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Abstract

We investigate the computational hardness of approximating the longest path
and the longest cycle in undirected and directed graphs on n vertices. We show
that

• in any expander graph, we can find Ω(n) long paths in polynomial time.

• there is an algorithm that finds a path of length Ω(log2 L/ log log L) in
any undirected graph having a path of length L, in polynomial time.

• there is an algorithm that finds a path of length Ω(log2 n/ log log n) in any
Hamiltonian directed graph of constant bounded outdegree, in polynomial
time.

• there cannot be an algorithm finding paths of length Ω(nε) for any constant
ε > 0 in a Hamiltonian directed graph of bounded outdegree in polynomial
time, unless P = NP .

• there cannot be an algorithm finding paths of length Ω(log2+ε n), or cycles
of length Ω(log1+ε n) for any constant ε > 0 in a Hamiltonian directed
graph of constant bounded outdegree in polynomial time, unless 3-Sat
can be solved in subexponential time.



Preface
The research presented in this work is my own, and was done under the super-
vision of Thore Husfeldt. The results were announced previously in

• A. Björklund and T. Husfeldt. Finding a Path of Superlogarithmic Length.
SIAM Journal on Computing. Vol. 32 (2003), No. 6, pp. 1395-1402. A
preliminary version was presented in the proceedings of the 29th Inter-
national Colloquium on Automata, Languages and Programming (2002),
pp. 985-992.

• A. Björklund, T. Husfeldt, and S. Khanna. Approximating Longest Di-
rected Path. Electronic Colloquium on Computational Complexity, Report
TR03-032.

My own contribution to the results presented here is substantial; especially,
the basic ideas for both the lower bound in the latter of the articles, and the
algorithms in both the articles above are mine. The n1−ε-hardness of longest
directed path was first shown in [16] and independently in [3]. The reduction in
the latter is used in the joint paper above.
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Chapter 1

The Longest Path Problem

1.1 Introduction

The central quest in the field of computational complexity is to establish how
much resources is required to solve particular finite mathematical problems. For
instance, the question may concern how much time is needed for a conventional
computer to solve instances of a problem of given size. Note that it makes little
sense to ask for the time needed to solve a particular instance of a problem,
since the answer may be tabulated in the program and thereby the instance is
"solved" immediately, regardless of the actual underlying problem. By asking
for the behaviour of a program that solves any instance of a given problem,
the situation changes. Unfortunately, it appears that proving some particular
problems to be computationally hard is either impossible, or requires radically
new methods, since every reasonable attempt made by mathematicians the last
40 years or so (complexity theory is a young science), have turned out to be
only modestly successful. However, some progress have been made classifying
problems as equally hard, if we allow ourselves to adopt a loose sense of the word
"equal". We say a problem A reduces to another problem B, if it is possible
to formulate any instance of A as an instance of problem B. If we can show
the reduction to be efficient (i.e. much easier than actually solving problem
A), then B is at least as hard as problem A. It is natural to put problems into
classes. The most famous complexity classes are P and NP, where P is the
class of problems solvable in time polynomial in the length of the input, and
NP is the class of problems where a claimed solution may be verified in time
polynomial in the length of the input. For all we know, these two classes may
well be the very same class, although we have not seen much to support that
hypothesis. In particular, for the subclass of NP known as the NP-complete
problems, containing the problems at least as hard as every other problem in
NP, we know of no subexponential time algorithms. On the other hand, if we
could find a truly efficient algorithm for one of these problems, we would also
know how to solve all of them efficiently.

Finding the longest non-crossing path in a graph is such a problem. Formally,
given an unweighted graph or digraph G = (V,A) with n = |V |, the Longest
Path problem is to find the longest sequence of distinct vertices v1 · · · vk such
that vivi+1 ∈ A. Closely related is the Longest Cycle problem, where we in
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addition require that vkv1 ∈ A. A path or cycle visiting every vertex of the
graph once is called a Hamiltonian path or cycle. A graph that contains a
Hamiltonian cycle is called Hamiltonian. The concept owe its name to W. R.
Hamilton, who in 1856 [11] showed that deductions in certain families of systems
of non-commutative roots of unity had a graph problem interpretation: walk
along the edges of a regular dodecahedron in such a way that every corner
is passed once and only once, and you eventually end up where you started.
Although finding a Hamiltonian path in that particular graph is fairly easy, one
soon realized that determining if an arbitrary graph was Hamiltonian or not,
seemed to require testing almost all the paths in the worst case, to see if anyone
of them covered all vertices.

Interestingly, starting some twenty-five years ago, mathematicians in the field
of random graphs have found increasingly stronger evidence that the Hamiltonic-
ity problem is easy on the average, [2] [10] [6]. To exemplify, the result of [6]
shows an algorithm which is likely to determine in polynomial time whether the
random graph Gp where each edge exists with independent probability p = d/n
for some (large enough) constant d , is Hamiltonian or not. However, all these
methods require exponential time in the worst case. Indeed, the Hamiltonicity
problem is NP-complete [15], and thus it is not expected to admit subexponen-
tial time algorithms.

