example of the culling potential of our algorithm.

2 Previous Work

Greene et al. presented a culling system based on a complete depth pyramid, with
conservative zmax-values at each level [43]. However, while highly influential, it is
not practical to keep the entire pyramid of depths updated at all times. Morein [87]
had a more practical approach, where the maximum depth, zmax, was stored and

99

PAPER IV: MASKED DEPTH CULLING FOR GRAPHICS HARDWARE

computed per tile. If the conservatively estimated minimum depth of a triangle
inside a tile is greater than the tile’s zmax, then the portion of the triangle overlap-
ping the tile can be culled. In addition, it is also possible to store the minimum tile
depth, zmin, which is used to avoid depth reads. If the triangle’s conservatively esti-
mated maximum depth is smaller than zmin [7], the triangle can trivially overwrite
the tile (assuming no alpha/stencil test etc), and the read operation can be skipped.
From the literature [51, 87], we deduce that zmax is typically computed from the
per-sample depths in a tile, and must be passed to the hierarchical depth test using
a feedback loop. Ideally, the zmax-value of a tile should be recomputed and updated
every time the sample with the maximum depth value is overwritten, but updates
are typically less frequent in order to reduce computations. For example, zmax may
be recomputed when a tile is evicted from the depth cache.
Occlusion queries count the number of fragments passing the depth test and can
be used to cull entire objects [16, 48, 79, 110] using simple proxy geometry, such
as a bounding box. A system for dynamic occlusion culling has been presented
by Aila and Miettinen [1], and in the gaming industry, it has proven useful to
base occlusion queries on software rasterization to better load balance the CPU
and GPU [25]. Zhang et al. [124] proposed using hierarchical occlusion maps for
occlusion queries. Rather than basing the queries on the depth buffer, they use
a full resolution, hierarchical coverage map, and store depth separately in a low
resolution depth estimation buffer.
Our algorithm uses occluder merging inspired by the work of Jouppi and Chang
[61]. They propose an algorithm for low-cost anti-aliasing and transparency by
storing low-precision depth plane equations. A fixed number of planes are stored
per pixel and overflow is handled using a merge heuristic. Similarly, Beaudoin and
Poulin [15] extend MSAA [3] to use a hierarchical indexing structure to reference
a small set of color and depth values per tile. To handle layer overflow they opted
to reduce the sampling rate, rather than using a lossy merge heuristic.
Greene and Kass extended their earlier work [43] to include anti-aliasing with er-
ror bounds using interval arithmetic for the shaders and quad tree subdivision for
visibility handling [42]. Furthermore, Greene et al. [41] used a BSP tree to hierar-
chically traverse the scene and the screen space using a pyramid of coverage masks
for efficient anti-aliasing. In order to save pixel shading work for small triangles,
Fatahalian et al. [36] gather and merge quad-fragments from adjacent triangles,
using an aggregate coverage mask. The purpose of their mask differs from ours
in that they use it to avoid merging shading over geometric discontinuities, while
our masked representation is a lossy, but conservative, approximation of the depth
buffer.

3 Overview of Current Architectures

In order to contextualize our algorithm, we first describe a typical implementation
of a GPU depth pipeline as presented by previous work [51]. The top row of

100

3. OVERVIEW OF CURRENT ARCHITECTURES

Fragment
shader

Depth
testRasterizer.

Color buffer

A
PI

sp
ec

ifi
ca

tio
n

H
ar

dw
ar

e
im

pl
em

en
ta

tio
n

Pr
ev

io
us

 w
or

k
O

ur
 p

ro
po

se
d

H
ar

dw
ar

e
im

pl
em

en
ta

tio
n

Coarse
depth test

Sample coverage
& z-interpolate

Early
depth test

Depth
test

Fragment
shader

Forward
HiZ update

Feedback
HiZ update Depth cacheHiZ cache

HiZ Unit Depth Unit

Masked coarse
depth test z-interpolate Early

depth test
Depth

test
Fragment

shader
Masked

HiZ update

Depth cacheHiZ cache

HiZ Unit Depth Unit

Rasterizer
sample coverage

Rasterizer
coarse coverage

Figure 2: Top: a simplified overview of the rasterizer, fragment shader, and depth units
according the OpenGL and DirectX API specifications. Middle: a hardware architecture,
according to previous work, featuring a HiZ culling unit and an early depth test. The
purpose of these additional units is to improve performance through early occlusion culling.
They are transparent to the programmer and can be implemented without changing the API.
Bottom: our proposed architecture. Our novel HiZ culling algorithm completely removes
the need for feedback HiZ updates by using a layered depth representation with a per-
sample selection mask, which is efficient for culling and is easy to update.

Figure 2 depicts the pipeline from a functional standpoint, as specified in most
modern graphics APIs. Depth and color buffers are progressively updated as a
sequence of triangles goes through the rendering pipeline. For each sample, the
depth of the closest triangle is stored along with its color. The actual hardware
pipeline typically differs from the API specifications for performance reasons, and
a common implementation can be seen in the middle row of Figure 2. In the
following, we will limit the discussion to a less than depth function to simplify
the description, but the techniques generalize to all types of depth functions used
in popular API’s, such as DirectX, OpenGL, and presumably also in the coming
Vulkan API.

Rasterizer We skip the geometry processing part of the graphics processor, and
begin our discussion at the rasterizer unit. The rasterizer is responsible for deter-
mining which samples overlap a particular triangle. As an optimization, modern
rasterizers typically work on tiles, which are groups of w× h× d samples, where
d is the number of samples per pixel. A conservative test is performed for each
tile to determine if it is fully covered, is entirely outside the triangle, or partially
overlap it. Per-sample coverage testing is only required for tiles partially overlap-
ping the triangle. Once the sample coverage is computed, each fragment is shaded
using the fragment shader, followed by the depth test which determines visibility.
As can be seen in the middle row of Figure 2, a common optimization is to place

101

PAPER IV: MASKED DEPTH CULLING FOR GRAPHICS HARDWARE

the per-sample coverage test after the hierarchical z or HiZ unit. The rationale is
that the HiZ may remove or cull tiles before the per-sample coverage test occurs,
which improves the performance of that unit.

HiZ Unit Depth testing may consume significant memory bandwidth and com-
pute power [2]. For this reason, the hardware pipeline typically has a HiZ unit
with the purpose of quickly discarding (culling) or accepting tiles using a coarse
depth test, whenever the outcome of the depth test can be unambiguously deter-
mined for the entire group of samples. For this purpose, the HiZ unit maintains
a conservative version of the depth buffer, referred to as the coarse depth buffer,
which contains per-tile depth bounds, [ztile

min,z
tile
max].

Coarse depth test When a tile reaches the HiZ unit, the first step is to compute
conservative bounds, [ztri

min,z
tri
max], of the depth of the incoming triangle within the

tile [5]. These bounds are then tested against the coarse depth buffer using interval
overlap tests. For example, for a less than depth function, we can conclude that the
per-sample depth test will fail for all samples if ztri

min ≥ ztile
max and pass if ztri

max < ztile
min.

This leaves an ambiguous depth range, where the outcome of the per-sample depth
test cannot be determined. Thus, the coarse depth test has one of three outcomes,
namely, fail, pass, or ambiguous. Failed, i.e., culled, tiles are immediately thrown
away and require no further processing. Passing and ambiguous tiles are sent down
the pipeline for further processing, with the main difference being that ambiguous
tiles must be fully depth tested in the depth unit, while trivially passing tiles can
simply overwrite the contents of the depth buffer. This is a small difference, but
depending on the architecture, write-only operations may result in lower band-
width than the read-modify-write operation required for performing the full depth
test [7].

Coarse depth buffer update As rendering progresses, the coarse depth buffer
is continually updated. From previous work [87, 7], we note that ztile

min and ztile
max

are updated separately in the pipeline using two different mechanisms, namely,
a forward update located immediately after the coarse depth test and a feedback
update located between the depth unit and the HiZ unit. This is illustrated in the
middle row in Figure 2.
In the forward update stage, ztile

min can be efficiently computed as ztile
min = min(ztri

min,
ztile

min). The ztile
max-value, however, can only be updated if all the samples in the tile

are overwritten. If the coverage mask is fully set, then ztile
max = min(ztri

max,z
tile
max). Un-

fortunately, this update scales very poorly when using smaller triangles since they
are less likely to completely overlap a tile. An example of the irregular coverage
resulting from solely using the forward stage can be viewed in Figure 9.
A better ztile

max value is obtained using a feedback update. Here, a max-reduction
on an entire tile of depth samples is performed in the depth unit and the result,
z f eedback

max , is sent to the HiZ unit through the feedback mechanism, as depicted in

102

4. ALGORITHM

Figure 2. To reduce the number of max-reductions performed, the feedback update
typically occurs each time a tile is evicted from the depth cache. The feedback
mechanism introduces a large delay, as the HiZ and depth units may be separated
by hundreds of cycles in the hardware pipeline. Depending on the render state,
we may also need to wait for the fragment shader to be executed and for the tile
to be evicted from the cache before the update can occur. As a consequence, ztile

max
updates may lag behind, leading to decreased culling rates. Furthermore, the delay
has non-obvious side effects, such as how to conservatively handle cases where the
feedback message originated from a different GPU-state than is currently active.

Depth Unit Similar to the HiZ unit, the depth unit typically works on tiles of
samples, but instead of performing a single test, each sample is individually tested
against the value stored in the depth buffer. The size of a tile in the depth unit is
typically correlated to the size of a cache line, which in turn is determined by how
much data can be efficiently streamed to and from memory. It should be noted that
the feedback mechanism creates a constraint between the tile sizes of the HiZ and
depth unit. The max-reduction operation needs to be performed on the granularity
of the tiles in the HiZ buffer. Therefore, it is important that all data required for
the operation resides in the depth unit cache, and the easiest way to guarantee this
is to couple the tile sizes of the coarse depth buffer and the regular depth buffer.
The most straightforward optimization in the depth unit is the early depth test,
which takes advantage of that depth testing can be performed before fragment
shading in many cases. This typically improves performance significantly as frag-
ment shading is expensive and often a bottleneck. For the most part, it is safe to
use the early depth test, but it must be disabled when, for example, the fragment
shader alters the coverage through a discard operation, outputs a depth value, or
writes to an unordered access view (UAV) resource.

4 Algorithm

It is challenging to accurately update the maximum depth of the tile without relying
on the feedback mechanism. The key innovation in our algorithm is an efficient
and accurate way to update the coarse depth buffer using only forward updates,
which completely removes the need for the feedback mechanism, as illustrated in
the bottom row of Figure 2. The updates are performed progressively in a stream-
ing fashion and only use information about the current triangle. No buffering of
triangles or rendering history is required.
Without loss of generality, we limit the description of our algorithm to only two
depth layers1 per tile. Each tile has one zmin value and two zi

max values. In addition,
we store a selection mask of one bit per sample, which associates each sample with

1All depth layers are disjoint and jointly cover the entire tile. This is not to be confused with layered
depth images.

103

PAPER IV: MASKED DEPTH CULLING FOR GRAPHICS HARDWARE

A B DC E

Layer 0 (roof)

Layer 1 (sky)

Culled

Not culled

Figure 3: A step by step illustration of how the fail-mask is calculated in our coarse depth
test. A: The orange triangle is rasterized and forwarded to the HiZ unit. B: The coarse depth
buffer already contains a tile with two layers, namely, the roof in the foreground (brown)
and the sky background (blue). As indicated by the dashed lines, the triangle is occluded
by the roof, while visible in front of the sky. C: The triangle is overlap tested against the
depth of the roof layer and since ztri

min > z0
max, the result is the fail-mask indicated by the two

red pixels. D: The triangle is overlap tested against the sky, but cannot be culled. Thus,
the fail-mask for this layer is actually empty, but we indicate the three ambiguous pixels for
clarity. E: The aggregate fail-mask. We cannot cull the triangle since the fail-mask does not
contain all pixels covered by the triangle. However, it would be possible to skip the depth
test for the two red pixels.

one of the two layers, i. We keep the zmin update strategy described Section 3, as
it is simple and efficient. Each zi

max must be greater or equal to all samples associ-
ated with that layer. We achieve this using a conservative merge of the incoming
triangle and the layered representation. In the following, we describe the coarse
depth test and update in detail.

Coarse depth test As described in Section 3, the triangle and its coverage mask
is provided by the rasterizer, which enables us to compute ztri

min and ztri
max as before.

Similar to how the coarse depth tests are performed for zmin/zmax-culling, we do
interval overlap tests between [ztri

min,z
tri
max] and [zmin,zi

max] for each layer, as outlined
in Figure 3. Aggregate per-sample pass- and fail-masks can be constructed from
the triangle’s coverage mask and the selection mask using simple bitwise opera-
tions. The exact depth test is only required for the samples that are not present
in either of the pass- or fail-masks. Pseudo-code for how the coarse depth test is
performed is given in Listing 1 in the appendix.

Coarse depth buffer update Unless all samples were culled by the coarse depth
test, we must update the coarse depth buffer in a way that makes it conservatively
bound the contents of the depth buffer. Updating the zmin-value is done as previ-
ously described in Section 3. The challenge lies in updating the zi

max values and
the selection mask. The incoming triangle forms a third depth layer, in addition
to the, up to, two layers already populating the tile. We handle layer overflow by
merging two of the layers using a heuristic, as shown in Figure 4 and described in
detail below.
First, consider a single sample, S, which belongs to layer i and is also found to
be overlapping the incoming triangle. With a less than depth test, we know that

104

4. ALGORITHM

zmax
0zmax

1
max
triz zmax

0zmax
1

max
triz zmax

0zmax
1

max
triz zmax

0zmax
1

A B C D

z z z z
Merge

Figure 4: An example of our occluder merge heuristic for a single tile shown in normalized
device coordinates (NDC). The occluded region, as encoded by our algorithm, is shown in
dark gray. A: a green, slanted primitive is rendered in front of two existing layers, illustrated
with red and blue lines respectively. B: each sample is classified as belonging to one of the
layers to create sample masks. C: for our merge heuristic, we find the closest pair of layers
along the z-axis, which in this case is between z1

max and ztri
max. D: we select the maximum of

these two depth values as the new z1
max and fuse their sample masks to form a new selection

mask.

the depth of S after the depth test will be at most the minimum (closer) value of
zi

max and ztri
max. Based on this observation, by comparing both zi

max-values to ztri
max,

we can categorize which layer each sample belongs to – either its previous layer,
i, or the incoming triangle layer. From this, we construct three non-overlapping
sample masks signaling which of the three layers, z0

max, z1
max, and ztri

max, each sample
belongs to, as step B in Figure 4 exemplifies.
After categorizing the samples, if there are any layers that do not have samples
associated with them (i.e., the sample mask is empty for a layer), the coarse buffer
update is simple. Since the resulting number of layers is ≤ 2, the data will fit
in our representation and we can simply write the populated layers to the coarse
depth buffer. If there are samples in all three layers, we use a simple distance-based
heuristic to select which layers should be merged. The underlying assumption is
that triangles that have similar depth values are likely to be part of the same surface.
As illustrated in step C in Figure 4, we first compute the distances between all of
the layers as

dT 0 = |ztri
max− z0

max|,
dT 1 = |ztri

max− z1
max|,

d01 = |z0
max− z1

max|.

The shortest distance is then used to determine which merge operation is per-
formed, as depicted in step D in Figure 4.

1. If dT 0 is smallest then z0
max = max(ztri

max,z
0
max).

2. If dT 1 is smallest then z1
max = max(ztri

max,z
1
max).

3. Otherwise z0
max = max(z0

max,z
1
max) and z1

max = ztri
max.

The sample masks of the two closest layers are also merged (using simple bitwise
operations) to produce the new selection mask. Pseudo-code for the update and
merge functions can be found in Listing 3 and Listing 4 in the appendix.

105

PAPER IV: MASKED DEPTH CULLING FOR GRAPHICS HARDWARE

HiZ Unit

Masked coarse
depth test

Masked
HiZ update

HiZ cache

Rasterizer
coarse coverage Sample coverage

Figure 5: It is possible to modify the coarse depth test to rely only on zmin/zmax, and not
per-sample coverage results. Unlike our solution illustrated in Figure 2 (bottom), this alter-
native implementation does not incur the expense of per-sample coverage testing prior to
HiZ, but can decrease efficiency as culling is performed on more conservative information.

Switching Depth Functions Our algorithm can easily handle depth function
switches while rendering. For the greater than depth functions, tiles are instead
represented by two zi

min values and one zmax value. We store a single bit for each
coarse depth buffer tile indicating which representation is currently used. If the
tile does not match the current depth function we convert it before updating the
coarse depth buffer. Conversion is performed by conservatively swapping the min
and max values. For example, if the tile stored in the coarse depth buffer has two
max layers, but the depth function is changed to greater than, we convert the tile
by setting zmax = max(z0

max,z
1
max) and z0

min = z1
min = zmin and clearing the selection

mask. The conversion is quite crude and may lose a lot of culling information,
but we have not found any workload where this has been an issue, as depth func-
tion changes are infrequent in most scenes. All standard OpenGL/DirectX depth
functions can be handled using the less than or greater than representation.

Coarse depth test pipeline placement As can be seen in the bottom row of
Figure 2, our coarse depth test is based on the coverage mask, which means that
per-sample coverage testing must be moved to the rasterizer block. As previously
mentioned, placing the per-sample coverage test behind the HiZ unit is beneficial,
as coverage testing may be skipped for culled tiles, reducing the load of this unit.
We can achieve a similar effect by using an alternate coarse depth test, where we
perform an overlap test between the [ztri

min,z
tri
max] and [zmin,max(z0

max,z
1
max)] inter-

vals, similar to the classic HiZ test. As shown in Figure 5, we may then place the
per-sample coverage test between the coarse depth test and update, which results
in similar load balancing to previous work. This version of the coarse depth test
is less accurate, but most of the benefits of our algorithm comes from the accurate
update. Pseudo-code for this alternative approach can be found in Listing 2 in the
appendix. Compared to the results presented in Section 5, the culling rate of our
algorithm decreases by 0.2−2.1 percentage points and total bandwidth increases
by 0.7−1.4 percentage points. It is also possible to perform both versions of the
coarse test, efficiently filtering most per-sample coverage tests while retaining the
benefits of the accurate version.

