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Abstract

Although imaging and inverse scattering problems have been thoroughly stud-

ied during the last century there is only a partial understanding of these com-

plex problems. Most of the e�orts have been placed on the development of

e�cient inversion algorithms and mathematical uniqueness results. In com-

parison, there are very few results and a limited knowledge about the informa-

tion content in the inversion data. In this paper, we provide a mathematical

framework for sensitivity analysis of imaging problems, based on the mul-

tipole expansion of the electromagnetic �eld and the Fisher information to

quantify the quality of data. By exploiting this framework, a fundamental

uncertainty principle for accuracy and resolution is formulated based on the

Cramér-Rao bound. The sensitivity analysis and uncertainty principle for an-

tenna near-�eld imaging is illustrated using a relevant example with cylindrical

measurement data.

1 Introduction

Inverse scattering and imaging are topics with a variety of applications in e.g., medi-
cine, non-destructive testing, surveillance, quantum mechanics, and optics. These
problems are in general ill-posed, i.e., they are not well-posed in the sense of exis-
tence, uniqueness, and continuously dependence of the solution on the data [2, 5, 9,
12, 15].

The mathematical theory is well developed concerning the uniqueness of inverse
scattering problems [9, 12]. The uniqueness theorems typically show that the so-
lution is unique if the data is available from all possible measurements. This is
very important but not su�cient from a practical point of view. Further, since the
solution of ill-posed problems does not generally depend continuously on the data,
the e�ect of noise on the solution is ampli�ed in a way that calls for proper control.
For this purpose, regularization theory [2] is often used to control the imaging error.
However, these approaches do not give a qualitative measure on the information
content of the inversion data with respect to the accuracy and resolution of images.

Over several decades the Cramér-Rao bound (CRB) has been subjected to many
revivals and has become the dominating tool in areas such as statistical signal
processing [11], array signal processing [13] and systems and control theory [22].
However, we have observed that estimation theory, the CRB, and maximum likeli-
hood methods [26, 27] are tools that have not been fully exploited in the traditional
inverse scattering, imaging or antenna literature.

The CRB provides a lower bound on the estimation error and a fundamental
physical limit on system accuracy, but it does not directly indicate the best resolution
achievable by an unbiased estimator. Nevertheless, the CRB can be used to de�ne
an absolute limit on resolution. In the context of sensor array processing (such as
estimation of azimuth, elevation, polarization, etc.) the statistical resolution limit is
de�ned as the source separation that equals its own Cramér-Rao bound, providing an
algorithm-independent bound on the resolution of any high-resolution method [21].
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Figure 1: Cylindrical measurement set-up for antenna near-�eld imaging at SAAB
Bofors Dynamics, Sweden.

The purpose of this paper is to provide a mathematical framework for sensitivity
analysis of antenna near-�eld imaging problems, based on the multipole expansion
of the electromagnetic �eld [1, 7, 10], linear estimation theory and the Fisher infor-
mation [11] to quantify the quality of data, see also [18]. The presented framework
has potential for many inverse, or antenna imaging problems such as e.g., in mi-
crowave tomography [5], digital holographic microscopy [6], non-destructive testing
of wood [20], antenna near-�eld imaging [19], multimode antenna analysis [23, 29]
or as an electromagnetic model for antenna array signal processing using vector
sensors [8, 14, 24, 28].

Near-�eld measurements of antennas are available everywhere today due to their
compact set-up and reasonable price. Although they are mainly used to determine
the antenna pattern after a near to far-�eld transformation they have also found
application in characterizing the current distribution on antennas and radomes, see
e.g., [16, 19, 29]. There are rules of thumb of the set-up of near-�eld measurements
when the far �eld is wanted. The near-�eld to equivalent current transformation
is more complex and it is necessary to have a qualitative analysis of the associated
imaging problem.