A natural extension is to explore how long paths a polynomial time al-
gorithm can guarantee to find, relative to the longest path in the graph, i.e.
approximating the longest path. The measure used as an approximation guar-
antee is the maximum value of the ratio between the optimum length and the
length of the approximate solution found, taken over all instances of the same
size n. The Longest Path problem in undirected graphs is notorious for the
difficulty of understanding its approximation hardness [7]. However, we know
that it cannot be approximated within any constant factor of the optimum in
polynomial time unless P = NP , or within 2O(log1−ε n) for any constant ε > 0
unless NP ∈ DTIME(2log1/ε n) [14]. For a long time, the best algorithms
finding long paths in polynomial time, only guaranteed to find paths of length
Ω(log L/ log log L) , where L is the length of the longest path [18] [4]. A signif-
icant improvement was presented in [1], where it was shown how to find a path
or cycle of logarithmic length in polynomial time, whenever there exists one.
The best polynomial time approximation algorithm for longest path in undi-
rected graphs known to date, to the best of my knowledge, is the one presented
in §2.2, which finds paths of length at least Ω(log2 L/ log log L). This result
though, may very well be far from best possible. Recently, Feder, Motwani and
Subi [7], showed that in graphs where all vertices are adjacent to at most three
others, it is possible to approximate Longest Cycle within O(n1−(log3 2)/2), in
polynomial time.

When we restrict ourselves to directed graphs, it is of course only getting
worse on the algorithmic side. The algorithms in [18] and [1] work also for
directed graphs, whereas our algorithm presented in §2.2 cannot be used. How-
ever, in the special case of bounded outdegree Hamiltonian directed graphs we
can do just as good as shown in §2.3. The hardness results presented in §3,
provide evidence why we should not expect to find a much better algorithm
than the one in §2.3. §3 also shows that the Longest Cycle problem appears
to be even harder. The best algorithm for that problem was found recently by
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Gabow and Nie [9], almost matching our lower bound.

1.2 Preliminaries
A graph or directed graph is a tuple G = (V,E) or G = (V,A) respectively,
where V is the vertex set sometimes identified with {1, 2, . . . , n}. The edge set
E and arc set A, are subsets of V × V . We write uv for the edge or arc (u, v).
For a subset W ⊆ V of the vertices of a graph G, we denote by G[W ] the graph
induced by W , i.e. the graph consisting of the vertices W and all edges or arcs
between the vertices W .

The length of a path and a cycle is its number of edges. The length of a
cycle C is denoted l(C). A k-cycle is a cycle of length k, a k+-cycle is a cycle
of length k or larger. A k-path and k+-path is defined similarly. For vertices
x and y, an xy-path is a simple (non-crossing) path from x to y, and if P is a
path containing u and v we write P [u, v] for the subpath from u to v. We let
LG(v) denote the length of the longest path from a vertex v in the graph G.
The path length of G is L = maxv∈V LG(v).
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Chapter 2

Algorithms Finding Long Paths

A natural step when investigating the computational hardness of a problem,
is to try to solve it as efficiently you can, to get an upper bound on its com-
plexity. In this chapter we present three algorithms, one finding linear length
paths in sparse expander graphs, one finding superlogarithmic long paths in gen-
eral undirected graphs, and one finding superlogarithmic long paths in directed
Hamiltonian graphs of bounded outdegree.

2.1 Finding Long Paths in Most Sparse Graphs

The fact that there has been little success in presenting algorithms to approx-
imate the longest path in general, does not imply that the problem is hard on
the average, as mentioned in chapter 1. On the contrary, whenever the graph is
tightly connected, i.e. when there is a sufficient amount of arcs or edges leading
out from every subset of the vertices, it is easy to find a long path.

A digraph G = (V,A) on n vertices is a c-expander if |δU | ≥ c(1 − |U |
n )|U |

for every subset U ⊂ V where δU = { v /∈ U | ∃u ∈ U : uv ∈ A }.
A standard probabilistic argument (see e.g. [17] for a similar proof) shows

that with high probability a random digraphs with outdegree k (k > 2), are
ck-expanders for some constant ck, for large enough n > nk. In other words,
the result holds for most bounded outdegree graphs.

We propose the following algorithm for finding a long path p0 · · · pl in a
sparse expander.

1. Pick an arbitrary start vertex p0, and set i = 0.

2. Let Gi = (Vi, Ai) be the subgraph reachable from pi in G[V \ (
⋃i−1

j=0 pj)].

3. If Gi consists only of pi, exit.

4. For each neighbour v of pi in Gi, evaluate the size of the subgraph reach-
able from v in Gi[Vi \ pi].

5. Choose the neighbour who has the largest reachable subgraph as pi+1.

6. Set i = i + 1 and goto 2.
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Theorem 1 The algorithm finds a path of length c
2(k+1)n in every c-expander

digraph G = (V,A) with maximum outdegree k.

Proof. Consider step i. Enumerate the neighbours of pi in Gi as r1 · · · rk′ . Let
Vi[rj ] be the vertices reachable from rj in Gi[Vi − {pi}]. Now observe that the
Vi[rj ] either are very small or really large for small i, since the set of vertices
outside Vi[rj ] in G which are directly connected by an arc from a vertex in Vi[rj ]
must lie on the prefix path p0 · · · pi by definition, and there must be a lot of
them because of the expander criterion. Specifically, when i is small, there must
be a j for which Vi[rj ] is large, since k′ ≤ k and

⋃
Vi[rj ] = Vi − {pi}. Observe

that Vi+1 is the largest Vi[rj ], to obtain

|Vi+1| ≥ n− 2(i + 1)
c

whenever at least one Vi[rj ] is too large to be a small subgraph, i.e. as long as

c(|Vi| − 1)
2k

≥ i + 1,

where we for the sake of simplicity have used the expansion factor c/2 which
holds for all set sizes. Observing that V0 = n, we may solve for the smallest i,
when the inequality above fails to hold. This will not happen unless i ≥ c

2(k+1)n,
as promised.

2.2 Finding a Long Path in an Undirected Graph

We do not know of any reason why it would be impossible to find paths of
length say

√
L where L denotes the length of the longest path in a general

undirected graph in polynomial time. Especially, the lower bound of [14] does
not impose any unexpected consequences if such an algorithm exists. Still, until
recently, we only knew how to find a path of logarithmic length [1] in polynomial
time. Vishwanathan [22] obtained a slight improvement when he showed how
to find superlogarithmic long paths whenever the graph is Hamiltonian. We
describe in this section how to get rid of the Hamiltonicity assumption, by
using a completely different algorithm.