106

5. RESULTS

4.1 Compression

In order to reduce coarse depth buffer bandwidth, we use a simple compression
scheme when entries are evicted from the coarse depth buffer, similar to how reg-
ular depth buffer compression works [51, 53].
Our compression scheme is inspired by zerotree encoding of wavelet coefficients
[108]. Each tile is first split into a set of blocks, each containing b samples. For
each block, we store a single bit signaling whether its samples contain a mix of
indices to both layers or if all samples belong to the same layer. If all indices
are the same, only one additional bit is required to assign the entire block to the
layer. A block containing indices to both layers require an explicit mask with b
bits. With this scheme, the compressed selection mask cost, c, for the tile contain-
ing s samples is c = 2 s

b +(b−1)m, where m is the number of blocks that need to
be explicitly stored. The selection mask can be compressed without loss if c ≤ s.
Interestingly, we can limit m by performing lossy compression, without introduc-
ing artifacts in the rendered image. The coarse depth buffer representation is still
valid (i.e., conservative w.r.t. the depth buffer) if we alter an index in the selection
mask to use the farther of the two zi

max-values. It is thereby possible to enforce a
maximum value of m by forcing some blocks to use a single layer, instead of a mix
of both.
Furthermore, we decrease the precision of zmin and zi

max. There is a variety of
possible options depending on the bit budget available, the depth buffer target
format, and the expected distribution of depth samples. We have opted to use a
simple reduced precision float with fewer exponent and mantissa bits. In addition,
we only use negative exponents and no sign bit, limiting the representable range
to [0,1].

5 Results

When comparing different culling algorithms, there are two main quantities that
are of interest – memory bandwidth usage and throughput. Bandwidth is primarily
consumed by the depth unit when reading and updating the depth buffer, and to a
lesser extent by the HiZ unit for maintaining the coarse depth buffer. The number
of per-sample tests the depth unit has to perform depends on the amount of tiles
culled (failed) by the coarse depth test, and consequently a higher culling rate
leads to better throughput. Depending on the system and the expected workloads,
these quantities must be balanced against each other for maximum performance.
We evaluated five different pipeline configurations listed below with regards to
bandwidth and culling rates (i.e., the percentage of tiles culled by the coarse depth
test):

107

PAPER IV: MASKED DEPTH CULLING FOR GRAPHICS HARDWARE

World of Warcraft

World of Warcraft

0%
10%
20%
30%
40%
50%
60%
70%

Heaven Benchmark,
Ship

Heaven Benchmark,
Ship

 Titanfall Heaven Benchmark,
Town

Heaven Benchmark,
Town

Battlefield 4 Stone Giant

Stone Giant

3DMark 11

3DMark 11
0%

20%

40%

60%

80%

100%

Titanfall Battlefield 4

C
oa

rs
e

te
st

,

cu
lle

d
til

es
Ba

nd
wi

dth

ORACLE

ZMASK

INSTANT FEEDBACK

FORWARD

ZMASK (PACKED)

ZMASK

ZMASK (PACKED)

HiZ Z

INSTANT FEEDBACK

Heaven Benchmark, Ship Call of Duty: Ghosts Titanfall Bioshock Infinite Call of Duty: Black Ops II

Heaven Benchmark, Town Battlefield 4 Stone Giant Batman: Arkham City 3DMark 11Tom Clancy’s
Splinter Cell Blacklist

FORWARD

World of Warcraft

Call of Duty:
Ghosts

Call of Duty:
Ghosts

Call of Duty:
Black Ops II

Call of Duty:
Black Ops II

Bioshock Infinite

Bioshock Infinite

Batman:
Arkham City

Batman:
Arkham City

Tom Clancy’s
Splinter Cell Blacklist

Tom Clancy’s
Splinter Cell Blacklist

Figure 6: Top: the percentage of incoming 16 sample tiles (i.e. 2×2 pixels for 4× MSAA
targets and 4×4 pixels for single sample targets) that were culled by the coarse depth test
for the different algorithms. A higher number means that less work is pushed through the
pipeline. Bottom: the simulated depth buffer (Z) and HiZ bandwidth, normalized to the
FORWARD algorithm. The darker bars indicate the HiZ bandwidth and the lighter bars is
the depth buffer bandwidth. Note that even though the PACKED ZMASK culls fewer tiles
and has a higher depth buffer bandwidth, the total bandwidth is still very low due to the HiZ
bandwidth savings. Note that the screen shots are generated using our hardware simulator.
While we strive to make it feature complete according to the latest OpenGL/DirectX specifi-
cations, some visual differences may occur compared to commercial GPUs and production
drivers.3

• ORACLE - The HiZ unit replicates the exact depth buffer and performs per-
sample depth tests. For each sample, there is no ambiguous outcome, only
pass or fail. A tile is only classified as ambiguous if it contains both samples
passing and failing the depth test. This pipeline is only used to get an upper
bound on possible cull rates.

• FORWARD - Only the forward update unit for zmin/zmax-culling is enabled. A
feedback unit with infinite delay will act as a forward-only pipeline, which
makes this configuration a lower bound on the culling rate such a design can
achieve.

• INSTANT FEEDBACK - Both the forward and the feedback HiZ update mech-
anisms are used. zmax-updates are triggered directly on depth buffer updates
(i.e., as early and as often as possible), and there is no feedback delay, which
gives us an upper (albeit unrealistic) bound on how well a forward/feedback-
design can perform.

• ZMASK - Our proposed feed forward algorithm.
• PACKED ZMASK - Our algorithm tailored to minimize bandwidth. This vari-

ant requires an additional post-HiZ cache compression stage, as described
in Section 4.1.

108

5. RESULTS

Our results are based on a C++ hardware simulator, which models the system on a
functional level. We use a 32 kB depth cache and a 16 kB HiZ cache, both using a
cache line size of 64 B (unless otherwise stated) and both with a least recently used
(LRU) replacement policy. For our main results, found in Figure 6, we allocate
a coarse depth buffer which amounts to an overhead of 4 bits per depth sample
for the FORWARD, INSTANT FEEDBACK, and ZMASK configurations. With this
storage, we can keep ztile

min and ztile
max in a 32 bit format each at a 16 sample granularity

for FORWARD and INSTANT FEEDBACK (this corresponds to 4×4 pixel tiles for
single sample targets and 2× 2 pixels for 4× multi-sample targets). For ZMASK
we store one zmin and two zi

max at a 32 sample granularity, using 32 bits for each
entry, as well as a 32 bit per-sample selection mask (corresponding to 8×4 pixel
tiles for single sample targets and 4× 2 pixel tiles for 4× MSAA targets). All
configurations use the common fast clears [87] optimization to ensure that the
results are not biased by how the different algorithms handle clear values.
The PACKED ZMASK is similar to the ZMASK algorithm, but uses larger tiles
(16× 8 pixel and 8× 4 pixel tiles for single and 4× MSAA targets respectively),
and compresses them as they are evicted from the HiZ cache. In the cache, each
tile occupies 128+ 3 · 32 = 224 b, or 28 B of memory. Since we do not want to
alter the memory transaction size of 64 B, we group 4 tiles to a common cache line
of 112 B, which is compressed down to 64 B on eviction. To achieve this level of
compression, we use a reduced precision float format with 4 exponent bits and 11
mantissa bits for the zmin and zi

max values, one bit to encode the test direction (see
Section 4), and the remaining 82 bits are spent on storing the selection mask using
the compression format described in Section 4.1. Thus, when using the PACKED
ZMASK pipeline, each tile occupies 1.75 bits per sample while in the cache, and
reading or writing the tile from/to memory uses 1 bit of bandwidth per sample.
The tile size was selected empirically by finding the best balance between depth
buffer bandwidth and HiZ bandwidth, as described in Figure 8.
Our main results are shown in Figure 6, where we present the coarse culling rates
and the bandwidth consumed by each pipeline. The culling rates have been nor-
malized to 16 sample tiles for the ZMASK and PACKED ZMASK algorithm to sim-
plify comparison. Since the coarse depth test pass rates are very similar between
the algorithms, we focus solely on the number of culled tiles (i.e., tiles where the
depth test unambiguously fails) as a measure of throughput. The test suite con-
tains a number of traces from modern games, with a variety of different render
state combinations, and includes 1− 4× MSAA buffers as well as auxiliary tar-
gets such as shadow maps. As can be seen from the results, our algorithm is often
close to the ORACLE in terms of culling efficiency. The FORWARD pipeline is al-

3Heaven Benchmark screenshots courtesy of UNIGINE Corp. World of Warcraft, Call of Duty R©:
Ghosts and Call of Duty R©: Black Ops II screenshots courtesy of Activision Blizzard, Inc. Titanfall
screenshot courtesy of Respawn Entertainment. Bioshock Infinite Screenshot Courtesy of Irrational
Games and Take-Two Interactive Software, Inc. Battlefield 4, c© 2013 Electronic Arts Inc. Battlefield
and Battlefield 4 are trademarks of EA Digital Illusions CE AB. Image from Stone Giant demo, cour-
tesy of BitSquid. Batman: Arkham City screenshot courtesy of Rocksteady Studios. Tom Clancy’s
Splinter Cell Blacklist screenshot courtesy of Ubisoft. 3DMark 11 screenshot courtesy of Futuremark.

109

PAPER IV: MASKED DEPTH CULLING FOR GRAPHICS HARDWARE

ways considerably less efficient than all of the alternatives. On average, we retain
90% of the rejection rate of the ORACLE pipeline, with the more difficult cases
typically being scenes with a greater amount of alpha tested geometry, or scenes
that output depth in the fragment shader. Note that ZMASK uses about 14% less
total bandwidth compared to FORWARD, while INSTANT FEEDBACK uses about
18% less than FORWARD. It should be noted, however, that INSTANT FEEDBACK
is idealized and impractical to implement. Increasing the pipeline delay reveals
the weakness of the feedback algorithm, as we will show later in this section.
By increasing the tile size and enabling compression using the PACKED ZMASK
configuration, we lower the number of culled tiles and depth buffer bandwidth in-
creases as a result. However, since the HiZ bandwidth is reduced, total bandwidth
consumption is approximately 30% less than FORWARD on average, which is a
substantial reduction.
The culling numbers presented for the ORACLE algorithm include tiles where the
coverage is modified by the fragment shader. Alpha tested billboards, for exam-
ples, can have large, fully transparent portions that are discarded in the fragment
shader.

Feedback Delay As previously mentioned, the performance of the feedback al-
gorithm depends on how long delay can be expected in the pipeline. We opted
to implement the feedback mechanism on depth buffer updates, rather than cache
evicts, and simulate delay by introducing a FIFO-queue when feeding the mes-
sages back. This allows us to delay the messages by an arbitrary number of pro-
cessed tiles and study how increased delay affects system performance.
Figure 7 shows how the number of culled tiles and total simulated depth buffer
bandwidth (for both the coarse and exact depth buffers) are affected by an in-
creased delay compared to the ZMASK approach. As expected, the number of
culled tiles decreases with increasing delay. Similarly, total bandwidth usage in-
creases significantly for larger delays. When the delay becomes sufficiently large,
the coarse depth buffer entries may already have been evicted from the HiZ cache
before a feedback message is received. Consequently, the data must be read back
into the cache in order to perform the feedback update, and the HiZ and feedback
mechanisms will compete for which data should be resident in the cache. There-
fore, it is important to balance the size of the HiZ cache and the depth unit cache
based on the expected delay of the system. Alternatively, feedback updates of tiles
not resident in the HiZ cache could be discarded, which avoids thrashing at the
cost of reducing culling rates even further.
It should be noted that the delays of pipelining, shading, and caching in a real sys-
tem causes culling efficiency and bandwidth to scale in a much more intricate way,
and Figure 7 should only be seen as indicative of the trend. In our system, we ob-
serve a significant bandwidth impact when using an evict-based feedback strategy.
If we halve the HiZ cache size to 8 kB, while keeping depth cache constant, HiZ
bandwidth increase by about 10% to 45%, depending on the scene.

110

5. RESULTS

4.00 200

4.30 225

4.60 250

4.90 275

5.20 300

1 101 102 103 104 105 106

Feedback delay

C
oa

rs
e

te
st

, #
 c

ul
le

d
til

es
 (m

ill
io

ns
)

To
ta

l B
an

dw
id

th
 (M

B
)

107

FEEDBACK

ZMASK

culled tiles

FEEDBACK

ZMASK

Bandwidth

Figure 7: Artificial delay of the ztile
max feedback updates for the Heaven Benchmark, Ship

scene. Here, each unit corresponds to delaying the feedback update by one processed tile.
At a delay of 103 tiles, we see that the coarse depth test rejection rate starts to drop, while
the bandwidth rapidly increases. While part of the increasing bandwidth is explained by
reduced culling efficiency, the lion’s share is due to cache behavior. As the delay increases,
the tiles referenced by the feedback messages may already have been evicted from the HiZ
cache, which may lead to cache thrashing and increased bandwidth. This creates an intri-
cate relation between the system delay, which may depend on depth buffer cache size and
shader execution, and the size of the HiZ cache. At 107 steps, the delay is so large that
the rendering finishes before any of the feedback updates occur, leaving only the forward
updates (i.e., equivalent of running the FORWARD algorithm). Since there are no delayed
updates at this point, there are also no cache conflicts, which explains the bandwidth reduc-
tion.

Tile size As our algorithm is of feed forward nature, it allows us to easily de-
couple tile sizes of the coarse and exact depth buffers, and this gives flexibility
to chose whatever tile size gives the best trade-off between culling efficiency and
coarse depth buffer bandwidth. In Figure 8, we show how our algorithm scales
when varying tile size. As a reference, we also include baseline results for the
INSTANT FEEDBACK pipeline.

Multiple depth layers Our algorithm can be extended to use more depth layers
and we have observed some improvement in culling rates when using three or
four layers, as shown in Figure 9. However, we feel that the improvement is not
significant enough to motivate the added complexity. Increasing the number of
layers requires more coarse depth buffer storage, as we must store additional zi

max
values and use more bits per sample to store the selection mask. It also complicates
layer merging as the number of ways that we can merge layers scales O(n2).

Stochastic motion blur As a proof of concept, we plugged the ZMASK al-
gorithm in to our existing framework which simulates a stochastic rasterization

111

PAPER IV: MASKED DEPTH CULLING FOR GRAPHICS HARDWARE

0.80 0.9

0.85 1.0

0.90 1.1

0.95 1.2

1.00 1.3

16
ZMASK, samples per tile

C
oa

rs
e

te
st

, #
 c

ul
le

d
til

es

To
ta

l B
an

dw
id

thFEEDBACK

ZMASK

culled tiles
FEEDBACK

ZMASK

Bandwidth

32 64 128 256

Figure 8: The graph illustrates how bandwidth and culling rates are affected by varying the
tile size for ZMASK. The numbers are combined over all of our test scenes, normalized to
the INSTANT FEEDBACK algorithm with fixed 16 sample tiles. To simplify implementation,
the cache line and memory transaction size match the footprint of a single tile. Although
depth buffer bandwidth increases due to the lowered cull rate, the decrease in HiZ memory
traffic counter this effect. In our setup, the lowest combined bandwidth occurs around 128
samples, which is the tile size selected for the PACKED ZMASK algorithm.

pipeline in hardware to render images with motion blur. The framework uses
the TZSLICE algorithm [6] to perform zmax-culling, which is the most bandwidth
efficient variant of the more general tz-pyramid [20], according to Munkberg et
al. [90]. Updates to the coarse depth buffer is done in the same way as the IN-
STANT FEEDBACK algorithm. For TZSLICE, we used one 32-bit float zmax-value
for each slice of 4×4×1 (w×h× time) samples. For ZMASK, we used 4×4×4
tiles (64 samples) with two layers. Thus, both of these configurations use a 2 bit
overhead per sample of HiZ data. As can be seen in Figure 10, even without any
algorithmic modifications, ZMASK compared very well to TZSLICE. Note that
these are early experiments and we believe that there is a lot more potential for
improvement in this area.

Limitations While our algorithm handles even complex geometry very well, the
main drawback relative to the feedback approach is that we cannot handle alpha
testing, pixel shader discards, or pixel shader depth writes as accurately. While this
could be an issue in extreme cases, none of our test applications seem to rely on
alpha tested geometry for the main occluders (although we present an abundance
of examples using alpha testing). Note that the feedback approach is also affected
by alpha testing, as it implies deferring the feedback update until after the shader
has been executed. It should also be noted that our algorithm could be used in
conjunction with feedback updates.

112

6. CONCLUSIONS

C
ol

or
 b

uf
fe

r
D

ep
th

 b
uf

fe
r

D
iff

er
en

ce

Forward Instant feedback Zmask (2 layers) Zmask (4 layers)Frame buffer

618k 822k 804k 824k# culled tiles

Figure 9: The impact of multiple depth layers on the quality of the coarse depth buffer.
The cropped images show the difference between the zmax-value of the coarse depth buffer
and the exact depth buffer. The forward pipeline has massive leakage along triangle edges,
and silhouette edge shows up in INSTANT FEEDBACK as only one zmax-value is stored
per tile. The layer merging inaccuracies visible in the two layer version of our algorithm
almost entirely disappears with four layers. However, as can be seen in the table, two layers
perform well enough not to motivate the extra complexity of adding additional layers.

culled 94% 91% 84%
tiles

Figure 10: Three scenes with stochastic motion blur. We count the number of 4×4×1 tiles
culled with ZMASK compared to a TZSLICE baseline.

