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SUMMARY:  
Building materials and furnishing used in contact with indoor air may have a positive effect to moderate 
the variations of indoor humidity seen in occupied buildings. Thus, very low humidity can be alleviated in 
winter, as well as can high indoor humidity in summer and during high occupancy loads. This way, 
materials can be used as a passive means of establishing indoor climatic conditions, which are comfortable 
for human occupancy, or for safe storing of artefacts which are sensible to humidity variation. 

But so far there has been a lack of a standardized figure to characterize the moisture buffering ability of 
materials. It has been the objective of a recent (ongoing until mid-2005) Nordic project to come up with 
such a definition, and to declare it in the form of a NORDTEST method. Apart from the definition of the 
term Moisture Buffer Value, there will also be a declaration of a test protocol which expresses how 
materials should be tested. Finally as a part of the project, some Round Robin Tests will be carried out on 
various typical building materials. 

The paper gives an account on the definition of the Moisture Buffer Value, it will outline the content of the 
test protocol, and it will give some examples of results from the Round Robin Tests. 

1. Introduction 
Materials that absorb moisture and release it in other periods can be used positively to reduce peaks of 
humidity levels in indoor climates. Indoor humidity is an important parameter to determine the occupants’ 
perception of indoor air quality (Fang et al. 2000), and is also an important parameter as a cause of 
processes which are harmful to the health of occupants (Bornehag et al., 2003).  



Some investigations indicate that the use of hygroscopic materials can improve the indoor climate and 
comfort of occupants because of the way the materials moderate the indoor humidity variations (Simonson 
et al., 2001). 

For these reasons, and because of the role played by indoor moisture conditions on the durability of the 
envelope of buildings, there is significant interest in characterizing both the moisture transmitting and 
buffering properties of absorbent, porous building materials.  

Therefore, there is a need for a robust definition of a term for the moisture buffer effect of materials, which 
is technically appropriate, yet comprehensible and indisputable for the industry and users that will apply it. 
At present there is no consensus on how to describe the moisture buffer properties of building materials. 

Next to establishing the term, there will be a need to define and declare which test methods are necessary to 
measure the moisture buffer performance according to the definition. A Round Robin Test should also be 
executed in order to ensure that testing laboratories are able to handle the test methods, and to establish the 
first reference measurements on a limited number of representative materials. 

The purpose of the NORDTEST project described in this paper is to fulfil these needs. 
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Figure 1 Sorption curves for different typical building materials. The slope of the curves indicates the 
specific moisture capacity. 

Many Nordic building products, such as wood based products, are expected to have an advantageous 
moisture buffer capacity, since they are often based on organic materials which have high hygroscopicity 
(see the sorption curves in Figure 1). The slope of the sorption curves indicates the moisture capacity, and a 
material, such as wood, appears to be very well performing in this respect. However, the definition of the 
sorption curve is for equilibrium conditions, found in a steady state situation, and in the version of the 
sorption curve shown in Figure 1, it refers to the weight ratio: water/dry material. But it is not always 
enough to use the hygroscopicity as the only indicator of the moisture buffering ability in a situation, where 
transient phenomena also play a role. The property should also take the material density into account, and it 
should consider whether a material has sufficient vapour permeability to facilitate high transport in and out.  

For instance, some silicate materials have both high density and a pore structure that is very conducive for 
moisture exchange, and it may compensate for a lower hygroscopicity. Thus, other materials, which are less 
hygroscopic than wood may perform just as well as moisture buffers. There is a need for a new parameter 
which combines all relevant features of a material so it is able to indicate in one number the rate and 
amount of moisture flowing between a material and its surrounding climate in a dynamic situation. This 
was the conclusion at a workshop that was arranged prior to starting the NORDTEST project (Rode, 2003).  

We propose to call this desired property the Moisture Buffer Value. Part of the NORDTEST project also 
comprises development of a NORDTEST method for determination of moisture buffer value. Thus the 
project provides manufacturers of building products and inventory for buildings with a unit to appraise the 
materials. 