Theorem 2 If a graph contains a simple path of length L then we can find a
simple path of length

Ω
(

log2 L

log log L

)
in polynomial time.

Our algorithmic idea is to look for a connected string of long enough cycles.
By taking the longest way round every cycle we obtain our long path. For the
purpose of finding these cycles, we need the following recent result [9],

Theorem 3 (Gabow and Nie) Given a graph, one of its vertices s, and an inte-
ger k, one can find a k+-path passing through s (if it exists) in time 2O(k)n log n.
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Figure 2.1: Statement 1 of Lemma 2. The path P = vp1 · · · pr continues in the
component W . We assume that v does not lie on a large cycle. This means
that an arbitrary path Q from v’s neighbour u must intersect P ‘early,’ i.e.,
QP [pi, pr] is long.

We also need the following easy lemma.

Lemma 1 If a connected graph contains a path of length r then every vertex is
an endpoint of a path of length at least 1

2r.

Proof. Given vertices u, v ∈ V let d(u, v) denote the length of the shortest
path between u and v.

Let P = p0 · · · pr be a path and let v be a vertex. Find i minimising d(pi, v).
By minimality there is a path Q from v to pi that contains no other vertices
from P . Now either QP [pi, pr] or QP [pi, p0] has length at least 1

2r.
The next lemma is central to our construction: Assume that a vertex v orig-

inates a long path P and v lies on a cycle C; then the removal of C decomposes
G into connected components, one of which must contain a large part of P . See
Figures 2.1 and 2.2.

Lemma 2 Assume that a connected graph G contains a simple path P of length
LG(v) > 1 originating in vertex v. There exists a connected component G[W ]
of G[V − v] such that the following holds.

1. If G[W + v] contains no k+-cycle through v then every neighbour u ∈ W
of v is the endpoint of a path of length

LG[W ](u) ≥ LG(v)− k.

2. If C is a cycle in G[W + v] through v of length l(C) < LG[W+v](v) then
there exists a connected component H of G[W −C] that contains a neigh-
bour u of C − v in G[W + v]. Moreover, every such neighbour u is the
endpoint of a path in H of length

LH(u) ≥ LG(v)
2l(C)

− 1.

Proof. Let r = LG(v) and P = p0 · · · pr, where p0 = v. Note that P [p1, pr] lies
entirely in one of the components G[W ] of G[V − v].

First consider statement 1; see Fig. 2.1. Let u ∈ W be a neighbour of v.
Since G[W ] is connected, there exists a path Q from u to some vertex of P .
Consider such a path. The first vertex pi of P encountered on Q must have
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Figure 2.2: Statement 2 of Lemma 2. Here we assume that v does lie on a
large cycle C. In case 1 (left) the path P = vp1 · · · pr does not intersect C
after it leaves v. Thus P [p1, pr] lies entirely in a component H of W − C. Any
neighbour u ∈ N of C in this component must be the head of a long path using
at least half of P [p1, pr]. In case 2 (right) the path P intersects C in several
places. Consider the largest section of P that lies entirely in a component H of
W − C, here shown as a ‘loop’ starting after pij

and ending before pij+1 . Any
neighbour u ∈ N of C in this component must be the head of a long path using
at least half of the ‘loop.’

i < k since otherwise the three paths vu, Q[u, pi] and P [p0, pi] form a k+-cycle.
Thus the path Q[u, pi]P [pi, pr] has length at least r − k + 1 > r − k.

We proceed to statement 2; see Fig. 2.2. Consider any cycle C in G[W + v]
through v.

Case 1. First assume that P ∩C = v, so that one component H of G[W −C]
contains all of P except v. Let N be the set of neighbours of C − v in H. First
note that N is nonempty, since G[W ] is connected. Furthermore, the path
length of H is at least r − 1, so Lemma 1 gives LH(u) ≥ (r − 1)/2 for every
u ∈ N .

Case 2. Assume instead that |P ∩C| = s > 1. Enumerate the vertices on P
from 0 to r and let i1, . . . , is denote the indices of vertices in P ∩C, in particular
i1 = 0. Let is+1 = r. An averaging argument shows that there exists j such
that ij+1 − ij ≥ r/s. Consequently there exists a connected component H of
G[W −C] containing a simple path of length r/s−2. At least one of the ijth or
ij+1th vertices of P must belong to C − v, so the set of neighbours N of C − v
in H must be nonempty. As before, Lemma 1 ensures LH(u) ≥ r/2s − 1 for
every u ∈ N , which establishes the bound after noting that s ≤ l(C).

We first give a brief overview of the algorithm, the next two sections will
provide the details.

Assume for simplicity that the input graph is connected; this is no restriction
since otherwise we can iterate the algorithm over each connected component of
the input graph and return the longest path found. Pick any vertex v. Lemma 1
ensures that v is the head of a path of length at least r > L/2. In the next
sections we will pretend that we know the value

k = d 1
4 log re

but this is no restriction since we can (in polynomial time) run the algorithm
for every value of k = 3, . . . , d 1

4 log ne and return the longest path found.
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Given v and k we will construct a tree Tk(G, v) as detailed in §2.2.1; this
tree will describe a recursive decomposition of the input graph G into paths
and cycles. Finally, we find a long (weighted) path in Tk(G, v). This path will
describe a path in G which will have the desired length as shown in §2.2.2.

