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Abstract

This paper deals with the performance of frequency selective structures with
defects. A frequency selective structure is in this case a periodic pattern of
apertures in a conducting plate. The plate can be of arbitrary thickness. The
defects can be by deviations in the placing of the apertures, in the material
parameters, or in the shape of the apertures. First the perturbation to the far-
field pattern from a deviation in one aperture is analyzed. Then a statistical
analysis is performed for a frequency selective structure where the apertures
have a stochastic variation.

1 Introduction

A plane Frequency Selective Structure (FSS) is a periodic structure of infinitely
many identical cells. The structure acts as a filter for an incident electromagnetic
plane wave. For certain frequencies the induced currents in the cells interfere con-
structively such that all of the incident power is transmitted through the structure,
whereas waves with other frequencies are partly, or entirely, reflected. This paper
presents a simple method that can handle perturbations in the periodic pattern and
that can estimate the effects these perturbations have on the filtering property. The
method gives the surface fields, as well as the far-fields, from the perturbed region.
It is also shown how a stochastic distribution of perturbations can be analyzed.

A number of different techniques have been developed during the years to analyze
unperturbed frequency selective structures. The Method of Moments (MoM), cf. [5,
6], the Finite Difference Time-Domain (FDTD) technique [3], and the Finite Element
Method (FEM) [2, 7], are three of the most common methods. The philosophy
behind the perturbation method in this paper is that the numerical method and
code used for the unperturbed periodic structure can, without modifications, be
used to estimate the effects of perturbations to the periodic structure. Thus it is the
chosen method for the unperturbed problem that sets the limits for what structures
that can be handled. The methods mentioned above are very general and can e.g.,
handle periodic patterns of metal strips, periodic patterns of apertures in conducing
planes, and periodic patterns that include dielectric parts.

2 Unperturbed FSS

A frequency selective structure is a periodic pattern of identical cells. For simplicity
it is assumed that the structure is parallel to the xy−plane and is periodic in the
x−direction with a period a and in the perpendicular direction, the y−direction,
with a period b. Structures that are periodic in non-perpendicular directions can be
handled in the same manner, cf. [7]. The FSS has a finite thickness and is assumed
to occupy the region −h < z < 0, cf. Figure 1. The FSS is assumed to be excited
by an incident plane wave

Ei(r) = E0e
iki·r, (2.1)
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Figure 1: The frequency selective plate. The apertures may be filled with a dielec-
tric material.

where the time dependence e−iωt is assumed and where ki = (kix, kiy, kiz) is the wave
vector. For simplicity the incident wave is assumed to be incident from below, i.e.,
with kiz > 0. Due to the periodicity of the geometry, the reflected and transmitted
fields are periodic vector functions in the x− and y−directions. The periodicity is
utilized by the numerical programs and the scattering region is reduced to one cell.

3 FSS with a single perturbed cell

If one or more cells are perturbed, a field that is not periodic will be superimposed the
periodic field. This causes numerical problems since the scattering region no longer
can be reduced to one cell. However, if the perturbation is small the interaction of
the perturbed field with the surrounding cells can be neglected and the scattering
region can be reduced to one cell. It is this approximation that makes the problem
numerically feasible.

First consider an FSS where the cell Sk is perturbed, but all of the other cells
are unperturbed. The total electric and magnetic fields at the surfaces of the cell
are denoted E, H , the corresponding fields for the unperturbed case are denoted
E0, H0, and the perturbation fields are denoted EP , HP . Thus

E = E0 + EP ,

H = H0 + HP ,
(3.1)

where the unperturbed fields are assumed to be known. The perturbation is assumed
to be small enough for the following approximation to hold:

The tangential electric and magnetic surface fields on the surface of the perturbed
cell are the same as the corresponding fields for an FSS where all of the cells are
identical with the perturbed cell.

