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Abstract

Design of small antennas is challenging because fundamental physics limits
the performance. Physical bounds provide basic restrictions on the antenna
performance solely expressed in the available antenna design space. These lim-
its offer antenna designers a-priori information about the feasibility of antenna
designs and a figure of merit for different designs. Here, an overview of physi-
cal bounds on antennas and the development from circumscribing spheres to
arbitrary shaped regions and embedded antennas are presented. The under-
lying assumptions for the methods based on circuit models, mode expansions,
forward scattering, and current optimization are illustrated and their pros and
cons are discussed. The physical bounds are compared with numerical data
for several antennas.

1 Introduction
Physical bounds provide information about the maximum achievable performance
of antennas [56, 57, 59, 101, 115]. Bounds are derived, in general, independently of
antenna geometry, material, and type. This makes the physical bounds a powerful
tool for developing and analyzing all types of antennas. The bounds are expressed
in parameters that describe the geometry and electromagnetic properties of the
antennas. Moreover, the bounds themselves and their underlying theory provide
insight to antenna design and antenna theory. The bounds offer a-priori information
of the feasibility of a specific antenna, they give a measure for the figure of merit
of an antenna, and they can be used as stopping criteria in heuristic optimization
algorithms and for optimization of the antenna position in wireless terminals.

Antenna performance deteriorates with decreasing electrical size, i.e., physical
size measured in wavelengths [10, 100]. The bounds are for this reason particularly
important for the design of electrically small antennas. There are several definitions
of the electrical size of antennas. The classical definition is the radius, measured
in wavelengths, of the smallest sphere circumscribing the antenna [56, 57, 59, 101,
115], see also Fig. 1. This is most suitable for antennas with a spherical shape [7].
A generalized measure of electrical size is used for antennas of arbitrary shape and
antennas embedded in devices, e.g., mobile phones, tablets, and laptops, see Fig. 1.
It should be pointed out that for antennas embedded in devices, the devices may be
electrically large whereas the antennas are electrically small.

In small antenna theory, matching bandwidth and the efficiency are two perfor-
mance parameters often considered for analysis, e.g., [14, 18, 24, 25, 27, 29, 48,
60, 61, 77, 85, 88, 91, 105, 110, 116, 119]. The radiation pattern and the polar-
ization are also of importance in some studies [40, 43, 44]. The bandwidth of an
antenna depends on the threshold level of the reflection coefficient (or equivalently
the standing wave ratio) [59, 90, 115], and is customarily expressed in terms of the
corresponding Q-factor (or antenna Q). This latter parameter is defined as the ratio
of the energy stored in the fields created by an antenna, to the energy dissipated by
radiation and ohmic heating [90, 115]. The Q-factor is inversely proportional to the
fractional bandwidth [48, 119].

https://en.wikipedia.org/wiki/Q_factor
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The concept of physical bounds for electrically small antennas was introduced
by Wheeler [116] and Chu [14] at the end of the 1940s. Wheeler used two-lumped-
element circuit models to estimate antenna bandwidth and practical efficiency of
small antennas. The classical results by Chu [14] express the lower bound on the
Q-factor of antennas in terms of the antenna radius and wavenumber, see Fig. 1.
Although these results are useful and provide a first step in analyzing small antennas,
they underestimate the lower bound on the Q-factor of non-spherical antennas. More
recently, the forward scattering sum rule presented in [35, 43, 44] expresses antenna
performance and bounds in terms of the polarizability of the antenna structure
or any circumscribing shape, see Fig. 1. These bounds are more realistic than
those derived for spherical geometries and are beneficial for analyzing many small
antennas that utilize the circumscribing geometry efficiently. On the other hand the
forward-scattering sum-rule bounds are less useful for antennas that are embedded
in or placed in the proximity of larger structures. Instead, these situations can be
studied using antenna current optimization [40]. In this technique the structure is
decomposed, into an antenna region with controllable currents and a surrounding
structure with induced currents.

Figure 1: Illustration of circumscribing geometries used for physical bounds. (left)
circumscribing sphere introduced by Wheeler [116] and Chu [14] and used for spher-
ical mode expansions. (middle) box circumscribing the antenna structure used in
the forward scattering approach [35, 43, 44]. (right) box circumscribing the antenna
region used in antenna current optimization [40].

The reminder of this paper is organized as follows. Sec. 2 presents an overview of
physical bounds. Sec. 3 reviews the antenna quantities used in the physical bounds.
Physical bounds for small antennas based on circuit models and mode expansions
are discussed in Sec. 4, forward scattering in 5, and current optimization in 6.
Bandwidth bounds for array antennas are discussed in 7. The paper is concluded
in Sec. 8. Appendices containing table of notation, radial functions, high-contrast
polarizability dyadics, method of moments approximation, and, numerical data for
the presented antennas are in App. A, App. B, App. C, App. D, and App. E,
respectively.



3

Physical
bounds on
antennas

Mode ex-
pansions
(spheres)

Circuit
models

Q

D/Q

TE,
TM, TE
+ TM

J and M

Circuit
models

Mode ex-
pansions

TE, TM,
TE+TM

arbitrary
shape

Current
optimiza-
tion J
and M Convex

opti-
mization

G/Q

em-
bed-
ded

D ≥
D0far

field

Pareto
fronts

Gener-
alized
eigen-
values

Polariz-
ability
dyadics

for ka→ 0

Forward
scat-

tering
sum rule

ε and µ

Polariz-
ability
dyadics

multiple
reso-

nances,
UWB

Band-
width ×
gain BG

D/Q

Q for
ka → 0

Figure 2: Physical bounds on antennas answer the Fundamental question: how
good can an antenna be? Bounds can be determined using circuit models (1947),
mode expansions (1948), sum rules (2007), and antenna current optimization (2012).
Antenna current optimization is the most flexible method (yet) to obtain physical
bounds appropriate for many practical antenna design situations.

2 Background and overview
Physical bounds on antennas have been analyzed in different ways since the work of
Wheeler [116] and Chu [14]. An attempt to categorize the physical bound approaches
and methods is made in Fig. 2, even though not all can be described and charac-
terized. Four main techniques have been classified to derive the physical bounds.
These are; circuit models, mode expansions, forward scattering, and antenna current
optimization.

Circuit models consisting of an inductor or capacitor and a radiation resistance
were used by Wheeler [116] to approximate the input impedance of antennas. Based
on these circuits he estimated the radiation power factor (related to the inverse of
the Q-factor) and bandwidth of antennas. The results obtained by Wheeler, even
though approximate, provide physical insight into the dependence of performance
on the shape and material loading of antennas. Chu [14] used circuit models of
spherical modes to compute the stored energy and Q-factor for spherical geometries.
The results obtained from circuit models have been generalized to mixed modes and
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non-magnetic sources by Thal [109, 110].
Physical bounds on antennas can be obtained by expanding the fields in spherical

modes, also referred to as spherical vector waves, outside a circumscribing sphere
of the antenna structure. Chu [14] used this mode expansion together with circuit
models to compute the minimum stored energy and to derive the Q andD/Q bounds
for single spherical modes, where D is the directivity. He showed that the dipole
modes have the lowest Q-factor and that the Q-factor of antennas can be reduced
by letting the antenna excite a combination of electric (transverse magnetic TM)
and magnetic (transverse electric TE) modes. Mode expansions have dominated the
research on physical bounds since Chu’s work, see e.g., [18, 19, 24, 25, 27, 29, 48,
60, 61, 77, 83, 85, 88, 91, 105, 110, 119] and the historical expose in [115]. The
mode expansion approach to physical limitations provides simple analytic formulas
for the lower bound on the Q-factor for single modes [18, 85]. In addition, this
approach provides insight into the physics of combinations of different modes (e.g.,
TE+TM). Thal extended the mode expansions by restricting the electromagnetic
fields to originate from electric current densities [110].

