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Abstract
The paper presents a Matlab toolbox for simulation
of real-time control systems. The basic idea is to sim-
ulate a real-time kernel in parallel with continuous
plant dynamics. The toolbox allows the user to ex-
plore the timely behavior of control algorithms, and
to study the interaction between the control tasks
and the scheduler. From a research perspective, it
also becomes possible to experiment with more flexi-
ble approaches to real-time control systems, such as
feedback scheduling. The importance of a more uni-
fied approach for the design of real-time control sys-
tems is discussed. The implementation is described
in some detail and a number of examples are given.

1. Introduction
Real-time control systems are traditionally designed
jointly by two different types of engineers. The
control engineer develops a model for the plant to
be controlled, designs a control law and tests it in
simulation. The real-time systems engineer is given
a control algorithm to implement, and configures the
real-time system by assigning priorities, deadlines,
etc.

The real-time systems engineer usually regards con-
trol systems as hard real-time systems, i.e. deadlines
should never be missed. The control engineer on the
other hand expects the computing platform to be pre-
dictive and support equidistant sampling. In reality
none of the assumptions are necessarily true. This
is even more obvious in the case where several con-
trol loops are running on the same hardware unit.
The controllers will interact with each other since
they are sharing resources such as CPU, network,
analog/digital converters, etc. see Figure 1.

A new interdisciplinary approach is currently emerg-
ing where control and real-time issues are discussed
at all design levels. One of the first papers that
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Figure 1 Several control loops execute concurrently on
one CPU. The interaction between the control tasks will
affect the control performance.

dealt with co-design of control and real-time systems
was [Seto et al., 1996], where the sampling rates
for a set of controllers sharing the same CPU are
calculated using standard control performance met-
rics. Control and scheduling co-design is also found
in [Ryu et al., 1997], where the control performance
is specified in terms of steady state error, overshoot,
rise time, and settling time. These performance pa-
rameters are expressed as functions of the sampling
period and the input-output latency. A heuristic it-
erative algorithm is proposed for the optimization
of these parameters subject to schedulability con-
straints.

Good interaction between control theory and real-
time systems theory opens up for a unified approach
and more integrated algorithms. Scheduling parame-
ters could for example be adjusted automatically on-
line by a kernel supervisor. Such a setup would allow
much more flexible real-time control systems than
those available today. Ideas on adaption of schedul-
ing parameters are for example found in [Abdelzaher



et al., 1997] and [Stankovic et al., 1999].
The development of algorithms for co-design of con-
trol and real-time systems requires new theory and
new tools. This paper presents a novel simulation en-
vironment for co-design of control systems and real-
time systems within the Matlab/Simulink environ-
ment. The advantages of using Matlab for this pur-
pose are many. Matlab/Simulink is commonly used
by control engineers to model physical plants, to de-
sign control systems, and to evaluate their perfor-
mance by simulations. A missing piece in the sim-
ulations, however, has been the actual execution of
the controllers when implemented as tasks in a real-
time system. On the other hand, most of the exist-
ing tools for task simulations, for instance STRESS
[Audsley et al., 1994], DRTSS [Storch and Liu, 1996],
and the simulator in [Ancilotti et al., 1998], give no
support for the simulation of continuous dynamics.
Not much work has previously been done on mixed
simulations of both process dynamics, control tasks,
and the underlying real-time kernel. An exception
is [Liu, 1998], where a single control task and a con-
tinuous plant was simulated within the Ptolemy II
framework.

The simulator proposed in this paper is designed for
simultaneous simulation of continuous plant dynam-
ics, real-time tasks, and network traffic, in order to
study the effects of the task interaction on the con-
trol performance.

2. The Basic Idea
The interaction between control tasks executing on
the same CPU is usually neglected by the control
engineer. It is however the case that having a
set of control tasks competing for the computing
resources will lead to various amounts of delay and
jitter for different tasks. Figure 2 shows an example
where three control tasks with the same execution
times but different periods are scheduled using rate-
monotonic priorities. In this case the schedule does
not tell the whole story. In the example, the actual
control delay (the delay from reading the input
signal until writing a new output signal) for the
low priority task varies from one to three times the
execution time. Intuitively, this delay will affect the
control performance, but how much, and how can we
investigate this?