As a prototype example of antenna near-�eld imaging, we study the measure-
ment set-up depicted in Figure 1. The cylindrical data is gathered by rotating the
object under test and moving the near-�eld probe in the vertical direction. By
Fourier transforming the data over the azimuthal coordinates the estimation prob-
lem decouples and multipoles can be determined from individual systems of linear
equations, one for each azimuthal index.

By exploiting the presented framework for sensitivity analysis, we formulate a
fundamental uncertainty principle for accuracy and resolution based on the Cramér-
Rao bound. In contrast to [21] we retain here the classical de�nition of resolution
and employ the maximum multipole order to quantify the trade-o� between accuracy
and resolution. Hence, when increasing the desired accuracy (decreasing the desired
CRB) in a given measurement set-up, the corresponding resolution of the imaging
system is reduced. Numerical examples verify the classical Rayleigh criterion [3],
and it is illustrated that superresolution is possible only if the sensor noise (or model



3

errors) is very small.
The rest of the paper is outlined as follows. In section II follows a detailed

description of the prototype example, the inverse multipole problem based on cylin-
drical data. Section III contains the sensitivity analysis, including both the near and
far-�eld estimation problems. In section IV is formulated the fundamental uncer-
tainty principle for accuracy and resolution. Section V contains numerical examples,
and section VI the summary and conclusions. An appendix is also included de�ning
the spherical vector waves and their azimuthal Fourier transforms.

2 The Inverse Multipole Problem based on Cylin-

drical Data

2.1 Wave Propagation Model and Maximum Mode Order

Throughout the paper, let (r, θ, φ) and (ρ, φ, z) denote the spherical and cylindrical
coordinates, respectively. Further, let k = ω/c denote the wave number, ω = 2πf
the angular frequency, and c and η the speed of light and the wave impedance of
free space, respectively.

Assume that all sources are contained inside a sphere of radius r = a, and let eiωt

be the time-convention. The transmitted electric �eld, E(r), can then be expanded
in outgoing spherical vector waves uτml(kr) for r > a as [1, 7, 10]

E(r) =
∞∑
l=1

l∑
m=−l

2∑
τ=1

fτmluτml(kr) (2.1)

where fτml are the multipole coe�cients. Here τ = 1 corresponds to a transversal
electric (TE) wave and τ = 2 corresponds to a transversal magnetic (TM) wave.
The other indices are l = 1, 2, . . . ,∞ and m = −l . . . , l where l denotes the order of
that mode. It can be shown that in the far �eld when r → ∞, the electric �eld is
given by E(r) = e−ikr

kr
F (r̂) where F (r̂) is the far-�eld amplitude given by

F (r̂) =
∞∑
l=1

l∑
m=−l

2∑
τ=1

il+2−τfτmlAτml(r̂) (2.2)

and where Aτml(r̂) are the spherical vector harmonics [1, 7, 10]. For further details
about the spherical vector mode representation we refer to the appendix and [1, 7,
10].

In principle, the sum in (2.1) is in�nite. However, for all practical purposes the
maximum useful order L is �nite and can be estimated as follows. The classical the-
ory of radiation Q uses spherical vector modes and equivalent circuits to analyze the
properties of a hypothetical antenna inside a sphere, cf., [4]. Hence, by considering
an antenna of a given electrical size and normalized bandwidth, we can estimate
L by using the Fano broadband matching theory to determine optimum re�ection
coe�cients for each propagating mode, see e.g., [17, 18] with references. However,
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the drawback with this approach for practical antennas is that L will most likely
be largely overestimated. Instead, we propose here to assess L by employing the
uncertainty principle for accuracy and resolution discussed in section IV. With this
approach, no a priori knowledge or assumptions about the maximum mode order L
is needed. The choice of L is based instead on a Fisher information analysis for the
actual measurement set-up and a trade-o� between accuracy and resolution.