Physical bounds were generalized to arbitrary shapes using the forward scatter-
ing sum rule in [35, 43, 44]. In this approach, antennas are analyzed in receive
mode. It was shown that the interaction over all frequencies between an incident
electromagnetic plane wave and an antenna is related to the polarizability of the
radiating structure. The bounds derived with this approach are valid for arbitrarily
shaped antennas made of reciprocal, linear, and time-translational materials. These
bounds are formulated in terms of the directivity–Q-factor quotient, D/Q, and of
the realized gain–bandwidth product. The forward-scattering sum-rule bounds have
been verified for several antennas with electrical sizes up to ka ≈ 1.5, where k is
the wavenumber and a is the radius of the smallest sphere circumscribing the an-
tenna. Yaghjian and Stuart derived similar bounds on the Q-factor in the limit of
small antennas ka � 1 using a different technique [118]. These latter bounds were
generalized to electric and magnetic currents in [117], see also [73].

Antenna current optimization can be used to derive physical bounds on antennas
from optimal current distributions on the radiating structure [40, 47]. This approach
is widely applicable to practical antenna design situations and has the potential to
include many different requirements on, e.g., performance, size, etc. One of the
challenges of this method is to express the antenna quantities involved in defining
the parameters of interest, in terms of the current density on the antenna. For
example, here the energy expressions introduced by Vandenbosch in [113] for current
densities in free space, see also [26, 38, 51, 64], are used to express the Q-factor of
antennas. These energy expressions are further used in minimization of the stored
energy to determine current densities optimum in the sense of maximum gain Q-
factor ratio for a fixed radiated field. This and other antenna situations result in
convex optimization problems [40] for the current-density, which are easily solvable
by common numerical methods [30].

There are alternative approaches to analyze electrically small or large antennas.
A few of these approaches are briefly discussed in the following. Reference [112] pro-
poses an approach to physical limitations based on the concepts of superdirectivity

https://en.wikipedia.org/wiki/Directivity
https://en.wikipedia.org/wiki/Convex_optimization
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and visible and invisible spatial regions of the fields created by an antenna [107]. A
method based on the capacity of the free space communication channel is described
in [39, 86]. Considerations about directivity limitations of antennas are presented
in [78]. Bandwidth limitations for infinite array antennas are analyzed in [21, 22,
75] using the results in [49, 94], see Sec. 7.

3 Antenna quantities for physical bounds

3.1 Antenna parameters

Antenna parameters commonly used in the study of small antennas include the
bandwidth, Q-factor, input impedance, reflection coefficient, etc. The parameters
used in this section are introduced in the following.

The reflection coefficient , Γ , of an antenna is determined from its input impedance,
Za = Ra + jXa, as

Γ =
Za − Z0

Za + Z0

=
Ra − Z0 + jXa

Ra + Z0 + jXa

, (3.1)

where Z0 is a normalization impedance, usually the characteristic impedance of the
transmission line that feeds the antenna. The mismatch depends on the difference
between the real part and the commonly real-valued normalization impedance, Ra−
Z0, and the reactance, Xa.

The bandwidth of an antenna is defined as “the range of frequencies within which
the performance of the antenna, with respect to some characteristic, conforms to a
specified standard ” by the IEEE in [67]. Usual performance metrics are matching,
efficiency, radiation pattern, polarization, etc. In this chapter, the focus is on the
matching bandwidth defined as the frequency interval [f1, f2] for which the amplitude
of the reflection coefficient |Γ | is smaller than a given threshold Γ0, see Fig. 3. The
bandwidth of narrow-band antennas is usually expressed as fractional bandwidth,
B, defined as the bandwidth normalized with the center frequency, f0 = (f1 + f2)/2
i.e.,

B =
f2 − f1

f0

=
ω2 − ω1

ω0

, (3.2)

where the angular frequency is ω = 2πf .
The Q-factor for an antenna is defined as the ratio between the maximum of

the stored electric, We, and magnetic, Wm, energies and the dissipated power Pr +
PΩ [119], i.e.,

Q = max{Qe, Qm} =
2ωmax{We,Wm}

Pr + PΩ

= η
2ωmax{We,Wm}

Pr

, (3.3)

where the electric and magnetic Q-factors are Qe = 2ωWe/(Pr + PΩ) and Qm =
2ωWm/(Pr+PΩ), respectively, and the efficiency η = Pr/(Pr+PΩ), where Pr denotes
the radiated power and PΩ the ohmic and dielectric power losses. The electric and
magnetic Q-factors correspond to the stored energy in the capacitors and inductors,
respectively, normalized with the dissipated power in the resistors for lumped circuit
networks.

https://en.wikipedia.org/wiki/Reflection_coefficient
https://en.wikipedia.org/wiki/Characteristic_impedance
https://en.wikipedia.org/wiki/Transmission_line
https://en.wikipedia.org/wiki/Bandwidth_(signal_processing)
https://en.wikipedia.org/wiki/Q_factor
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f1 f2

Γ0

1

f

|Γ |

Figure 3: Notations used in the definition of bandwidth and fractional band-
width (3.2), where Γ0 is the threshold level for the reflection coefficient Γ .

3.2 Antenna tuning and matching

Tuning is used to eliminate the reactance mismatch in (3.1). An antenna with input
impedance Za = Ra + jXa is capacitive if Xa < 0 and inductive if Xa > 0. The
simplest way to tune an antenna which is not self-resonant is by connecting a lumped
element as in one of the situations depicted in Fig. 4. The tuning capacitance and
inductance are chosen such that the tuned input impedance, Za, is purely resistive
at the resonance frequency.

L
Za L Za C Za C Za

Figure 4: Tuning of an antenna input impedance Za with series or parallel lumped
capacitors or inductors.

More complex matching networks can be used to increase the bandwidth of
antennas, as illustrated in Fig. 5. The bandwidth potential is a concept that gives
information about the bandwidth achievable with a two-lumped-element matching
network [93]. The upper bound on the fractional bandwidth for lossless matching
networks is given by the Bode-Fano limit [23, 48, 56]

B ≤ 27

Q|Γ0,dB|
, (3.4)

for an RLC antenna input impedance with the threshold level Γ0,dB = 20 log10 Γ0.
The bandwidth is inversely proportional to the Q-factor, i.e., a high Q-factor im-

plies a narrow bandwidth. The precise proportionality is determined by the shape
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Za Za

lossless
matching
network

Figure 5: Left—matching networks containing two lumped elements used for
estimating the bandwidth potential [93]. Right—black-box-type matching net-
work, i.e., with arbitrary complexity and topology, that may reach some design
requirements, e.g., reach close to the Bode-Fano limit [23, 48, 56].
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Figure 6: Reflection coefficient, |Γ |, for RLC circuits (inset right) with Q =
{5, 10, 40}. The corresponding fractional bandwidths for Γ0 = {1/

√
2, 1/3} are

depicted.

of the refection coefficient, i.e., by its dependence on frequency, that is often quanti-
fied with the distribution of the resonances. The simplest case of a single resonance
corresponds to series or parallel RLC circuits, see right inset of Fig. 6, where the
fractional bandwidth for a single resonance is [119]

B ≈ 2

Q

Γ0√
1− Γ 2

0

=
2

Q
for Γ0 = 1/

√
2. (3.5)

The reflection coefficients for single resonance RLC circuits with Q = 5, 10 and 40
are depicted in Fig. 6.