The approximation is referred to as the single cell approximation and is illus-
trated in Figure 2. The numerical examples in the numerical section indicate that
this is a relevant approximation, even for quite large perturbations. There are two
important features of this approximation; firstly the approximation is independent
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a b c

Figure 2: The single cell approximation. a) The periodic structure with one per-
turbed cell. b) The unperturbed periodic structure. c) The periodic structure with
all of the cells perturbed. The surface field in the perturbed cell in a is approxi-
mately the same as the surface field in the corresponding cell in c. The perturbation
of the surface field in the perturbed cell is approximately the difference between the
surface fields in the corresponding cells in c and b.

of the numerical method that is used for the solution of the scattering problem, and
secondly, the perturbation is obtained by numerically solving the surface fields for
two different periodic structures. A numerical method that can handle the unper-
turbed structure can also handle the perturbation and hence no new numerical code
is needed.

In the case of a large perturbation, the single cell approximation becomes inac-
curate. It is then possible to introduce supercells in order to obtain the perturbed
fields. A supercell is depicted in Figure 3. It consists of the perturbed cell and at
least one of the cells surrounding the perturbed cell. To obtain the perturbation to
the field one creates a periodic structure of supercells. The perturbed surface field
of the perturbed cell is given by EP = E − E0, where in this case E is the surface
field from the periodic structure with each cell being a supercell. The supercells
can be handled by an FDTD program for periodic structures without modification.
Methods based on FEM or on MoM have to be slightly modified. In Appendix B it
is seen how a method based on FEM is modified to handle supercells. Obviously the
numerical calculations with supercells are more CPU-time consuming than without
supercells. By comparing the single cell calculation with a supercell calculation, it
should be possible to get a good estimate of the error. In the rest of the paper the
approximation based on supercells is referred to as the supercell approximation, in
contrast to the single cell approximation.

4 FSS with several perturbed cells

Now consider an FSS with more than one perturbed cell. If the perturbed cells
are densely distributed, then if the supercell approximation is used, all of the cells
in the supercell should be unaltered and a periodic structure with that supercell is
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Figure 3: The supercell approximation. The surface field in the perturbed cell
in the structure in Figure 2 is approximately the same as the surface field in the
corresponding cell in the above structure. The approximation obtained from the su-
percell structure is better than the one obtained from the single cell approximation,
cf. Figure 2.

formed, cf. Figure 4. Otherwise, if the perturbed cells are sparsely distributed and it
is unlikely that two neighboring cells are perturbed, supercells where the other cells
are unperturbed are accurate. When the perturbed cells have stochastic variations
and when their distribution is stochastic the methods described in Section 3 are
applicable.

5 Far-field amplitude

The perturbation of the far-field can be determined from the integral representation
of the field. First consider an FSS with no dielectric layers. The perturbation to
the far-field from one perturbed cell yields

Es(r) =
eikr

kr
F (r̂). (5.1)

The far-field amplitude is different above and below the FSS. In both cases the
expression for the perturbation reads

F P (r̂) = i
k2

4π
r̂ ×

∫∫
Sk

[n̂ × EP (r′) − η0r̂ × (n̂ × HP (r′))]e−ikr̂·r′
dS ′. (5.2)
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For the far-field above the FSS (z > 0) Sk is the surface of the cell at z = 0 and
n̂ = ẑ, and for the far-field below the FSS (z < −h) Sk is the surface of the cell at
z = −h and n̂ = −ẑ.