To study how the execution of tasks affects the
control performance we must simulate the whole
system, i.e. both the continuous dynamics of the
controlled plant and the execution of the controllers
in the CPU. We need not simulate the execution of
the controller code on instruction level. In fact, it is
enough to model the timely aspects of the code that
are of relevance to other tasks and to the controlled
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Figure 2 The activation graph for three control tasks,
with fixed priorities (high, medium, low), running in a
pre-emptive kernel. The execution times are the same for
all three processes.
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Figure 3 This is how the low priority task from Figure 2
interacts with its plant. (u is the control signal, y is the
measurement signal.)

plant. This includes computational phases, input and
output actions, and blocking of common resources
(other than the CPU).
Figure 3 shows the activation graph for the low
priority task from Figure 2 and how it interacts
with the continuous plant. The controller samples
the continuous measurement signal from the plant
(y) and writes new control outputs (u).
Figure 4 provides a schematic view of how we
simulate the system. A model of a real-time kernel
handles the scheduling of the control tasks and is
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Figure 4 Schematic view of the simulation setup. The
controllers are tasks executing in a simulated pre-emptive
kernel. The controllers and the control signals are discrete
while the plant dynamics and the plant output are
continuous. The continuous signals from the plants are
sampled by the control tasks.

also responsible for properly interfacing the tasks
with the physical environment. The outputs from the
kernel model, i.e. the control signals, are piecewise
constant. The plant dynamics and the plant outputs,
i.e. the measurement signals, are continuous.

3. The Simulation Model
The heart of the toolbox is a Simulink block (an
S-function) that simulates a tick-driven preemptive
real-time kernel. The kernel maintains a number of
data structures that are commonly found in a real-
time kernel: a set of task records, a ready queue,
a time queue, etc. At each clock tick, the kernel
is responsible for letting the highest-priority ready
task, i.e. the running task, execute in a virtual CPU.
The scheduling policy used is determined by a pri-
ority function, which is a function of the attributes
of a task. For instance, a priority function that re-
turns the period of a task implements rate-monotonic
scheduling, while a function that returns the abso-
lute deadline of a task implements earliest-deadline-
first scheduling. There currently exist predefined pri-
ority functions for rate-monotonic (RM), deadline-
monotonic (DM), arbitrary fixed-priority (FP), and
earliest-deadline-first (EDF) scheduling. The user
may also write his own priority function that im-
plements an arbitrary scheduling policy.

The execution model used is similar to the live task
model described in [Storch and Liu, 1996]. During
a simulation, the kernel executes user-defined code,
i.e. Matlab functions, that have been associated
with the different tasks. A code function returns an
execution time estimate, and the task is not allowed
to resume execution until the same amount of time
has been consumed by the task in the virtual CPU.

3.1 The Task

Each task in the kernel has a set of basic attributes:
A name, a list of code segments to execute, a period, a
release time, a relative deadline, and the remaining
execution time to be consumed in the virtual CPU.
Some of the attributes, such as the release time
and the remaining execution time, are constantly
updated by the kernel during a simulation. The
other attributes, such as the period and the relative
deadline, remain constant unless they are explicitly
changed by kernel function calls from the user code.

3.2 The Code
The local memory of a task is represented by
two local, user-defined data structures states and
parameters. The states may be changed by the user
code, while the parameters remain constant through-
out the execution.

To capture the timely behavior of a task, the asso-
ciated code is divided into one or several code seg-
ments, see Figure 5. The execution time of a seg-
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Figure 5 The execution structure of a task. The flexible
structure supports data dependent execution times and
advanced scheduling techniques.

ment is determined dynamically at its invocation.
Normally, the segments are executed in order, but
this may be changed by kernel function calls from
the user code.

On a finer level, actual execution of statements in
a code segment can only occur at two points: at the
very beginning of the code segment (in the enterCode
part) or at the very end of the code segment (in the
exitCode part), see Figure 6. Typically, reading of
input signals, locking of resources, and calculations
are performed in the enterCode part. Writing of
output signals, unlocking of resources, and other
kernel function calls are typically performed in the
exitCode part. The following examples illustrate
how code segments can model real-time tasks.