The estimate (3.5) is very accurate for Q � 2 for the RLC circuit. The special
case of the half-power bandwidth B ≈ 2/Q predicts an infinite bandwidth for Q = 1.
This suggests that the Q-factor is most useful for Q � 1. Reasonable accuracy
in (3.5) is obtained for Q > 5 or Q > 10, in practice. The assumption of a single
resonance is however essential for (3.5) such that the use of multiple resonances to
increase the bandwidth [56] is described less accurately by this expression.
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Differentiation of the input impedance offers an alternative method to estimate
the Q-factor of antennas [48, 76, 119]:

QZ′ = ω|Γ ′| = ω|Z ′m|
2R

=
|ωZ ′ + j|X||

2R
=

√
(ωR′)2 + (ωX ′ + |X|)2

2R
, (3.6)

where Zm denotes the input impedance tuned to resonance with a series capacitor
or inductor, as in Fig. 4, see also [51]. Expression (3.6) is exact for the series RLC-
series and often very accurate for antennas with Q � 1. However, this expression
can underestimate the Q-factor for multiple resonances [37, 48, 51, 106].

The QZ′ estimate (3.6) can be interpreted as a local Padé approximation of the
reflection coefficient (or input impedance) with a lumped-element circuit [48]. This
expression estimates the bandwidth (3.5) for B � 1, or similarly Γ0 � 1. Accurate
estimates of the fractional bandwidth (3.5) using QZ′ require that the first order
derivative |Z ′m| (linear term) dominates over the second and higher order derivatives.
This requirement is not always met and there are synthesized cases with |Z ′m| ≈ 0
where QZ′ overestimates the fractional bandwidth using (3.5) [37, 48, 51].

3.3 Stored electric and magnetic energies

Physical bounds on antennas are often derived using the electromagnetic fields that
surround the antenna [18, 24, 25, 27, 61, 77, 85, 105, 110, 115, 119]. Consider an
antenna confined to the region Ω as depicted in Fig. 7. The antenna current density
is denoted J(r) and the radiated electric field is E(r) that simplifies to

E(r) =
e−jkr

r
F (r̂) as r →∞, (3.7)

where F is the electric far field, r = |r|, and r̂ = r/r. The time average electric
and magnetic energy densities in free space are we = ε0|E|2/4 and wm = µ0|H|2/4,
respectively, where H(r) is the magnetic field. These energy densities resemble the
time average energies stored in capacitors and inductors, We = C|V |2/4 and Wm =
L|I|2/4, respectively. The energy in a region is obtained by integrating the energy
density in that region. The 1/r decay of the field (3.7) implies that the total elec-
tromagnetic energy for antennas in free space is unbounded and hence dominated
by the contributions from the radiated field far away from the antenna.

The stored electromagnetic energy is the part of the energy that is not radiated.
This energy is confined to the near-field region around the antenna. The stored en-
ergy has been evaluated in the history of antenna technology by different methods.
Chu [14] and Thal [110] used circuit models of the spherical modes to determine the
stored energy for spherical regions. Synthesized lumped-circuit models give an alter-
native method to estimate the Q-factor from the input impedance of antennas [37].
Collin and Rothschild [18] calculate the stored energy by subtraction of the energy
density of the power flow giving

W (P)
e =

ε0
4

∫
R3
r

|E(r)|2 − η0 Re{E(r)×H(r)∗ · r̂} dV, (3.8)
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OOO ’ O O
O

.
Electric current density

J(r)
Ω

(reactive and radiated field)
Near field region Far field region

(radiated field)
ε0

ê

r

E(r)

F (r̂)

Figure 7: Reactive and radiated fields from a current density J(r) in the region Ω.
Note that, in the far field, ê is perpendicular to r.

for the electric stored energy, where the asterisk ∗ denotes complex conjugation and
R3

r = {r : limr0→∞ |r| ≤ r0} denotes an infinitely large spherical volume, see also [24,
27, 38, 77, 85, 119]. The magnetic energy is expressed in terms of a magnetic energy
density analogous to (3.8). The integral expressions by Vandenbosch [113] represent
the stored energy as quadratic forms in terms of current densities. These expressions
are particularly useful as radiated fields are generated by current densities on the
antenna structure. Furthermore, these integral expressions are directly applicable
to antenna current optimization [40, 47]. They are identical to subtraction of the
energy density of the radiated field for many cases [38] and reduces to the stored
energy in [12, 26] in the limit of small antennas. Here, the stored electric and
magnetic energies given by the integral expressions [38, 113]

We =
η0

4ω

∫
Ω

∫
Ω

∇1 · J(r1)∇2 · J(r2)
∗ cos(k|r1 − r2|)
4πk|r1 − r2|

−
(
k2J(r1) · J(r2)

∗ −∇1 · J(r1)∇2 · J(r2)
∗)sin(k|r1 − r2|)

8π
dV1 dV2 (3.9)

and

Wm =
η0

4ω

∫
Ω

∫
Ω

k2J(r1) · J(r2)
∗ cos(k|r1 − r2|)
4πk|r1 − r2|

−
(
k2J(r1) · J(r2)

∗ −∇1 · J(r1)∇2 · J(r2)
∗)sin(k|r1 − r2|)

8π
dV1 dV2, (3.10)

respectively, are used, where it is noted that η0/ω = µ0/k. The corresponding
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radiated power is [28, 38, 113]

Pr =
η0

2

∫
Ω

∫
Ω

(
k2J(r1) · J(r2)

∗ −∇1 · J(r1)∇2 · J(r2)
∗)sin(k|r1 − r2|)

4πk|r1 − r2|
dV1 dV2.

(3.11)
These energy expressions resemble the impedance matrices obtained from the electric
field integral equation (EFIE) [51, 62, 64]. The stored energies are also generalized
to electric and magnetic currents [73, 74] and lossy media [51].

3.4 Sum rules

Sum rules have been used to derive physical bounds on electromagnetic systems such
as matching [23], radar absorbers and array antennas [22, 75, 94], antennas [33, 43,
44], scattering [34, 103], high-impedance surfaces [49], and metamaterials [41, 52,
104]. The sum rules are integral identities that often relate the parameter of interest
integrated over all frequencies with some low-frequency quantity.

The sum rules presented here are based on integral identities for Herglotz func-
tions [5, 87] or similarly positive real functions [120]. Positive real functions [120],
Z(s), are analytic and Re{Z(s)} ≥ 0 for Re s > 0. They are often found in linear,
passive, and causal systems [5, 120]. The identities

1

π

∫
R

ReZ(jω)

ω2
dω

def
= lim

ε→0+
lim
y→0+

1

π

∫
ε<|ω|<1/ε

ReZ(jω + y)

ω2
dω = a1 − b1 ≤ a1 (3.12)

are valid for all PR functions having the asymptotic expansions

Z(s) = a1s+ o(s) as s→̂0 and Z(s) = b1s+ o(s) as s→̂∞, (3.13)

where →̂ means limits in some sector | arg s| < π/2 − α for α > 0 and the inte-
gral (3.12) is interpreted as a limit from the complex valued right half plane, see [5]
for details.

4 Circuit models and mode expansions
Wheeler used circuit models to analyze small antennas [116]. The electric antenna
consists of a lumped capacitance in parallel with a radiation resistance. The cor-
responding magnetic antenna is a lumped inductance in series with a radiation
resistance. These results provide intuition and rules of thumb.