2.2 Measurement Equation and Inverse Problem

We consider the inverse problem of determining the multipole coe�cients fτml based
on an observation of the electric near-�eld Ep(r) = p̂(r) · E(r) as it is measured
on the cylindrical surface {ρ = ρ0, z1 ≤ z ≤ z2} for a given polarization p̂(r). The
inverse multipole problem is fundamental in the sense that it generates estimates for
both the near �eld and the far �eld, based on the same set of cylindrical measurement
data.

Let Ẽp
m(ρ, z) denote the Discrete Fourier transform (DFT) of the measurement

data Ep(r) along the azimuthal coordinate φ such that

Ep(r) =
1

M

M/2∑
m=−M/2+1

Ẽp
m(ρ, z)eimφ (2.3)

where M is the number of azimuthal points and the size of the DFT, M/2 > L
and L is assumed to be su�ciently large so that the spatial alisasing in (2.3) can
be neglected. The spherical vector waves uτml(kr) and their corresponding DFT's
ũτml(r, θ) are de�ned so that uτml(kr) = ũτml(r, θ)e

imφ, see the appendix. Hence,
by applying the DFT on the input measurement data the fundamental measurement
equation decouples and we obtain the following linear system of equations for each
m-index of the DFT

1

M
Ẽp

m(ρ, z) =
2∑

τ=1

L∑
l=max{|m|,1}

fτmlp̂(r) · ũτml(r, θ). (2.4)

In (2.4), p̂(r) must be chosen such that p̂(r) · ũτml(r, θ) is independent of φ. In
a typical (cylindrical) measurement situation, p̂(r) = ẑ = r̂ cos θ − θ̂ sin θ and/or
p̂(r) = φ̂. Assuming that there are N measurement positions for {ρ = ρ0, z1 ≤
z ≤ z2} and P polarization directions, the fundamental measurement equation (2.4)
corresponds to a complex PN × 2(L−max{|m|, 1}+ 1) linear system of equations
in the unknowns fτml.

In a practical situation, when we wish to estimate the near-�eld at a sphere
of radius r = a, it is appropriate to normalize the basis functions uτml(kr) in
(2.1) and (2.4) using the vector norm ‖uτml(kr)‖ = (

∫
|uτml(kr)|2 dΩ)1/2 where dΩ

is the di�erential solid angle and the integration is over the unit sphere. By the
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orthonormality of the spherical vector harmonics [1, 7, 10], we have

‖u1ml(kr)‖2
r=a =

∣∣∣h(2)
l (ka)

∣∣∣2
‖u2ml(kr)‖2

r=a =

∣∣∣∣∣(kah
(2)
l (ka))′

ka

∣∣∣∣∣
2

+ l(l + 1)

∣∣∣∣∣h(2)
l (ka)

ka

∣∣∣∣∣
2 (2.5)

where the (·)′ indicates di�erentiation with respect to the argument kr. The purpose
of this normalization is to weigh the modes equal, and thus stabilizing the inversion
algorithm by improving the conditioning of (2.4). It should be noted however, that
the near and far-�eld estimation problems considered below are linear estimation
problems and the corresponding Cramér-Rao bounds are invariant to this scaling.

In order to obtain an estimate of the �elds, it is assumed that the linear system
(2.4) is overdetermined (PN > 2L) and solved in the least squares sense. Assuming
that the linear system has full rank and that the measurement error is Gaussian,
the least squares solution is also the maximum likelihood estimate of the multipole
coe�cients, which is e�cient in that it attains its Cramér-Rao bound [11]. In
practice, however, the linear system is extremely ill-conditioned for large mode orders
L and the measurement error may contain non-Gaussian noise as well as non-additive
systematic errors. Hence, it is also necessary to regularize the inverse problem by
using the Singular Value Decomposition (SVD) and truncate the smallest singular
values to avoid excessive noise ampli�cation. Here, we propose also to regularize the
inverse problem directly by �xing the maximum useful order L and calculate the
corresponding Cramér-Rao bound. The physical meaning of this bound is simply
the best possible estimation error for estimating the �elds modulo the higher order
modes (higher order modes excluded).