EXAMPLE 1
A task implementing a control loop can often be
divided into two parts: one that calculates a new
control signal and one that updates the controller
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Figure 6 A code segment is divided in two parts: the
enterCode part and the exitCode part.

states. The first part, called Calculate Output, has
a hard timing constraint and should finish as fast
as possible. The timing requirement for the second
part, Update State, is that it must finish before the
next invocation of the task. Two code segments are
appropriate to model the task:

Read Inputs }
Write Outputs

LOOP

CalculateOutput

UpdateState
Sleep

END

CodeCode
Segment Segment

The enterCode of the first segment contains the read-
ing of the measurement signals, and the calculation
of a new control signal. In the same segment, in
exitCode, the control signal is sent to the actuator.
The control delay of the controller is thus equal to the
execution time of the first segment. The enterCode
of the second code segment contains Update State.
When the last segment has completed, the task is
suspended until the next period by the kernel.

EXAMPLE 2
The structure of a periodic task that first calculates
some data and then writes to a common resource
could look like this:

Unlock(Mutex)

LOOP

}

Sleep
END

Calculate
Lock(Mutex)
WriteData

CodeCode
Segment Segment

Again, two code segments can capture the timely
behavior. The first code segment contains the
Calculate statement, located in the enterCode part.
The enterCode part of the second code segment con-
tains the Lock(Mutex) and WriteData statements,
while exitCode contains the Unlock(Mutex) state-
ment. When the last segment has completed, the

task is suspended until the next period by the ker-
nel.

4. Using the Simulator
From the user’s perspective, the toolbox offers a
Simulink block that models a computer with a real-
time kernel. Connecting the Computer block’s inputs
and outputs (representing for instance A-D and D-
A converters) to the plant, a complete computer-
controlled system is formed, see Figure 7.
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Figure 7 The simulation environment offers a Simulink
Computer block that can be connected to the model of the
plant dynamics.

The plant dynamics may have to be controlled by
several digital controllers, each implemented as a
periodic control task in the computer. Besides the
controllers, other tasks could be executing in the
computer, for instance planning tasks, supervision
tasks, and user communication tasks.

Opening up the Computer block, the user may
study detailed information about the execution of
the different tasks, see Figure 8. It is for instance
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Figure 8 Inside the Computer block, it is possible to
study details about the execution of different tasks.

possible to study the schedule, i.e. a plot that shows
when different tasks are executing, at run-time.
Further statistics about the execution is stored in the
workspace and may be analyzed when the simulation
has stopped.



4.1 Controller Implementation

It is highly desirable that the design of the kernel
is flexible and allows components to be reused and
replaced. Much effort has been put into writing
control algorithms in Matlab, and these algorithms
should be straightforward to reuse. In the toolbox,
a control algorithm can be implemented as a code
segment with the following format:

function [exectime,states] = ...
myController(flag,states,params)

switch flag,
case 1, % enterCode
y = analogIn(params.inChan);
states.u = <place control law here>
exectime = 0.002;
case 2, % exitCode
analogOut(params.outChan,states.u)

end

The input variables to myController are the state
variables states, and the controller parameters
params. The flag is used to indicate whether the
enterCode or the exitCode part should be executed.
If the enterCode part is executed, the function re-
turns the execution time estimate exectime and the
new state variables. The control signal is sent to the
plant in the exitCode part.

Remark The output signal u is not normally
regarded as a state variable in a controller. In
this example, however, we need to store the value
of u between two invocations of the myController
function.

4.2 Configuration

Before a simulation can start, the user must define
what tasks that should exist in the system, what
scheduling policy should be used, whether any com-
mon resources exist, etc. The initialization is per-
formed in a Matlab script.

EXAMPLE 3
Three dummy tasks are initialized in the script
below. The tick-size of the kernel is set to 0.001 s
and the scheduling type is set to rate monotonic.
The dummy code segment empty models a task that
computes nothing for a certain amount a time. Each
task is assigned a period, and a deadline which is
equal to the period.

function rtsys = rtsys_init

% 1 = RM, 2 = DM, 3 = Arbitrary FP, 4 = EDF
rtsys.st = 1;
rtsys.tick_size = 0.001;