Chu [14] determined the minimum stored energy around an antenna in three
steps:

1. circumscribe the antenna by a sphere with radius a, see Fig. 8.

2. expand the radiated electromagnetic field outside the circumscribing sphere in
spherical modes [11, 55, 61, 108], see Fig. 9.

3. compute the stored energy outside the sphere from a lumped circuit represen-
tation of the spherical modes [108].
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E = 0
H = 0
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Figure 8: (left) sphere with radius a that circumscribes the antenna. (right) the
Chu model [14] with vanishing field in the interior of the sphere or similarly use of
electric J and magnetic M surface currents.
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Figure 9: Radiation patterns of spherical modes. (left) electric, TM0,1, and magnetic,
TE0,1, dipole modes. (middle) Huygens source TM0,1 + TE1,1. (right) quadrupole
mode TM1,2.

ε0a µ0a η0
ε0a η0µ0a

Figure 10: Lumped-element circuit models of the electric (TMm,1) and magnetic
dipole (TEm,1) modes [14, 61, 108].
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The lumped-element circuit models of the electric (TMm,1) and magnetic dipole
(TEm,1) modes [14, 85, 108] are depicted in Fig. 10. The electric and magnetic
cases having identical n-index are dual such that the corresponding Q-factors are
identical. The electric dipole has the stored electric and magnetic energies, and
radiated power

We =
η0|I|2
4ω

1

ka
, Wm =

η0|I|2
4ω

ka

1 + k2a2
, and Pr =

η0|I|2
2

k2a2

1 + k2a2
, (4.1)

respectively, for a current source I. The electric energy dominates over the magnetic
energy, We > Wm, i.e., the electric dipole mode is capacitive. The stored energy
and radiated power give the Chu-bound for single mode antennas, stating that the
Q-factor of a single mode antenna circumscribed by a sphere with radius a satisfies

Q ≥ QChu =
2ωmax{We,Wm}

Pr

=
2ωWe

Pr

=
1

(ka)3
+

1

ka
. (4.2)

The inequality Q ≥ QChu is interpreted as the contribution to the Q-factor from the
stored energy within the spherical volume. This means that antenna designs reaching
the Chu lower bound should have negligible electric field inside the sphere [14].

Circuit models and closed form expressions are convenient for dipole modes.
However, these methods become increasingly complicated for higher order modes,
see also Fig. 9. The input impedance of the circuits modeling spherical modes of-
fers an approximation of the Q-factor. Chu approximated the Q by differentiation
of the reactance [14] to show that Qn ∼ (ka)−2n−1 as ka → 0 for modes of or-
der n, see also [48] for the corresponding results from differentiation of the input
impedance (3.6). Chu also discussed the case of mixed TM and TE modes, e.g.,
the Huygens source in Fig. 9, and showed that mixed modes can lower the bound
on Q by a factor of two for ka � 1 [14, 61] by, e.g., using an inductive TE mode
instead of a lumped inductor as the tuning element in Fig. 4. The resulting Q-factor
is bounded as

Q ≥ 1

2(ka)3
+

1

ka
(4.3)

for larger ka [85, 91].
Mode expansions have dominated the research on physical bounds since these

expansions were introduced by Chu, see e.g., [18, 24, 25, 27, 48, 61, 77, 85, 88,
91, 105, 110, 119] and the historical expose in [115]. In particular Collin & Roth-
schild [18] used spherical mode expansions and analytic evaluation of (3.8) to derive
closed form expressions of the Q-factor for spherical modes of arbitrary order, e.g.,

Q1 =
1

(ka)3
+

1

ka
, Q2 =

18

(ka)5
+

6

(ka)3
+

3

ka
, and Qn ∼

1

(ka)2n+1
, (4.4)

where the rapid increase in the Q-factor for small antennas ka� 1 and higher order
modes n > 1 is noted.

Equivalent (surface) currents [11] offer a powerful interpretation of physical
bounds. The Chu bound (4.2) is derived under the assumption of negligible stored

https://en.wikipedia.org/wiki/Vector_spherical_harmonics
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Figure 11: The Chu (4.2), Thal (4.6), and mixed mode bounds on Q compared with
numerical estimates using QZ′

in
(3.6), see Tab. 3 and Tab. 4 [2]. Wire antennas (blue)

and planar antennas (black) are depicted. The different types of dipoles (black) are
constructed with planar strips.

energy in the interior of a sphere. This requires electric, J , and magnetic, M ,
surface currents to exist on this sphere in free space, see Fig. 8. Antennas without
magnetic currents (or magnetic material) have internal fields and hence an internal
stored energy. Thal [110] extended the Chu bound to the case of only electric sur-
face currents by adding the energy stored in the interior of a sphere. The resulting
bound for the electric dipole mode is

Q ≥ 3

2(ka)3
=

3

2
QChu for ka� 1, (4.5)

see also [58, 60]. The closed form expressions for arbitrary spherical modes are [38]

Q(P)
τn,e(κ) = κ−

(
κR

(1)
τn (κ) R

(2)
τn (κ)

)′
2(R

(1)
τn (κ))2

and Q(P)
τn,m = Q(P)

τn,e(κ)−
R

(2)
τn (κ)

R
(1)
τn (κ)

(4.6)

for the electric and magnetic Q-factors, respectively, with κ = ka. Here the expres-
sions for the TE (τ = 1) and TM (τ = 2) modes are written in identical forms by
using radial functions [55], see App. B.

The Chu (4.2), Thal (4.5), and mixed mode bounds are compared with several
antennas in Fig. 11, see also [97]. All antennas have Q-factors above the bounds,
as expected. The folded spherical helix antenna fills the spherical surface and per-
forms close to the Thal bound (4.5). While the dipole and planar antennas do not
utilize the spherical volume as efficiently as spherical helices. This results such that
the former have Q-factors above the bounds. On the other hand, for the cylin-
drical structures; cylindrical helix and spheroidal helix, the antenna performance
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is between the performance of spherical and planar structures. It should be noted
that increasing the thickness of the wire and strip antennas decrease their Q-factors.
There are several suggestions for antennas with Q-factors approaching the Chu lower
bound or corresponding bounds for TE and mixed mode cases. The folded spherical
helix, see Fig. 11, investigated by Best [7] has a Q-factor close to the Thal bound,
see also [1]. Kim proposed a few designs reaching close to the physical bounds on
Q [80, 81].

aa

E 6= 0
H 6= 0

J

E, H

Figure 12: (left) the Thal model [110] with an electromagnetic field in the interior
of the sphere and electric J surface currents. (right) the folded spherical helix [7]
with electric J surface currents and Q-factor Q ≈ 1.5QChu.

Most antennas are not spherical and, as seen in Fig. 11, their Q-factors are far
from the bound. This has encouraged researchers to extend the mode expansions
to non-spherical regions. Collin and Rothschild [18] used cylindrical waves to de-
rive bounds for infinite cylinders and Foltz & McLean [25] and Sten, Koivisto, and
Hujanen [105] used expansions in spheroidal coordinates to derive bounds for anten-
nas confined to spheroidal volumes. However, it turns out to be difficult to extend
the results from spherical regions using mode expansions. An alternative approach
based on sum rules for spherical waves is investigated in [3, 4], where the bandwidth
is shown to be related to the polarizability. The case with spherical regions in the
vicinity of a ground plane is analyzed in [105]. There are also extensions to antennas
embedded in lossy media [77].