6 Conclusions

We have proposed a novel zmin/zmax-culling algorithm, which we believe is an
interesting and competitive alternative to the traditional feedback update mecha-
nism. Our algorithm has similar performance to that of an ideal feedback archi-
tecture (without delay), but retains the benefits of a strict feed forward pipeline.
This means that implementation and validation is simplified as we do not need to
consider or handle hazards that may occur from the feedback delay. Furthermore,
as we decouple the tile sizes of the coarse and regular depth buffers, we have great
freedom in choosing tile sizes and bit layout for the coarse depth buffer entries.
This makes it easy to load-balance a hardware system and simplifies the re-design
cycle if memory bus width or cache line size changes. Thus, we believe our ap-
proach is a cost-efficient and flexible solution that is suitable for current and future
GPUs.

Acknowledgements

We would like thank the anonymous reviewers for their feedback. We also thank
David Blythe and Mike Dwyer for supporting this research. Tomas Akenine-
Möller is a Royal Swedish Academy of Sciences Research Fellow supported by

113

PAPER IV: MASKED DEPTH CULLING FOR GRAPHICS HARDWARE

a grant from the Knut and Alice Wallenberg foundation. Thanks to the follow-
ing people for helping us with permissions for the screenshots in this paper: Beth
Thomas at UNIGINE Corp., Christer Ericson at Activision, Abbie at Respawn En-
tertainment, Naty Hoffman at 2K Games, Martin Lindell and Johan Andersson at
EA Digital Illusions CE, Tobias Persson at Bitsquid, Kelly Ekins at WB Games
Montréal Inc., Guy Perkins at Rocksteady Studios, Heather Steele at Ubisoft and
James Gallagher at Futuremark.

Appendix

Coarse depth test The coarse depth test produces two per-sample masks – a
pass mask and a fail mask. The remainder of the samples must to be tested using
the regular per-sample depth test.

function coarseZTest(tile, tri)

failMask0 = tri.zMin >= tile.zMax[0]

? tri.rastMask & ~tile.mask : 0

failMask1 = tri.zMin >= tile.zMax[1]

? tri.rastMask & tile.mask : 0

failMask = failMask0 | failMask1

passMask = tri.zMax < tile.zMin ? tri.rastMask : 0

return [passMask, failMask]

Listing 1: Perform coarse depth test.

An alternative version of the coarse test may be performed before the per-sample
coverage test. Contrasting the version above, this test does not account for cov-
erage. We still observe good cull rates, as the accurate update is the key to the
performance of our algorithm.

function coarseZTest_noMask(tile, tri)

if tile.mask == 0:

maxOfMax = tile.zMax[0]

else if tile.mask == ~0:

maxOfMax = tile.zMax[1]

else:

maxOfMax = max(tile.zMax[0], tile.zMax[1])

fail = tri.zMin >= maxOfMax

pass = tri.zMax < tile.zMin

return [pass, fail]

Listing 2: Perform coarse depth test without coverage mask.

Updating the coarse buffer The coarse buffer is trivially updated if any of the
layers are overwritten, while the heuristic-based merge function is called to resolve
complicated multi layered situations.

function coarseZUpdate(tile, tri)

triMask0 = tri.zMax < tile.zMax[0]

? tri.rastMask & ~tile.mask : 0

triMask1 = tri.zMax < tile.zMax[1]

114

APPENDIX

? tri.rastMask & tile.mask : 0

triMask = triMask0 | triMask1

layer0Mask = ~tile.mask & ~triMask

layer1Mask = tile.mask & ~triMask

if triMask != 0:

if layer0Mask == 0:

// Layer 0 is empty and is replaced

tile.zMax[0] = tri.zMax

tile.mask = ~triMask

else if layer1Mask == 0:

// Layer 1 is empty and is replaced

tile.zMax[1] = tri.zMax:

tile.mask = triMask

else:

// All layers contain samples, merge

merge(tile, tri, triMask)

Listing 3: Update coarse depth buffer.

Merging depth layers The merge function reduces three layers to two and up-
dates the selection mask.

function mergeClosest(tile, tri, triMask)

dist0 = abs(tri.zMax - tile.zMax[0])

dist1 = abs(tri.zMax - tile.zMax[1])

dist2 = abs(tile.zMax[0] - tile.zMax[1])

if dist0 < dist1 && dist1 < dist2:

// Merge triangle layer with layer 0

tile.zMax[0] = max(tile.zMax[0], tri.zMax)

tile.mask = tile.mask & ~triMask

else if dist1 < dist2:

// Merge triangle layer with layer 1

tile.zMax[1] = max(tile.zMax[1], tri.zMax)

tile.mask = tile.mask | triMask

else:

// Merge layer 0 and 1

tile.zMax[0] = max(tile.zMax[0], tile.zMax[1])

tile.zMax[1] = tri.zMax

tile.mask = triMask

Listing 4: Merging heuristic

115

PAPER IV: MASKED DEPTH CULLING FOR GRAPHICS HARDWARE

116

Pa
pe

rV

Paper V

Filtered Stochastic Shadow Mapping using a Layered
Approach

Magnus Andersson Jon Hasselgren Jacob Munkberg
Tomas Akenine-Möller

Lund University Intel Corporation

ABSTRACT

Given a stochastic shadow map rendered with motion blur, our
goal is to render an image from the eye with motion blurred shad-
ows with as little noise as possible. We use a layered approach in
the shadow map, and reproject samples along the average motion vec-
tor, and then perform lookups in this representation. Our results in-
clude substantially improved shadow quality compared to previous
work and a fast GPU implementation. In addition, we devise a set
of scenes that are designed to bring out and show problematic cases
for motion blurred shadows. These scenes have difficult occlusion
characteristics, and may be used in future research on this topic.

to appear in Computer Graphics Forum, 2015.

1. INTRODUCTION

Reference Our: 36 ms TSM: 30 ms TSM: 36 ms
O

ct
op

us
19

0k
tr

is

Figure 1: An octopus in motion casting a complex motion blurred shadow rendered by
our algorithm. With the same input samples, our algorithm has significantly less noise
compared to time-dependent shadow maps (TSM). At equal time, the noise level is still
largely reduced. The animated octopus mesh is taken from the Alembic source distribution.

1 Introduction

Motion blur in photographed images, offline rendering, and in real-time graphics
provides the viewer with a sense of motion direction and also reduces temporal
aliasing [93]. When motion blur is present, the shadows of moving objects should
be motion blurred as well. However, while shadow rendering has received a lot
of attention in the research community for static scenes [34], rendering of motion
blurred shadows has remained relatively unexplored.
Accumulation buffering can be used to generate motion blurred shadows [49],
but the algorithm only supports using identical sample times for all pixels in the
shadow map [120]. This often shows up as banding artifacts unless many full-
screen passes are used, and that is often not possible within the time budget for
real-time rendering. Instead, one can use stochastic sampling when generating
the shadow map [6]. This removes banding artifacts by allowing samples to have
unique times, but the resulting image is often too noisy at affordable sample rates.
Deep shadow mapping [76] is a technique originally intended for rendering shad-
ows for hair, smoke, fur, etc. Motion blurred shadows can also be generated using
deep shadow maps, however, they are only correct when the receiving object is
static. A thorough review of previous work can be found in Section 2.
Since the receiver, the shadow caster, and the light source can all move at the same
time, rendering motion blurred shadows is a notoriously difficult problem, and
largely unsolved in the domain of real-time rendering. Our approach to motion
blurred shadows is to generate a time-dependent stochastic shadow map (TSM) [6]
from the light source, and then develop a novel filtering algorithm in order to
reduce shadow noise. In our algorithm description, we make extensive use of
epipolar images (see Figure 2). Examples of our results can be seen in Figure 1.
We also implement our algorithms on a graphics processor and provide interactive
or near real-time rendering performance with substantially reduced noise levels
compared to TSM, and in addition, our algorithm handles more cases correctly
than previous methods.

119

PAPER V: FILTERED STOCHASTIC SHADOW MAPPING USING A LAYERED
APPROACH

t = 0 t = 1

Light source

Image plane

x

tx

z

Figure 2: Left: a blue line segment is moving parallel to the image plane of the light, in front
of a static red line segment. Right: the light space epipolar image, i.e., a spatio-temporal
plot in x and t. The blue segment partially occludes the red line for a certain time interval.

2 Previous Work

The number of publications for shadow rendering is huge, and for a comprehensive
overview, we refer to the book by Eisemann et al. [34]. For an overview of motion
blur in graphics, we refer to the state-of-the-art report by Navarro et al. [93]. Most
of the shadow rendering algorithms have been developed for static scenes, while
the number of methods that incorporate motion blur is sparse.
Akenine-Möller et al. introduce time-dependent shadow mapping (TSM) [6],
where multiple shadow maps are created using stochastic rasterization. Each
shadow map represents a time slice of the full exposure and stratified sampling
is used to ensure that exactly one sample falls into each time slice. In a second
pass, the scene is rendered using stochastic rasterization from the camera’s point
of view. Again, stratified sampling is used to draw one sample from each time
slice. The shadow test is performed using the shadow map sample at the time slice
corresponding to the camera sample. This means that they are close in time and,
given a static or slowly moving light source, in space, though they do not match
exactly.
The idea behind deep shadow mapping (DSM) [76] is to store multiple semi-
transparent occluders in each pixel of a shadow map. The visibility of a point,
p, can then be computed as ∏

pz<zi

(1−αi), where zi and αi are the depth and trans-

parency of the i:th occluder. The authors show that DSM can be used for motion
blurred shadows by treating each moving occluder as a semi-transparent layer. The
scene is rendered from the light’s point of view using stochastic rasterization. For
each pixel in the shadow map, the samples are clustered into distinct depth layers
and each layer is given an opacity proportional to the number of samples drawn
from that layer. The layers are then encoded into the DSM and are treated like
transparent occluders. Since the time dimension is collapsed, i.e., motion blur is

120

2. PREVIOUS WORK

x

tx

z
A

B

Incorrect shadow

Correct shadow

Figure 3: Left: two objects are moving in opposite directions at different distances from the
light source. Middle: the light space epipolar image reveals that the green segment only
covers the blue segment for a brief moment, as indicated by the black, dotted outline. By
omitting time information, the green occluder appears to cast a shadow on the blue receiver
throughout the entire exposure time, as indicated by the red dotted outline. Right: collaps-
ing the time dimension produces a smeared shadow (A). The correct shadow is generated
by taking temporal occlusion into account (B).

treated as transparency, certain problems can occur, e.g., for moving receivers. An
example of this problem is illustrated in Figure 3.
McGuire and Enderton [81] present an alternative to DSM called colored stochas-
tic shadow mapping (CSSM), where a transparent layer is encoded stochastically
by allowing a proportional amount of shadow map samples to pass through the
transparent layer, and instead get the depth value of the layer behind, similar to
stochastic transparency. The shadow map lookup is filtered by drawing a number
of spatially coherent samples and using the averaged shadow term. Stochastic mo-
tion blur rasterization and stochastic transparency is analogous, and therefore the
samples generated by a stochastic rasterizer could be used directly as input to the
CSSM algorithm to extend it to handle motion blurred shadows. However, similar
to DSM, the time dimension is collapsed in CSSM, and hence inherits the same
problems.
While the results of multiple depth tests can be filtered together [105], filtering
the depth values prior to the depth test, however, will not yield the correct result.
The problem of creating a filterable shadow map representation has been given
a lot of attention, most notably variance shadow mapping (VSM) [29], convolu-
tion shadow mapping (CSM) [11], and exponential shadow mapping (ESM) [12].
VSMs have also been extended to render plausible soft shadows [123], where the
filter size is computed based on the average occluder distance to the receiver and
the light source [38]. We rely on variance shadow maps to create a representation
where the time dimension can be efficiently filtered. We also experimented with
using ESM, but saw no convincing benefit in neither quality nor performance.
As our shadow map representation is split into a set of depth layers, we avoid
most of the shine-through artifacts from VSMs, similar to layered variance shadow
maps [70].

121

PAPER V: FILTERED STOCHASTIC SHADOW MAPPING USING A LAYERED
APPROACH

Lehtinen et al. [73] present a motion and defocus blur reconstruction algorithm,
which also supports the case of motion blurred and soft shadows by taking the en-
tire 7D light-field into account during reconstruction. Their algorithm uses a dual
acceleration structure, one for the samples visible from the camera, and a second
for the depth as seen from the light source. When reconstructing a camera space
point p = (x,y, t), the corresponding light space sample at (lx, ly, t) is reconstructed
and a binary shadow test is performed. While their algorithm produces very high
quality images, results rely on reconstructing and filtering many (∼128) locations
per pixel. The reconstruction time is over 10 seconds even for high-end discrete
GPUs on 5D examples (excluding motion blur shadows).
Egan et al. [33] use frequency analysis [30] of the motion blurred light field to
derive sheared filters for reconstruction and to drive adaptive sampling. Frequency
analysis can also be used to derive filters and adaptive sampling techniques for
shadows from complex occluders [32], directional occlusion [31], soft shadows
filtering [84], diffuse indirect lighting [85], and multiple distribution effects [86].
Our shadowing approach has similarities with recent reconstruction algorithms,
most notably the work by Munkberg et al. [92] and Hasselgren et al. [54], who
use a similar layered representation and sheared 5D-filter to reconstruct primary
visibility for motion blur and depth of field. Their work does not handle recon-
struction of motion blurred shadows and as such, our work can be seen as an im-
portant complement. In addition, we extend on their work by taking into account
the correlation between time of samples in the shadow map and samples relating
to primary visibility. We also propose a novel filtering approach.

3 Theory

In this section, we briefly present the theory behind our setup for motion blurred
shadow rendering. The outgoing radiance from a point x in a direction ωo is given
by:

l(x,ωo) =
∫

Ωi

v(x,ωi) f (x,ωi,ωo)l(ωi)dωi, (1)

where v is the visibility function, f is the BRDF (including the cosine term), and
l(ωi) is the incoming light. We only consider direct lighting from a set of discrete
point or directional light sources, {li}, and the expression for the outgoing radiance
can therefore be simplified to a sum over the light sources:

l(x,ωo) = ∑
i

v(x,ωi) f (x,ωi,ωo)li. (2)

Now, we assume that the scene is dynamic, where the objects, lights, and the
camera can move. The corresponding expression for the outgoing radiance at a
certain time, t, can be expressed in a coordinate system following x as:

l(x,ωo(t), t) = ∑
i

v(x,ωi(t), t) f (x,ωi(t),ωo(t))li. (3)

122

3. THEORY

x

t
t = 0 t = 1

AB

t = 0t = 1

A

B
Figure 4: Left: scene A shows a static light source and a moving occluder, while scene B
instead shows a moving light and a static occluder. Right: the two different scenes produce
the same light space epipolar image, yet the observed shadows are very different. This is a
consequence of the receiver being static in light space in scene A, while the receiver point
move in scene B (due to the moving light source). The footprint for the receiver point is
shown by the dashed lines in the epipolar image.

This expression shows the outgoing radiance at x, but does not take occlusions into
account between x and the camera.
To render motion blurred shadows, we want to evaluate the occlusion term
v(x,ωi(t), t). In a ray tracer, one can simply answer this query with a shadow
ray through the dynamic scene. In a stochastic rasterizer, one can instead query a
time-dependent shadow map [6], which stores a light space depth value (z) for each
spatio-temporal coordinate (xl , t). To do this, the query coordinate x and direction
ωi(t) is remapped into the moving coordinate system of the light (denoted with
subscript l): (x,ωi(t), t) 7→ (xl(t), t). If the shadow map depth is smaller than the
light space depth of x, the light source, li, is occluded from x at time t.
To determine the color for each pixel, we want to integrate over t to compute a
blurred value over the open interval of the camera shutter. Hence, due to motion
and the spatial pixel filter, many points will contribute to the blurred radiance value
of each pixel. The shading evaluation may include multiple shadow map lookups
within a spatio-temporal footprint, as illustrated in Figure 4.
Furthermore, there may be discrete changes in primary visibility, as different prim-
itives move over the pixel’s view frustum over the temporal interval. In the general
case, the camera, all objects, and all lights may move in time. To approximate
this result, one often take a large number of spatio-temporal Monte Carlo (MC)
samples. However, with an estimate of the footprint in the spatio-temporal shadow
map of hit points on visible primitives, one can apply filtered lookups in order to
reduce shadow noise. This is the main goal in this paper.

123

PAPER V: FILTERED STOCHASTIC SHADOW MAPPING USING A LAYERED
APPROACH

Due to perspective motion, xl(t) may be a rational polynomial in t. However, sim-
ilar to recent motion blur filters [33, 83, 92], we make a linear motion assumption
in our shadow map representation.