6 Translated aperture

The simplest case of perturbation is a displacement of the cell number p a vector
δrp = (δxp, δyp, 0). The displacement is assumed to be small enough for the single
cell approximation to hold. The difference between the case with all of the apertures
displaced and the case with no cells displaced is simply due to the translation of the
coordinate system. The surface fields of the displaced cell are given by

ET (r) = eiki·δrpE0
T (r),

HT (r) = eiki·δrpH0
T (r),

(6.1)

where again E0 and H0 are the tangential field for the unperturbed cell. The
corresponding perturbations to the surface fields are

EP
T (r) = (eiki·δrp − 1)E0

T (r),

HP
T (r) = (eiki·δrp − 1)E0

T (r).
(6.2)

The far-field amplitude is given by

F (r̂) = eiq·δrpF 0(r̂), (6.3)

where F 0 is the far-field amplitude for a cell that is not translated and where

q = ki − kr̂. (6.4)

Hence k is the wave number and r̂ = r/r. In all directions where q · δrp = n2π the
perturbation to the far-field is zero. Since δrp is small this only happens for n = 0,
i.e., in the forward direction (ki − kr̂ = 0) and in the specular reflection direction,
kr̂ = (kix, kiy,−kiz). If the first order term in powers of delta is kept, it is seen that

EP
T (r) = i(ki · δrp)E

0
T (r),

HP
T (r) = i(ki · δrp)E

0
T (r),

F P (r̂) = i(ki · δrp)F
0(r̂).

(6.5)

The perturbations to the far-field in the forward direction and in the specular re-
flection direction are of second order in δrp and can not be obtained by the single
cell approximation. They require a supercell approximation.

7 FSS with a dielectric layer

Often the metallic FSS is coated with a dielectric layer. For simplicity it is assumed
that the upper part of the metallic surface is at z = 0 and that the layer 0 < z < z0
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is occupied by a homogeneous dielectric material with permittivity εr. There are
two ways to obtain the perturbation to the far-field when the layer is present. The
first alternative is to calculate the surface fields on the upper surface of the dielectric
layer, i.e., at z = z0, directly. This is probably a good approximation if the layer is
much thinner than the width of the cell. If the layer is thick it is better to calculate
the surface fields on the metal surface and then calculate the far-field amplitude.
To take the effect of the dielectric layer into account one may use an expansion in
plane waves, in combination with the method of stationary phase. The expression
for the far-field in the upper half space, z > z0 is given by

E0(r) =
F (r̂)

kr
eikr,

F (r̂) = 2πi
2∑

j=1

aj(k1)Tj(k)φj(k;0),
(7.1)

where Tj are the transmission coefficients for the dielectric layer, φj are vector
plane waves, and aj are plane wave coefficients. The explicit expressions for these
quantities and a derivation of the expressions are given in Appendix A.

8 Stochastic variation of several apertures

Consider an FSS with a number of perturbed cells. If the apertures are not identical,
the transmitted and reflected power are affected. Consider the case when the shape
and position of the cells have some stochastic variation. The variation is considered
to be small enough for the approximations done in the previous section to hold. The
far-field amplitude above the structure from cell number n is given by

F n(r̂) = F 0(r̂) + F P
n (r̂) = F 0(r̂) + δF 0(r̂) + ∆F n(r̂), (8.1)

where F 0(r̂) is the far-field amplitude for one cell of the unperturbed structure,
δF 0(r̂) is the mean value of the perturbation of the far-field, and ∆F n(r̂) is the
part of the perturbed far-field that has mean value zero. Thus

< F n(r̂) >= F 0(r̂) + δF 0(r̂). (8.2)

Let rn be the location of the centers of the cells in the FSS and let ks = kr̂ be
the wave vector of the scattered field. The centers of the cells are defined by the
unperturbed structure and are not affected by a perturbation of the cell. Let the
structure be finite with N = Nx ×Ny cells and disregard from the fact that the cells
at the border of the structure are different. Following [4] the average electromagnetic
power flow density from the FSS is given by

1

2η0

< |E(r)|2 >=
1

2η0k2r2
< |

N∑
n=1

eiq·rnF n(r̂)|2 >, (8.3)
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where q = ki − kr̂. The following relation holds

< |
N∑

n=1

eiq·rnF n(r̂)|2 >=N < |∆F n(r̂)|2 > +|F 0(r̂) + δF 0(r̂)|2
N∑

n=1

N∑
n′=1

eiq·(rn−rn′ ).