Partners in the NORDTEST project are the Technical University of Denmark (as project leader); VTT, 
Finland; Byggforsk, Norway; and Lund Institute of Technology, Sweden. In addition the project is 
followed by an international reference group with participants from Glasgow Caledonian University, UK; 
INSA-Lyon, France; KU Leuven, Belgium; Fraunhofer Institut für Bauphysik, Germany; Pontifical 
Catholic University of Paraná, Brazil; and Faculdade de Engenharia da Universidade do Porto, Portugal.  

2. Definition of Moisture Buffer Value 
The Moisture Buffer Value (MBV) indicates the amount of moisture uptake or release by a material when it 
is exposed to repeated daily variations in relative humidity between two given levels. When the moisture 
uptake from beginning to end of the exposure to high relative humidity is reported per open surface area 
and per % RH variation, the result is the MBV. The unit for MBV is kg/(m2⋅% RH). The concept of 
moisture buffer value can easily be appreciated and understood from an experimental standpoint, and 
likewise, it is relatively straightforward to measure.  

The value is a direct measure of the amount of moisture transported to and from a material when the 
exposure is given. The value is mainly, but not only a property of the material. Also the mass transfer 
coefficient at the boundary plays a role, and thus, the moisture buffer value becomes a true material 
property only in the limit of the convective mass transfer coefficient tending to infinity. For many materials 
the internal resistance to moisture transport is considerably large than the convective surface resistance. 

MBV has a companion definition which is based on theoretical analysis and standard moisture transport 
and storage properties. This is the moisture effusivity, a property which could be seen as a companion to 
the well-known thermal effusivity. Thermal effusivity, b [J/(m2⋅ K⋅s½)], is defined (Hagentoft, 2001) as: 

 

α
λ

ρλ =⋅⋅= pcb 0  (1) 

 where  λ is thermal conductivity [W/(m·K)], 
ρ0 dry density of the material [kg/m³], 
cp heat capacity [J/(kg·K)], and 
α thermal diffusivity [m²/s].   

 

The thermal effusivity can also be understood as the heat accumulation capacity of the material. It indicates 
the rate of heat transfer into or out of a material when its surface temperature is brought to another level. 
For step changes in surface temperature the rate of heat transfer into the material, q [W/m2], is proportional 

to 
b
t

 and to the temperature increment. 

The moisture effusivity is equivalent in that it indicates a material’s ability to loose or gain moisture over 
its surfaces, when it is brought in contact an environment at another condition. Moisture effusivity, bm 
[kg/(m²·Pa· s0.5)], is given by Equation 2.  
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 where  δp is the water vapour permeability [kg/(m⋅s⋅Pa)], 
u  moisture content [kg/kg], 
ϕ relative humidity [-], and 
psat saturation vapour pressure [Pa]. 

 

The moisture buffer value, MBV, introduced in the beginning of this section can be anticipated to be 
proportional to the moisture effusivity times the square root of the time period, tp, since the instantaneous 
moisture transfer rate, gm [kg/m2⋅s], is proportional to the moisture effusivity divided by the square root of 
the time, t-t0, passed since the change of boundary condition: 
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The moisture effusivity is theoretically based on material properties which are determined under steady 
state and equilibrium conditions, and since the buffer property represents a dynamic characteristic, there 
may be some discrepancy between the appraisal of a material’s moisture buffer effect whether it is based on 
one definition or the other. For instance, so-called non-Fickian behaviour (e.g. Håkansson, 1998) may show 
up in the dynamic situation, which may not be seen in the steady state. For practice oriented evaluations, 
one should prefer the value which is based on dynamic experiments, i.e. the MBV. However, the moisture 
effusivity has the elegant feature that it can be calculated based on standard moisture transport and storage 
properties of materials as shown by Equation 2. 

3. Test Protocol 
The NORDTEST project defines a test protocol for experimental determination of the moisture buffer 
value.  The principle is based on climatic chamber tests, where a specimen is subjected to environmental 
changes that come like a square wave in diurnal cycles.  

The test protocol proposes to use climatic exposures which vary in 8 h + 16 h cycles: 8 hours of high 
humidity followed intermittently by 16 hours of low humidity. The reason for the asymmetry in this time 
scheme is twofold: (1) It replicates the daily cycle seen in many rooms, e.g. offices or bedrooms, where the 
load comes in approximately 8 hours, and (2) for practical reasons during testing if the climatic chamber 
conditions are changed manually, it is a scheme which is easier to keep than a 12 h + 12 h shift. 