T = [0.10 0.08 0.06]; % Task Periods

D = [0.10 0.08 0.06]; % Deadlines
C = [0.02 0.02 0.02]; % Computation times

rtsys.Tasks = {}
code1 = code(’empty’,[],C(1))
code2 = code(’empty’,[],C(2))
code3 = code(’empty’,[],C(3))

rtsys.Tasks{1}=task(’Task1’,code1,T(1),D(1));
rtsys.Tasks{2}=task(’Task2’,code2,T(2),D(2));
rtsys.Tasks{3}=task(’Task3’,code3,T(3),D(3));

The initialization script is given as a parameter to a
Computer block in a Simulink model. Simulating the
model for one second produces, among other things,
the schedule plot shown in Figure 9.
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Figure 9 The schedule resulting from the simulation
in Example 3. The bottom graph shows when Task 1 is
running (high), ready (medium) or blocked (low). The
other two graphs represent Task 2 and Task 3.

4.3 Connecting a Continuous Plant
Figure 10 shows a Simulink diagram where a Com-
puter block is connected to three pendulum models.
The continuous plant models are described by other
Simulink blocks.

A real-time system with three control loops are
created in Example 4. One code segment named
myController is associated with each task.

EXAMPLE 4
function rtsys = rtsys_init
% Scheduling type, 1=RM, 2=DM, 3=FP, 4=EDF
rtsys.st=1;
rtsys.tick_size=0.001;

% Desired bandwidths
omega=[3 5 7];
% Sampling periods
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Figure 10 A Simulink diagram where three continu-
ous pendulum models are connected with the real-time
kernel. The simulation result from this system is both
the activation graph and the output from the continuous
plants.

T=[0.167 0.100 0.071];
for i=1:3
% Design controller
params=ctrl_design(omega(i),T(i));
% Initialize control code
states.xhat=[0 0]’;
% The controller reads from input i
params.inChan=i;
% The controller writes to output i
params.outChan=i;
sfbcode=code(’myController’,states,params);
% Create task
tasks{i}=task([’Task ’num2str(i)],...

sfbcode, T(i), T(i));
end
rtsys.tasks=tasks;

The outputs from a simulation of this system are a
set of continuous signals from the plants together
with an activation graph. It is hence possible to
evaluate the performance of the real-time systems
both from a control design point of view and from a
scheduling point of view.

5. A Co-Design Example
Using the simulator, it is possible to evaluate differ-
ent scheduling policies and their effect on the control
performance. Again consider the problem of control-
ling three inverted pendulums using only one CPU,
see Figure 11. The inverted pendulum may be ap-
proximated by the following linear differential equa-
tion

θ̈ = ω2
0θ +ω2

0u/n,

where ω0 =
√n/l is the natural frequency for a

pendulum with length l. The goal is to minimize the
angles, so for each pendulum we want to minimize

θ

signals
input

output
control

ττ τ
Kernel

31 2

Figure 11 The setup from described in Section 5. Three
inverted pendulums with different lengths are controlled
by three control tasks running on the same CPU.

the accumulated quadratic loss function

Ji(t) =
∫ t

0
θ 2

i (s)ds. (1)

Three discrete-time controllers with state feedback
and observers are designed. Sampling periods for
the controllers are chosen according to the desired
bandwidths (3, 5 and 7 rad/s respectively) and the
CPU resources available. The execution times of the
control tasks, τ i, are all 28 ms, and the periods are
T1 = 167 ms, T2 = 100 ms, and T3 = 71 ms.

Task objects are created according to Example 4.
Also, similar to Example 1, the control algorithm
is divided into two code segments, Calculate Output
and Update State, with execution times of 10 and 18
ms respectively.

In a first simulation, the control tasks are assigned
constant priorities according to the rate-monotonic
schema, and the two code segments execute at the
same priority. In a second simulation, the Calculate
Output code segments are assigned higher priori-
ties than the Update State segments, according to it-
erative priority/deadline assignment algorithm sug-
gested in [Cervin, 1999]. The accumulated loss func-
tion for the slow pendulum (T1 = 167 ms) is easily
recorded in the Simulink model, and the results from
both simulations are shown in Figure 12.

A close-up inspection of the schedule produced in the
second simulation is shown in Figure 13. It can be
seen that the faster tasks sometimes allow the slower
tasks to execute, and in this way the control delays
in the slower controllers are minimized. The result is
a smaller accumulated loss, and thus, better control
performance.
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Figure 12 The accumulated loss, see Equation (1), for
the low priority controller using normal and improved
scheduling. The cost is substantially reduced under the
improved scheduling.
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Figure 13 The activation graph when the improved
scheduling strategy is used. Note that the control delay
for the low priority task is approximately the same as for
the other tasks.