As a fundamental case we consider a complete vector measurement where p̂(r) =

r̂, θ̂, φ̂, respectively. Denoting by Ẽm(ρ, z) = r̂Ẽr
m(ρ, z)+ θ̂Ẽθ

m(ρ, z)+ φ̂Ẽφ
m(ρ, z) we

obtain
1

M
Ẽm(ρ, z) =

2∑
τ=1

L∑
l=max{|m|,1}

fτmlũτml(r, θ). (2.6)

3 Sensitivity Analysis

3.1 Noise Model and Fisher Information

We assume that the measured electric �eld on the cylinder surface E(M)(r) is cor-
rupted by additive noise

E(M)(r) = E(r) + N (r) (3.1)

where N (r) is a spatially uncorrelated complex Gaussian random process [11] with
zero mean and dyadic covariance function

E{N (r)N ∗(r′)} = σ2
nδ(r − r′)I (3.2)
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where E{·} denotes the expectation operator, σ2
n the noise variance, δ(r) the impulse

function and I the identity dyad. Note that since the data is assumed here to be
discrete, δ(·) denotes the discrete impulse function with δ(0) = 1.

Denoting by Ñm(ρ, z) the DFT of the noise term, our signal model is now given
by

1

M
Ẽ

(M)

m (ρ, z) =
2∑

τ=1

L∑
l=max{|m|,1}

fτmlũτml(r, θ) +
1

M
Ñm(ρ, z) (3.3)

where the covariance of the noise term is

E{ 1

M2
Ñm(ρ, z)Ñ

∗
m′(ρ, z′)} =

σ2
n

M
δ(z − z′)δ(m−m′)I. (3.4)

The Fisher information matrix [11] for estimating the multipole coe�cients fτml

is given by

[I ]τml,τ ′m′l′ =
M

σ2
n

N∑
n=1

∂ 1
M

Ẽ
∗
m(ρ, zn)

∂f ∗
τml

·
∂ 1

M
Ẽm′(ρ, zn)

∂fτ ′m′l′
δ(m−m′) =

=
M

σ2
n

N∑
n=1

ũ∗
τml(rn, θn) · ũτ ′m′l′(rn, θn)δ(m−m′)

(3.5)

where the indices run over −L ≤ m,m′ ≤ L, τ, τ ′ = 1, 2, l = max{|m|, 1}, . . . , L,
and l′ = max{|m′|, 1}, . . . , L.

The Fisher information matrix is decoupled over the m-index and can hence be
organized as a block diagonal matrix with diagonal blocks Im with [Im]τl,τ ′l′ =
[I ]τml,τ ′ml′ for −L ≤ m ≤ L where τ, τ ′ = 1, 2 and l, l′ = max{|m|, 1}, . . . , L. Note
also that for the block diagonal matrix, [I−1

m ]τl,τ ′l′ = [I−1]τml,τ ′ml′ .

3.2 Near-Field and Far-Field Estimation

From (2.1), the general Cramér-Rao bound (CRB) [11] for near-�eld estimation is
given by

E {|Ee(r)−E(r)|2} ≥
L∑

l=1

l∑
m=−l

2∑
τ=1

L∑
l′=1

l′∑
m′=−l′

2∑
τ ′=1

· · ·

· · · [I−1]τml,τ ′m′l′u
∗
τml(kr) · uτ ′m′l′(kr)

(3.6)

where Ee(r) denotes the estimated �eld and I−1 is the inverse of the Fisher infor-
mation matrix. Generally, the CRB in (3.6) is a scalar �eld depending on all the
three spatial coordinates (r, θ, φ).