The low humidity is proposed to be 33% RH, while the high should be 75% RH. However, the 
NORDTEST project also proposes the following alternatives: 33/54%, 54/75%, and 75/93%. Testing 
should always be carried out at 23°C. The humidity levels are chosen such that they can be maintained by 
use of salt solutions, but some other conditioning system may also be used. 

Specimens will normally be sealed on all but one or two surfaces. The thickness of the specimen should be 
at least the moisture penetration depth for daily humidity variations, or 10 mm, whichever is larger. At least 
three specimens should be used for testing. Before testing, the test specimens shall be stored and initially be 
in equilibrium with 50% RH, or possibly with the mean RH of exposure during test. 

Using an accurate scale, the specimens should be weighed continuously during the test, or if not, then at 
least at the beginning and end of each climatic exposure. At least five weight measurements should be 
carried out during the 8 hour high humidity part of the last cycle. A minimum of three cycles have to be 
carried out, or until the change in specimen weight over the cycle varies by less than 5% from day to day. 

The results should be plotted and also be analyzed as mass change (m8 hours-m0) per m2 and per ∆RH. In 
addition, like in a liquid water uptake test the initial weight change after increasing RH should be plotted 

vs. t and the linear slope of the curve determined. Results should be shown for all days of investigations, 
but typically, only the results from the last day of testing will be reported finally. 

4. Round Robin Test and Initial Results 
A Round Robin Test will be carried out within the NORDTEST project to try the testing paradigm and to 
obtain some initial results for some typical building materials. In addition, and to guide the formulation of 
the test protocol, a preliminary test was carried out on some spruce plywood boards that were distributed to 
all project partners. For the main Round Robin, the following materials will be tested: 

- Spruce panels delivered by Wood Focus, Finland 
- Concrete from Betonelementforeningen and Leo Nielsen Elementfabrik A/S, Denmark 
- Gypsum from Gyproc AB, Sweden 
- Laminated wood from Anneberg Limtræ A/S, Denmark - with acrylic knot sealing varnish 
- Light weight aggregate concrete from maxit a.s, Denmark - with a 3-layered rendering system 



- Cellular concrete from H+H Celcon A/S, Denmark 
- Brick delivered by Kalk- og Teglværksforeningen and Gandrup Teglværk, Denmark 
- Birch panels delivered by Tresenteret, Norway 

Each material is tested by three partners in the project, e.g. by the country which is responsible for delivery 
of the material, and two other. By the time of writing this paper, the tests are ongoing, and are planned to be 
completed by the summer 2005. Results are available however, for the first material, spruce panels, and 
will be illustrated in the following. Testing of this material was carried out by VTT, Byggforsk (NBI) and 
the Technical University of Denmark (DTU). 

The three institutions do not have quite the same experimental equipment available and some of the 
operational routines were also dissimilar, although in accordance with the common test protocol. E.g., some 
institutes made manual weighing of the specimen, while it for others took place by automated logging. 
Thus, it has been part of the Round Robin Test to see if it were possible to obtain similar and agreeable 
results by all institutes. 

Figure 2 shows a drawing and photograph of one of the climatic chambers used at the Technical University 
of Denmark. The humidity control of the chamber works by supplying it with either humid or dry air in an 
intermittent mode, such that the desired humidity in the chamber is achieved.  

 
Figure 2 Drawing and picture of one of the climatic chamber used at DTU. 

Figure 3 shows the spruce specimens after sealing with aluminium tape on the edges and the back side, 
such that the specimens are ready for test. Figure 4 shows for all specimens and all institutes who have 
tested this material, the results of the weighing on the last day of the cycles – typically after some 3-5 days. 
The results have been plotted per unit area of open surfaces, and they have been shifted to a common 
starting point, which is the weight at the beginning of exposure to the high humidity on the last day. The 
MBV is then found by dividing the weight change per area with the RH-change, which was 33 - 75% RH. 
The results for all specimens and institutes is shown in Table 1. 