4 Algorithm

We propose a layered, filtered shadow mapping algorithm for motion blurred shad-
ows. The algorithm is divided into two passes, namely a shadow pass and a light-
ing pass. The shadow pass renders the scene using stochastic rasterization [6] and
generates a time-dependent shadow map augmented with per-sample motion vec-
tors. The subsequent lighting pass renders the scene from the camera’s point of
view, and performs a shadow query for each sample seen from the camera.
In contrast to time-dependent shadow mapping (TSM), wherein the shadow query
gives a binary result, i.e., if the sample is in shadow or not, our algorithm estimates
the temporal integral of the visibility term (discussed in Section 3), which results
in smoother motion blurred shadows.
Our algorithm is based on the assumption that the motion in a small spatial region
of a depth layer is slowly varying, which has been a successful approximation in
previous work [92]. During the shadow pass, we divide the stochastic shadow map
into texture space tiles, and split samples of each tile into depth layers. We then
process each such tile and depth layer individually.
First, we compute an average motion vector d for each depth layer in each tile. If
all spatio-temporal samples, {(xi, ti)}, in the depth layer move with the same mo-
tion vector d, then each sample’s movement is described by the following equation:

xi(t) = xi +d(t− ti). (4)

At t = 0.5, a sample has a spatial coordinate:

x′i = xi +d(0.5− ti). (5)

With this observation, we create a compact time-dependent shadow map by re-
projecting all samples along the depth layer’s average motion vector, d, to t = 0.5
using Equation 5, and storing this layered, reprojected, shadow map in memory for
use in the subsequent lighting pass. To perform a shadow lookup in the lighting
pass, we offset this representation along the layer’s motion vector to get the depth
layer represented at a particular time.

4.1 Shadow Pass

Creating the shadow map representation involves a number of steps, which are
covered in detail in this section.

124

4. ALGORITHM

x

z

x

z
t = 0.5

min

max
z

1
0
0
1

1
0
1
1

Layer 0

Layer 1

Layer 2

Tile bounds

Figure 5: A simple scene illustrating the clustering approach that we use. The minimum
and maximum depths, z, as seen from the middle of the shutter interval, t = 0.5, are found,
and this interval is split uniformly. Each bin that contains at least one sample is marked
with a 1. Finally, the resulting bit mask for the bins is used to find a small set of depth
layers.

Visibility sampling First, the scene is stochastically rasterized with N samples
per pixel in (x,y, t) light space. For each sample, we store depth and motion vec-
tors. The motion vectors are comprised of the shadow map texture space motion
in xy and depth motion in z.

Depth clustering Next, the samples in a tile in shadow map texture space are
clustered in depth to obtain a set of depth layers of samples. To find suitable depth
layers, we perform a simple depth clustering [10] step over all samples within a
search window centered around each tile. We perform the layer split at the middle
of the exposure interval, by offsetting the sample depths to t = 0.5 with their re-
spective motion vector. Next, the depth range [zmin,zmax] of the relocated samples
is computed, which is then subdivided into uniform intervals. Intervals containing
samples are flagged as occupied. Layer delimiters are then introduced where the
largest stretches of unoccupied intervals are found. This process is illustrated in
Figure 5. In our current GPU implementation we use 64 uniform intervals, which
are clustered into (up to) four depth layers.

Per-layer motion We assume that the motion is slowly varying within each
depth layer of the tile. We find a common representable motion vector, d, for
the layer by averaging the motion vectors of the samples in the layer.

Grid setup The reprojection step builds upon previous work for motion blur
filtering [92], with the difference that we work with depth values instead of color.
However, unlike previous work, we reproject onto a stretched grid, which is aligned
with the average motion direction, d. For clarity of presentation, we let the (x,y)
coordinates have origin at the center of the tile. We parameterize the stretched grid
with coordinates, (u,v), where the u-axis is aligned with the layer’s motion vector,
d, and the v-axis is perpendicular. As illustrated in the epipolar images in Figure 6,

125

PAPER V: FILTERED STOCHASTIC SHADOW MAPPING USING A LAYERED
APPROACH

f f

t = 0

t = 1 f

u

t

y

x

v
y

x

y

x

u

0

0.5

1

v

t

0

0.5

1

A B C

D

|d|

Figure 6: A: a moving disc, viewed from the light source. B: we consider a single tile in the
middle of the image. Samples from within the guard band will be used for this tile. C: the
average motion direction is found, and a new coordinate system, (u,v), is constructed. The
u-axis is scaled and aligned with the motion vector. D: the epipolar images for v = 0 (left)
and u = 0 (right). The final, reprojected layer representation contains samples within the
gray borders, which are derived from the guard band size, f , and the motion vector, d.

any sample originating from within the guard band, f, of a tile may reproject any-
where within a region that is f + ||d|| wide. Therefore, we use a grid scaling factor
of f

f+||d|| along the u-direction, which ensures that no samples will be reprojected
outside our scaled grid. We now define a rotation and scaling transform, M, for
each layer, such that Md =

(f ||d||
f+||d|| ,0

)
. If we apply this transform to a moving

sample: xi(t) = xi +d(t− ti), cf. Equation 4, we obtain the corresponding sample
in the stretched grid as:

(ui(t),vi) = Mxi +
(f ||d||

f + ||d||
,0
)
(t− ti) . (6)

In presence of motion, the grid stretches outside the tile bounds, as shown in Fig-
ure 6D. The scaling factors of M used in our implementation are discussed further
in Section 5.

126

4. ALGORITHM

x

t

x

t

x

t

x

t

x

t

Layer 0 Layer 1 Layer 2

0.5 0.5 0.5

0.5 0.5

Layer 0 Layer 1 Layer 2

x

t

x

t

0.5

Figure 7: Top: an epipolar image of a simple scene with two objects and a static background
layer. Middle: the samples are reprojected to t = 0.5 for each layer, using the layer’s motion
vector. Samples within a layer (black outlines) increase the opacity. Samples behind the
layer (gray outlines) (farther away from the light source) decrease the opacity. Samples in
front of the layer (red crosses) are discarded. Bottom: the shadow map can be queried at
different times using the reprojected samples at t = 0.5 for each layer along with the layer’s
motion vector

Sample reprojection For each layer, each sample is transformed to the local
coordinate system and is moved along the layer’s motion vector to the middle of
the shutter interval, by using Equation 6 with t = 0.5. Additionally, the depth of
the sample at t = 0.5, zreproj

i = zi +(0.5− ti)dz is computed. The sample’s position
in uv-space maps to a texel location.
The next step is to compute the coverage and depth contribution of the sample to
the texel. We track four quantities which are used for filtering later in the lighting
pass described in Section 4.2. First, we need the depth value for the shadow test.
We use the filterable variance shadow map (VSM) representation with the first and
second depth moments (z and z2) [29]. The next quantity is the opacity, α , which
tells us how much each texel in each layer should contribute to the final shadow
result. The remaining quantity is the weight, w, of the filter kernel used in the
reprojection. Each sample will contribute with different αi and wi values for each

127

PAPER V: FILTERED STOCHASTIC SHADOW MAPPING USING A LAYERED
APPROACH

layer. For each texel, (u,v), in the shadow map, these quantities are accumulated
into a tuple with four elements on the form:

T (u,v) =
(
∑wiαizi, ∑wiαiz2

i , ∑wiαi, ∑wi

)
, (7)

i.e., a weighted sum of the first and second depth moments, a weighted opacity,
and the total weight.
The values of wi and αi for the current layer are calculated as follows. If a sample
lies in or behind the current layer (i.e., farther away from the light source), then
wi has a non-zero value based on the filter used. Otherwise, wi = 0 (i.e., the sam-
ple does not contribute to this layer). In our implementation we use a box filter,
and thus wi corresponds to the number of samples falling in a pixel. The opacity
value is one (αi = 1) if the sample lies within the layer, and is zero otherwise.
The idea behind this is that if a sample that belongs to a background layer is vis-
ible through the foreground layer, then the foreground layer must be transparent
for that sample. Since fewer samples affect layers farther back, this implies that
the opacity estimate is better for foreground layers. This accumulation strategy
is discussed in further detail in Vaidyanathan et al.’s [115] reconstruction work.
Figure 7 illustrates a simple example of the reprojection process.

4.2 Lighting pass

In the lighting pass, the scene is rendered from the camera using stochastic raster-
ization [6], and we search for the amount of light that reaches a receiver sample,
(xr,zr, tr). For every receiver sample, the corresponding tile in the shadow map is
found, and the visibility contribution of its layers are combined to a final shadow
term.
Our shadow map is compactly represented as a set of tiles with a set of layers at t =
0.5 with the accompanying coordinate transforms, M. To retrieve a shadow map
value for a particular layer at receiver time tr, the receiver sample is reprojected
using Equation 6 with t = 0.5. The reprojected coordinate maps to a location in
the shadow map.
Furthermore, we account for the camera filter footprint when performing a shadow
map lookup. Since the camera, light, and receiver point may move, this is an
anisotropic footprint in xyt. We make the assumption that the receiver point is
static in camera space for a short duration around the receiver sample time tr. The
duration is inversely proportional to the number of samples per pixel, N, used in
the lighting pass. The camera filter footprint is approximated by transforming the
receiver point to light space at times tr − 1

2N and tr + 1
2N . Figure 8 shows two

examples of how footprints are computed. Should the footprint stretch outside the
layer’s allotted region in the shadow map, it is clamped to avoid fetching invalid
data from a neighboring tile. The size of the guard band, f , used in the coordinate
transform M, determines how far outside the original tile the footprint may stretch,
as illustrated in Figure 6.

128

4. ALGORITHM

x

t

A

B
A

Bt = 0.80

t = 0.15

Figure 8: Two examples of how we calculate the filter footprint for a moving layer. In
case A, the camera and the light are static, and thus the filter in the light space epipolar
image is a vertical line. Reprojecting the filter end points along the motion vector gives the
final filter footprint. In case B, the camera is moving in the opposite direction to the layer
motion and thus produces a slanted trail in the light space epipolar image. The footprint
stretches outside the region that can be reconstructed for this layer, and is clamped. In these
examples, we use 4 samples per pixel, and thus have filter footprints stretching over 1

4 of
the time interval.

The shadow map location, along with the footprint axes as gradient vectors, are
used in the hardware anisotropic filtering to retrieve a tuple on the form given in
Equation 7. From this, we derive:

z̄ =
∑wiαizi

∑wiαi
, z2 =

∑wiαiz2
i

∑wiαi
, ᾱ =

∑wiαi

∑wi
. (8)

With z̄ and z2, we compute a visibility term, V , using a standard variance shadow
map (VSM) test [29] with two moments. We base the test on the receiver point
depth moved to the reprojected shadow map time zreproj

r (tr) = zr +(0.5− tr)dz−b,
where tr is the receiver sample time and b is a VSM shadow bias term. It should
be noted that moving the receiver sample to t = 0.5 is equivalent to moving the
depth of the shadow casting sample to the time of the receiver sample, tr. Given z̄
and σ2 = z2− z̄2, the variance shadow map visibility is computed as follows [29]:

V =
σ2

σ2 +(zreproj
r − z̄)2

. (9)

Combined with the opacity of the layer at the point of lookup, ᾱ , we can approxi-
mate the visibility of the receiver point through this particular layer as:

Vl = 1− ᾱ(1−V). (10)

The visibility through all layers is accumulated using Vtotal = ∏l Vl to get a final
visibility approximation.

129

PAPER V: FILTERED STOCHASTIC SHADOW MAPPING USING A LAYERED
APPROACH

TSM Raytraced Our
(4 spp) (128 spp) (4 spp)

Our Our Our
A. Too few layers B. No border smoothing C. No streak reduction

Figure 9: This figure shows the need for the various parameters and additional smoothing
used in our algorithm. The camera is positioned so that the shadowed region in the red
(top) inset from Figure 1 is viewed closely from above (instead of from an angle). Three
tentacles are moving in different directions and create complex shadows on the receiver
floor. From the raytraced reference, the detailed geometry from the suction cups are visible
as they produce a striped pattern in one of the shadow layers. We use the same sample set
for TSM and our algorithm to create the shadow. In inset (A), we have reduced the number
of maximum layers from 4 to 3, and subsequently a single depth layer is created from two
of the tentacles, with an incorrect shadow as the result. Similar artifacts are visible when
the clustering step fails to produce proper splits between layers with vastly different motion
and/or depth characteristics. Inset (B) shows our algorithm without the stochastic neighbor
selection enabled, leading to visible tile boundaries. Finally, in inset (C), the v-direction
filter for large motion is disabled, with some streaking artifacts as a consequence. In this
particular case, note that there are some streaks in the reference image, which we slightly
over-blur with the v-filter enabled. Also note that, in general, one might want to increase the
shadow map resolution and the number of samples per pixel to increase the quality further.

5 Implementation

We implemented our algorithm and TSM in a GPU software stochastic raster-
izer, similar to McGuire et al. [82], which we have extended with time-dependent
shadow maps (TSMs) [6] and faster coverage tests [67].

130

5. IMPLEMENTATION

Apart from the tile size and guard band used to derive the scaling factors in the
coordinate transform, M, in Equation 6, an additional parameter, o, is used, such
that:

(su,sv) =
o
f

(
f

f + ||d||
,1
)
, (11)

where su and sv are the scaling factors in the matrix, M. Here, o controls the
resolution of the output grid, and thereby also the resolution of the shadow map.
In our implementation, for each 8×8 pixel tile in the input depth and motion maps,
we use an output shadow map tile size o= 16, and a search region f = 16. Or more
intuitively, in absence of motion, for each input pixel in an f × f neighborhood
around each tile, o

f output texels are produced. As motion increases, the output grid
grows proportionally, while its resolution in the shadow map is retained, essentially
trading spatial detail for covering a larger volume in xyt, as illustrated in Figure 6.
During the lighting pass, described in Section 4.2, we may sometimes end up with
a total weight of zero, ∑wi = 0. This happens when the shadow map density is
too sparse compared to the filter (or size of motion), and is more likely to happen
for layers further back as most of the samples will be caught by the layers in front.
We alleviate this problem by expanding the filter size until a valid sample (wi 6= 0)
is included. This is similar to how the problem is solved in previous work [92].
They use an exponential filter and therefore samples further away can be used if
there are no local samples, and giving them an insignificant weight if local samples
exist.
Furthermore, we note that Munkberg et al. [92] exhibit some streaking artifacts
in regions with large motion and low circle of confusion. In order to reduce such
streaking artifacts, we apply a small filter aligned with the v-axis in such tiles.
In our current implementation and selection of scenes, we found that a small tent
filter with pixel width wv =max(0,0.05 (||d||−2)), where d is the average motion
vector, works well in practice.
In areas with varying motion vectors, we may get tile artifacts due to the rotated
grids not aligning at tile borders. We remedy this using an approach similar to the
one proposed by Guertin et al. [47]. When performing a shadow map lookup, we
compute a probability based on the distance between the lookup position and the
tile border. We then use that probability to stochastically perform the lookup in
either the current tile or the neighboring tile. This means that the region in which a
valid shadow test can be performed for a tile in somewhat increased, i.e., it depends
on that a sufficiently large f -parameter is selected. In practice, we found that using
a linear ramp starting at 1/3 from the tile center and going up to 50% probability
for selecting a neighbor at the tile border produces visually pleasing results, and
works well with the selected f = 16.
In Figure 9, the benefits of border smoothing and streak reduction are shown. In
addition, we show the quality impact of using too few layers.

131

PAPER V: FILTERED STOCHASTIC SHADOW MAPPING USING A LAYERED
APPROACH

t = 1

t = 0

Shadow map
sample

Receiver
sample

Figure 10: An illustration of a self shadowing issue with TSM, where a surface is moving
towards the light source. The surface should be fully lit since it is visible from the light
source throughout the animation. Left: the shadow map lookup for the receiver sample
(red) returns the closest shadow sample (green) in (x,y). Since the shadow sample is closer
to the light source than the receiver sample, it will falsely report that the sample is in
shadow. Right: within each time slice, the probability of encountering an occluder sample
increases with the distance to the light source. In the resulting image, the time slices are
visible as striped self-shadows. Our dynamic bias decreases the likelihood of such events.

Memory Consumption The memory requirement for the shadow map depends
on the number of layers, the output tile sizes, and the input depth and motion map
resolution. In addition, for each tile and layer, we store the transform M using
two values (scale and direction of major axis), the motion in z and the layer split
position. We use 32 bit floats for the four tuples in Equation 7, and 16 bit floats
for the tile data. For a 10242 pixel shadow map at 4 spp, the total cost amounts to
90 MB per depth layer. TSM stores one depth value for each sample, and the same
input consumes 16 MB. It should be noted that we have optimized our algorithm
for speed rather than size. There are, however, several avenues for reducing the
memory usage. For example, using ESM instead of VSM, reducing the precision
of the opacity and weight in Equation 7, or dynamically allocating output tiles. We
leave this for future work since it would require further investigation on how these
changes would affect the shadow quality.

5.1 Dynamic bias for TSM

In TSM, the exposure time is partitioned into N slices, each containing a subset
of the samples. When a shadow test is performed for a sample at a particular
time, the corresponding enclosing pixel and time slice in the shadow map is found.
However, due to the discretization, there is a discrepancy between the receiver
sample time and the shadow map sample time. This difference may be as large as
1
N of the exposure time, and can lead to self shadowing artifacts, as illustrated in
Figure 10. In some cases, a shadow map bias alleviates the problem, where the bias

132

6. RESULTS

Light view Camera view Reference Our TSM DSM

Pi
lla

rs
(m

ov
in

g
lig

ht
so

ur
ce

)

t=0

t=1

Figure 11: Shadows are produced by a light source, moving upwards, away from the pil-
lars. This scene is difficult since points on the receiver plane that remain static viewed
from the camera travel long distances in light space. Due to perspective, the sample paths
through light space are non-linear. Some over-blurring is apparent, but our linear motion
approximation works reasonably well. TSM also exhibits some additional blurring. When
a shadow map lookup is performed, the camera sample is transformed to light space at the
camera time tc to obtain the lookup coordinates. The time ts for the sample at this location
is (almost) always different from tc. During this time discrepancy, the light source may have
moved arbitrarily, potentially resulting in a poor match between the camera and shadow
map samples in xyt-space. DSM does not account for moving light sources either, and get
severe self-shadowing artifacts.

incorporates the distance in depth that any object travels. This quickly becomes
problematic, since contact shadows will disappear when the bias is increased.
As discussed in Section 4, in our algorithm, we compensate for the discrepancy
in time between the receiver sample and the shadow map sample. Depth motion
is accounted for by moving the samples along the average motion vector’s depth
component based on the sample time difference. We improve TSM in a similar
way, but use the samples’ own motion vectors. The receiver point is translated to
the shadow map sample’s time to get a new receiver depth:

żi = zi +dzi(tr− ti), (12)

In Section 6, we will show how this adjustment improves image quality of TSM
and makes motion blurred shadow map rendering more robust.