(8.4)
The sum on the right hand side can be summed. Since n is a multiindex and
rn = (nxa, nyb, 0) it is seen that

|
N∑

n=1

eiq·rn|2 =
N∑

n=1

N∑
n′=1

eiq·(rn−rn′ ) = |
Nx∑

nx=1

eiqxnxa|2|
Ny∑

ny=1

eiqynyb|2. (8.5)

Each series is summed as

|
Nx∑

nx=−Nx

eiqxnxa|2 = |sin(Nxqxa/2)

sin(qxa/2)
|2, (8.6)

and it follows that

|
N∑

n=1

eiq·rn|2 = |sin(Nxqxa/2)

sin(qxa/2)
|2|sin(Nyqyb/2)

sin(qyb/2)
|2. (8.7)

As the structure becomes infinitely large in both the x− and y−direction then using
Feijer’s method, cf. [1]

lim
Nx→∞

1

Nx

(
sin(Nxqxa/2)

sin(qxa/2)

)2

= 2πδ(qx), (8.8)

it is seen that

lim
N→∞

1

N
|

N∑
n=1

eiq·rn|2 = 4π2δ(qx)δ(qy). (8.9)

The scattered power per unit solid angle is

Us(r̂) =
1

2η0

< r2|Es(r)|2 > . (8.10)

The incident power is given by

Pi =
1

2η0

|E0|2NA|k̂i · ẑ|. (8.11)

The corresponding power scattering coefficient per unit solid angle (differential scat-
tering cross section) reads

Us(r̂)

Pi

=
1

k2A|k̂i · ẑ|

(
< |∆F n(r̂)| >2

|E0|2

+
|F 0(r̂) + δF 0(r̂)|2

|E0|2
1

N

(
sin(Nxqxa/2)

sin(qxa/2)

)2 (
sin(Nyqyb/2)

sin(qyb/2)

)2
)

.

(8.12)
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As the structure becomes infinitely large this becomes

Us(r̂)

Pi

=
1

k2A|k̂i · ẑ|

(
< |∆F n| >2

|E0|2
+

|F 0(r̂) + δF 0(r̂)|2
|E0|2

4π2δ(qx)δ(qy)

)
. (8.13)

When the perturbation is a translation δrn = (δxn, δyn, 0) explicit expressions
can be obtained. Thus the far-field amplitude from one cell is

F n(r̂) = e−iq·δrnF 0(r̂), (8.14)

and
F 0(r̂) + δF 0(r̂) =< e−iq·δrn > F 0(r̂),

∆F n(r̂) = (e−iq·δrn− < e−iq·δrn >)F 0(r̂).
(8.15)

Then

Us(r̂)

Pi

=
|F 0(r̂)|2

k2A|E0|2|k̂i · ẑ|
(
1 − | < e−iq·δrn > |2

+| < e−iq·δrn > |2 1

N

(
sin(Nxqxa/2)

sin(qxa/2)

)2 (
sin(Nyqyb/2)

sin(qyb/2)

)2
)

.

(8.16)

As the structure becomes infinitely large this becomes

Us(r̂)

Pi

=
|F 0(r̂)|2

k2A|E0|2|k̂i · ẑ|
(
1 − | < e−iq·δrn > |2 + | < e−iq·δrn > |24π2δ(qx)δ(qy)

)
.

(8.17)

9 Numerical examples

In this section it is indicated that the perturbed surface fields are localized fields
that in most cases are negligible in the cells surrounding the perturbed cell. This is
done by calculating the perturbation to the tangential electric and magnetic fields
on the surface of the perturbed cell, using the single cell approximation. In this case
the unperturbed cell consists of a circular aperture in a perfectly conducting plate.
The thickness of the plate is one mm, the radius of the aperture is 15 mm, the cell
is quadratic 23 × 23 mm, and the center of the aperture coincides with the center
of the cell. The incident electric field is a linearly polarized plane wave at normal
incidence, with the electric field in the x−direction, i.e., the horizontal direction in
the figure. The frequency is 10 GHz. The perturbed cell has its aperture displaced
either a distance 4 mm to the right or 4 mm upwards.

