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Optimal Robot Control Using Modelica and Optimica

Martin Hasta Johan Åkessona,b Anders Robertssona
a) Department of Automatic Control, LTH,
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b) Modelon AB, Sweden

Abstract

In this paper, Modelica along with Optimica is used
to formulate and solve a minimum time optimization
problem. The problem concerns the traversal of a
given path with a robot in as short time as possible un-
der input constraints. Several problem reformulations,
increasing the chance of finding optimal solutions, are
discussed. This paper also discusses the use of these
optimal solutions for control of industrial robots. A
control structure, in which the optimal trajectories are
essential, is used on an ABB IRB140B to ensure ro-
bustness for model errors and disturbances.

Keywords: Modelica, Optimica, Optimization,

Robot Control

1 Introduction

In several robot applications such as gluing, painting
and arc welding, not only the end points but also the
path as such and the speed of traversal are strongly
connected to quality and efficiency. Optimal input tra-
jectories, minimizing the traversal time along a path,
can be found by solving an optimization problem. The
results can be used by a controller to slow down the
motion along the path rather than deviate from it, if
the robot is subject to disturbances or model errors. A
controller with ability to slow down the motion along
the path while still trying to minimize the traversal
time is a Path Velocity Controller, PVC [7]. The PVC
depends on the existence of nominal acceleration and
velocity profiles. The profiles are obtained by formu-
lating and solving a minimum time optimization prob-
lem. Modelica along with Optimica [2] can be used
to formulate optimization problems in a natural and
compact way. Modelica is used to formulate the dy-
namical system and the initial values for the optimiza-
tion problem, while the Optimica language extension
is used to impose limits on the variables and to for-
mulate the cost function and the constraints. Hence,

Modelica and Optimica provide a convenient method
for formulating and solving optimal control problems
which is necessary when using PVC.

2 Background

2.1 JModelica.org

JModelica.org is a novel Modelica-based open source
project targeted at dynamic optimization [4]. JMod-
elica.org features compilers supporting code genera-
tion of Modelica models to C, a C API for evaluating
model equations and their derivatives and optimization
algorithms. The compilers and the model C API has
also been interfaced with Python [9] in order to en-
able scripting and custom application development. In
order to support formulation of dynamic optimization
of Modelica models, JModelica.org supports the Op-
timica extension [3]. Optimica offers constructs for
encoding of cost functions, constraints, the optimiza-
tion interval with fixed or free end points as well as
specification of the transcription scheme.

The JModelica.org platform contains an implemen-
tation of a simultaneous optimization method based on
orthogonal collocation on finite elements [6]. Using
this method, state and input profiles are parametrized
by Lagrange polynomials, of order three and four re-
spectively, based on Radau points. This method cor-
responds to a fully implicit Runge-Kutta method, and
accordingly it possesses well known and strong stabil-
ity properties. By parametrizing the variable profiles
by polynomials, the dynamic optimization problem is
translated into a non-linear program (NLP), solved by
a numerical NLP solver. The NLP is, however, very
large. In order to efficiently find a solution to the
NLP, derivative information as well as the sparsity pat-
terns of the constraint Jacobians need to be provided to
the solver. The simultaneous optimization algorithm
has been interfaced with the large-scale NLP solver
IPOPT [13], which has been developed particularly



to solve NLPs, arising in simultaneous dynamic op-
timization.

The choice of a simultaneous optimization algo-
rithm fits well with the properties of the dynamic opti-
mization problems treated in this paper. In particular,
simultaneous methods handle unstable systems well,
and also, state and input inequality constraints are eas-
ily incorporated.