In summary, the algorithm proceeds as follows, assuming a connected input
graph:

1. Pick any vertex v ∈ G.

2. For every k = 3, . . . , d 1
4 log ne perform the following two steps and return

the longest path found:

3. Construct the tree Tk(G, v) as detailed in §2.2.1.

4. Find a longest weighted path in Tk(G, v) and return the path in G de-
scribed by it, as detailed in §2.2.2.

Steps 3 and 4 take polynomial time (see below), so the entire algorithm takes
polynomial time.

2.2.1 Construction of the Cycle Decomposition Tree

Given a vertex v in G, our algorithm constructs a rooted node-weighted tree
Tk = Tk(G, v), the cycle decomposition tree. Every node of Tk is either a
singleton or a cycle node: A singleton node corresponds to a single vertex
u ∈ G and is denoted 〈u〉, a cycle node corresponds to a cycle C with a specified
vertex u ∈ C and is denoted 〈C, u〉. Every singleton node has unit weight and
every cycle node 〈C, u〉 has weight 1

2 l(C).
The tree Tk(G, v) is constructed as follows. Initially Tk contains a singleton

node 〈v〉, and a call is made to the following procedure with arguments G and
v.

1. [Iterate over components:] For every maximal connected component G[W ]
of G[V − v], execute step 2.

2. [Find cycle:] Search for a k+-cycle through v in G[W +v] using Theorem 3.
If such a cycle C is found then execute step 3, otherwise execute step 5.

3. [Insert cycle node:] Insert the cycle node 〈C, v〉 and the tree edge 〈v〉〈C, v〉.
For every connected component H of G[W − C] execute step 4.

4. [Recurse:] Choose an arbitrary neighbour u ∈ H of C − v, and insert the
singleton node 〈u〉 and the tree edge 〈u〉〈C, v〉. Then, recursively execute
step 1 to compute Tk(H,u).

5. [Insert singleton node and recurse:] Pick an arbitrary neighbour u ∈
G[W +v] of v, insert the node 〈u〉 and the tree edge 〈v〉〈u〉, and recursively
execute step 1 to compute Tk

(
G[W ], u

)
.

Note that each recursive step constructs a tree that is connected to other
trees by a single edge, so Tk is indeed a tree. Also note that the ancestor of
every cycle node must be a singleton node. The root of Tk is 〈v〉.

To see that the running time of this procedure is polynomial first note that
step 2 is polynomial because of Thm. 3. The number of recursive steps is linear,
since every step inserts a node into Tk, which is clearly of linear size after the
procedure.
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2.2.2 Paths in the Cycle Decomposition Tree

Our algorithm proceeds by finding a path of greatest weight in Tk. This can
be done in linear time by depth first search. The path found in Tk represents
a path in G, if we interpret paths through cycle vertices as follows. Consider a
path in Tk through a cycle vertex 〈C, u〉. Both neighbours are singleton nodes,
so we consider the subpath 〈u〉〈C, u〉〈v〉. By construction, v is connected to
some vertex w ∈ C with w 6= u. One of the two paths from u to w in C must
have length at least half the length of C, call it P . We will interpret the path
〈u〉〈C, u〉〈v〉 in Tk as a path uPv in G. If a path ends in a cycle node 〈C, u〉, we
may associate it with a path of length l(C) − 1, by moving along C from u in
any of its two directions. Thus a path of weight m in Tk from the root to a leaf
identifies a path of length at least m in G.

We need to show that Tk for some small k has a path of sufficient length:1

Lemma 3 If G contains a path of length r > 28 starting in v then Tk = Tk(G, v)
for

k = d 1
4 log re

contains a weighted path of length at least 1
2k2/ log log r.

Proof. We follow the construction of Tk in §2.2.1.
We need some additional notation. For a node x = 〈w〉 or x = 〈C,w〉 in Tk

we let L(x) denote the length of the longest path from w in the component G[X]
corresponding to the subtree rooted at x. More precisely, for every successor
y of x (including y = x), the set X contains the corresponding vertices w′ (if
y = 〈w′〉 is a singleton node) or C ′ (if y = 〈w′, C ′〉 is a cycle node).

Furthermore, let S(n) denote the singleton node children of a node n and
let C(n) denote its cycle node children. Consider any singleton node 〈v〉.

Lemma 2 asserts that

L(v) ≤ max
{

max
w∈S〈v〉

L(w) + k, max
〈C,v〉∈C〈v〉
w∈S〈C,v〉

(
2L(w) + 2

)
l(C)

}
. (2.1)

Define n(v) = w if 〈w〉 maximises the right hand side of the inequality (2.1)
and consider a path Q = 〈x0〉 · · · 〈xt〉 from 〈v〉 = 〈x0〉 described by these heavy
nodes. To be precise we have either n(xi) = xi+1 or n(xi) = xi+2, in the latter
case the predecessor of 〈xi+2〉 is a cycle node.

We will argue that the gaps in the sequence

L(x0) ≥ L(x1) ≥ · · · ≥ L(xt).

cannot be too large due to the inequality above and the fact that L(xt) must
be small (otherwise we are done), and therefore Q contains a lot of cycle nodes
or even more singleton nodes.

Let s denote the number of cycle nodes on Q. Since every cycle node has
weight at least 1

2k the total weight of Q is at least 1
2sk +(t− s) = s( 1

2k− 1)+ t.
Consider a singleton node that is followed by a cycle node. There are s such

nodes, we will call them cycle parents. Assume 〈xj〉 is the first cycle parent node.
1All logarithms are to the base 2 and the constants involved have been chosen aiming for

simplicity of the proof, rather than optimality.
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Thus according to the first part of Lemma 2 its predecessors 〈x0〉, . . . , 〈xj〉 satisfy
the relation L(xi+1) ≥ L(xi)− k, so

L(xj) ≥ r − jk ≥ r − 1
6k3 ≥ 5

6r,

since j ≤ t ≤ 1
6k2 (otherwise we are finished) and r ≥ k3.