Since the Fisher information (3.5) is decoupled over the m-index, the correspond-
ing CRB (3.6) becomes

E {|Ee(r)−E(r)|2} ≥
L∑

m=−L

2∑
τ=1

L∑
l=max{|m|,1}

2∑
τ ′=1

L∑
l′=max{|m|,1}

· · ·

· · · [I−1
m ]τl,τ ′l′ũ

∗
τml(r, θ) · ũτ ′ml′(r, θ)

(3.7)
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where we have employed uτml(kr) = ũτml(r, θ)e
imφ. Note that the CRB in (3.7) is

independent of the azimuthal coordinate φ, and depends only on (r, θ).
The sensitivity analysis for the far �eld F (r̂) in (2.2) is obtained from the pre-

vious results simply by replacing uτml(kr) in (3.6) by i−l−2+τAτml(r̂). Hence, the
general CRB for estimating F (r̂) is given by

E {|F e(r̂)− F (r̂)|2} ≥
L∑

l=1

l∑
m=−l

2∑
τ=1

L∑
l′=1

l′∑
m′=−l′

2∑
τ ′=1

· · ·

· · · [I−1]τml,τ ′m′l′ i
l−l′ iτ

′−τA∗
τml(r̂) ·Aτ ′m′l′(r̂)

(3.8)

which depends generally on both directional coordinates (θ, φ).
Since the Fisher information (3.5) is decoupled over the m-index, the correspond-

ing CRB (3.8) becomes

E {|F e(r̂)− F (r̂)|2} ≥
L∑

m=−L

2∑
τ=1

L∑
l=max{|m|,1}

2∑
τ ′=1

L∑
l′=max{|m|,1}

· · ·

· · · [I−1
m ]τl,τ ′l′ i

l−l′ iτ
′−τÃ

∗
τml(θ) · Ãτ ′ml′(θ)

(3.9)

where we have employed Aτml(r̂) = Ãτml(θ)e
imφ. Note that the CRB in (3.9) is

independent of the azimuthal coordinate φ, and depends only on the elevation θ.

4 Uncertainty Principle for Accuracy and Resolu-

tion

The resolution capability associated with the antenna near-�eld imaging problem is
determined by the maximum useful order L. At the same time, the maximum mode
order L gives a limit for the best possible estimation accuracy via the Cramér-Rao
bound (3.6). Hence, there is a fundamental connection between the accuracy (opti-
mum estimation performance) and the resolution capability of an imaging system,
a connection which can be phrased as an uncertainty principle for accuracy and

resolution.
Consider �rst the resolution capability associated with the maximum useful order

L. Assume that we wish to image an idealized far �eld (2.2) with uncorrelated,
zero mean and unit variance multipole coe�cients E{fτmlf

∗
τml} = δττ ′δmm′δll′ . The

covariance dyadic of this �eld is readily seen to be given by

E{F (r̂)F ∗(r̂′)} =
∞∑
l=1

l∑
m=−l

2∑
τ=1

Aτml(r̂)A∗
τml(r̂

′) = δ(r̂ − r̂′)I (4.1)

where the second equality follows from a multipole expansion of δ(r̂ − r̂′)I where
δ(·) is the impulse function on the unit sphere and I is the unit dyad. Hence, the
covariance dyadic can be interpreted as a spatial impulse at position r̂′.
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Figure 2: The two-dimensional point spread function F PS(r̂, r̂′) for θ′ = π/2 and
φ′ = π. a) Mode order L = 10. b) Mode order L = 20.

We de�ne the two-dimensional point spread function [25] F PS(r̂, r̂′) as the right
θ (or φ) component of (4.1) truncated to order L as

F PS(r̂, r̂′) =
L∑

l=1

l∑
m=−l

2∑
τ=1

Aτml(r̂)Ãθ∗
τml(θ

′)e−imφ′ (4.2)

corresponding to an L order multipole expansion of the impulse vector �eld θ̂
′
δ(r̂−

r̂′) (or φ̂
′
δ(r̂− r̂′)) positioned at r̂′. The magnitude of F PS(r̂, r̂′) is shown in Figure

2 for θ′ = π/2, φ′ = π and L = 10, 20 respectively, illustrating the correlation
properties of the truncated random vector �eld described above.