The surface fields were calculated by a method that utilizes FEM in combina-
tion with a mode matching technique, cf. [7]. The perturbed fields, EP

T (r) and
HP

T (r), were obtained by first solving the unperturbed periodic case to get E0
T (r)

and H0
T (r), and then solving the periodic case with all cells displaced to obtain

ET (r) and HT (r). It was checked that the latter fields only differ by a phase shift
k · δr compared to the unperturbed fields, cf. Subsection 6. The resulting fields,
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Figure 4: The surface fields of the tangential electric and magnetic fields of cells
with circular apertures. The incident field, the geometry, and the figures are de-
scribed in Section 9.
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EP
T (r) and HP

T (r), are shown in Figure 4. Let (i, j) denote the subfigure in row i and
colon j. The unperturbed tangential electric field E0

T is shown in figure (1,1) and
the corresponding magnetic field H0

T in figure (2,1). In figures (1,2) and (2,2) the
tangential electric and magnetic fields ET and HT are shown for the periodic case
with all of the apertures displaced horizontally a vector δr = δxx̂, with δx = 4 mm.
The perturbation to the tangential electric and magnetic fields, EP

T and HP
T , are

shown in figures (1,3) and (2,3), respectively. The case with a perturbation δr = δyŷ
with δy = 4 mm is shown in figures (3,2), (3,3), (4,2), and (4,4). Then the figures
(3,2) and (4,2) depict the electric and magnetic fields for the periodic case with all
of the apertures displaced and figures (4,2) and (4,3) depict the perturbations to
the tangential electric and magnetic fields.

As seen from the plots in Figure 4, the perturbation of the fields are concentrated
to the area close to the edge of the aperture. The perturbation is close to zero at
the border between the cells.

It is anticipated that the perturbation to the surface fields are negligible in the
other cells. To check this, one should make a calculation with supercells. This can
be done by the method described in Appendix B and such calculations are to be
presented in a coming paper.
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Appendix A FSS with dielectric layers

Consider the case where there is a dielectric layer of thickness z0 above the FSS.
The tangential components of E and H are considered to be known on the surface
z = 0 of one cell. The corresponding far-field amplitude is to be determined. Let
the surface of the cell be at z = 0. The interface between the dielectric layer and air
is at z = z0. The quantities defined in the region 0 < z < z0 are denoted with an
index 1 and quantities in the region z > z0 have no index. A plane wave expansion
of the upwards travelling field in region 1 is given by

E1(r) =

∞∫

−∞

∞∫

−∞

2∑
j=1

φj(k1; r)aj(k1)dkxdky, (A.1)

where the plane waves are given by

φ1(k1; r) = −β̂
i

4π
eik1·r,

φ2(k1; r) = −α̂
1

4π
eik1·r.

(A.2)
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Here β and α are the spherical angles such that

k1 = k1(sin α cos β, sin α sin β, cos α), (A.3)

and
β̂ = (− sin β, cos β, 0),

α̂ = (cos α cos β, cos α sin β,− sin α),
(A.4)

where cos α > 0 since the wave is travelling upwards. The plane waves satisfy

∇× φ1 = k1φ2,

∇× φ2 = k1φ1.
(A.5)

The plane wave expansion of the Green dyadic reads

G(r, r′; k1) = 2i
2∑

j=1

∞∫

−∞

∞∫

−∞

1

k1z

φj(k1; r)φ†
j(k1; r

′)dkxdky, (A.6)

where the dagger means that i is exchanged for −i in Eq. (A.2). From the integral
representation of the electric field and the expansion of the Green dyadic the plane
wave expansion coefficients are obtained as

a1(k1) = 2i
1

k1z




∫

S

k1(n̂ × E1) · φ†
2(k1; r

′) + (n̂ ×∇′ × E1) · φ†
1(k1; r

′) dS ′


 ,

a2(k1) = 2i
1

k1z




∫

S

k1(n̂ × E1) · φ†
1(k1; r

′) + (n̂ ×∇′ × E1) · φ†
2(k1; r

′) dS ′


 .