Formulating the Minimum Time Optimization

Problem

We consider the optimization problem of traversing a
given path in as short time as possible under given in-
put constraints. The minimum time optimization prob-
lem and reformulations thereof follow the presentation
in [7]. Subsequently, we assume that a model of order
p with states qi and n inputs, τi, is available.
A model of a rigid robot can be written

τ = H(q)q̈+ v(q, q̇)+d(q)q̇+g(q), (1)

whereas a model of a flexible robot is given by

H(q)q̈+ v(q, q̇+d(q)q̇+g(q)+K(q−θ) = 0

Jθ̈ = τ +K(q−θ).
(2)

See [12] for details concerning robot modelling. Com-
mon for these models, and for the models used in work
described in this paper, are that they all can be written
on the form

τ = h(q, q̇, . . . ,q(p)) (3)

with limited inputs described by

τmin
i ≤ τi ≤ τmax

i , 1≤ i≤ n (4)

We further assume that a traversable path,

q(t) = f (t) (5)

is available, i.e., the path trajectories are defined in
such a way that all states can reach all points on the
prescribed path.

The objective is to traverse the path as fast as pos-
sible, i.e, minimizing the traversal time t f . By setting
the start time, t0 = 0, the time-minimum optimization
problem is formulated as

min
τ

t f = min
τ

∫ t f

0
1dt (6)

under the constraints imposed by (4) and (5), along
with boundary conditions for

q(t0), q̇(t0), . . . ,q
(p)(t0)

q(t f ), q̇(t f ), . . . ,q
(p)(t f )

(7)

The problem formulation consists of pn states and is
generally hard to solve. Consequently a reduction of
the number of states is desirable. The reductions are
conducted as presented in [7] and are here given for
completeness.

Reducing the Number of States

The number of dynamical states in the optimization
problem is reduced to p as described in [7]. By intro-
ducing the path parameter

s(t0) = s0 ≤ s(t) ≤ s(t f ) = s f (8)

and parametrizing the path f as a function of the nom-
inal, scalar path parameter i.e., f (s), the number of
states can be reduced. Setting q = f (s) and using the
chain rule, d f

dt
= d f

ds
ds
dt
, the model given by (3) is rewrit-

ten as

τ = hs(s, ṡ, . . . ,s
(p)) (9)

In addition to (4), (9) serves as constraints for the re-
duced optimization problem. The dynamics of the op-
timization problem are now expressed as a chain of p
integrators

ds

dt
= ṡ

dṡ

dt
= s̈

...

ds(p−1)

dt
= s(p)

(10)

Following the state reduction the cost function is ex-
pressed as

min
s(p)

∫ t f

0
1dt (11)

and the boundary conditions are imposed on s and its
time derivatives

s(t0), . . . ,s
(p−1)(t0)

s(t f ), . . . ,s
(p−1)(t f )

(12)

Reformulating the Optimization Problem

The number of states in the optimization problem can
be further reduced to p−1 as the problem is reformu-
lated over a fixed interval. The problem is converted
to optimization over a fixed interval by deriving a dy-
namic system in s [7]. New states x1, . . . ,xp−1 are in-



troduced. They are defined as

x1 =
ṡp

p

xi =
dxi−1

ds
, i = 2, . . . , p−1

(13)

The free variable, u, in the optimization problem is
defined as u = s(p). By defining a function, g, as

g(x1) = (px1)
1/p (14)

the p-th order derivative of s is expressed as [7]

s(p) = g′(x1)g(x1)
(p−1) dxp−1

ds
+Fp(x1, . . . ,xp−1) (15)

where

Fp(x1, . . . ,xp−1) =g′′(x1)x2g(x1)g(x1)
p−2xp−1

+g′(x1)(p−2)g(x1)p−3g′(x1)x2g(x1)xp−1

+
p−2

∑
i=1

∂Fp−1(x1, . . . ,xp−2)

∂xi
xi+1g(x1)

(16)

The constraints (9) are written as functions of s, x and
u as

τ = hx(s,x1, . . . ,xp−1,u) (17)

still subject to (4). We now have boundary conditions
for

x1(s0), . . . ,xp−1(s0)

x1(s f ), . . . ,xp−1(s f ) (18)

The cost function for the minimum time optimization
problem is reformulated

∫ t f

0
dt =

∫ s f

s0

1
ṡ
ds =

∫ s f

s0

(px1)
−1/pds (19)

Equations (17), (18) and (19) along with the dynamic
system

dx1

ds
= x2

dx2

ds
= x3

...

dxp−2

ds
= xp−1

dxp−1

ds
= u−Fp(x1, . . . ,xp−1)

(20)

state the full optimization problem, reformulated to a
fixed interval.