From the second part of Lemma 2 we have

L(xj+2) ≥
5r

12l(C)
− 1 ≥ 2r

k2
.

where we have used l(C) ≤ 1
6k2 (otherwise we are finished using the cycle as

our path) and r > 2k2.
This analysis may be repeated for the subsequent cycle parents as long as

their remaining length after each cycle node passage is at least k3. Note that Q
must pass through as many as s′ ≥ d k

log log r e cycle nodes before

2s′r

k2s′
< k3,

at which point the remaining path may be shorter than k3. Thus we either have
visited s ≥ s′ cycle nodes, amounting to a weighted path Q of length at least

s( 1
2k + 1) >

k2

2 log log r

or there are at most s < s′ cycle nodes on Q. In that case there is a tail of
singleton nodes starting with some L(x) ≥ k3. Since L(xj) ≤ L(xj+1) + k for
the nodes on the tail, the length of the tail (and thus the weight of Q) is at least
k2.

2.2.3 Summary

It remains to check that the path found by our algorithm satisfies the stated ap-
proximation bound: For the right k, the preceding lemma guarantees a weighted
path in Tk(G, v), and hence a path in G, of length

k2

2 log log r
= Ω

(
log2 r

log log r

)
= Ω

(
log2 L

log log L

)
because r ≥ 1

2L by Lem. 1. This finishes the proof of Thm. 2.

2.3 Finding Long Paths in Hamiltonian Digraphs
Vishwanathan [22] presents a polynomial time algorithm that finds a path
of length Ω(log2 n/ log log n) in undirected Hamiltonian graphs with constant
bounded degree. We show in this section that, after a minor extension to the
argument, the algorithm and its analysis apply to the directed case as well.

Theorem 4 There is a polynomial time algorithm always finding a path of length
Ω(log2 n/ log log n) in any Hamiltonian digraph of constant bounded outdegree
on n vertices.
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To prove the theorem, we need some additional notation. Let G = (V,A) be
a digraph. We say that a vertex v ∈ V spans the subgraph Gv = G[Vv] where
Vv ⊆ V is the set of vertices reachable from v in G. Consider the algorithm
below. It takes a digraph G = (V,A) on n = |V | vertices and a specified vertex
v ∈ V as input, and returns a long path starting in v.

1. Enumerate all paths in G starting in v of length log n, if none return the
longest found.

2. For each such path P = (v, · · · , w), let Vw be the set of vertices reachable
from w in G[V − P + {w}].

3. Compute a depth first search tree rooted at w in G[Vw].

4. If the deepest path in the tree is longer than log2 n, return this path.

5. Otherwise, select the enumerated path P whose end vertex w spans as
large a subgraph as possible after removal of P −{w} from the vertex set,
i.e the path maximising |Vw|.

6. Search recursively for a long path R starting from w in G[Vw], and return
(P − {w}) + R.

First note that the algorithm indeed runs in polynomial time. The enumer-
ation of all paths of length log n takes no more than polynomial time since the
outdegree is bounded by a constant k, and thus there cannot be more than klog n

paths. Computing a depth first search tree is also a polynomial time task, and
it is seen to be performed a polynomial number of times, since the recursion
does not branch at all.

To prove that the length of the resulting path is indeed Ω(log2 n/ log log n),
we need to show that at each recursive call of the algorithm, there is still a long
enough path starting at the current root vertex.

Lemma 4 Let G = (V,A) be a Hamiltonian digraph. Let S ⊆ V, v ∈ V \ S.
Suppose that on removal of the vertices of S, v spans the subgraph Gv = (Vv, Av)
of size t. If each vertex w ∈ Vv is reachable from v on a path of length less than
d, then there is a path of length t/(d|S|) in Gv starting in v.

Proof. Consider a Hamiltonian cycle C in G. The removal of S cuts C into at
most |S| paths P1 · · ·P|S|. Since each vertex in V lies on C, the subgraph Gv

must contain at least t/|S| vertices W from one of the paths, say Pj . In fact,
Gv must contain a path of length t/|S|, since the vertex in W first encountered
along Pj implies the presence in Gv of all the subsequent vertices on Pj , and
these are at least |W |. Denote one such path by P = p0 · · · p|W |−1, and let
R = r0 · · · rl−1 be a path from r0 = v to rl−1 = p0, of length l ≤ d. Set
s = |P ∩R| and enumerate the vertices on P from 0 to |W | − 1 and let i1 · · · is
denote the indices of vertices in P ∩ R, in particular i1 = 0. Let is+1 = |W |.
An averaging argument shows that there exists j, such that ij+1 − ij ≥ |W |/s.
Let q be the index for which rq = pij

. The path along R from r0 to rq and
continuing along P from pij+1 to pij+1−1 has the claimed length.

Observe that the algorithm removes no more than log n vertices from the
graph at each recursive call. Thus, at call i we have removed at most i log n
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vertices from the original graph; the very same vertices constituting the begin-
ning of our long path. Lemma 4 tells us that we still are in a position were it
is possible to extend the path, as long as we can argue that the current end
vertex of the path we are building spans large enough a subgraph. Note that
whenever we stand at a vertex v starting a long path P of length > log n in
step 1 of the algorithm, the path consisting of the first log n vertices of P is one
of the paths of length log n being enumerated. This is our guarantee that the
subgraph investigated at the next recursive call is not all that smaller than the
graph considered during the previous one. It must consist of at least |P |− log n
vertices. Of course, we cannot be sure that exactly this path is chosen at step
5, but this is of no concern, since it is sufficient for our purposes to assure that
there are still enough vertices reachable.