 
Figure 3 Picture of spruce panels after preparation so they are ready for test. 

 

Table 1 Moisture Buffer Value [g/(m2⋅%RH)] of all together nine different  specimens of spruce panel 
tested in the NORDTEST Round Robin. 

Specimen 

Institute #1 #2 #3 

VTT 1.19 1.23 1.19 

Byggforsk 1.09 1.16 1.10 

DTU 1.20 1.17 1.18 
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Figure 4 Spruce panels: Normalized weight change for the last day of the cycles for three specimens at 
each of three institutes. 

Figure 5 shows the moisture uptake curves plotted vs. square root of time as measured by Byggforsk. 
Similar curves exist for the other two institutes (measured with more data points). The moisture uptake 



coefficients determined for all three institutes are listed in Table 2. There is a fair amount of agreement 
between the institutes’ results, but most notable are somewhat higher values found from the results of DTU, 
and partly by VTT. This is because of a time lag in the initiation of the moisture uptake. The linear portion 

of the moisture- t  relation does not occur until after half to one hour, but since the total weight increase 
is about the same found by all institutes, the linear part of moisture uptake becomes more steep. This 
problem is due to the experimental equipment not always being able to make the sudden RH changes 
(particular it has been a problem for DTU’s testing of these specimens). 
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Figure 5 Moisture uptake vs. square root of time for the three spruce specimens tested at Byggforsk. 

 

Table 2 Slope of the moisture uptake vs. square root of time curve for altogether nine different spruce 
panels as determined by the institutes [g/(m2⋅h½)]. 

Specimen 

Institute #1 #2 #3 

VTT 18.9 19.8 20.3 

Byggforsk 16.4 17.4 16.5 

DTU 23.1 23.1 23.6 

 

5. Practical application of the Moisture Buffer Value 
The Moisture Buffer Value is primarily meant as a number that can be used to appraise a material’s ability 
to absorb and release moisture from an adjacent space. For practical application it can also be useful as a 
number for estimation of the moisture balance of rooms, as indicated by the following example. 

5.1 Example 

A room has dimensions 4 x 5 x 2.5 m, and thus a volume of V = 50 m3. The occupancy and activity in the 
room releases G = 100 g of moisture per hour. The room is clad with A = 45 m2 wall panels of spruce board 
with MBV = 1.2 g/(m2⋅∆RH). Initially the room is assumed unventilated, and the storage capacity of the 
room air is neglected. By how much will the indoor humidity increase during a working day (8 hours)?  



All the released moisture is absorbed by the spruce board, and thus, the increase in indoor relative humidity 
can be calculated from the amount of absorbed moisture, and the moisture buffer value of the wood: 

 2 2
100g/h 8h

15%RH
MBV 1.2g/(m %RH) 45m

G t
RH

A
⋅ ∆ ⋅

∆ = = =
⋅ ⋅ ⋅

 
 

In comparison the RH would increase in principle by about 90 % RH (or condensation would occur before 
then) if there were no ventilation or absorbing materials – this is evaluated at 20°C. 

Finally, if the room were ventilated at an air change rate of n = 0.5 h-1, the indoor humidity would in an 
equilibrium situation have an indoor vapour concentration, ν, which is higher than the outdoors by: 
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At 20°C this would correspond to 23% RH higher indoor relative humidity compared to the same room 
without moisture release. 

These calculations are too simplistic to fully represent the real dynamic conditions of a room which is 
influenced by both ventilation, and buffering of room air and materials. However, it indicates some orders 
of magnitude and renders some possibility to reflect over which parameters are important to govern indoor 
humidity variation in an indoor space with occupancy and cladding with various materials. 

6. Conclusion 
The described work will declare a uniform definition of a term such as Moisture Buffer Value as well as an 
experimental protocol for its determination. Moisture Buffer Value can be used to appraise the ability of 
materials used in buildings to moderate indoor humidity variations. The term should replace an inconsistent 
variety of other numbers used till now to appraise this quality of building materials. The definition and test 
protocol will be tried out by the execution of a Round Robin Test, in which the first results for some 
examples of common building materials will be determined. The results of the described project will be 
published in the form of a NORDTEST method.  
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