Figure 1: An ABB IRB140B. Picture from [1].

3 Modeling

The robot considered in this paper is an ABB IRB-
140B, see Figure 1. The IRB140B is a six joint serial
robot which allows an arbitrary positioning and orien-
tation within the robot’s work envelope. Due to the
mechanical structure of robots, depicted in Figure 2,
robot models in general are quite complex and non-
linear, cf., Model (1) and (2). However, the robot
model used here consists of six independent linear
models. Each of the robot’s six joints are modeled by
a linear second order model. This is possible since
the input-output relation for which the model has been
identified contains a linearizing controller. The identi-
fied models, and the models used for optimization, de-
scribe the relation between a joint’s velocity reference,
τ , and its angular position, q. The model structure is
given by (21).

Tiq̈i + q̇i = Kiτi (21)

The parameter values for each joint are displayed in
Table 1.

4 Path

A path has been recorded using so called lead-through,
a force-control mode which allows the operator to
freely move/lead the robot in the workspace, with the
IRB140B [1]. The joint angles have been parametrized



Joint Ki Ti ×10−2

1 1.031 1.907
2 1.077 2.043
3 1.061 1.913
4 1.051 1.716
5 1.062 1.791
6 1.062 1.745

Table 1: Parameters for the controlled joint model of
Eq. (21).
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Figure 2: Mechanical structure of the ABB IRB140B
showing the joint angles qi. Picture from [8].

by the path parameter, s, defined between s0 = 0 and
s f = 1. The path is described by splines implemented
in Modelica as if-clauses and the derivatives of f (s)
have been calculated by derivation of the splines.

Figure 3 shows the TCP position. TCP is an abbre-
viation for Tool Center Point which is a user-defined
point on the robot’s end effector.
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Figure 3: TCP as function of the path parameter.

5 Optimization

The goal of the optimization is to find the minimum
time acceleration profile, v2(s), and the velocity pro-

file, v1(s), to be used in the PVC, see Section 6. The
acceleration profile is defined as the acceleration along
the path expressed as a function of the nominal path
parameter i.e., v2(s) = s̈(s). The velocity profile is
defined analogous by i.e., v1(s) = ṡ(s). This can be
done if the time derivative of s, ṡ, is assumed greater
or equal to zero [7]. Formulation of the optimization
problem is done using Modelica and Optimica. Mod-
elica is used to code the constraints (17) and the dy-
namics (20), while Optimica is used to define the input
limits, (4) the boundary conditions, (18), and the cost
function, (19). The Modelica and Optimica codes are
presented in Appendix A, Listings 1 and 2. Note that
the built-in Modelica variable time is equivalent to the
path parameter s due to the reformulation. Hence, the
der()-operator is equivalent to derivation with respect
to the path parameter s.

Using the reduction techniques from Section 2 the
reformulated optimization problem considered is now
given by

min
u(s)

∫ s f

s0

1
√
2x1

ds

s.t.

x1 =
ṡ2

2
,

dx1

ds
= u

Kτ = T ( f ′′(s)ṡ2 + f ′(s)u)

τmin ≤ τ ≤ τmax

x1(s0) = 0, x1(s f ) = 0

ṡ≥ 0

(22)

This work was done using a predecessor of the
JModelica.org platform, see [11] and [4]. The prede-
cessor version uses AMPL as intermediate representa-
tion format and supports an early version of Optimica.
The Modelica and Optimica code is compiled by the
Optimica compiler which translates the optimization
problem into AMPL [5]. The external solver, IPOPT
[10], is then called to solve the problem.