(A.7)
The transmitted field is obtained by utilizing the boundary conditions at the

plane surface at z = z0

E0(r) =
1

k

∞∫

−∞

1

k0z

∞∫

−∞

2∑
j=1

aj(k1)Tj(k)φj(k; r)dkxdky, (A.8)

where k1 and k are related by Snell’s law, i.e.,

k0x = k1x = kx, k0y = k1y = ky,

k0z =
√

k2 − k2
x − k2

y, k1z =
√

k2
1 − k2

x − k2
y.

(A.9)

The transmission coefficients are given by

T1 =
2k1z

k1z + k0z

exp(iz0(k1z − k0z)),

T2 =
2kk1k1z

k2k1z + k2
1k0z

exp(iz0(k1z − k0z)).
(A.10)
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The far-field amplitude is obtained by letting r = |r| → ∞. The Fourier integral is
then evaluated by the stationary phase method. The result is

E0(r) =
F (r̂)

kr
eikr,

F (r̂) = 2πi
2∑

j=1

aj(k1)Tj(k)φj(k;0).
(A.11)

A.1 Stationary phase method

The electric field reads

E(r) =

∞∫

−∞

∞∫

−∞

f(k)ei(kxx+kzz)dkxe
ikyydky. (A.12)

When r → ∞ the integral can be evaluated by the stationary phase method. The
kx integral is considered first. The exponent has a stationary point when

d

dkx

(kxx + kzz) = x − kx

kz

z = 0, (A.13)

i.e., when kx/kz = x/z. The second derivative of the exponent is

d2

dk2
x

(kxx + kzz) = − z

kz

− k2
x

k3
z

z = − z

kz

(
1 +

x2

z2

)
. (A.14)

The integral is then given by

E0(r) =

∞∫

−∞

(
2πi

−z/kz(1 + x2/z2

)1/2

f(k)eikz(x2/z+z)eikyydky, (A.15)

where

kz =

√
k2 − k2

y

x2 + z2
z. (A.16)

The stationary point is obtained from

d

dky

(kyy + kz(x
2/z + z))) = y − ky√

k2 − k2
y

√
x2 + z2 = 0. (A.17)

Hence
kx

x
=

ky

y
=

kz

z
=

k

r
. (A.18)

The second derivative of the exponent yields

d2

dk2
y

(kyy + kz(x
2/z + z))) = − rk

k2 − k2
z

. (A.19)
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(a) (b)

Figure 5: Two examples of unit cells that contain more than one aperture:
(a) Four apertures. (b) Two apertures: an annular and a crossed dipole aperture.

The integral is then given by

E0(r) =

(
2πi

−z/kz(1 + x2/z2)

)1/2 (
−2πi

k2 − k2
y

rk

)1/2

f(k)eikz(x2/z+z)eikyy. (A.20)

Since kx/x = ky/y = kz/z it follows that k · r = kr and kx/x = k/r. Hence

E0(r) =
2πikz

r
f(k)eikr, (A.21)

where

f(k) =
1

kkz

2∑
j=1

aj(k1)Tj(k)φj(k;0). (A.22)

The final expression is

E0(r) =
2πikz

r
f(k)eikr. (A.23)

Appendix B Supercells

In [7] a method that can handle frequency selective structures with apertures was
described. The method is based on FEM and expansions in Floquet modes. The
drawback is that the method can only handle cells with a single aperture. In this
appendix it is shown how the method can be generalized to handle supercells.