5 Forward scattering sum rule
The forward scattering bounds in [20, 43, 44] are solely based on the assumptions
of linearity, time-translational invariance, causality, and reciprocity. These are gen-
erally accepted assumptions in the antenna community and valid for a large class
of antennas, e.g., antennas with metallic and dielectric components, antennas fed
by a single transmission line and impedance matched with a matching network, etc.
Some of the main advantages of these forward scattering bounds are that they: are
simple to use; provide physical insight into small antennas given by expressions in
terms of polarizability dyadics; hold for arbitrary enclosing geometries; and are for-
mulated in terms of the realized gain (the parameter quantifying the system gain)
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Polarizability

Figure 13: (left) Circumscribing box for an antenna. (right) Polarizability of the
circumscribing structure to determine the physical bounds (5.4).

and bandwidth or the directivity and Q-factor.
Physical bounds on arbitrarily shaped antennas were introduced in [44] and

further developed in [20, 32, 35, 42, 43, 102]. These results are based on the forward
scattering sum rule [34, 103] that states that the all spectrum interaction between
objects and electromagnetic fields is proportional to the electro-, γe, and magneto-
static, γm, polarizability dyadics, i.e.,

1

π

∫
R

σa(k) + σs(k)

k2
dk = ê∗ · γe · ê+ (r̂ × ê∗) · γm · (r̂ × ê) (5.1)

for all objects composed of linear, passive, and time translational invariant me-
dia [34, 42, 103]. Here, σa and σs are the absorption and scattering cross sections,
respectively. This identity was derived for dielectric spheroids in [92] and generalized
to arbitrary objects and polarizations in [34, 42, 103].

An antenna identity is obtained from the forward scattering sum rule by using
reciprocity and the relation between the effective aperture (or absorption cross-
section) and partial directivity for lossless antennas

σa(k, r̂, ê) =
π

k2
(1− |Γ (k)|2)D(k,−r̂, ê). (5.2)

Combining (5.1) and (5.2) gives∫ ∞
0

(1− |Γ (k)|2)D(k, r̂, ê)

k4
dk =

η

2

(
ê · γe · ê+ (r̂ × ê) · γm · (r̂ × ê)

)
, (5.3)

for the linear polarization ê, where, the generalized (or all spectrum) absorption
efficiency η [34, 43, 44] is introduced. This is further transformed to a bound on
the D/Q (directivity bandwidth product) expressed in terms of the high contrast
polarizability dyadic, γ∞ ≥ γe, see App. C, by assuming a resonance model [43, 44]
and:

D

Q
≤ ηk3

2π
ê · γ∞ · ê ≤

ηk3

2π
max eig γ∞ (5.4)

for non-magnetic media, γm = 0, see [43, 44] for the case of electric and magnetic
media. The lower bound on the Q-factor

Q ≥ 6π

k3 max eig γ∞
(5.5)
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is based the fact that small electric dipoles have directivity D = 3/2 and generalized
absorption efficiency η ≤ 1/2 [35]. Results similar to those introduced in the previ-
ous paragraph are derived by Yaghjian and Stuart [118] and using antenna current
optimization [47], see also [111, 114, 117]. This bound is identical to that derived
by Thal [110] for small spherical structures (4.5) with electric currents radiating as
an electric dipole, i.e.,

Q ≥ 3

2k3a3
=

3

2
QChu for ka� 1, (5.6)

where the high-contract polarizability dyadic γ∞ = 4πa3I for a sphere with the
radius a is used.
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Figure 14: Forward scattering bound on D/Q (left) and Q (right) normalized with
(ka)3 for non-magnetic spheroidals, cylinders, planar rectangles, and planar ellipses
with height `1 and width `2 [32] using η = 1/2. Vertical polarization in solid lines
and horizontal polarization in dashed lines.
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Figure 15: Forward scattering bounds on D/Q using η = 1/2 normalized with (ka)3

compared with numerical results from FEKO [2] for non-magnetic cylindrical (left),
see Tab. 3, and planar (right), see Tab. 4, structures.

The computed bounds (5.4) and (5.5) for spheroidals [44], cylinders [43], planar
rectangles [43], and planar ellipses [32] are depicted in Fig. 14, see also Tab. 2. The
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Chu (4.2) and Thal (4.5) bounds for ka� 1 are also included for comparison. The
results illustrate how the bound depends on the shape and polarization of the electric
field. The spheroid simplifies to a sphere for `1 = `2 with the bound D/(Qk3a3) = 1
that is identical to the result (4.5) and (5.6) by Thal [110] using the directivity
D = 3/2. Several antennas are compared with the bound in Fig. 15, see also [6, 9,
35, 43, 95]. The comparisons show that many antennas perform close to the bounds.
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Figure 16: (left) Polarizability dyadics for planar rectangular structures with po-
larizability dyadics γ∞ ≈ 1.04`3(x̂x̂ + ŷŷ), γ∞ ≈ `3(0.51x̂x̂ + 0.93ŷŷ), and
γ∞ ≈ `3(0.94x̂x̂ + 0.96ŷŷ), for the rectangle, capped dipole, and loop, respec-
tively. (right) Polarizability for planar capped dipoles with area A circumscribed by
a rectangle with sides `× `. Resulting charge distributions are also depicted in the
figure, see [53].

The forward scattering identity (5.1) and bound (5.4) show that the antenna
performance is proportional to the polarizability of the antenna structure. Polariz-
ability quantifies the charge-separation properties of a structure, i.e., the induced
dipole moment is proportional to the polarizability, p = ε0γe ·E. For example, large
metallic regions at the extremities of an antenna increase the maximum achiev-
able D/Q-performance of that antenna, for linear polarization in the direction of
the antenna extremities. This is illustrated for a planar capped dipole structure in
Fig. 16, see also [53]. The polarizability for a planar square metallic rectangle in
the xy-plane with side lengths ` is γ∞ ≈ 1.04`3(x̂x̂ + ŷŷ). The polarizability for
the capped dipole, γ∞ ≈ `3(0.51x̂x̂ + 0.93ŷŷ), is lower as some metal is removed.
The polarizability is higher in the ŷ-direction than in the x̂-direction as the metal
strips at the edges allow a large charge separation in the ŷ-direction. This is further
illustrated in the right part of Fig. 16, where the polarizability for planar capped
dipoles with area A are depicted. Note that the capped dipoles have zero volume
and that the polarizability reduces with approximately a factor of 3 whereas the area
decreases a factor of 104. The antenna performance for an electric dipole antenna
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is hence not simply related to the volume or area but to the structures ability to
separate charge.

Closed-form expressions are available for the polarizability dyadics of structures
such as spheroids, planar ellipses, half spheres, etc., [72, 82, 98, 103]. An illustrative
example is given by the polarizability of a dielectric sphere with radius a [11, 13,
31, 68], i.e.,

γe = 4πa3 εr − 1

εr + 2
I ≤ 4πa3I = γ∞. (5.7)

This simple example illustrates two important properties of the polarizability dyadic
with implication for antenna design, i.e., the polarizability is increasing in the per-
mittivity εr and the size a [71, 99]. For other structures the polarizability is calcu-
lated numerically using the method of moments [32, 63, 66, 96] or the finite element
method [103], see App. C. The polarizability and the associated bound on D/Q are
approximated by rational functions for cylinders and planar rectangles in [32], see
also the MATLAB code [45].