In order for IPOPT to find an optimal solution the
occurrence of a good initial guess is crucial. Because
of the free end time, finding an optimal solution for
a general minimum time problem requires an initial
guess close to the optimal solution. The reformulation
of the optimization problem to a fixed interval is there-
fore preferable.

Finding an optimal solution for the optimization
problem (22) turns out to be feasible. But in order to
find a solution with a smooth acceleration profile the
optimization problem has to be solved in two steps.
First, the optimization problem as it is stated in (22) is



solved. This result can now be used as an initial guess
when solving a second optimization problem. In the
second optimization problem a two per cent slack on
the final time is introduced and the cost function pe-
nalizes the square integral of the input signals. This
renders smoother acceleration and velocity trajectories
which are suitable for implementation on the robot ac-
tuators while the robot still traverses the path in close
to minimum time.

6 Control System

The PVC algorithm [7] modifies the acceleration of a
new path parameter, σ , in such a way that the path,
f (σ), is not deviated from while ensuring that the in-
put limitations (4) are not violated. The algorithm uses
the nominal acceleration profile, v2(σ), as a reference
to update the path acceleration, σ̈ . The path accelera-
tion is limited to make sure that the input constraints
(4) are not violated. Moreover, the algorithm includes
internal feedback α

2 (v1(σ)2− σ̇ 2) that makes the path
velocity, σ̇ , approach the nominal velocity, v1(σ).

A controller written on the form

τ = β1(σ)σ̈ + β2(σ , σ̇ ,q, q̇) (23)

is assumed to be available. Combining (23) with the
limits (4), it is possible to calculate the minimum and
the maximum acceleration, σ̈ i

min and σ̈ i
max, for each

joint i.

τmin
i ≤ τi = β1iσ̈ + β2i ≤ τmax

i , 1≤ i≤ 6 (24)

σ̈max
i (β1iβ2i) =















τmaxi −β2i
β1i

β1i > 0
τmini −β2i

β1i
β1i < 0

∞, β1i = 0

σ̈min
i (β1iβ2i) =















τmini −β2i
β1i

β1i > 0
τmaxi −β2i

β1i
β1i < 0

−∞, β1i = 0

(25)

By choosing the limits on σ̈ according to (26), the ac-
celeration along the path is chosen in order not to vio-
late the limits on the input

σ̈max(β1,β2) = min
i

σ̈max
i (β1,β2)

σ̈min(β1,β2) = max
i

σ̈max
i (β1,β2)

(26)

The PVC algorithm is given by (27). The full control

structure is presented in the block diagram in Figure 4.

dσ

dt
= σ̇

dσ̇

dt
= σ̈

ur = v2(σ)+
α

2
(v1(σ)2− σ̇ 2)

σ̈ = sat(ur, σ̈min(β1,β2),σmax(β1,β2))

(27)

σσ̇σ̈

α
2 (v1(σ)2− σ̇ 2)

∑
ur

v2(σ)

τ q, q̇, . . .

β1,β2

∫

∫

RobotController

Limit
Calculation

Figure 4: The PVC algorithm with controller and robot

7 Simulations

The control algorithm, (27), described in Section 6
has been implemented in Simulink. In order to eval-
uate the performance of the PVC a model error was
introduced. The model error introduced was a 20%
decrease in the gain for joint 1, i.e., K̃1 = 0.8K1. Two
simulations were done using the perturbed model. In
the first simulation, the regular controller 23 was used
but the PVC was disabled, see Figure 5, whereas in the
second simulation the PVC was used together with the
controller 23. The internal feedback gain in the second
simulation was chosen to α = 500.

Optimal
trajectories Controller Robot

qre f , q̇re f . . . τ q, q̇ . . .

Figure 5: Block diagram showing the setup used in the
first simulation, without the PVC.



The minimum time for traversing the path with the
unperturbed model is 10.87 seconds and with the per-
turbation the minimum time is 12.09 seconds.