It is observed that the shape of the magnitude of the two-dimensional point
spread function |F PS(r̂, r̂′)| illustrated in Figure 2 is invariant to the choise of po-
sition (rotation) (θ′, φ′) as well as of the polarization, i.e., choise of right θ or φ
component of (4.1), cf., [7] for a reference to the rotational properties of the spher-
ical vector waves. Hence, the resolution capability in both θ and φ coordinates are
given by the one-dimensional point spread function

F θ
PS(φ) = θ̂ · F PS(r̂, r̂′)

∣∣
θ=π

2
,θ′=π

2
,φ′=0 =

L∑
m=−L

cmeimφ (4.3)

where

cm =
2∑

τ=1

L∑
l=max {|m|,1}

∣∣∣Ãθ
τml(

π

2
)
∣∣∣2 (4.4)

are the Fourier series coe�cients of F θ
PS(φ). The one-dimensional point spread func-

tion F θ
PS(φ) is shown in Figure 3 where L = 15, 30, 60.

The classical measure of resolution is given by the width of the mainlobe of the
point spread function, de�ned here by the �rst zero of F θ

PS(φ), cf., Figure 3. The
resolution is hence roughly the same as of the rectangular window, i.e.,

∆φ ∼ k
2π

2L + 1
(4.5)

where k = 1 for the rectangular window and k ≈ 1.2 for the one-dimensional point
spread function F θ

PS(φ).
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Figure 3: The one-dimensional point spread function F θ
PS(φ) for θ = π/2, θ′ = π/2

and φ′ = 0. Maximum mode orders are L = 15, 30, 60.

For a given measurement set-up, (3.6) and (4.5) de�ne a one-to-one relation
between the CRB and the resolution ∆φ via the parameter L. Since the CRB is a
lower bound, this relation represents a feasible region and an uncertainty principle

for accuracy and resolution. An illustration of this principle is given in the next
section.

5 Numerical Examples

In order to illustrate the sensitivity analysis we employ as a numerical example a
measurement situation and data taken from an industrial measurement campaign1

performed for a 8 GHz radar antenna (λ = 3.75 cm).
The input data for the antenna near-�eld imaging problem was acquired in an

unechoic chamber using a cylindrical measurement set-up as depicted in Figure 1.
The data was collected in M = 120 azimuthal points and N = 129 vertical positions
for −0.8 = z1 ≤ z ≤ z2 = 0.8 and ρ0 = 0.459 (all units in [m]).

The inverse problem in Equation (2.4) was solved using the normalized basis

functions ũτml(r,θ)
‖uτml(kr)‖r=a

, maximum mode order L = 59 and regularization of the least
squares problem by truncating the singular values less then unity. The spherical
coordinate system was centered at z = −0.35, where the antenna was approximately
situated. The resulting near-�eld estimation is shown in Figure 4 for 0.30 ≤ r ≤ 1.38,
0 ≤ θ ≤ π and φ = (0, π) (xz-plane).

The sensitivity analysis addresses the question how, when and where the near-
�eld estimation is reliable. In the analysis below, we de�ne the Signal to Noise Ratio

1The measurement campaign was performed by SAAB Bofors Dynamics and Chelton Applied

Composites, Sweden.
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Figure 4: Spherical near-�eld estimation from cylindrical data. Near�eld of an 8
GHz antenna plotted in the xz-plane. The measurement cylinder is indicated with
white lines.

(SNR) as

SNR =
maxmeas |E(r)|2

σ2
n

(5.1)

where maxmeas |E(r)|2 is the maximum electric �eld strength over all measurement
points and σ2

n the variance of the measurement noise. In all the examples below,
the Cramér-Rao bounds are calculated for SNR = 100 dB. In Figure 5 is shown the
Cramér-Rao bound (3.7) using maximum mode order2 L = 59. The Cramér-Rao
bound is here a two dimensional scalar �eld, independent of the azimuthal coordinate
φ due to the rotational symmetry of the problem. Note that the cylindrical shape of
the measurement surface is clearly visible in Figure 5. Since the maximum measured
�eld strength is about 5 dB, it is concluded from Figure 5 that near-�eld estimation
using L = 59 is feasible with high or acceptable accuracy in the blue and green
areas, whereas estimation is not feasible at all in the red areas.