Formally, let Vi denote the vertex set of the subgraph considered at the
recursive call i. In the beginning, we know that regardless of the choice of start
vertex v, we span the whole graph and thus V0 = V , and furthermore, that a
path of length n starts in v. Combining the preceding discussion with Lem. 4,
we establish the following inequality for the only non-trivial case that no path
of length log2 n is ever found during step 4 of the algorithm:

|Vi+1| >
|Vi|

i log3 n
− log n

It is readily verified that |Vi| > 0 for all i < c log n/ log log n for some constant
c, which completes the proof of Theorem. 4.
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Chapter 3

Inapproximability Results for
Longest Directed Path

In contrast to the unclear picture of the approximability of the Longest Path
in undirected graph, the situation in directed graphs is drastically better: a
surprisingly simple argument shows that we cannot expect to find much longer
paths than our best algorithms known to date do, since if this would be the
case, we could solve all problems in NP much faster than we can today. The
central question of closing the gap between the upper and the lower bound for
undirected graphs remains open, however. Our lower bound uses a reduction to
the k Vertex Disjoint Paths problem in digraphs. Thus there is no direct way to
translate our argument to the undirected case, because that problem is known
to be polynomially solvable for undirected graphs [20].

3.1 Two Vertex Disjoint Paths

Our hardness proof for approximating the longest path in a directed graph
starts in a reduction from a problem known to be NP-complete for over twenty
years. In the k Vertex Disjoint Paths problem we are given a digraph G of order
n > 2k, and we are asked whether there exists a set of k vertex disjoint paths
in G such that the ith path connects vertex 2i− 1 to vertex 2i, for i = 1, . . . k.
This problem is NP-complete [8] even when k = 2. We need to modify this
result slightly to see that it is valid even if we restrict the ‘yes’-instances to be
partitionable into two disjoint paths. To be precise, we define the Two Vertex
Disjoint Paths problem (2VDP): given a digraph G of order n ≥ 4, decide
whether there exists a pair of vertex disjoint paths, one from 1 to 2 and one
from 3 to 4. We study the restricted version of this problem (R2VDP), where the
‘yes’-instances are guaranteed to contain two such paths that together exhaust
all vertices of G. In other words, the graph G with the additional arcs 23 and
41 contains a Hamiltonian cycle through these arcs.

Proposition 1 Restricted Two Vertex Disjoint Paths is NP-complete.

The proof is an extension of the construction in [8] and can be found in §3.4.
It replaces a reduction from 3-Sat by a reduction from Monotone 1-in-3-Sat,
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and uses a more intricate clause gadget to guarantee the existence of two paths
that cover all vertices. The modification is necessary to prove the lower bound
for Longest Path even for Hamiltonian instances.

3.2 Long Paths Find Vertex Disjoint Paths
We will use instances of R2VDP to build graphs in which long paths must reveal
a solution to the original problem. Given an instance G = (V,A) of R2VDP,
define Td[G] as a graph made up out of m = 2d − 1 copies G1 · · ·Gm of G
arranged in a balanced binary tree structure. For all i < 2d−1, we say that the
copies G2i and G2i+1 are the left and right child of the copy Gi. The copy G1

is the root of the tree, and Gi for i ≥ 2d−1 are the leaves of the tree. The copies
of G in Td[G] are connected by additional arcs as follows. For every copy Gi

having children, three arcs are added (cf. Fig. 3.1):

• One arc from 2 in Gi to 1 in G2i.

• One arc from 4 in G2i to 1 in G2i+1.

• One arc from 4 in G2i+1 to 3 in Gi.

Moreover, in every leaf copy Gi (i ≥ 2d−1) we add the arc 23, and in the root
G1 we add the arc 41.
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Figure 3.1: T4[G].

Lemma 5 Given an instance G = (V,A) of R2VDP on n = |V | vertices, and
any integers m = 2d − 1 > 3, consider Td[G] with N = mn vertices. Then

• If G has a solution then Td[G] contains a path of length N − 1.

• Given any path of length larger than (4d − 5)n in Td[G], we can in time
polynomial in N construct a solution to G.

Proof. For the first part of the lemma, consider a solution for G consisting of
two disjoint paths P and Q connecting 1 to 2 and 3 to 4, respectively, such that
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P + 23 + Q + 41 is a Hamiltonian cycle in G. The copies of P and Q in all Gis
together with the added arcs constitute a Hamiltonian cycle in Td[G] of length
mn and thus a path of the claimed length.

For the second part, first consider an internal copy Gi and observe that if
a path traverses all of the four arcs connecting Gi to the rest of the structure
then this path constitutes a solution to R2VDP for G. Thus we can restrict our
attention to paths in Td[G] that avoid at least one the four external arcs of each
internal Gi; we call such paths avoiding.

Given Td[G] define ed[G] as the length of the longest avoiding path in Td[G]
ending in vertex 4 of its root copy, and sd[G] as the length of the longest avoiding
path starting in vertex 1 of the root copy. Consider a path P ending in vertex 4
of the root copy, for d > 1. At most n vertices of P are in G1. The path P has
entered G1 via vertex 3 from G3’s vertex 4. There are two possibilities. Either
the first part of P is entirely in the subtree rooted at G3, in which case P has
length at most n + ed−1[G]. Or it entered G3 via 1 from the subtree rooted
at G2, in which case it may pass through at most n vertices in G3, amounting
to length at most 2n + ed−1[G]. (Especially, P cannot leave via G3’s vertex
2, because then it wouldn’t be avoiding). A symmetric argument for sd[G] for
d > 1 shows an equivalent relation. Thus we have that

e1[G] ≤ n, ed+1[G] ≤ 2n + ed[G],
s1[G] ≤ n, sd+1[G] ≤ 2n + sd[G].