The forward scattering bounds are generalized to electric and magnetic media
by inclusion of the magnetic polarizability γm in (5.4) and (5.5), see [43, 44]. The
generalization to elliptic polarization is discussed in [42]. Ultra-wideband and multi-
band antennas are analyzed in [102] and [20], respectively. The main drawback with
the forward scattering results in [43, 44] is that they are only useful when the en-
tire region can be used for the antenna design. They are therefore less useful for
antennas integrated (or embedded) into devices such as mobile phones and laptops.

6 Antenna current optimization
Optimization can be used to handle simultaneous requirements on the performance
and size of complex radiating structures. Here, a typical wireless device structure
composed of an antenna region and a ground plane, see Fig. 17 is considered. The
entire structure occupies the region denoted Ω and consists of e.g., screen, battery,
electronics, RF circuitry, antenna(s) etc. for a mobile phone. The antenna, which
is part of the structure, is restricted to the region occupying the region ΩA. The
antenna designer is assumed to be allowed to specify the spatial distribution of metal
and dielectrics in the region ΩA. The electromagnetic properties of the remaining
region ΩG = Ω \ ΩA is assumed to be fixed. The discussion is restricted to electric
current densities and use of the stored energy expression (3.9) and (3.10). Magnetic
current densities can in many cases lower the bounds on Q and can be analyzed
using the stored energy expressions in [73, 74].

Many antenna design requirements can be formulated as optimization problems.
These problems can be further reformulated as optimization problems in terms of
antenna current distributions. An example is presented in the following.

Antenna design: From the antenna design perspective, the optimization problem
is to design an antenna by proper shaping and choosing of the materials in
the antenna region for optimal performance. The current and voltage in one
or more feed points determine the matching properties of the antenna. The
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induced
currents

controlled
currents

Figure 17: (left) Circumscribing box for an antenna with a ground plane. Phys-
ical bounds are determined for arbitrarily shaped antennas inside of a box in the
presence of a fixed structure outside of the box. (right) Current optimization with
controllable current in the antenna region (the box) and induced current in the
remaining structure (here the ground plane).

current distribution in the entire radiating structure determines the radiation
properties.

Current distribution: In terms of current density, the antenna optimization prob-
lem is to determine the currents in the antenna region that yield optimal
performance. These currents are determined without considering the feeding
structures such that only radiation properties of the antenna are quantified in
the performance of the antenna.

6.1 Maximization of G/Q

The partial gain Q-factor quotient is

G(r̂, ê)

Q
=

4πP (r̂, ê)

2ωmax{We,Wm}
=

π|ê∗ · F (r̂)|2
ωη0 max{We,Wm}

, (6.1)

where P (r̂, ê) is the partial radiation intensity for the polarization ê and direction
r̂, F (r̂) is the far field (3.7), We is the stored electric energy (3.9), and Wm is the
stored magnetic energy (3.10). The quantities in (6.1) are approximated, using a
Method of Moments approach and expanding the current density on the antenna in
terms of local basis functions (D.1), as

ê∗ · F ≈ FI far field in direction r̂ and polarization ê,

We ≈
1

4ω
IHXeI stored E-energy, Xe � 0 electric reactance,

Wm ≈
1

4ω
IHXmI stored M-energy, Xm � 0 magnetic reactance.

The partial gain Q-factor ratio (6.1) becomes

G(r̂, ê)

Q
≈ 4π|FI|2
η0 max{IHXeI, IHXmI}

. (6.2)
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It is assumed that the MoM approximation is sufficiently accurate for the purpose
of the analysis.

The optimization problem of maximizing the G/Q ratio (6.2) can be formulated
as the problem of minimizing the stored energy for a fixed partial radiation intensity

minimize max{IHXeI, I
HXmI}

subject to |FI|2 = 1,
(6.3)

where the normalization |FI|2 = 1 or equivalently |FI| = 1 is used. Formulation (6.3)
is possible due to the scaling invariance of G/Q in terms of the current matrix I, i.e.,
G/Q is invariant for the complex scaling I→ αI. Moreover, this scaling invariance
shows that an arbitrary phase FI = 1 that removes the absolute value operation, [40]
can be considered. The convex optimization problem of minimizing the stored energy
for a fixed partial far-field in one direction [40], i.e.,

minimize max{IHXeI, I
HXmI}

subject to FI = 1
(6.4)

is obtained. Let Io denote a current matrix that solves (6.4). The minimum value of
the stored energy in (6.4) is unique although the current matrix Io is not necessarily
unique. This optimum current gives an upper bound on G/Q for the considered
direction r̂ and polarization ê, i.e.,

G(r̂, ê)

Q
≤ G(r̂, ê)

Q

∣∣∣∣
ub

=
4π|FIo|2

η0 max{IHo XeIo, IHo XmIo}
. (6.5)

Alternative formulations are available for the convex optimization problem (6.4) [40].
These formulations can be solved with e.g., CVX [30], a dual formulation [54], etc.,
see [36, 40] for illustrations.

The optimization problem (6.4) can be solved analytically in the limit of small
antennas [47], giving:

G(r̂, ê)

Q
≤ k3

4π
ê∗ · γ∞ · ê and Q ≥ 6π

k3 max eig γe

as ka→ 0 (6.6)

for the case of electric, We ≥ Wm, antennas. This result confirms the forward
scattering bounds (5.4) and (5.5), as also illustrated in Fig. 14. The general case
with electric and magnetic current densities is analyzed in [73, 117] and show that
electric polarizability dyadic in (6.6) is replaced with the sum of the electric and
magnetic polarizability dyadics. The lower bound on the Q-factor for electric dipoles
is e.g., [73, 117]

Q ≥ 6π

k3 max eig(γe + γm)
as ka→ 0, (6.7)

see [73, 117] for additional cases and examples.

http://cvxr.com/cvx/
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6.2 Superdirectivity and prescribed radiation patterns

Antennas with a higher directivity than typical antennas of the same size are often
referred to as superdirective antennas [8, 56, 79, 84]. The increase of the Q-factor for
small antennas with high directivity is analyzed by adding the constraint D ≥ D0

to (6.4). Written in the far-field, the partial directivity is at least D0 if

D0 ≤ D =
4π|ê∗ · F (r̂)|2

2η0Pr

⇒ Pr ≤
2π|ê∗ · F (r̂)|2

η0D0

. (6.8)

This is added as the convex constraint 1
2
IHRI ≤ 2π/(η0D0) to the optimization

problem (6.4), giving

minimize max{IHXeI, I
HXmI}

subject to FI = 1

IHRI ≤ 4π

η0D0

.

(6.9)
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Figure 18: Illustration of the physical bound on the Q-factor for antennas con-
strained to a planar rectangle with length ` and width `/2 that radiates with direc-
tivity D(x̂) ≥ D0 for D0 = {2, 3.2, 4, 6, 8}, see [40].

This optimization problem is solved using CVX [30] for a planar rectangle with
side lengths ` and `/2, and D0 = {2, 3.2, 4, 6, 8}. The minimum Q-factor, for a
radiated field with the partial directivity at least D0 in the r̂ = x̂-direction for the
polarization ê = ŷ, is depicted in Fig. 18. These Q-factors are compared to the Q-
factor (5.5) obtained from the forward scattering bound on D/Q (5.4) for the same
rectangle. In the forward scattering bound, it is assumed that the antennas radiate
as electric dipoles. Under this assumption, the directivity is 1.5 in a direction normal
to the plane of the structure, see Fig. 18, and the generalized absorption efficiency
is η = 1/2 [43, 45]. Note that the constraints D ≥ D0 = {4, 6, 8} yield optimum
current densities with directivities D = D0. However, the constraint D ≥ 2 results

http://cvxr.com/cvx/
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in an optimum current that contributes both an electric and a magnetic dipole such
that the directivity is D ≥ 2.9, for `/λ ≥ 0.05, see the curves labeled 2 and 3.2 in
Fig. 18.