Next, we consider the far-�eld estimation problem based on cylindrical data. In
Figure 6 is shown the far-�eld amplitude (2.2) corresponding to the multipoles which
are calculated for the near-�eld inverse problem at radius r = 1.38. The maximum
far-�eld amplitude is about 50 dB. In Figure 7 is shown the one dimensional Cramér-
Rao bound (3.9) as a function of elevation θ for various maximum mode orders L.
The analysis shows that the far-�eld estimation is feasible with high accuracy using
mode orders up to L = 60, provided that the elevation angles are within the range
40 to 90 degrees. The poor estimation performance obtained outside this region is
due to the �nite extent of the cylinder measurement.

Finally, we conclude the examples by illustrating the uncertainty principle for
accuracy and resolution described in section 4. Let CRB(r, θ) denote the Cramér-

2The parameter values L = 59 and SNR = 100 dB are not optimized for this measurement and

are chosen merely for illustration purposes.
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Figure 5: Cramér-Rao bound for the example near-�eld problem. The plot is
shown in the xz-plane, and is rotationally symmetrical about the z-axis. Maximum
mode order is L = 59. The measurement cylinder is indicated with white lines.
Estimation is feasible in the blue and green areas.

Rao bound given by (3.7) and de�ne the relative accuracy by

CRB(r, θ) =
CRB(r, θ)

σ2
n

(5.2)

where σ2
n is the variance of the measurement noise. For each value of the maximum

order L, the expressions (3.7) and (4.5) de�ne a one-to-one relation between the
relative accuracy CRB(r, θ) and the resolution ∆φ. The resulting mapping is illus-
trated in Figure 8 for r = 0.3, 1.5,∞ and θ = 1, 10, 20, 30, 40, 80 degrees. Note that
the plot has been generated by using parameter values L = 1, . . . , 50. Observe also
that for the far-�eld case r = ∞, we have used (3.9) to de�ne the CRB with di�erent
scaling for the far-�eld amplitude. The plot illustrates the trade-o� between accu-
racy and resolution. Note that the resolution (or accuracy) is very poor for θ = 1
degree which is far outside the span of the cylinder, and improves systematically for
the elevation angles between 1 and 80 degrees, cf., Figure 7.

Figure 9 shows the normalized resolution r∆φ/λ as a function of relative accuracy
CRB for r = 0.3, 1.5 m and θ = 10, 20, 80 degrees. The plot illustrates that the
normalized resolution (in units of wavelengths) is better for smaller radius. Note
that even though r∆φ/λ seem to approach the classical λ/2 Rayleigh limit as CRB
increases, superresolution r∆φ/λ < 1

2
is in principle possible. However, the cost of

achieving superresolution is very poor relative accuracy CRB which is acceptable
only if the sensor noise σ2

n is very low.
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Figure 6: Spherical far-�eld estimation from cylindrical data. Far �eld of an 8 GHz
antenna plotted on the unit sphere.

6 Summary and Conclusions

A mathematical framework for sensitivity analysis of inverse scattering problems is
given based on the Fisher information and the multipole expansion of the electro-
magnetic �eld. The sensitivity analysis for antenna near-�eld imaging is performed
using a relevant example with cylindrical near-�eld measurement data. The Cramér-
Rao bound is used to quantify the ill-conditioning of the inverse problem, and the
bound is shown to be a very useful tool for visualizing and understanding the physics
of the inverse problem. In particular, we show that there is a fundamental connection
between the accuracy (optimum estimation performance) and the resolution capa-
bility of an imaging system, a connection which can be phrased as an uncertainty
principle for accuracy and resolution.
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Appendix A Spherical Vector Waves and their