Consider a frequency selective structure where the unit cell contains M apertures
Ω1, Ω2, . . . , ΩM . An example of such a cell with two different apertures; Ω1 as an
annular aperture, and Ω2 as a a crossed dipole aperture, is given in Figure 5. The
structure may contain dielectric layers on both sides of the metallic plate. In the
regions outside the structure and in the dielectric layers, the fields are expanded
in Floquet modes, whereas in the apertures the fields are expanded in waveguide
modes. For general structures these modes are determined numerically by FEM.
The waveguide mode amplitudes and the amplitudes for the Floquet modes are
related to each other by scattering matrices. In this appendix it is shown how the
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scattering matrix between the waveguide mode amplitudes and the Floquet mode
amplitudes in an adjacent dielectric layer can be obtained.

The fields inside the dielectric layer are expanded in Floquet modes


Ea
T(r) =

∑
lmn

(a+
lmneiγa

mnz + a−
lmne−iγa

mnz)Ra
Tlmn(ρ),

Ha
T(r) =

∑
lmn

(a+
lmneiγa

mnz − a−
lmne−iγa

mnz)T a
Tlmn(ρ).

(B.1)

The explicit expressions for the Floquet modes Ra
Tlmn and T a

Tlmn are given in [7].
The fields inside the apertures are expanded in waveguide modes. In aperture Ωi

the expansion is 


Ebi
T (r) =

∑
vn

(bi+
vneikbi

znz + bi−
vne−ikbi

znz)Ebi
Tvn(ρ),

Hbi
T (r) =

∑
vn

(bi+
vneikbi

znz − bi−
vne−ikbi

znz)Hbi
Tvn(ρ),

(B.2)

where the waveguide modes Ebi
Tvn(ρ) are an orthonormal set of vector waves, cf. [7].

At the interface z = z0 the tangential electric field is continuous over the entire
interface D, while the magnetic field is continuous over the apertures, i.e., the
boundary conditions read

Ea
T(ρ, z0) =

{
Ebi

T (ρ, z0), ρ ∈ Ωi, i = 1, 2, . . . , N,

0, ρ ∈ D \ (Ω1 ∪ Ω2 ∪ . . . ∪ ΩN),

Ha
T(ρ, z0) = Hbi

T (ρ, z0), ρ ∈ Ωi, i = 1, 2, . . . , N.

(B.3)

Introducing
A±

lmn(z) = a±
lmne±iγa

mnz,

Bi±
vn(z) = bi±

vne±ikbi
znz,

(B.4)

and enforcing the continuity condition of the fields at the interface z = z0 yield

∑
lmn

(A+
lmn(z0) + A−

lmn(z0))R
a
Tlmn(ρ) =




∑
vn

(Bi+
vn(z0) + Bi−

vn(z0))E
bi
Tvn(ρ), ρ ∈ Ωi,

0, ρ ∈ D \ (Ω1 ∪ Ω2 ∪ . . . ∪ ΩN),∑
lmn

(A+
lmn(z0) − A−

lmn(z0))T
a
Tlmn(ρ) =

∑
vn

(Bi+
vn(z0) − Bi−

vn(z0))H
bi
Tvn(ρ), ρ ∈ Ωi.

(B.5)
To obtain a linear system of equations for the coefficients, the inner product is

taken between Eq. (B.5a) and T a∗
Tl′m′n′ , and between Eq. (B.5b) and Ebi∗

Tv′n′ , i =
1, 2, . . . , N . The inner product integrals are

Rlmn,l′m′n′ =

∫
D

ẑ · (Ra
Tlmn × T a∗

Tl′m′n′) dS

=

∫
D

Ra
Tlmn · (T a∗

Tl′m′n′ × ẑ) dS

=
Y a∗

l′m′n′

η0

∫
D

(Ra
Tlmn · Ra∗

Tl′m′n′) dS =
Y a∗

lmn

η0

δll′δmm′δnn′ ,

(B.6)