6 Results

We have constructed a set of scenes, shown in Figures 11, 12 and 13, to test diffi-
cult cases, where both the receiving and shadow casting geometry move relative to
the light source in various ways. The pillar scene illustrates the difficult case with
a moving light source. Although the pillars are static as seen from the camera,
they move a large distance in light space. The other two scenes show variations of
moving receivers and shadow casters.
To evaluate the quality and robustness of our algorithm, we compare the qual-
ity against time-dependent shadow mapping (TSM) and deep shadow mapping

133

PAPER V: FILTERED STOCHASTIC SHADOW MAPPING USING A LAYERED
APPROACH

Light view Camera view Reference Our TSM DSM

M
ov

in
g

re
ce

iv
er

t=0

t=1

Figure 12: Two rapidly moving quads at different depths with motion directions orthogonal
to each other. Both our algorithm and TSM are able to capture the diagonal shadow stripe
that appears on the green, moving receiver, whereas DSM does not.

Light view Camera view Reference Our TSM (dyn. bias) TSM DSM

D
ep

th
m

ot
io

n

t=0

t=1

Figure 13: Two quads with perspective motion in light space, one moving towards and
the other moving away from the light source. Our algorithm performs well, even though
there is a high degree of motion along the z-axis, which violates our assumption of linear
sample paths. With our dynamic bias from Section 5.1, TSM does not exhibit self-shadowing
artifacts. The bias in DSM cannot be fixed with an increased bias value, since the movement
of the quads is larger than the gap between them and the ground plane.

(DSM), as well as against the reference images rendered using the Embree [118]
ray tracing kernels with 128 stratified rays per pixel. For the quality comparison,
we use four samples per pixel for our algorithm and TSM. To accentuate the qual-
ity differences, we use fairly low resolution shadow maps of 5122 pixels. An input
tile size of 4× 4 pixels was used for our algorithm, with the parameter settings
f = 12 and o = 8. We implemented DSM by sampling the scene with 128 samples
per pixel (spp) from the light source. This way, we can build a high quality visibil-
ity function for each shadow map pixel. Lokovic and Veach [76] suggested using a
lower sampling rate and computing the visibility function by filtering over a larger
footprint in the shadow map. However, the size of the filter is not well described,
and therefore we chose to use a high quality (but inefficient) DSM implementation,
which illustrates the algorithm’s asymptotic behavior at high sampling rates.
The results of our quality evaluation can be seen in Figures 11, 12 and 13. DSM
has problems with self-shadowing due to the assumption of a static receiver. Fur-
thermore, the shadows from the pillars become smeared in Figure 11. The same
behavior can be seen in the depth motion example in Figure 12, where a mov-

134

6. RESULTS

0

5

10

15

20

25

30

35

40

Our TSM Our TSM Our TSM Our TSM Our TSM

Wrecking ball Chess Sponza runner Octopus Tree

Fr
am

e
tim

e
(m

s)
Shadow lookup

Primary visibility

Layered shadow construction

Shadow rendering

Figure 14: The number of milliseconds spent in each of the algorithms steps for our ap-
proach and TSM. All results are measured on NVIDIA GTX 980.

ing object incorrectly causes self shadowing. The scene has two moving objects,
where the orange object cast a shadow on the moving green object, and both ob-
jects shadow a static ground plane. As can be seen, the shadow on the moving
receiver is washed out for DSM. The correlation between the receiver and shadow
caster must be captured to faithfully recreate the shadow for these cases. In all
scenes, our algorithm and TSM produce results similar the reference. However,
at equal samples per pixel and shadow resolution, our algorithm has considerably
less noise.
In addition to the stress test scenes, we use another set of test scenes, shown in
Figure 15, which have substantially richer geometrical detail and much higher oc-
clusion complexity. We focus on evaluating performance of our shadowing algo-
rithm compared to TSM, since the other competing algorithms collapsed samples
over time, which generated severe artifacts as shown in Figures 11, 12 and 13.
All results were measured on an NVIDIA GTX 980. We include both an equal
input and an equal time comparison. For equal input, we use 4 spp both for the
primary visibility and the shadow map. The resolution of the shadow maps for
both algorithms is 10242 for all test scenes. For the equal time comparison, when
constructing the shadow map for TSM we used 8 spp and increased the resolution
to fit within the same frame budget. For low complexity scenes, such as Wreck-
ing ball (8k tris), TSM achieves slightly better quality at equal time. However, at
higher polygon counts, the cost of stochastic rasterization is non-negligible, and
our algorithm produces better quality shadows at equal time. This is visible in the
Sponza runner scene and in Figure 1. The Tree scene has a moving light source,
which makes it difficult to get an accurate result with TSM, although having more
time slices in the shadow map alleviates the problem. The image resolution is
1280×720 for all scenes.

135

PAPER V: FILTERED STOCHASTIC SHADOW MAPPING USING A LAYERED
APPROACH

Figure 14 shows timing for the different steps in our algorithm and TSM. Although
we store motion vectors when rendering from the light (visibility sampling), the
cost for that step is very similar for both algorithms. Our algorithm then converts
the incoming depth and motion buffers to its layered shadow map representation,
which takes 3 – 5 ms. The cost of stochastic rasterization from the camera is
roughly the same for both algorithms. However, the shadow lookup and shading
pass are more expensive with our algorithm as we perform filtering in this step.
Finally, in the accompanying video, we show the temporal behavior of our algo-
rithm.

7 Conclusions

We have presented a novel time-dependent shadow mapping algorithm, which
supports high-quality filtering and accurately handles time dependencies between
shadow casters and receivers. Our algorithm has real-time performance for rea-
sonably complex scenes and scales with the number of samples, rather than geo-
metrical complexity. This can be seen in that our best results were obtained with
the most complex scenes.
For future work, we note that the weakness of our algorithm is when the depth
complexity is too high or when there is large local motion variation within a small
depth range. The clustering algorithm is crucial for both performance and quality,
and we would like to explore clustering using additional attributes, apart from
depth, such as the direction and magnitude of the motion vector. However, this is
a non-trivial extension, which requires a solution to intra-layer visibility if layers
have overlapping depth ranges.

Acknowledgements

We thank the anonymous reviewers and the Advanced Rendering Technology (ART)
team at Intel. We also thank David Blythe and Chuck Lingle for supporting this re-
search. Tomas Akenine-Möller is a Royal Swedish Academy of Sciences Research
Fellow supported by a grant from the Knut and Alice Wallenberg foundation.

136

7. CONCLUSIONS

Camera view Reference Our: 6.4 ms TSM 3.3 ms TSM 6.4 ms

W
re

ck
in

g
ba

ll
8k

tr
is

Camera view Reference Our: 10.0 ms TSM: 5.2 ms TSM: 10.5 ms

C
he

ss
29

k
tr

is

Camera view Reference Our: 20 ms TSM: 13 ms TSM: 21 ms

Sp
on

za
ru

nn
er

26
6k

tr
is

Camera view Reference Our: 31 ms TSM: 22 ms TSM: 31 ms

Tr
ee

10
0k

tr
is

Figure 15: Our algorithm has significantly less noise compared to time-dependent shadow
maps (TSM) and handles complex occlusion. The animated wooden doll model in the wreck-
ing ball scene is from the Utah 3D Animation Repository. The chess scene was created by
Rasmus Barringer. The Sponza model was made by Frank Meinl at Crytek, and the skinned
runner model by Björn Sörensen. The tree scene with a moving light source was created
using Autodesk Maya.

137

PAPER V: FILTERED STOCHASTIC SHADOW MAPPING USING A LAYERED
APPROACH

138

Pa
pe

rV
I

Paper VI

Adaptive Texture Space Shading for Stochastic
Rendering

Magnus Andersson Jon Hasselgren Robert Toth Tomas Akenine-Möller

Lund University Intel Corporation

ABSTRACT

When rendering effects such as motion blur and defocus blur,
shading can become very expensive if done in a naïve way, i.e. shad-
ing each visibility sample. To improve performance, previous work
often decouple shading from visibility sampling using shader caching
algorithms. We present a novel technique for reusing shading in a
stochastic rasterizer. Shading is computed hierarchically and sparsely
in an object-space texture, and by selecting an appropriate mipmap
level for each triangle, we ensure that the shading rate is sufficiently
high so that no noticeable blurring is introduced in the rendered im-
age. Furthermore, with a two-pass algorithm, we separate shading
from reuse and thus avoid GPU thread synchronization. Our method
runs at real-time frame rates and is up to 3× faster than previous meth-
ods. This is an important step forward for stochastic rasterization in
real time.

Computer Graphics Forum (Proceedings of Eurographics), vol. 33, no. 2, pp.
341–350, 2014.

1. INTRODUCTION

1 Introduction

Stochastic rasterization [6, 27] continues to be an interesting path forward for re-
alistic camera models for real-time rendering. Camera effects, such as motion blur
and depth of field (also called defocus blur), are favorably expressed with this tech-
nique. For good quality, the number of samples per pixel often needs to be high,
and due to motion or lens effects, standard multi-sampled anti-aliasing (MSAA)
will often deteriorate to super-sampled anti-aliasing [88]. This, in turn, means that
shading becomes prohibitively expensive. Hence, better methods are needed for
shading in a stochastic rasterizer.
To this end, new hardware mechanisms for reusing shaded values for many dif-
ferent rasterized fragments in a stochastic rasterization setting have been pro-
posed [22, 24, 102]. Common to all of these approaches is that they assume that
shading is constant for a certain point on a surface, regardless of motion and the
lens. Note that this assumption is heavily used even in high-quality production
renderers [27].
In contrast to new hardware mechanisms, Liktor and Dachsbacher [74] present a
method that works on current graphics hardware. They use a compact geometry
buffer, which stores shading information independent of visibility. When comput-
ing and storing new entries in this buffer they rely on per-fragment synchronization
and atomic counters. While our method has the same goals, i.e., reusing shaded
values as efficiently as possible, it has been designed without high frequency syn-
chronization. The contributions of our work are summarized below:

• A lock-free (no atomics) method for reusing shading values in a stochastic
rasterizer.

• Sparse and adaptive evaluation of shading (triangles are shaded directly into
a hierarchical data structure).

• An algorithm well suited for current graphics processors.

• Results show that our method is substantially faster than previous methods.

We believe that our method brings us one step closer to high-quality real-time
rendering of stochastic effects on current graphics hardware.

2 Previous Work

The idea of decoupling shading rate from visibility sampling [27] is old and has
frequently been used in offline or photo-realistic rendering systems to improve per-
formance. In the following, we will focus mainly on the more recent approaches
targeting real-time performance and GPU implementations. The idea of a shading
cache is illustrated in Figure 1.

141

PAPER VI: ADAPTIVE TEXTURE SPACE SHADING FOR STOCHASTIC
RENDERING

t

lens

Figure 1: Caching shaded values works for both motion blur (left) and defocus blur (right).
The assumption, used by Cook et al. and many others after them, is that the shading at a
certain point on a triangle is independent of time and lens position. Hence, shaded values
can be cached and later reused.

Many of the shading caches adopted for GPU implementation target temporal re-
projection of shaded colors [94, 109]. While there is some overlap with our work,
we only wish to reuse shaded values over different stochastic samples, and may
therefore work with parametric texture space shading. In contrast, temporal repro-
jection algorithms typically work with screen space reprojection between frames
and those techniques are thus not well suited for exploiting coherency between
samples in a single frame.
As our algorithm works in object- or texture-space, it bears some resemblance
to light mapping [5], which has been a popular technique (primarily) for baking
static global illumination for computer games. Illumination maps were used by
Arvo [14] for storing the result of tracing rays from the light sources, and Heck-
bert [56] stored radiosity in textures, which adapted their size to the shaded con-
tent. Some similarities can be seen between our approach and GPU accelerated
light map generation [78], although those algorithms are typically more complex
as they are targeted at solving light transport through the scene. However, a big
difference between light map generation and our shading approach is that light
maps are typically view-independent and should be suitable for viewing from any
camera position. In contrast, since we will recompute the shading every frame,
we can use the camera parameters to choose an appropriate sampling rate and tex-
ture filtering footprint. Texture space shading has also previously been used by
Borshukov and Lewis [19] for realistic skin rendering.
Recently, several decoupled shading approaches targeting real-time rendering and
graphics hardware [22, 24, 102, 117], have been developed. However, these papers
focus on new hardware implementations, and are not easy to implement in the
context of current generations of GPUs and graphics APIs. Of particular interest
to us is the work by Vaidyanathan et al. [117] in which they derive minimum
shading rates for defocus and motion blur. Liktor and Dachsbacher [74] built on
the work by Ragan-Kelley et al. [102] and presented a deferred shading cache
approach. They implemented their algorithm using shader programs and showed

142

3. ALGORITHM

Figure 2: An illustration of our object-space texture shading approach. Left: the Dragon
object rendered with defocus blur using our object-space shading approach. Middle: the
mesh rendered with shading to the object-space texture after view-frustum and back-face
culling (for the camera used in the left image). Right: the same mesh rendered to object
space, with an appropriate mipmap level selected per-triangle in the geometry shader. Note
that the image in the middle is there for illustration purposes only—our method renders
only to the structure, called a shading texture, shown to the right.

performance gains on existing GPUs with stochastic rasterization. However, the
algorithm requires per-sample synchronization when the shading cache is updated.
This has a significant performance impact, and consequently the algorithm starts
being beneficial only when expensive shaders are used.
Gribel et al. [44] use an object-space shading cache for offline rendering with
semi-analytical methods. Similar to our approach, they also use a hierarchy and
populate it as needed. They allocate a large chunk of memory for their cache,
where subsets of the hierarchy are allocated lazily. Atomics must be used to avoid
race conditions. Adapting this algorithm to run on the GPU would probably result
in an algorithm similar to that of Liktor and Dachsbacher [74].
Although this paper focuses on the shading aspect, we have also implemented a
stochastic rasterizer for evaluation purposes. Our implementation is very similar
to that of McGuire et al. [82], but modified to perform shading texture lookups
in the pixel shader rather than computing actual shading. We also use the five-
dimensional sample-in-triangle test proposed by Laine and Karras [68], as well as
the back-face culling test for motion and defocus blur by Munkberg and Akenine-
Möller [90].

3 Algorithm

Our shading approach is split into two passes, called the shading pass (Section 3.1)
and the stochastic rasterization pass (Section 3.2). In the first pass, illustrated
in Figure 2, we set up a hierarchical, i.e., mipmap-like, shading texture for each
object. We do this by rasterizing the current object directly into the shading texture
using the object’s parametric shading space (or texture space) coordinates. During
this pass, we also compute how each triangle will project on screen during the

143

PAPER VI: ADAPTIVE TEXTURE SPACE SHADING FOR STOCHASTIC
RENDERING

succeeding stochastic rasterization pass, and use that information to dynamically
select an appropriate mipmap level to render into. In the second pass, where we
typically wish to use stochastic rasterization effects, such as defocus and/or motion
blur, we simply fetch the color value from the shading texture for each fragment.
The division of our algorithm into two passes is crucial to performance because it
enables lock-free lookups of shaded values. This should be compared to previous
methods that require fine-grained thread synchronization [74].
By switching from the “shade on miss” model of the original cache systems, we
lose the ability to shade only fragments that are visible from the camera and risk
overshading if we choose a texture resolution that do not match the screen resolu-
tion. Therefore, it is important not only to perform back-face and frustum culling
when setting up the shading texture, but also to select a mipmap level in the shad-
ing texture that closely matches the screen space signal frequency (including blur
from depth of field).
We typically use one shading texture per object. If the scene requires more textures
than is possible to allocate, we keep a pool of a few shading textures and alternate
between pass one and pass two. It is beneficial to merge smaller objects and use the
same shading texture whenever possible, since that minimizes the involved state
changes when alternating between the passes.
Next, the two passes of our algorithm are described in more detail.

3.1 Shading Pass

The shading pass consists of two sub-passes, described in Section 3.1.3, in which
we sparsely populate a hierarchical shading texture with shaded fragments. The
stochastic rasterization pass can thereafter reuse these shaded values several times.
In contrast to other research dedicated to lowering shading rate for stochastic ras-
terization, we propose to pay the shading cost up front, prior to visibility determi-
nation, which is similar to how Reyes handles shading [27].
First, the mesh vertices need to be augmented with shading space coordinates,
which must ensure that all surface points on the mesh can be uniquely mapped to a
location in shading space. Texture coordinates are often already available and can
double as the shading space so long as there are no overlaps. We would also like
to point out that our algorithm can be used selectively, and alternative algorithms
could be used for objects where non-overlapping atlases are an issue. Furthermore,
like previous work [22, 24, 102, 117] all shading is calculated at the center of the
lens and at a fixed time. The lack of view-dependent shading is widely regarded
as an acceptable trade-off, given the complexity of the problem.
In Section 3.1.1 and 3.1.2, we describe the theory on how to conservatively de-
termine the highest shading frequency required for any point on the primitive, in
order to shade as sparsely as possible. Section 3.1.3 then describes how this is
used in practice in order to generate the shading texture.

144

3. ALGORITHM

s

t

x

y

x

y

AAS Projection

A B C

Figure 3: Shading rate algorithm outline. A: triangle to be rendered. B: we use the AAS
algorithm to derive a screen space shading grid, or inverse shading rate, which is dictated
by the minimum circle of confusion shown in red. C: the shading grid is projected into
shading space (note that it is not aligned with the Cartesian grid).