Azimuthal Fourier Transforms

The outgoing spherical vector waves are given by

u1ml(kr) = h
(2)
l (kr)A1ml(r̂)

u2ml(kr) =
1

k
∇× u1ml(kr) =

(krh
(2)
l (kr))′

kr
A2ml(r̂) +

√
l(l + 1)

h
(2)
l (kr)

kr
A3ml(r̂)

(A.1)

where Aτml(r̂) are the spherical vector harmonics and h
(2)
l (x) the spherical Hankel

functions of the second kind, see [1, 7, 10]. The spherical vector harmonics Aτml(r̂)
are given by

A1ml(r̂) =
1√

l(l + 1)
∇× (rYml(r̂))

A2ml(r̂) = r̂ ×A1ml(r̂)
A3ml(r̂) = r̂Yml(r̂)

(A.2)

where Yml(r̂) are the scalar spherical harmonics given by

Yml(θ, φ) = (−1)m

√
2l + 1

4π

√
(l −m)!

(l + m)!
Pm

l (cos θ)eimφ (A.3)

and where Pm
l (x) are the associated Legendre functions [1]. For negative m-indices,

the scalar waves satis�es the symmetry Y−m,l(r̂) = (−1)mY∗
ml(r̂), and hence

Aτ,−m,l(r̂) = (−1)mA∗
τml(r̂). (A.4)
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For convenience, we introduce also the normalized associated Legendre functions

P̄m
l (x) =

√
2l + 1

2

√
(l −m)!

(l + m)!
Pm

l (x) (A.5)

so that Yml(r̂) = (−1)mP̄m
l (cos θ) 1√

2π
eimφ. The following relations for P̄m

l (x) are
useful for numerical calculations

P̄−m
l (x) = (−1)mP̄m

l (x)
∂

∂θ
P̄m

l (cos θ) =
1

2

√
(l + m)(l −m + 1)P̄m−1

l (cos θ)

−1

2

√
(l + m + 1)(l −m)P̄m+1

l (cos θ).

(A.6)

Note also that P̄m
l (x) = 0 for m > l.

Now, from (A.2) the spherical vector harmonics may be derived as

A1ml(r̂) = Ã1ml(θ)e
imφ =

= (−1)m√
l(l+1)

(
θ̂ im

sin θ
P̄m

l (cos θ)− φ̂ ∂
∂θ

P̄m
l (cos θ)

)
1√
2π

eimφ

A2ml(r̂) = Ã2ml(θ)e
imφ =

= (−1)m√
l(l+1)

(
θ̂ ∂

∂θ
P̄m

l (cos θ) + φ̂ im
sin θ

P̄m
l (cos θ)

)
1√
2π

eimφ

A3ml(r̂) = Ã3ml(θ)e
imφ = r̂(−1)mP̄m

l (cos θ) 1√
2π

eimφ

(A.7)

where the Fourier transformed spherical vector harmonics Ãτml(θ) are de�ned so
that

Aτml(r̂) = Ãτml(θ)e
imφ. (A.8)
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Figure 9: Normalized resolution r∆φ/λ as a function of relative accuracy CRB.
Solid blue line: r = 1.5 m. Dashed black line: r = 0.3 m. Elevation angles are:
θ = 10, 20, 80 degrees.

The Fourier transformed outgoing spherical vector waves ũτml(r, θ) are derived sim-
ilarly from (A.1) as

ũ1ml(r, θ) = h
(2)
l (kr)Ã1ml(θ)

ũ2ml(r, θ) =

(krh
(2)
l (kr))′

kr
Ã2ml(θ) +

√
l(l + 1)

h
(2)
l (kr)

kr
Ã3ml(θ)

(A.9)

so that
uτml(kr) = ũτml(r, θ)e

imφ. (A.10)

Note that Ãτml(θ) and ũτml(r, θ) are de�ned as Fourier transforms only with
respect to their respective spherical r, θ, φ components. As vector �elds they still
depend on the φ coordinate via the basis vectors r̂, θ̂, φ̂.
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