In the first simulation the path was traversed with
the velocity profile obtained from the optimization.
Since there was no PVC the deviated path was tra-
versed in 10.87 seconds. In the second simulation,
with the PVC, the path was instead traversed in 12.41
seconds which is 0.32 seconds longer than the opti-
mal time for the perturbed model. The velocity along
the path, σ̇(σ), for both simulations is displayed in
Figure 6. Here one can clearly see that the PVC low-
ers the velocity along the path. When using the PVC,
the path is traversed without violating the input bound-
aries, τmin and τmax, as can be seen in Figure 8. When
not using the PVC, see Figure 9, it is obvious that the
input signal calculated by the controller is well above
the input limitations of the process. Since the input
signals are saturated at their limits this gives rise to the
deviation from the path visible in Figure 7. Figure 7
shows that perturbation mostly effects the error in y di-
rection which is due the robot’s mechanical structure
and and the traversed path.
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Figure 6: Continuous line is with the PVC enabled and
dashed line is with the PVC disabled

8 Summary and Conclusions

In this paper we formulated and solved a minimum
time optimization problem for an industrial robot. Re-
formulations were done in order to obtain acceleration
and velocity profiles without having to find an initial
guess close to the optimal solution. The robot joints
were modeled with simple second order linear transfer
functions. This was possible due to the presence of lin-
earizing controllers working within the identified mod-
els. Lead-through was used to record the path which
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Figure 7: Continuous line is with the PVC enabled and
dashed line is with the PVC disabled.
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Figure 8: Input signals for the six joints with the PVC en-
abled

was represented by the joints angular positions. The
dynamical model with its constraints and boundary
conditions, the path and the cost function were done in
Modelica and Optimica. Modelica along with Optim-
ica provided an efficient and convenient way to formu-
late the dynamic optimization problem. The Optimica
formulation is both in structure and syntax close to the
mathematical description of the optimization problem
which is beneficial. The closeness to the mathematical
description facilitates the formulation of optimization
problems which makes the work less time consuming
as well as less error-prone than coding in for instance
AMPL.

The optimization results were used as nominal ac-
celeration and velocity trajectories in a PVC. The
PVC has been tested, both in simulations and on an
ABB IRB140B robot, showing that the path deviation
is small, the input limitations are not violated and that
the path traversal speed is close to the optimal. This
paper shows that Optimica is well suited for the task
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of finding the optimal acceleration and velocity pro-
files needed in order to use PVC.
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A Modelica and Optimica Code

model Robot

// Robot inputs, tau

Real tau[6];

// Robot model gains, K

parameter Real K[6] = {1.031, 1.077, 1.061,

1.051, 1.054, 1.062};

// Robot model time constants, T

parameter Real T[6] = {0.019086, 0.020433,

0.019129, 0.017158, 0.017909, 0.017447};

// First and second derivative of s

// with respect to time

Real sd(start=0);

Real sdd;

// Auxiliary variable

Real x1;

// Optimization variable

Modelica.Blocks.Interfaces.RealInput u

// Path, f, stored as splines

Splines f;

// First and second derivative of the path f

// with respect to s

Real df[6];

Real ddf[6];

equation

K*tau = T*(ddf*sd^2 + df*u) + df*sd;

df = der(f.f);

ddf = der(df);

x1 = sd^2/2;

der(x1) = u;

// Independant variable

f.s = time;

end Robot;

Listing 1: The Modelica code for the optimization
problem in (22).

optimization OptTraj (objective=cost,

startTime=0,

finalTime=1)

// Cost function

Real cost;

// Instance of robot model

Robot robot(u(free=true));

equation

der(cost) = 1/sqrt(2*x1+1e10);

constraint

// Lower bounds on robot inputs

robot.tau >= {0.175, 0.175, 0.227,

0.314, 0.314, 0.395};

// Upper bounds on robot inputs

robot.tau <= {0.175, 0.175, 0.227,

0.314, 0.314, 0.395};

// Terminal constraint on x1

robot.x1(finalTime) = 0;

// Inequality constraint

robot.sd >= 0;

end optTraj;

Listing 2: The Optimica code for the optimization
problem in (22).