3.1.1 Shading Rate

Our algorithm for selecting shading rate is illustrated in Figure 3. Starting from
a triangle in screen space, we use a method, called anisotropic adaptive sampling
(AAS), proposed by Vaidyanathan et al. [117]. Given a lens with particular char-
acteristics, AAS can be used to determine the screen-space shading rate needed
in order to capture a certain desired percentage of the frequency content due to
defocus blur.
We use the thin lens model, where the (non-signed) screen-space circle of confu-
sion (CoC) radius can be modelled as:

rc(w) =
∣∣∣∣c0 +wc1

w

∣∣∣∣ , (1)

where c0 and c1 are parameters derived from the camera’s aperture and focal dis-
tance, and w is the vertex depth. Note that the focus plane is located at w=−c0/c1,
since rc(−c0/c1) = 0. Similar to the derivation of AAS, we find the smallest circle
of confusion, min

w
rc(w), as shown in Figure 3B, and use it to bound the shading

frequency. If the circle of confusion is less than a pixel, or if the triangle straddles
the focus plane, the frequency is bound by the pixel grid instead. This gives us a
shading grid spacing, or inverse shading rate, expressed in pixels:

d = max(a(min
w

rc(w)),1), (2)

where the function a depends on the aperture of the lens. We use a circular lens
in our models and use a(x) = x/2 [117]. For mipmap level selection, we only
consider defocus blur, while the full AAS algorithm handles the combination of
both motion and defocus blur.
Once we have established a suitable shading grid spacing in screen space (Equa-
tion 2), we wish to transform it into our shading space. This is a projective trans-

145

PAPER VI: ADAPTIVE TEXTURE SPACE SHADING FOR STOCHASTIC
RENDERING

t

s

t

sA B

r r

Figure 4: Finding the highest frequency in texture space. A: transforming the AAS grid into
texture space gives us a projective grid that does not align with the Cartesian grid we use
for our shading space. B: the resolution of our shading space corresponds to the smallest
radius (red circle to the left) of the filter kernels used.

form, and we will therefore end up with a grid similar to that shown in Figure 3C. It
should be noted that this grid is not aligned with the standard Cartesian grid, which
we use for our shading space. However, if we assume that shading is filtered us-
ing EWA [55] (or using hardware-accelerated anisotropic filtering), we obtain the
Gaussian filter kernels illustrated in Figure 4A.
The filter kernels can be modeled as ellipses [55], and are usually computed from
the screen-space derivatives, ∂T

∂x and ∂T
∂y , for a shading space texture coordinate,

T = (s, t). We assume that the mapping (x,y)→ T is locally linear, and therefore
the shading grid spacing computed using AAS (d from Equation 2) can be directly
used to scale the screen-space derivatives: d · ∂T

∂x and d · ∂T
∂y .

Given these derivatives, one may compute the minor axis of the ellipse as described
in Appendix B. As shown in Figure 4A, the smallest minor axis:

r = min
x,y∈tri

Rminor(x,y), (3)

of any ellipse over the whole triangle indicates the highest visible content fre-
quency. It should be noted that this is a non-trivial function that is difficult to
bound conservatively. We therefore conjecture that the minimum minor axis ra-
dius across a triangle occurs in one of the triangle vertices. Currently, we have
no firm proof for that, but it matches previous knowledge that the mipmap level
can be perspectively interpolated across a triangle in high quality [35]. Given the
minimum radius, r, shown in Figure 4, we select the mipmap level as blog2 rc,
and we end up with the grid shown in Figure 4B. This choice ensures that we
shade densely enough to resolve details, while the actual filter footprint takes the
non-discretized r into account.

146

3. ALGORITHM

s

t

s

t

A B

∂ T
∂ x

∂ T
∂ y(,)

(,)∂ T
∂ u
∂ T
∂ t

∂ T
∂ v

Figure 5: A: a triangle and its corresponding shading space along with texture derivatives
with respect to x,y,u,v, and t. Given these five derivatives, we generalize the method by
Loviscach [77] to compute a single elliptical footprint, which takes all partial derivatives
into account. B: depending on whether we access the shading texture once per rasterized
pixel (MSAA) or once per sample (SSAA), we should pre-filter the shading texture with an
appropriate footprint. The figure shows a pixel footprint used for MSAA as the red ellipse.
If SSAA is used instead, we will get multiple lookups in the shading texture, illustrated as
the green ellipses, and the footprints need to be scaled to reflect this.

In practice, the maximum shading frequency is limited by the finest mipmap level
resolution. Having a low resolution shading texture and moving sufficiently close
to an object may cause some blockiness, and therefore it is important to select a
suitable maximum shading texture resolution for each asset. Selecting a resolution
that is too high only affects memory consumption, as our shading system will pick
an appropriate mipmap level for actual shading.

3.1.2 Filtering

After selecting an appropriate mipmap level for the triangle in the geometry shader,
the triangle will be rasterized to the shading texture. The pixel shader is executed
for every pixel in the shading texture that overlaps the triangle, in the selected
mipmap level. In the pixel shader, we compute pre-filtered shading values, filter-
ing over the footprint of each pixel with respect to (x,y,u,v, t), where (x,y) are the
screenspace coordinates, (u,v) are the lens coordinates and t is the shutter time. In
the pixel shader, we must maintain enough triangle data so that we can compute
∂T
∂x ,

∂T
∂y ,

∂T
∂u ,

∂T
∂v ,

∂T
∂ t , in order to determine the filter footprint. We use a general-

ized form of the filter formulated by Loviscach [77], who only covered the case of
screen space and motion blur filtering. The full derivation of how the generaliza-
tion is done is found in Appendix A. The resulting combined filter has an elliptical
kernel, which is used for computing the shading of the pixel.

147

PAPER VI: ADAPTIVE TEXTURE SPACE SHADING FOR STOCHASTIC
RENDERING

Figure 6: Without conservative rasterization, the regions around triangle edges in the shad-
ing texture may have incomplete information, which propagates to the final image as shown
here (emphasized in purple color).

In practice, we let the hardware for anisotropic texture filtering effectively perform
the filtering for us, which is in accordance with Loviscach’s approach. An example
of the combined filter for a sample position on a triangle with defocus and motion
blur can be seen in Figure 5A.
We must make sure that the correct derivatives are used when pre-filtering, de-
pending on how the shading texture is sampled in the subsequent stochastic raster-
ization pass, as illustrated in Figure 5B. If supersampling is used, several samples
will be drawn from within the pixel, lens, and time footprints in the shading tex-
ture. The pixel, lens, and time derivatives must therefore be scaled prior to shading
to ensure that the color value is correctly reconstructed. We assume that we have
N evenly distributed sample points, and we therefore divide the (x,y) and (u,v)
derivatives by

√
N as this will distribute the pixel and lens area evenly among the

samples. Similarly, the time derivative is divided by N since it is a one-dimensional
attribute. For multisampling, we only wish to retrieve one shaded value per pixel,
and thus N = 1. Regardless of what strategy we use for sampling the shading tex-
ture, we use the grid resolution of the selected shading texture mipmap level as a
lower bound of the extent of the filter.

3.1.3 Populating the Shading Texture

As described in the previous subsections, we now have methods to compute an
appropriate shading rate, i.e., mipmap level, per triangle. The actual population of
the shading texture is done in two sub-passes. In the geometry shader of the first
sub-pass, the triangles are conservatively view-frustum culled and are back-face
culled with respect to the lens and time, using the method described by Munkberg
and Akenine-Möller [90]. The surviving triangles are then rasterized to the shading
texture using the shading space coordinates transformed to the selected mipmap
level as the position attribute. In the pixel shading stage, we recompute the texture
footprint and perform the surface shading.

148

3. ALGORITHM

sample
point

Figure 7: With standard rasterization rules, only the two middle pixels in the bottom row
would be considered to be inside this triangle since those pixels’ center locations are the
only ones that are inside the triangle. However, our sample locations when looking up
shading in the shading texture can be arbitrary inside the triangle. The red sample point,
for example, is inside the triangle, but the enclosing pixel would not be rendered to with
standard rasterization. We overcome this with conservative rasterization, which processes
all pixels that are touched by the triangle (which in this case includes all 4×2 pixels).

Current graphics APIs do not allow dynamically selecting the output mipmap level,
as mentioned in Section 3.1, and we therefore manually maintain our own mipmap
hierarchy. Using this layout, we select a mipmap level for each triangle by scaling
and offsetting the texture coordinates. This ensures that we can use a standard
hardware accelerated bilinear texture lookup, instead of doing custom texture fil-
tering in the pixel shader, when performing the stochastic rasterization pass (de-
scribed in Section 3.2).
Using standard rasterization results in artifacts in the final image, which can be
seen in Figure 6. The reason for this is that our sample locations are arbitrary
within a triangle, while the rasterization hardware samples visibility at the pixel
center. This is explained further in Figure 7. As described next, we use conserva-
tive rasterization [4, 52] in a second sub-pass to solve this problem.
In the second sub-pass, the same set of triangles are rendered with conservative
rasterization. First, the culling and shading rate computations from the first pass
are repeated. Next, we build the conservative outer hull [52] of the input triangle
for the selected mipmap level. It is important that the shaded values that are already
computed in the first sub-pass are not overwritten. To accomplish this, we use a
depth buffer in both the first and the second sub-pass with the depth test set to
less than. The first sub-pass writes a smaller depth value the second sub-pass.
This guarantees that the formerly shaded values have priority over the latter. An
example of this process can be viewed in Figure 8.

3.2 Stochastic Rasterization Pass

In the second pass, we use a stochastic rasterizer, similar to that of McGuire et.
al [82], to render the final image. However, we want to point out that our shad-
ing algorithm is orthogonal to the rasterization algorithm. For example, we use
optimized inside tests [68].

149

PAPER VI: ADAPTIVE TEXTURE SPACE SHADING FOR STOCHASTIC
RENDERING

Figure 8: The inner regions are yellow and the visible parts of the outer regions are gray.
Left: the inner regions of two triangles are rendered in the first sub-pass. The depth is set
to zi. Right: the outer regions of the triangles are rendered using conservative rasterization
in the second sub-pass, with depth zo, where zo > zi. Since the depth of the inner region
is closer than the depth of the outer region, the gray pixels are only located around the
triangles.

Since the shading texture was completely set up during the first pass, we do not
need to handle cache misses and therefore the second pass becomes straightfor-
ward. Instead of traditional stochastic shading approaches [82, 88], we simply
perform a texture lookup into the shading texture for each sample being ren-
dered. We must use the exact same model as used in the first pass when comput-
ing the mipmap level, since only one level per triangle is populated with shaded
data. The texture coordinates for the shading texture can be interpolated using the
perspective-correct barycentric coordinates for a sample. The barycentric coordi-
nates are computed as a byproduct of our sample-in-triangle inside test, which we
also need to execute for each sample as part of the stochastic rasterization [6, 82].
By default, we use a per-sample frequency shader for the stochastic rasterization
pass. However, as an optimization it is possible to run a per-pixel shader while
still inside-testing each sample. In this case, we only need to perform a single
texture lookup per pixel in an algorithm that mimics multisampling. However, due
to API limitations, it is only possible to output a single depth value if the shader is
executed on a per-pixel basis and this may lead to artifacts similar to the shading
approach proposed by McGuire et al. [82]. The artifacts may be quite severe in
some cases, as illustrated in Figure 9. However, the multisampling approach per-
forms significantly better than supersampling approaches on current GPUs, and it
may be valuable if performance is crucial.
After the stochastic rasterization pass has finished, the image is complete. Since
the hardware is used to composite the framebuffer from all triangles in the second
pass, blending works as in any forward renderer. Note that this is not possible
with deferred shading methods, such as the one proposed by Liktor and Dachs-
bacher [74].

150

4. RESULTS

Figure 9: Examples of artifacts caused by writing a single depth compared to correct per-
sample depth. The top row uses the depth of the last covered sample, the middle row uses
the depth of the nearest sample, and the bottom row uses the correct per-sample depth.

4 Results

We compare our implementation to the deferred shading approach by Liktor and
Dachsbacher [74] and stochastic rasterization with supersampled shading. The
original stochastic rasterizer proposed by McGuire et al. [82] relied on multisam-
pling, but it is easy to extend to supersampling and we used this as reference. When
possible, we implemented both supersampled and multisampled versions of the al-
gorithms, since multisampling is desired if performance is a primary concern. We
use supersampling unless otherwise is indicated.
Our implementation of Liktor and Dachsbacher’s algorithm differs somewhat from
their description. In their implementation, a cache maintains ssIDs, which uniquely
identify a shading point in shading space, coupled with a particular primitive. In
the geometry shader, each primitive is assigned a range of ssIDs, which is an op-
eration that requires an atomic counter to avoid collisions. However, they imple-
mented their algorithm using OpenGL 4.2, while we based all our algorithms on
Direct3D 11, which lacks unordered access binding for the geometry shader stage.
We remedied this limitation by adding a 32-bit primitiveID field to each cache
entry to uniquely identify each shading point and primitive coupling. The hash
function was also modified to offset the cache address based on the primitiveID.
The cache size was set to 64k entries, and increasing this number did not result in
significantly fewer shader executions. In our implementation, the shading rate of
defocused triangles in Liktor and Dachsbacher’s algorithm is also reduced using
the AAS approach [117] and filtered with the generalized form of Loviscach’s

151

PAPER VI: ADAPTIVE TEXTURE SPACE SHADING FOR STOCHASTIC
RENDERING

4 spp 8 spp
A

re
na

dr
ag

on

0

50

100

150

200

250

0 64 128 192 256

Ti
m

e
(m

s)

Light sources (shader cost)

0

100

200

300

400

0 64 128 192 256

Ti
m

e
(m

s)

Light sources (shader cost)

C
he

ss

0

50

100

150

200

250

0 64 128 192 256

Ti
m

e
(m

s)

Light sources (shader cost)

0
50

100
150
200
250
300
350
400

0 64 128 192 256

Ti
m

e
(m

s)

Light sources (shader cost)

A
rm

ad
ill

o

0
50

100
150
200
250
300
350
400

0 64 128 192 256

Ti
m

e
(m

s)

Light sources (shader cost)

0
100
200
300
400
500
600
700
800

0 64 128 192 256

Ti
m

e
(m

s)

Light sources (shader cost)

 (MSAA) (MSAA)MCGUIRE LIKTOR OURMCGUIRE OUR

Figure 10: Results for our test scenes rendered with a variety of algorithms. In the dia-
grams, we present render times in milliseconds (lower is better) for 4 and 8 samples per
pixel (spp), respectively. The algorithms called MCGUIRE, LIKTOR, and OUR are directly
comparable in terms of image quality. The algorithms with (MSAA) in their names rely
on multisampling, and only do a single shader execution per pixel, with a single shading
texture lookup. While this is beneficial for performance, we can only output a single depth
value per pixel, and there is a risk of artifacts due to inaccurate depth test, as illustrated in
Figure 9.

method [77]. Our goal has been to put together an implementation that is as close
as possible to Liktor and Dachsbacher’s to make for a fair comparison.
To evaluate the performance, we measured the average rendering times for three
different scenes with defocus blur. The Arena dragon scene contains one object
with 74k triangles. The Chess scene is comprised of 12 objects with a total of 29k
triangles. The Armadillo scene uses a high triangle count of 640k triangles. We
can control shading complexity by computing shading using between one and 256
directional light sources. This allows us to study how the different algorithms scale
with increasing shader cost. All images were rendered at 1920×1280 resolution.
Throughout our experiments, the finest mipmap level resolution of the shading
texture was set to 20482, which worked well for all of our test scenes.
All benchmarks were run on a PC with an Intel Core i7 965 CPU, 6 GB RAM
and an NVIDIA 780 GTX GPU with 3 GB RAM (the benchmark application is
completely GPU bound). Figure 10 shows the rendering time in milliseconds for
the different scenes using 4× and 8×MSAA. We note that the algorithm by Liktor
and Dachsbacher [74] is not affected as much by shader complexity, and at some
point, their algorithm may be faster than ours. In the rightmost diagrams in Fig-
ure 10, Liktor and Dachsbacher’s algorithm is faster at 256 light sources, and in

152

4. RESULTS

SSAAMSAA SSAAMSAA SSAAMSAA

O
ur

(8
 sa

m
pl

es
/p

ix
el

)
O

ur
(1

28
 sa

m
pl

es
/p

ix
el

)
R

ef
er

en
ce

(1
28

 sa
m

pl
es

/p
ix

el
)

Figure 11: Image quality comparison between our algorithm with 8 and 128 samples/pixel
and McGuire’s algorithm with 128 samples/pixel. We ran the algorithms both with MSAA
and SSAA enabled. Notice that the highlight in the green cutouts is less prominent for MSAA
compared to SSAA. The blue cutout shows that we are able to maintain high quality, even
when the defocus effect is close to zero. In the red cutout, we note that some texture detail
is lost for MSAA, but this occurs both for our algorithm and for the reference. Overall, we
find that the major difference between the images stem from noise due to the lower number
of samples drawn.

the leftmost diagrams we estimate that it will be faster when using about 512 light
sources. For reasonably complex shaders, our algorithm has performance charac-
teristics that makes it very desirable for real-time rendering. The results are very
encouraging since our algorithm outperforms the best competing algorithm by up
to 3× in some cases.
The rendered image quality of our algorithm closely matches that of the reference
solution. In Figure 11, we compare the image quality of McGuire’s algorithm
using 128 samples per pixel against our algorithm with 8 and 128 samples per
pixel.