Furthermore, note that a longest avoiding path in Td[G] connects a path
amounting to ed−1[G] in the right subtree, through a bridge consisting of as
many vertices as possible in the root, with a path amounting to sd−1[G] in
the left subtree. Consequently, a typical longest avoiding path starts in a leaf
copy of the right subtree, travels to its sister copy, goes up a level and over
to the sister of that copy, continues straight up in this zigzag manner to the
root copy, and down in the same fashion on the other side. Formally, the
length of a longest avoiding path in Td[G] for d > 1 is bounded from above by
ed−1[G] + n + sd−1[G] ≤ (4d− 5)n.

Theorem 5 There can be no deterministic, polynomial time approximation al-
gorithm for Longest Path or Longest Cycle in a Hamiltonian directed graph on
n vertices with performance ratio n1−ε for any fixed ε > 0, unless P = NP.

Proof. First consider the path case. Given an instance G = (V,A) of R2VDP
with n = |V |, fix k = 1/ε and construct Td[G] for the smallest integers m =
2d−1 ≥ (4dn)k. Note that the graph Td[G] has order N = nO(k). Assume there
is a deterministic algorithm finding a long path of length lapx in time polynomial
in N , and let lopt denote the length of a longest path. Return ‘yes’ if and only if
lapx > (4d− 5)n. To see that this works note that if G is a ‘yes’-instance and if
indeed lopt/lapx ≤ N1−ε then lapx > (4d− 5)n, so Lem. 5 gives a solution to G.
If on the other hand G is a ‘no’-instance then the longest path must be avoiding
as defined in the proof of Lem. 5, so its length is at most (4d − 5)n. Thus we
can solve the R2VDP problem in polynomial time, which by Prop. 1 requires
P = NP.

For the cycle case, we may use a simpler construction. Simply connect m
copies G1, · · · , Gm of G on a string, by adding arcs from vertex 2 in Gi to vertex
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1 in Gi+1, and arcs from vertex 4 in Gi to vertex 3 in Gi−1. Finally, add the
arc 41 in G1 and the arc 23 in Gm. The resulting graph has a cycle of length
mn whenever G is a ‘yes’-instance, but any cycle of size at least 2n + 1 must
reveal a solution to G.

3.3 Subexponential Algorithms for Satisfiability

In this section we show that a superlogarithmic dipath algorithm implies subex-
ponential time algorithms for satisfiability.

We need the well-known reduction from Monotone 1-in-3-Sat to 3-Sat. It
can be verified that the number of variables in the construction (see also [19,
Exerc. 9.5.3]) is not too large:

Lemma 6 ([21]) Given a 3-Sat instance ϕ with n variables and m clauses we can
construct an instance of Monotone 1-in-3-Sat with O(m) clauses and variables
that is satisfiable if and only if ϕ is.

The next lemma is a variant of Theorem 5.

Lemma 7 There is a deterministic algorithm for Monotone 1-in-3-Sat on n vari-
ables running in time 2O(n1/(1+ε)), if there is

1. a polynomial time deterministic approximation algorithm ALP for Longest
Path in N -node Hamiltonian digraphs with guarantee log2+ε N , or

2. a polynomial time deterministic approximation algorithm ALC for Longest
Cycle in N -node Hamiltonian digraphs with guarantee log1+ε N .

Proof. We need to verify that our constructions obey the necessary size bounds.
The R2VDP instance build from the instance to Monotone 1-in-3-Sat described
in §3.4 has size n′ = O(n).

For the path case, set d = (4n′)1/(1+ε) and construct Td[G] as in §3.2, which
will have N = (2d − 1)n′ nodes. Run the algorithm ALP on Td[G]. Observe
that (4d− 5)n′ < log2+ε((2d − 1)n′), so Lem. 5 tells us how to use ALP to solve
the R2VDP instance, and hence the 1-in-3-Sat instance.

The cycle case follows in a similar fashion from the construction in the proof
of Theorem 5.

Since we want to express the hardness relative to the canonical NP-complete
problem 3-Sat, rather than the somewhat artificial Monotone 1-in-3-Sat, we need
the Sparsification Lemma of [13] (corollary 1):

Lemma 8 (Impagliazzo, Paturi, Zane) For all ε > 0 and positive k, there is a
constant C so that any k-Sat formula Φ with n variables, can be expressed as
Φ = ∨t

i=1Ψi, where t ≤ 2εn and each Ψi is a k-Sat formula with at most Cn
clauses. Moreover, this disjunction can be computed by an algorithm running in
time poly(n)2εn.

Theorem 6 There is a deterministic algorithm for 3-Sat on n variables running
in time 2o(n) if there is
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1. a polynomial time deterministic approximation algorithm for Longest Path
in N -node Hamiltonian digraphs with guarantee log2+ε N , or

2. a polynomial time deterministic approximation algorithm for Longest Cy-
cle in N -node Hamiltonian digraphs with guarantee log1+ε N .

Proof. Use the Sparsification Lemma to write the input 3-Sat instance as a
disjunction of a subexponential number of 3-Sat instances, each having linear
number of clauses. Solve each of these with Lemma 6 and 7.

3.4 Proof of Proposition 1
We review the construction in [8], in which the switch gadget from Fig. 3.2 plays
a central role. Its key property is captured in the following statement.
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Figure 3.2: (i) A switch. Only the labelled vertices are connected to the rest of
the graph, as indicated by the arrows. (ii) Three vertex-disjoint paths through
a switch.