15

Qi
vn,v′n′ =

∫
Ωi

ẑ · (Ebi
Tvn × Hbi∗

Tv′n′) dS =
Y bi∗

vn

η0

δvv′δnn′ , (B.7)

and

Ci
vn,l′m′n′ =

∫
Ωi

ẑ · (Ebi
Tvn × T a∗

Tl′m′n′)dS

=

∫
Ωi

Ebi
Tvn · (T a∗

Tl′m′n′ × ẑ) dS =
Y a∗

l′m′n′

η0

∫
Ωi

(Ebi
Tvn · Ra∗

Tl′m′n′) dS,

(B.8)

where D is the entire surface of the cell. With these definitions, the linear system
for the coefficients is


R(A+ + A−) =

∑
i

Ct
i(B

+
i + B−

i ),

C∗
i (A

+ − A−) = Q∗
i (B

+
i − B−

i ), i = 1, 2, . . . , N,

(B.9)

The matrices R and Qi are quadratic, but the matrix Ci is not necessarily quadratic.
The linear system is rewritten as

{
A− =

∑
i R

−1Ct
i(B

+
i + B−

i ) − A+,
B+

i = Q∗−1
i C∗

i (A
+ − A−) + B−

i i = 1, 2, . . . , N.
(B.10)

The lower expression is inserted in the upper expression in (B.9). This gives

R(A+ + A−) =
∑

i

[Ct
iQ

∗−1
i C∗

i (A
+ − A−) + 2Ct

iB
−
i ]

⇔ (R +
∑

i

Ct
iQ

∗−1
i C∗

i )A
− = −(R −

∑
i

Ct
iQ

∗−1
i C∗

i )A
+ + 2

∑
i

Ct
iB

−
i

⇔ A− = −(R +
∑

j

Ct
jQ

∗−1
j C∗

j)
−1(R −

∑
j

Ct
jQ

∗−1
j C∗

j)A
+

+ 2(R +
∑

j

Ct
jQ

∗−1
j C∗

j)
−1

∑
i

Ct
iB

−
i .

(B.11)
When this expression is inserted in the lower expression in (B.10) the following
relation is obtained

B+
i = Q∗−1

i C∗
i [I + (R +

∑
j

Ct
jQ

∗−1
j C∗

j)
−1(R −

∑
j

Ct
jQ

∗−1
j C∗

j)]A
+

+ 2Q∗−1
i C∗

i (R +
∑

j

Ct
jQ

∗−1
j C∗

j)
−1

∑
k

Ct
kB

−
k + B−

i .
(B.12)

By introducing a scattering matrix, the linear system can be written as



A−

B+
1
...

B+
N


 =




Sl
1,1 Sl

1,2 . . . Sl
1,N+1

Sl
2,1 Sl

2,2 . . . Sl
2,N+1

...
...

. . .
...

Sl
N+1,1 Sl

N+1,2 . . . Sl
N+1,N+1







A+

B−
1
...

B−
N


 , (B.13)
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where the elements of the scattering matrix are




Sl
1,1 = −(R +

∑
j

Ct
jQ

∗−1
j C∗

j)
−1(R −

∑
j

Ct
jQ

∗−1
j C∗

j),

Sl
1,i+1 = 2(R +

∑
j

Ct
jQ

∗−1
j C∗

j)
−1Ct

i,

Sl
i+1,1 = Q∗−1

i C∗
i [I + (R +

∑
j

Ct
jQ

∗−1
j C∗

j)
−1(R −

∑
j

Ct
jQ

∗−1
j C∗

j)],

Sl
i+1,i+1 = 2Q∗−1

i C∗
i (R +

∑
j

Ct
jQ

∗−1
j C∗

j)
−1Ct

i + I.

Sl
i+1,k+1 = 2Q∗−1

i C∗
i (R +

∑
j

Ct
jQ

∗−1
j C∗

j)
−1Ct

k.

(B.14)

This is the supercell correspondence of the single cell scattering matrix that is derived
in [7]. The rest of the analysis used in [7] can now be applied.
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