153

PAPER VI: ADAPTIVE TEXTURE SPACE SHADING FOR STOCHASTIC
RENDERING

4.1 Timings by Render Pass

We have timed the different passes in our algorithm. Not surprisingly, the stochas-
tic rasterization pass (Pass 2 Rast.), which includes the lookups in the shading
texture, makes up for the bulk of the time. Even though MSAA speeds up the
stochastic rasterization pass (Pass 2 MSAA) considerably, it is still a major part of
the total rendering time. Roughly 80−90% of the time is spent on the inside tests
within Pass 2, which means that the shading texture lookups are relatively inex-
pensive. When creating the shading texture, we note that the sub-pass performing
conservative rasterization (Pass 1 Cons.) requires more time than the sub-pass do-
ing normal rasterization (Pass 1 Shade) even though it writes to considerably fewer
pixels. The reason for this is mainly that the geometry shader of the conservative
rasterizer is quite expensive, and offsets whatever shading cost we gain from the
many pixels failing the depth test. This is most apparent in the Armadillo scene
as it has a very high triangle count, and we note that our algorithm would benefit
greatly from faster algorithms for conservative rasterization [4]. Finally, we note
that 1–2 ms of the frame time is spent in miscellaneous setup tasks, such as anima-
tion, frame buffer clearing, and multi-sampling resolve, which are not related to
our texture space shading algorithm. The table below shows a breakdown of ren-
dering times (in milliseconds), of the Dragon and Armadillo scenes from Figure 10
with 16 light sources for shading.

[ms] Dragon Armadillo
4× 8× 4× 8×

Misc 2.3 2.3 0.8 0.8
Pass 1 Shade 2.1 2.1 3.8 3.8
Pass 1 Cons. 2.3 2.3 11.9 11.9
Pass 2 Rast. 13.8 29.3 87.5 178.8

Pass 2 (MSAA) (7.1) (16.6) (46.1) (108.3)
Total 20.5 36.0 104.0 195.3

Total (MSAA) (13.6) (21.0) (62.1) (124.8)

5 Conclusions and Future Work

Shading cost needs to be substantially reduced in order to make stochastic ras-
terization a viable rendering method. To this end, we have presented a novel
technique for reusing shading for stochastic depth of field rasterization on cur-
rent GPUs, and shown significant performance improvements of up to 3×. In
contrast to deferred shading methods, we also support blending. There are several
interesting aspects that we would like to research further in the future. Liktor and
Dachsbacher’s [74] algorithm shades very sparsely due to their approach doing
deferred shading, which means that they get full benefit of occlusion and never
have to shade any occluded samples. However, it has to explicitly sync threads,
which proved expensive, and therefore the method performs better only when very
expensive shaders are used. It would be useful to investigate how our algorithm
would perform with occlusion queries and/or software occlusion culling on the
CPU [25], which is often done in mature game engines.

154

APPENDIX

To minimize state changes for very large scenes, we would like to develop a system
for dynamically allocating properly-sized shading textures (or using a part of a
shading texture) on a per-object basis. This would not require any artist interaction
and at the same time it would reduce state changes significantly, which would also
increase the performance of our algorithm. Finally, we would like to extend the
frequency analysis to motion blur and to the combination of motion and defocus
blur. Currently, our system does not compute optimized shading rates for motion
blur—however we would like to point out that our system can already handle these
effects too, even though we may over-shade.

Acknowledgements

We thank the reviewers for their insightful comments, and thank David Blythe,
Marco Salvi, Charles Lingle, Tom Piazza, and the Advanced Rendering Technol-
ogy team at Intel for their support. We would also like to thank Jacob Munkberg,
Petrik Clarberg, Jim Nilsson and Björn Johnsson for all the fruitful discussions,
and Gabor Liktor for answering our questions about his research. Tomas is a
Royal Swedish Academy of Sciences Research Fellow supported by a grant from
the Knut and Alice Wallenberg Foundation.

Appendix A - Filter Derivation

Loviscach [77] showed how to efficiently filter textures in time and space by ex-
tending elliptical weighted average (EWA) filtering to handle motion. We gener-
alize this approach to handle Gaussian filter kernels in n dimensions. Like Lovis-
cach, we make some local approximations about the various dimensions that we
wish to integrate over. First, we assume that the texture coordinates are locally
linear with regard to the augmented variables, which means that we locally ig-
nore effects such as perspective distortion. EWA already uses this approximation
in (x,y), using concentric ellipses in (s, t). Second, Loviscach also approximates
(s, t) linearity in time, and we will do the same for all additional variables. Finally,
we locally assume that all variables are independent of each other, again in line
with Loviscach’s work.
Sums of independent normal distributions are normal distributions. The Gaussian
distribution in 2D is:

X =

(
s0
t0

)
+α

(
∂xs
∂xt

)
+β

(
∂ys
∂yt

)
, (4)

where α and β are normal distributions with zero mean. Without loss of gener-
ality, we assume α and β are N(0,1) distributions, as the variance can be chosen
arbitrarily by pre-scaling the partial derivatives. If we augment with a number of

155

PAPER VI: ADAPTIVE TEXTURE SPACE SHADING FOR STOCHASTIC
RENDERING

additional independent distributions, we get:

Y =

(
s0
t0

)
+

n

∑
i

γi

(
∂Xis
∂Xit

)
, (5)

where γ1 = α , γ2 = β , X1 = x, X2 = y, and all γi are again N(0,1) distributions.
Next, we focus on the distribution around the point (s0, t0). Summing distributions
is most easily accomplished using characteristic functions. The characteristic func-
tion of a sum of distributions is the product of the characteristic functions of the
distributions. The characteristic function for the sum in Equation 5 is:

ΦY (p,q) = E
(

e
i

(
p
q

)
·

[
n
∑
i

γi

(
∂Xis
∂Xit

)])
= e

− p2
2

n
∑
i
(∂Xi s)

2

·e
−pq

n
∑
i

∂Xi s∂Xi t·e
− q2

2

n
∑
i
(∂Xi t)

2

. (6)

The distribution described by Equation 5 can be expressed as a sum of two inde-
pendent distributions:

Z =

(
s0
t0

)
+ζ

(
e
f

)
+η

(
g
h

)
, (7)

where ζ and η are N(0,1) distributions. The characteristic function for Z is:

ΦZ(p,q) = E
(

e
i

(
p
q

)
·

[
ζ

(
e
f

)
+η

(
g
h

)])
= e−

p2
2 (e2+g2) · e−pq(e f+gh) · e−

q2
2 (f 2+h2). (8)

Comparing Equation 8 with Equation 6 reveals that these are the same distribution
as long as the following equalities are true:

e2 +g2 = A :=
n
∑
i
(∂Xis)

2,

e f +gh = B :=
n
∑
i

∂Xis∂Xit, (9)

f 2 +h2 =C :=
n
∑
i
(∂Xit)

2.

The system of equations (9) is underdetermined with three equations for four vari-
ables. Loviscach solved this equation in three dimensions by aligning one distribu-
tion to either the s- or t-axis, depending on which is more numerically robust [77].
If A > C, the following expressions are used:

e =
√

A, f = B/e, g = 0, h =
√

C− f 2,

and otherwise:

h =
√

C, g = B/h, f = 0, e =
√

A−g2.

156

APPENDIX

Appendix B - Elliptical Texture Filter

The task at hand is to find the minimal radius of the elliptical footprint on the
triangle. The projection of a pixel with circular footprint in the plane of the triangle
is an ellipse with arbitrary orientation. We let a screen space coordinate be defined
as (x,y) and texture space coordinates (s, t).
The elliptical footprint in texture space, centered around (0,0), is:

E(s, t) = As2 +Bst +Ct2, (10)

where (s, t) is inside the ellipse if E(s, t) < F , and from Heckbert [55], we have
the following:

A(x,y) = (∂ t/∂x)2 +(∂ t/∂y)2,

B(x,y) = −2
(

∂ s
∂x

∂ t
∂x

+
∂ s
∂y

∂ t
∂y

)
,

C(x,y) = (∂ s/∂x)2 +(∂ s/∂y)2,

F(x,y) =

(
∂ s
∂x

∂ t
∂y
− ∂ s

∂y
∂ t
∂x

)2

. (11)

Furthermore, if we introduce r =
√
(A−C)2 +B2, the minimum radius of the

ellipse is given by:
Rminor(x,y) =

√
2F/(A+C+ r). (12)

To determine the highest resolution mipmap level needed somewhere over the tri-
angle, our task is to find the minimal value of Rminor over the surface of the triangle.
More formally we search for:

min
(x,y)∈Tri

[
R2

minor(x,y)
]
= min

(x,y)∈Tri

[
2F

A+C+ r

]
. (13)

The derivative of a perspective correctly interpolated attribute can be expressed
as [35]:

∂ s
∂x

(x,y) =
c3x+ c4

Q2 ,

∂ s
∂y

(x,y) =
c5y+ c6

Q2 , (14)
...

where:
Q = c0x+ c1y+ c2. (15)

The expression we try to minimize becomes a high order irrational function. While
it is possible to simplify this function somewhat, we have yet to find any elegant
solution to finding the minimum, or proving that the minimum lies in any of the
triangle’s vertices.

157

PAPER VI: ADAPTIVE TEXTURE SPACE SHADING FOR STOCHASTIC
RENDERING

158

Bibliography

[1] T. Aila and V. Miettinen, “dPVS: An Occlusion Culling System for Mas-
sive Dynamic Environments,” IEEE Computer Graphics and Applications,
vol. 24, no. 2, pp. 86–97, 2004.

[2] T. Aila, V. Miettinen, and P. Nordlund, “Delay Streams for Graphics Hard-
ware,” ACM Transactions on Graphics, vol. 22, no. 3, pp. 792–800, 2003.

[3] K. Akeley, “RealityEngine Graphics,” in Proceedings of SIGGRAPH, 1993,
pp. 109–116.

[4] T. Akenine-Möller and T. Aila, “Conservative and Tiled Rasterization Using
a Modified Triangle Setup,” Journal of Graphics Tools, vol. 10, no. 3, pp.
1–8, 2005.

[5] T. Akenine-Möller, E. Haines, and N. Hoffman, Real-Time Rendering,
3rd ed. AK Peters Ltd., 2008.

[6] T. Akenine-Möller, J. Munkberg, and J. Hasselgren, “Stochastic Rasteriza-
tion using Time-Continuous Triangles,” in Graphics Hardware, 2007, pp.
7–16.

[7] T. Akenine-Möller and J. Ström, “Graphics for the Masses: A Hard-
ware Rasterization Architecture for Mobile Phones,” ACM Transactions on
Graphics, vol. 22, no. 3, pp. 801–808, 2003.

[8] T. Akenine-Möller, R. Toth, J. Munkberg, and J. Hasselgren, “Efficient
Depth of Field Rasterization using a Tile Test based on Half-Space Culling,”
Computer Graphics Forum, vol. 31, no. 1, pp. 3–18, 2012.

[9] A. R. Alameldeen and D. A. Wood, “Adaptive Cache Compression for
High-Performance Processors,” in International Symposium on Computer
Architecture, 2004, pp. 212–223.

[10] M. Andersson, J. Hasselgren, and T. Akenine-Möller, “Depth Buffer Com-
pression for Stochastic Motion Blur Rasterization,” in High Performance
Graphics, 2011, pp. 127–134.

159

[11] T. Annen, T. Mertens, P. Bekaert, H.-P. Seidel, and J. Kautz, “Convolution
Shadow Maps,” in Eurographics Symposium on Rendering, 2007, pp. 51–
60.

[12] T. Annen, T. Mertens, H.-P. Seidel, E. Flerackers, and J. Kautz, “Exponen-
tial Shadow Maps,” in Graphics Interface, 2008, pp. 155–161.

[13] A. Appel, “Some Techniques for Shading Machine Renderings of Solids,”
in Spring Joint Computer Conference, 1968, pp. 37–45.

[14] J. Arvo, “Backward Ray Tracing,” SIGGRAPH ’86 Course Notes - Devel-
opments in Ray Tracing, 1986.

[15] P. Beaudoin and P. Poulin, “Compressed Multisampling for Efficient Hard-
ware Edge Antialiasing,” in Graphics Interface, 2004, pp. 169–176.

[16] J. Bittner, M. Wimmer, H. Piringer, and W. Purgathofer, “Coherent Hier-
archical Culling: Hardware Occlusion Queries Made Useful,” Computer
Graphics Forum, vol. 23, no. 3, pp. 615–624, 2004.

[17] D. Blythe, “The Direct3D 10 System,” in SIGGRAPH, 2006, pp. 724–734.

[18] J. Bolz, “NV_conservative_raster (Revision 3),” NVIDIA OpenGL
Extension, 2015. [Online]. Available: https://www.opengl.org/registry/
specs/NV/conservative_raster.txt

[19] G. Borshukov and J. P. Lewis, “Realistic Human Face Rendering for "The
Matrix Reloaded",” in ACM SIGGRAPH Sketches & Applications, 2003, pp.
1–1.

[20] S. Boulos, E. Luong, K. Fatahalian, H. Moreton, and P. Hanrahan, “Space-
Time Hierarchical Occlusion Culling for Micropolygon Rendering with
Motion Blur,” in High Performance Graphics, 2010, pp. 11–18.

[21] J. Brunhaver, K. Fatahalian, and P. Hanrahan, “Hardware Implementation
of Micropolygon Rasterization with Motion and Defocus Blur,” in High
Performance Graphics, 2010, pp. 1–9.

[22] C. A. Burns, K. Fatahalian, and W. R. Mark, “A Lazy Object-Space Shading
Architecture with Decoupled Sampling,” in High Performance Graphics,
2010, pp. 19–28.

[23] P. Clarberg and J. Munkberg, “Deep Shading Buffers on Commodity
GPUs,” ACM Transactions on Graphics, vol. 33, no. 6, pp. 227:1–227:12,
2014.

[24] P. Clarberg, R. Toth, and J. Munkberg, “A Sort-Based Deferred Shading
Architecture for Decoupled Sampling,” ACM Transactions on Graphics,
vol. 32, no. 4, pp. 141:1–141:10, 2013.

160

BIBLIOGRAPHY

[25] D. Collin, “Culling the Battle Field,” Game Developer’s Conference, 2011.

[26] R. L. Cook, “Stochastic Sampling in Computer Graphics,” ACM Transac-
tions on Graphics, vol. 5, no. 1, pp. 51–72, 1986.

[27] R. L. Cook, L. Carpenter, and E. Catmull, “The Reyes Image Rendering
Architecture,” in Computer Graphics (Proceedings of SIGGRAPH), vol. 21,
1987, pp. 95–102.

[28] W. Dally, “Power Efficient Supercomputing,” 2009, Accelerator-based
Computing and Manycore Workshop (presentation).

[29] W. Donnelly and A. Lauritzen, “Variance Shadow Maps,” in Symposium on
Interactive 3D Graphics and Games, 2006, pp. 161–165.

[30] F. Durand, N. Holzschuch, C. Soler, E. Chan, and F. X. Sillion, “A Fre-
quency Analysis of Light Transport,” ACM Transactions on Graphics,
vol. 24, no. 3, pp. 1115–1126, 2005.

[31] K. Egan, F. Durand, and R. Ramamoorthi, “Practical Filtering for Effi-
cient Ray-Traced Directional Occlusion,” ACM Transactions on Graphics,
vol. 30, no. 6, pp. 180:1–180:10, 2011.

[32] K. Egan, F. Hecht, F. Durand, and R. Ramamoorthi, “Frequency Analy-
sis and Sheared Filtering for Shadow Light Fields of Complex Occluders,”
ACM Transactions on Graphics, vol. 30, no. 2, pp. 9:1–9:13, 2011.

[33] K. Egan, Y.-T. Tseng, N. Holzschuch, F. Durand, and R. Ramamoorthi,
“Frequency Analysis and Sheared Reconstruction for Rendering Motion
Blur,” ACM Transactions on Graphics, vol. 28, no. 3, pp. 93:1–93:13, 2009.

[34] E. Eisemann, M. Schwarz, U. Assarsson, and M. Wimmer, Real-Time Shad-
ows. AK Peters Ltd./CRC Press, 2011.

[35] J. Ewins, M. Waller, M. White, and P. Lister, “MIP-map Level Selection
for Texture Mapping,” IEEE Transactions on Visualization and Computer
Graphics, vol. 4, no. 4, pp. 317–329, 1998.

[36] K. Fatahalian, S. Boulos, J. Hegarty, K. Akeley, W. R. Mark, H. Moreton,
and P. Hanrahan, “Reducing Shading on GPUs using Quad-Fragment Merg-
ing,” ACM Transactions on Graphics, vol. 29, no. 4, pp. 67:1–67:8, 2010.

[37] K. Fatahalian, E. Luong, S. Boulos, K. Akeley, W. R. Mark, and P. Hanra-
han, “Data-Parallel Rasterization of Micropolygons with Defocus and Mo-
tion Blur,” in High Performance Graphics, 2009, pp. 59–68.

[38] R. Fernando, “Percentage Closer Soft Shadows,” in ACM SIGGRAPH
Sketches, 2005, p. 35.

161

[39] H. Fuchs and J. Poulton, “PIXEL-PLANES: A VLSI-Oriented Design for a
Raster Graphics Engine,” VLSI DESIGN (Third Quarter 1981), pp. 20–28,
1981.

[40] G. Golub and C. V. Loan, Matrix Computations, 3rd ed. John Hopkins
University Press, 1996.

[41] N. Greene, “Hierarchical Polygon Tiling with Coverage Masks,” in Pro-
ceedings of SIGGRAPH, 1996, pp. 65–74.

[42] N. Greene and M. Kass, “Error-bounded Antialiased Rendering of Complex
Environments,” in Proceedings of SIGGRAPH, 1994, pp. 59–66.