6.3 Embedded antennas

The current optimization method can be generalized to derive bounds for antennas
embedded in devices, e.g., as that depicted in Fig. 17. This generalization is based
on decomposing the current density into the controllable currents, JA, and induced
currents, JG, [15, 16, 40]. A region of the considered device, ΩA, see Fig. 21,
is reserved for a structure that can be engineered by, e.g., optimization, manual
or computer aided design, etc. The currents in this region, JA, are considered
controllable. The remaining part of the device, ΩG is considered fixed such that it
supports the induced current density JG. Due to the linearity of Maxwell’s equations
JG depends linearly on JA. This dependence can be written JG = CJA, where C
is determined from, e.g., the MoM impedance matrix [63, 69, 70, 89]. The bounds
on G/Q of a rectangular, infinitely thin, PEC device with the dimensions ` and `/2
in which the region with controllable currents may occupy 6%, 10% and 25% of
the device at one end in the ` direction are depicted in Fig. 19. These bounds are
compared to the bound of the entire structure obtained from the forward scattering
sum rule described in Sec. 5, see also [43, 44, 45]. Other cases of embedded devices
and details can be found in [15, 16, 17, 54].

7 Periodic array antennas
Sum rules are used to derive limitations on the bandwidth for array antennas in [22,
75]. The bandwidth of infinite periodic array antennas is limited by the thickness
of the array. Consider a periodic array antenna with thickness d above a perfect
electric conducting (PEC) ground plane, see Fig. 20. The antenna performance is
analyzed in receiving mode by assuming a reciprocal loss-less antenna with scat-
tering reflection coefficient, ρ, of equal amplitude as the reflection coefficient in the
feed (3.1), i.e., |Γ | = |ρ|. Here, the fundamental mode of the reflected wave is con-
sidered. This transforms the antenna to an absorber and the sum rule [22, 75, 94]

1

π

∫
R

1

k2
ln

1

|ρ(k)| dk ≤ d
(
1 +

γ

2dA

)
≤ dmax{µr}

{
cos θ TE
1/ cos θ TM

(7.1)

first derived by Rozanov [94] for layered structures with max{µr} denoting the
maximal relative permeability of the structure. Here, the low-frequency expansion
from [49] is used to extend the results to periodic structures.

The sum rule is transformed to the bandwidth bound [22, 75, 94]

λ2 − λ1 ≤
2π2dmax{µr}

ln |Γ0|−1

{
cos θ TE
1/ cos θ TM

(7.2)
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Figure 19: GA-optimized antenna G/Q-ratios (6.2), marks, compared with physical
bounds on G/Q obtained with a formulation equivalent to (6.4) for a rectangular
wireless device model in which the antenna may occupy 6%, 10% and 25% of the
device at one end, see Fig. 17. The physical bound on theG/Q-ratio of a rectangular,
infinitely-thin, PEC sheet [43, 44, 45] is labeled “100%”. Gray-shaded areas have
controllable currents.

for linearly polarized waves, where Γ0 denotes the threshold level for the reflection
coefficient over the wavelength interval [λ1, λ2]. Array antennas are analyzed and
compared with antenna designs in [22, 75]. An array figure of merit is also introduced
in [75].

8 Conclusions
Physical bounds on antennas answer questions such as: how good can an antenna
be? The antenna bounds have evolved from spherical regions (1948), to arbitrary
shaped structures (2007), and embedded structures (2013). Here, an overview of
methods based on circuit models, mode expansions, sum rules, and optimization are
presented and some of their pros and cons are discussed. This characterization is
chosen to emphasize the key characteristics of the majority of the published methods
for the study of physical bounds.

All presented bounds are based on assumptions. The forward-scattering bounds
are e.g., based in the assumption of linear, reciprocal, time-translational invariant
material parameters. These assumptions are valid for most antennas but switches
and non-Foster matching can potentially be used to overcome the limitations [121].
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Figure 20: Periodic array antenna above a PEC ground plane.

Moreover, bounds based on the stored energy, such as the Chu bound (4.2) and
the antenna current optimization in Sec. 6, assume that the stored energy can be
determined accurately using (3.8), (3.9), and (3.10). There are initial investigations
on the stored energy expressions [37, 38, 51, 65] but much work remains before the
stored energy is fully understood.

Although there have been a strong development on the physical bounds in recent
years, there are still many open questions. The D/Q and Q-factor limits for small
electric dipole antennas composed of non-magnetic materials are well understood.
There are several independent derivations that provide similar results [35, 40, 43, 44,
47, 114, 117, 118], see also (5.4) and (6.6) for this case. In addition, many antenna
designs are shown to perform close to the bounds, see [6, 9, 35, 43, 96] and Fig. 15.
Antennas embedded in finite PEC structures are investigated in [15, 16] and are
also shown to perform close to the bounds. The D/Q results for electric dipole
antennas work well up to about half-a-wavelength sized structures (ka ≈ 1.5) [35,
43]. The corresponding lower bounds on the Q-factor for larger structures are not
well understood, except for the case with prescribed radiation patterns, e.g., dipole
patterns [14, 40, 110].

The case with mixed electric and magnetic dipole patterns, magnetic materials,
and superdirective antennas (6.9) are not as well understood in the sense of realized
antenna designs although there are some suggested designs. Efficiency is the most
important small antenna parameter besides bandwidth. There are only some ini-
tial investigations for lossy structures [46], so much work remains on fundamental
limitations for efficiency.
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Appendix A Notation
Scalars are denoted with an italic font (f, F ), vectors (in R3) with a boldface italic
font (f ,F ), and matrices with a boldface roman font (f ,F). We consider time
harmonic fields in free space with the time convention ejωt.

c0 Speed of light, c0 = 1/
√
ε0µ0

η0 impedance of free space, η0 =
√
µ0/ε0

µ0 permeability of free space, µ0 = η0/c0

ε0 permittivity of free space, ε0 = 1/(η0c0)
εr relative permittivity
µr relative permeability
E electric field
H magnetic field
J current density
ρ charge density, ρ = −1

jω
∇ · J

F far field
Zin input impedance
Rin input resistance, Rin = ReZin

Xin input reactance, Xin = ImZin

We stored electric energy
Wm stored magnetic energy
Pd dissipated power
Pr radiated power
PΩ ohmic losses
Q Q-factor (3.3)
QZ′ Q from Z ′in (3.6)
Γ reflection coefficient, see Fig. 6
Γ0 threshold level for the reflection coefficient, see Fig. 6
D directivity, also partial directivity D(r̂, ê)
G gain, also partial gain G(r̂, ê)
γe electric polarizability dyadic
γm magnetic polarizability dyadic
γ∞ high contrast polarizability dyadic (C.1)
r position vector in R3, see Fig. 7
r magnitude of r, i.e., r = |r|, see Fig. 7
r12 distance |r1 − r2|
r̂ (unit) direction vector, i.e., r̂ = r/r, see Fig. 7
ê (unit) polarization vector, see Fig. 7
Ω source region, see Fig. 7
ΩA antenna region, ΩA ⊂ Ω, see Fig. 17
ΩG ground plane region, see Fig. 17
a radius of a circumscribing sphere, see Fig. 8
` side length of a rectangle, also `x, `y