6. Simulation Features
Further features of the toolbox are the support for
common real-time primitives like mutual exclusion
locks, events (also known as condition variables),
and network communication blocks.

6.1 Locks and Events
The control tasks do not only interact with each
through the use of same CPU, but also due to sharing
other user-defined resources. The kernel allows the
user to define monitors and events, for implementing
complex dependencies between the task. The syntax
and semantics of the mutex and event primitives are
demonstrated by a small example. Two tasks Regul
and OpCom are sharing a variable called data. To

ensure mutual exclusion the variable is protected
by the mutex variable M1. Associated with M1 is a
monitor event called E1. The Regul-task consists of
two code segments called rseg1 and rseg2, that are
shown in Example 5. Each time the Regul-task is
released it tries to lock the monitor variable M1. Once
the monitor is locked it may access the shared data.
If the value of the data-variable is less than two, it
waits for the event E1 to occur.

EXAMPLE 5
function [exectime, states] = ...

rseg1(flag,states,params)
switch flag,
case 1, % enterCode

if lock(’M1’)
data = readData(’M1’);
if data < 2
await(’E1’);
exectime = 0;

else
exectime = 0.003;

end
else
exectime = 0;

end
case 2, % exitCode

unlock(’M1’);
end

function [exectime,states] = ...
rseg2(flag,states,params)

switch flag,
case 1, % enterCode

y = analogIn(params.inChan);
states.u = -50*y;
exectime = 0.003;

case 2, % exitCode
analogOut(params.outChan,states.u)

end

The locks and the events are designed similarly to
how monitors and events are implemented in a stan-
dard real-time kernel, i.e. using queues associated
with the monitor for storing tasks blocking on locks
or events. The execution time used for trying, but
failing to lock, is in the example above zero.

6.2 Network Blocks
It is possible to include more than one Computer
block in a Simulink model, and this opens up the pos-
sibility to simulate much more complex systems than
the ones previously discussed. Distributed control
systems may be investigated. Furthermore, fault-
tolerant systems, where, for redundancy, several
computers are used for control, could also be simu-
lated. In order to simulate different communication
protocols in such systems, communication blocks for
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Figure 14 A distributed control system where the
sensor and the CPU are dislocated. The controller and
the sensor are implemented as periodic tasks running on
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sending data between the different Computer blocks
are needed. Figure 14 shows a simulation setup for
a simple distributed system where the controller,
and the actuator and sensor, are located at differ-
ent places. Besides the kernel blocks there is a net-
work block for communication. The network block is
event driven, and each time any of the input sig-
nals change, the network is notified. The user needs
to implement the network protocol, since the blocks
simply provides the mechanisms for sending data be-
tween kernels.

6.3 High Level Task Communication
One of the main reasons for designing the kernel and
the network blocks was to facilitate the simulation of
flexible embedded control system, i.e. systems where
the task set is allowed to change dynamically and
the underlying real-time system must compensate
for this. From a control theory perspective we might
say that we want to design a feedback connection
between the control tasks and the scheduler, see
Figure 15. To support the simulation of feedback

Scheduler

Processes

Controllers

Figure 15 The control tasks and the task scheduler are
connected in a feedback loop.

scheduling, there must be ways for the tasks and the
task scheduler to communicate. Therefore the kernel
also supports system-level message passing between
tasks.

7. Conclusions
This paper presented a novel simulator for the co-
design of real-time systems and control systems. The
main objective is to investigate the consequences on
control performance of task interaction on kernel
level. This way, scheduling algorithms may be eval-
uated from a control design perspective. We believe
that this is an issue of increasing importance. There
are many more things to be implemented and im-
proved before this block set will become a truly use-
ful tool. Currently the kernel is tick-based, and has
little support for external interrupts. The next ver-
sion of the kernel block will probably be event-based
in order to better support interrupts and event-
based sampling. To make the simulations more re-
alistic, the scheduler itself could also be modeled as
a task that consumes CPU time. This would also en-
hance the possibilities for the user to implement new
scheduling strategies for control tasks.
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