[43] N. Greene, M. Kass, and G. Miller, “Hierarchical Z-Buffer Visibility,” in
Proceedings of SIGGRAPH, 1993, pp. 231–238.

[44] C. J. Gribel, R. Barringer, and T. Akenine-Möller, “High-Quality Spatio-
Temporal Rendering using Semi-Analytical Visibility,” ACM Transactions
on Graphics, vol. 30, no. 4, pp. 54:1–54:12, 2011.

[45] C. J. Gribel, M. Doggett, and T. Akenine-Möller, “Analytical Motion Blur
Rasterization with Compression,” in High Performance Graphics, 2010, pp.
163–172.

[46] C. J. Gribel, J. Munkberg, J. Hasselgren, and T. Akenine-Möller, “Theory
and Analysis of Higher-Order Motion Blur Rasterization,” in High Perfor-
mance Graphics, 2013, pp. 7–16.

[47] J.-P. Guertin, M. McGuire, and D. Nowrouzezahrai, “A Fast and Stable
Feature-Aware Motion Blur Filter,” in High Performance Graphics, 2014,
pp. 51–60.

[48] M. Guthe, Á. Balázs, and R. Klein, “Near Optimal Hierarchical Culling:
Performance Driven Use of Hardware Occlusion Queries,” in Eurographics
Symposium on Rendering, 2006, pp. 207–214.

[49] P. Haeberli and K. Akeley, “The Accumulation Buffer: Hardware Support
for High-Quality Rendering,” in Computer Graphics (Proceedings of SIG-
GRAPH), vol. 24, 1990, pp. 309–318.

[50] J. Hasselgren and T. Akenine-Möller, “An Efficient Multi-View Rasteriza-
tion Architecture,” in Eurographics Symposium on Rendering, 2006, pp.
61–72.

[51] J. Hasselgren and T. Akenine-Möller, “Efficient Depth Buffer Compres-
sion,” in Graphics Hardware, 2006, pp. 103–110.

[52] J. Hasselgren, T. Akenine-Möller, and L. Ohlsson, “Conservative Rasteri-
zation,” in GPU Gems 2, M. Pharr and R. Fernando, Eds. Addison-Wesley
Professional, 2005, ch. 42, pp. 677–690.

162

BIBLIOGRAPHY

[53] J. Hasselgren, M. Andersson, J. Nilsson, and T. Akenine-Möller, “A Com-
pressed Depth Cache,” Journal of Computer Graphics Techniques, vol. 1,
no. 1, pp. 101–118, 2012.

[54] J. Hasselgren, J. Munkberg, and K. Vaidyanathan, “Practical Layered Re-
construction for Defocus and Motion Blur,” Journal of Computer Graphics
Techniques, vol. 4, no. 2, pp. 45–58, 2015.

[55] P. S. Heckbert, “Survey of Texture Mapping,” IEEE Computer Graphics &
Applications, vol. 6, no. 11, pp. 56–67, Nov. 1986.

[56] ——, “Adaptive Radiosity Textures for Bidirectional Ray Tracing,” in Com-
puter Graphics (Proceedings of ACM SIGGRAPH), 1990, pp. 145–154.

[57] M. Houle and G. Toussaint, “Computing the Width of a Set,” IEEE Trans-
actions on Pattern Analysis and Machine Intelligence, vol. 10, no. 5, pp.
761 –765, 1988.

[58] T. Inada and M. D. McCool, “Compressed Lossless Texture Representation
and Caching,” in Graphics Hardware, 2006, pp. 111–120.

[59] B. Johnsson, P. Ganestam, M. Doggett, and T. Akenine-Möller, “Power Ef-
ficiency for Software Algorithms running on Graphics Processors,” in High
Performance Graphics, 2012, pp. 67–75.

[60] T. R. Jones and R. N. Perry, “Antialiasing with Line Samples,” in Euro-
graphics Workshop on Rendering, 2000, pp. 197–205.

[61] N. P. Jouppi and C.-F. Chang, “Z3: An Economical Hardware Technique
for High-Quality Antialiasing and Transparency,” in Graphics Hardware,
1999, pp. 85–93.

[62] J. T. Kajiya, “The Rendering Equation,” in Computer Graphics (Proceed-
ings of SIGGRAPH), 1986, pp. 143–150.

[63] S. W. Keckler, W. J. Dally, B. Khailany, M. Garland, and D. Glasco, “GPUs
and the Future of Parallel Computing,” IEEE Micro, vol. 31, no. 5, pp. 7–17,
2011.

[64] A. Kensler and P. Shirley, “Optimizing Ray-Triangle Intersection via Auto-
mated Search,” in Proceedings of the 2006 IEEE Symposium on Interactive
Ray Tracing, Sep 2006, pp. 33–38.

[65] C. Kolb, D. Mitchell, and P. Hanrahan, “A Realistic Camera Model for
Computer Graphics,” in Proceedings of SIGGRAPH, 1995, pp. 317–324.

[66] S. Laine, T. Aila, T. Karras, and J. Lehtinen, “Clipless Dual-Space
Bounds for Faster Stochastic Rasterization,” ACM Transactions on Graph-
ics, vol. 30, no. 4, pp. 106:1–106:6, 2011.

163

[67] S. Laine and T. Karras, “Efficient Triangle Coverage Tests for Stochas-
tic Rasterization,” NVIDIA Corporation, Tech. Rep. NVR-2011-003, Sep
2011.

[68] ——, “Stratified Sampling for Stochastic Transparency,” in Proceedings of
EGSR, 2011, pp. 1197–1204.

[69] E. Lapidous and G. Jiao, “Optimal Depth Buffer for Low-cost Graphics
Hardware,” in Graphics Hardware, 1999, pp. 67–73.

[70] A. Lauritzen and M. McCool, “Layered Variance Shadow Maps,” in Graph-
ics Interface, 2008, pp. 139–146.

[71] J.-S. Lee, W.-K. Hong, and S.-D. Kim, “Design and Evaluation of a Selec-
tive Compressed Memory System,” in International Conference on Com-
puter Design, 1999, pp. 184 –191.

[72] S. Lee, E. Eisemann, and H.-P. Seidel, “Depth-of-field Rendering with Mul-
tiview Synthesis,” ACM Transactions on Graphics, vol. 28, no. 5, pp. 134:1–
134:6, Dec. 2009.

[73] J. Lehtinen, T. Aila, J. Chen, S. Laine, and F. Durand, “Temporal Light Field
Reconstruction for Rendering Distribution Effects,” ACM Transactions on
Graphics, vol. 30, no. 4, pp. 55:1–55:12, 2011.

[74] G. Liktor and C. Dachsbacher, “Decoupled Deferred Shading for Hardware
Rasterization,” in Symposium on Interactive 3D Graphics and Games, 2012,
pp. 143–150.

[75] D. B. Lloyd, N. K. Govindaraju, S. E. Molnar, and D. Manocha, “Practi-
cal Logarithmic Rasterization for Low-error Shadow Maps,” in Graphics
Hardware, 2007, pp. 17–24.

[76] T. Lokovic and E. Veach, “Deep Shadow Maps,” in Proceedings of SIG-
GRAPH, 2000, pp. 385–392.

[77] J. Loviscach, “Motion Blur for Textures by Means of Anisotropic Filtering,”
in Eurographics Symposium on Rendering, 2005, pp. 105–110.

[78] C. Luksch, R. F. Tobler, R. Habel, M. Schwärzler, and M. Wimmer, “Fast
Light-Map Computation with Virtual Polygon Lights,” in Symposium on
Interactive 3D Graphics and Games, 2013, pp. 87–94.

[79] O. Mattausch, J. Bittner, and M. Wimmer, “CHC++: Coherent Hierarchical
Culling Revisited,” Computer Graphics Forum, vol. 27, no. 2, pp. 221–230,
2008.

[80] M. D. McCool, C. Wales, and K. Moule, “Incremental and Hierarchical
Hilbert Order Edge Equation Polygon Rasterization,” in Graphics Hard-
ware, 2001, pp. 65–72.

164

BIBLIOGRAPHY

[81] M. McGuire and E. Enderton, “Colored Stochastic Shadow Maps,” in Sym-
posium on Interactive 3D Graphics and Games, 2011, pp. 89–96.

[82] M. McGuire, E. Enderton, P. Shirley, and D. Luebke, “Real-Time Stochastic
Rasterization on Conventional GPU Architectures,” in High Performance
Graphics, 2010, pp. 173–182.

[83] M. McGuire, P. Hennessy, M. Bukowski, and B. Osman, “A Reconstruction
Filter for Plausible Motion Blur,” in Symposium on Interactive 3D Graphics
and Games, 2012, pp. 135–142.

[84] S. Mehta, B. Wang, and R. Ramamoorthi, “Axis-Aligned Filtering for In-
teractive Sampled Soft Shadows,” ACM Transactions on Graphics, vol. 31,
no. 6, pp. 163:1–163:10, 2012.

[85] S. U. Mehta, B. Wang, R. Ramamoorthi, and F. Durand, “Axis-Aligned
Filtering for Interactive Physically-based Diffuse Indirect Lighting,” ACM
Transactions on Graphics, vol. 32, no. 4, pp. 96:1–96:12, 2013.

[86] S. U. Mehta, J. Yao, R. Ramamoorthi, and F. Durand, “Factored Axis-
aligned Filtering for Rendering Multiple Distribution Effects,” ACM Trans-
actions on Graphics, vol. 33, no. 4, pp. 57:1–57:12, 2014.

[87] S. Morein, “ATI Radeon HyperZ Technology,” in Graphics Hardware,
Hot3D Proceedings, 2000.

[88] J. Munkberg and T. Akenine-Möller, “Backface Culling for Motion Blur
and Depth of Field,” Journal of Graphics, GPU, and Game Tools, vol. 15,
no. 2, pp. 123–139, 2011.

[89] J. Munkberg and T. Akenine-Möller, “Hyperplane Culling for Stochastic
Rasterization,” in Eurographics 2012 – Short Papers, 2012, pp. 105–108.

[90] J. Munkberg, P. Clarberg, J. Hasselgren, R. Toth, M. Sugihara, and
T. Akenine-Möller, “Hierarchical Stochastic Motion Blur Rasterization,” in
High Performance Graphics, 2011, pp. 107–118.

[91] J. Munkberg, R. Toth, and T. Akenine-Möller, “Per-Vertex Defocus Blur
for Stochastic Rasterization,” Computer Graphics Forum, vol. 31, no. 4, pp.
1385–1389, 2012.

[92] J. Munkberg, K. Vaidyanathan, J. Hasselgren, P. Clarberg, and T. Akenine-
Möller, “Layered Light Field Reconstruction for Defocus and Motion Blur,”
Computer Graphics Forum, vol. 33, no. 4, pp. 81–92, 2014.

[93] F. Navarro, F. J. Serón, and D. Gutierrez, “Motion Blur Rendering: State of
the Art,” Computer Graphics Forum, vol. 30, no. 1, pp. 3–26, 2011.

165

[94] D. Nehab, P. V. Sander, J. Lawrence, N. Tatarchuk, and J. R. Isidoro, “Accel-
erating Real-Time Shading with Reverse Reprojection Caching,” in Graph-
ics Hardware, 2007, pp. 25–35.

[95] F. E. Nicodemus, “Directional Reflectance and Emissivity of an Opaque
Surface,” Applied Optics, vol. 4, no. 7, pp. 767–775, Jul 1965.

[96] M. Olano and T. Greer, “Triangle Scan Conversion using 2D Homogeneous
Coordinates,” in Graphics Hardware, 1997, pp. 89–95.

[97] A. B. Owen, “Quasi-Monte Carlo Sampling,” SIGGRAPH Monte Carlo
Ray Tracing Course, 2003.

[98] D. A. Patterson and J. L. Hennessy, Computer Organization and Design:
The Hardware/Software Interface, 3rd ed. Morgan Kaufmann Publishers
Inc., 2007.

[99] J. Pineda, “A Parallel Algorithm for Polygon Rasterization,” in Computer
Graphics (Proceedings of SIGGRAPH), vol. 22, 1988, pp. 17–20.

[100] J. Pool, A. Lastra, and M. Singh, “Lossless Compression of Variable-
Precision Floating-Point Buffers on GPUs,” in Symposium on Interactive
3D Graphics and Games, 2012, pp. 47–54.

[101] M. Potmesil and I. Chakravarty, “A Lens and Aperture Camera Model for
Synthetic Image Generation,” in Computer Graphics (Proceedings of SIG-
GRAPH), vol. 15, 1981, pp. 297–305.

[102] J. Ragan-Kelley, J. Lehtinen, J. Chen, M. Doggett, and F. Durand, “De-
coupled Sampling for Graphics Pipelines,” ACM Transactions on Graphics,
vol. 30, no. 3, pp. 17:1–17:17, 2011.

[103] J. Rasmusson, J. Hasselgren, and T. Akenine-Möller, “Exact and Error-
Bounded Approximate Color Buffer Compression and Decompression,” in
Graphics Hardware, 2007, pp. 41–48.

[104] J. Rasmusson, J. Ström, and T. Akenine-Möller, “Error-Bounded Lossy
Compression of Floating-Point Color Buffers using Quadtree Decomposi-
tion,” The Visual Computer, vol. 26, no. 1, pp. 17–30, January 2008.

[105] W. T. Reeves, D. H. Salesin, and R. L. Cook, “Rendering Antialiased
Shadows with Depth Maps,” in Computer Graphics (Proceedings of SIG-
GRAPH), vol. 21, 1987, pp. 283–291.

[106] M. Salvi, K. Vidimče, A. Lauritzen, and A. Lefohn, “Adaptive Volumetric
Shadow Maps,” in Eurographics Symposium on Rendering, Jun. 2010, pp.
1289–1296.

[107] M. Segal and K. Akeley, “The OpenGL Graphics System: A Specification,
v 4.5,” August 2015.

166

BIBLIOGRAPHY

[108] J. Shapiro, “Embedded Image Coding using Zerotrees of Wavelet Coeffi-
cients,” IEEE Transactions on Signal Processing, vol. 41, no. 12, pp. 3445–
3462, 1993.

[109] P. Sitthi-Amorn, J. Lawrence, L. Yang, P. V. Sander, D. Nehab, and J. Xi,
“Automated Reprojection-based Pixel Shader Optimization,” ACM Trans-
actions on Graphics, vol. 27, no. 5, pp. 127:1–127:11, 2008.

[110] D. Staneker, D. Bartz, and M. Meissner, “Improving Occlusion Query Effi-
ciency with Occupancy Maps,” in IEEE Symposium on Parallel and Large-
Data Visualization and Graphics, 2003, pp. 111–118.

[111] J. Ström, P. Wennersten, J. Rasmusson, J. Hasselgren, J. Munkberg, P. Clar-
berg, and T. Akenine-Möller, “Floating-Point Buffer Compression in a Uni-
fied Codec Architecture,” in Graphics Hardware, 2008, pp. 75–84.

[112] I. E. Sutherland, R. F. Sproull, and R. A. Schumacker, “A Characterization
of Ten Hidden-Surface Algorithms,” ACM Computing Surveys, vol. 6, no. 1,
pp. 1–55, 1974.

[113] R. Toth and E. Linder, “Stochastic Depth of Field using Hardware Acceller-
ated Rasterization,” Master’s thesis, Lund University, 2008.

[114] S. Tzeng, A. Patney, A. Davidson, M. S. Ebeida, S. A. Mitchell, and J. D.
Owens, “High-Quality Parallel Depth-of-Field Using Line Samples,” in
High Performance Graphics, 2012, pp. 23–31.

[115] K. Vaidyanathan, J. Munkberg, P. Clarberg, and M. Salvi, “Layered Light
Field Reconstruction for Defocus Blur,” ACM Transactions on Graphics,
vol. 34, no. 2, pp. 23:1–23:12, 2015.

[116] K. Vaidyanathan, M. Salvi, R. Toth, T. Foley, T. Akenine-Möller, J. Nils-
son, J. Munkberg, J. Hasselgren, M. Sugihara, P. Clarberg, T. Janczak, and
A. Lefohn, “Coarse Pixel Shading,” High Performance Graphics, pp. 9–18,
2014.

[117] K. Vaidyanathan, R. Toth, M. Salvi, S. Boulos, and A. Lefohn, “Adaptive
Image Space Shading for Motion and Defocus Blur,” High Performance
Graphics, pp. 13–21, 2012.

[118] I. Wald, S. Woop, C. Benthin, G. S. Johnson, and M. Ernst, “Embree: A
Kernel Framework for Efficient CPU Ray Tracing,” ACM Transactions on
Graphics, vol. 33, no. 4, pp. 143:1–143:8, 2014.

[119] T. Whitted, “An Improved Illumination Model for Shaded Display,” Com-
munications of the ACM, vol. 23, no. 6, pp. 343–349, 1980.

[120] L. Williams, “Casting Curved Shadows on Curved Surfaces,” Computer
Graphics (Proceedings of SIGGRAPH), vol. 12, pp. 270–274, 1978.

167

[121] M. Wimmer, D. Scherzer, and W. Purgathofer, “Light Space Perspective
Shadow Maps,” in Eurographics Symposium on Rendering. Eurographics,
jun 2004, pp. 143–151.

[122] A. Woo and P. Poulin, Shadow Algorithms Data Miner. AK Peters/CRC
Press, 2012.

[123] B. Yang, Z. Dong, J. Feng, H.-P. Seidel, and J. Kautz, “Variance Soft
Shadow Mapping,” Computer Graphics Forum, vol. 29, no. 7, pp. 2127–
2134, 2010.

[124] H. Zhang, D. Manocha, T. Hudson, and K. E. Hoff, III, “Visibility Culling
Using Hierarchical Occlusion Maps,” Proceedings of SIGGRAPH, pp. 77–
88, 1997.

168