Lemma 9 ([8]) Consider the subgraph in Fig. 3.2. Suppose that are two vertex
disjoint paths passing through the subgraph—one leaving at A and the other
entering at B. Then the path leaving A must have entered at C and the path
entering at B must leave at D. Furthermore, there is exactly one additional path
through the subgraph and it connects either E to F or G to H, depending on the
actual routing of the path leaving at A.

Also, if one of these additional paths is present, all vertices are traversed.

To prove Prop. 1 we reduce from Monotone 1-in-3-Sat, rather than 3-Sat as
used in [8]. An instance of 1-in-3-Sat is a Boolean expression in conjunctive
normal form in which every clause has three literals. The question is if there
is a truth assignment such that in every clause, exactly one literal is true. It
is known that even when all literals are positive (Monotone 1-in-3-Sat) the
problem is NP-complete [21].

Given such an instance ϕ with clauses t1, . . . , tm on variables x1, . . . , xn we
construct and instance Gϕ of R2VDP as follows.

20



◦ci

x1

x2

x3

¬x2

¬x3

¬x1

¬x3

¬x1

¬x2

◦ ci+1

77oooooooooooooo //

''OOOOOOOOOOOOOO ''OOOOOOOOOOOOOO

// 77oooooooooooooo

// //

// //

// //

%%LLLLLLLLLL

%%LLLLLLLLLL

BB����������������

yyrrrrrrrrrr

yyrrrrrrrrrr

\\::::::::::::::::

Figure 3.3: A clause gadget consisting of 9 switches. Every incoming arc to a
switch ends in the switch’s vertex E, and every outgoing arc leaves the switch’s
vertex F.

Clause gadgets. Every clause ti is represented by a gadget consisting of a
vertex ci and nine switches, three for every literal in ti. Consider the clause
ti = (x1 ∨ x2 ∨ x3). The vertices ci, ci+1 and the E and F vertices in the
nine switches are connected as shown in Fig. 3.3. Thus all clause gadgets are
connected on a string ending in a dummy vertex cm+1.

The clause gadget has the following desirable properties: Call a path from
ci to ci+1 valid if it is consistent with a truth assignment to {x1, x2, x3} in the
sense that if it passes through a switch labelled with a literal (like ¬x2) then
it cannot pass through its negation (like x2). The following claims are easily
verified:

Lemma 10 Consider the construction in Fig. 3.3.

1. Every valid path from ci to ci+1 corresponds to a truth assignment to
{x1, x2, x3} that sets exactly one variable to true.

2. If there is a truth assignment to {x1, x2, x3} that sets exactly one variable
to true then there is a valid path from ci to ci+1 corresponding to the
assignment. Moreover, there is such a valid path passing through all five
switches whose labels are consistent with the assignment.

Variable gadgets. Every variable xi is represented by a vertex vi. (Again,
vertex vn+1 is a dummy vertex.) All switches in the clause gadgets representing
the positive literal of the variable vi are connected in series (the ordering of the
switches on this string is not important): the vertex H in a switch is connected
to vertex G of the next switch with the same label. Furthermore, there is an
arc from vi to vertex G in the first switch on its literal path, and an arc from
vertex H in the last switch on the path to vertex vi+1.

Likewise, all switches labelled with negated literals of this variable are con-
nected. Thus there are two strings of switches leaving vi: one contains all the
positive literals, and one contains all the negated literals. Both end in vi+1.

Also, all the switches are arranged on a path and connected by added arcs
from vertex A in a switch to vertex C in the next one, and arcs back from
vertex D in a switch to vertex B of the preceding switch. The ordering of the
switches on this switch path is not important.

Finally, there is an arc from vn+1 to c1 and an arc from vertex D in the first
switch on the switch path to v1.
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To finish the construction of an instance of R2VDP it remains to identify
the first four vertices. Vertex 1 is vertex B of the last switch on the switch path,
vertex 2 is cm+1, vertex 3 is vertex C of the first switch on the switch path, and
vertex 4 is vertex A of the last switch on the switch path.

Lemma 11 Gϕ has two vertex disjoint paths from 1 to 2 and from 3 to 4 if and
only if ϕ has a solution. Moreover, if Gϕ contains such paths then it contains
two such paths that together exhaust all its vertices.

Proof. Assume ϕ can be satisfied so that exactly one variable in every clause is
true. Walk through Gϕ starting in vertex 1. This path is forced to traverse all
switches until it reaches v1. In general, assume that we reached vi. To continue
to vi+1 traverse the G–H paths of the string of negative literal switches if xi is
true; otherwise take the string of positive literal switches. Note that this forces
us to avoid the E–F paths in these switches later.

Arriving at vn+1 continue to c1. To travel from ci to ci+1 we are forced to
traverse the clause gadget of Fig. 3.3. Note that the truth assignment has set
exactly one of the variables to true, blocking the E–F path in the two switches
labelled by its negative literal. Likewise, two of the variables are false, blocking
the (two) switches labelled by their positive literal. The remaining five switches
are labelled by the positive literal of the true variable or negative literals of the
falsified variables. The valid path ensured by Lem. 10 passes through exactly
these five switches.

Finally, the path arrives at vm+1 = 2. The path travelling from 3 to 4 is
now unique. Observe that the two paths exhaust all the vertices and thus form
a Hamiltonian cycle if we add 23 and 41.

Conversely, assume there are two paths from 1 to 2 and from 3 to 4. The
subpaths connecting vi to vi+1 ensure that all literal switches are consistent in
the sense that if the E–F path in a switch labelled xi is blocked then it is blocked
in all such switches, and not blocked in any switch labelled ¬xi. This forces the
subpaths from ci to ci+1 to be valid. Lem. 10 ensures that the corresponding
truth assignment is satisfying and sets exactly one variable in each clause.
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