f frequency

https://en.wikipedia.org/wiki/Speed_of_light
https://en.wikipedia.org/wiki/Impedance_of_free_space
https://en.wikipedia.org/wiki/Vacuum_permeability
https://en.wikipedia.org/wiki/Vacuum_permittivity
https://en.wikipedia.org/wiki/Relative_permittivity
https://en.wikipedia.org/wiki/Permeability_(electromagnetism)
https://en.wikipedia.org/wiki/Electric_field
https://en.wikipedia.org/wiki/Magnetic_field
https://en.wikipedia.org/wiki/Current_density
https://en.wikipedia.org/wiki/Charge_density
https://en.wikipedia.org/wiki/Near_and_far_field
https://en.wikipedia.org/wiki/Q_factor
https://en.wikipedia.org/wiki/Directivity
https://en.wikipedia.org/wiki/Antenna_gain
https://en.wikipedia.org/wiki/Frequency
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ω angular frequency ω = 2πf
k wavenumber k = ω/c
λ wavelength λ = c/f
B fractional bandwidth (3.2)
ψ basis function (D.1)
I current matrix
Z impedance matrix (D.2)
R resistance matrix, R = ReZ
X reactance matrix, X = ImZ
Xe electric reactance matrix (D.5)
Xm magnetic reactance matrix (D.5)
F far-field matrix
C induced currents matrix
j imaginary unit, j2 = −1
∗ complex conjugate, (a+ jb)∗ = a− jb
T transpose
H Hermitian transpose
� positive semidefinite, IHAI ≥ 0 for all I
ˆ unit vector, |r̂| = 1
∇ nabla operator
dV volume element
dS surface element

Appendix B Radial functions
The radial functions in Hansen [55] are defined as

R
(p)
τn (κ) =

z
(p)
n (κ) τ = 1

1

κ

∂(κz
(p)
n (κ))

∂κ
, τ = 2,

(B.1)

where z(1)
n = jn are Bessel functions, z(2)

n = nn Neumann functions, z(3)
n = h

(1)
n

Hankel functions [55], and κ = ka. The derivatives of R(p)
τn (κ) are easily expressed

in spherical Bessel and Hankel functions as

∂ R
(p)
τn

∂κ
=


∂

∂κ
z(p)
n τ = 1

−R
(p)
τn

κ
+
n(n+ n)− κ2

κ2
z(p)
n τ = 2.

(B.2)

Appendix C High-contrast polarizability dyadics
The high-contrast polarizability dyadics have closed form expressions for canonical
geometries such as spheres and spheroids, see [82], Tab. 2, and the MATLAB pro-
gram [45]. Other shapes are analyzed numerically using integral equation solvers
such as the method of moments.

https://en.wikipedia.org/wiki/Angular_frequency
https://en.wikipedia.org/wiki/Wavenumber
https://en.wikipedia.org/wiki/Wavelength
https://en.wikipedia.org/wiki/Imaginary_unit
https://en.wikipedia.org/wiki/Complex_conjugate
https://en.wikipedia.org/wiki/Transpose
https://en.wikipedia.org/wiki/Conjugate_transpose
https://en.wikipedia.org/wiki/Positive-definite_matrix#Positive-semidefinite
https://en.wikipedia.org/wiki/Del
https://en.wikipedia.org/wiki/Volume_element
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geometry high contrast polarizability dyadic γ∞

aa Sphere with radius a [82]
γ∞ = γsph1 = 4πa31 ≈ 12.57a31

a
Solid hemisphere with radius a [82]

γ∞ = 4π
(
2− 59

27
√
3

)
a3(x̂x̂+ ŷŷ) +

4

27
√
3

(64
3
− 25

16
(
√
3 + 1)

)
a3ẑẑ

≈ 9.28a3(x̂x̂+ ŷŷ) + 4.59a3ẑẑ ≈ 0.74γsph(x̂x̂+ ŷŷ) + 0.36γsphẑẑ

aa Hemispherical shell with radius a [82]

γ∞ =
(
2π +

8

3

)
a3(x̂x̂+ ŷŷ) +

(
2π − 16

3
+

4π

2 + π

)
a3ẑẑ

≈ 8.95a3(x̂x̂+ ŷŷ) + 3.39a3ẑẑ ≈ 0.71γsph(x̂x̂+ ŷŷ) + 0.27γsphẑẑ

Oblate spheroid with width 2a and height 2b, where b ≤ a [82,
103]. Set ξ = b/a and e =

√
1− ξ2

γ∞ =
4πξe3

3
(
e− ξ arccos ξ

)a3(x̂x̂+ ŷŷ) +
8πe3

3
(
arccos ξ − ξe

)a3ẑẑ

a Circular disc with radius a [44]

γ∞ =
16

3
a3(x̂x̂+ ŷŷ) ≈ 5.33a3(x̂x̂+ ŷŷ) ≈ 0.42γsph(x̂x̂+ ŷŷ)

Prolate spheroid with height 2a and width 2b, where b ≤ a [82,
103]. Set ξ = b/a and e =

√
1− ξ2

γ∞ =
8πe3

3(ln 1+e
1−e − 2e)

a3(x̂x̂+ ŷŷ) +
16πξ2e3

3
(
2e− ξ2 ln 1+e

1−e

)a3ẑẑ

≈ 4π

3(ln 2− ln ξ − 1)
a3ẑẑ +O(ξ2) as ξ → 0

`

`

`

Cube with side lengths ` = 2a/
√
3 [66, 98]

γ∞ ≈ 3.644305190268`31 ≈ 5.61a31 ≈ 0.45γsph1

Table 2: High-contrast polarizability dyadics for some canonical structures. The
body-of-revolution objects have ẑ as the symmetry axis, see also Fig. 14 and [45].

https://en.wikipedia.org/wiki/Spheroid
https://en.wikipedia.org/wiki/Spheroid
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The high-contrast polarizability dyadic γ∞ is determined from the induced sur-
face charge density, ρ, as

ê · γ∞ · ê =
1

E0ε0

∫
∂Ω

ê · rρ(r) dS, (C.1)

where ρ satisfies the integral equation∫
∂Ω

ρ(r1)

4πε0|r − r1|
dS1 = E0r · ê− V (C.2)

and the voltage V determined is from the constraints of zero total charge∫
∂Ω

ρ(r) dS = 0. (C.3)

Appendix D Expansion in terms of basis functions
Consider a region Ω ⊂ R3 with current density J = J(r), see Fig. 7. Expand the
current density in local basis functions

J(r) ≈
N∑
n=1

Inψn(r) (D.1)

and introduce the N × 1 matrix I with elements In to simplify the notation. The
basis functions are assumed to be real valued, divergence conforming, and having
vanishing normal components at the boundary [89]. For embedded antennas, it is
assumed that the currents JA in the antenna region ΩA are controllable and induce
the currents JG in the region ΩG, see Fig. 21.

F

Fixed ground plane, ΩGAntenna, ΩA

|ψn|

0

Figure 21: Illustration of rectangular mesh element discretization and “rooftop”
basis function amplitude for a three-dimensional radiating structure. Metal areas
are depicted in gray shading. The amplitudes of three of the total 6×3+5×4−4−3
basis functions are depicted in blue, pink and green shading. The feeding edge is
marked F .

A standard MoM implementation of the EFIE using the Galerkin procedure
computes the impedance matrix Z = R+ jX with the elements

Zmn
η0

= j

∫
∂Ω

∫
∂Ω

(
k2ψm(r1) ·ψn(r2)−∇1 ·ψm(r1)∇2 ·ψn(r2)

) e−jk|r1−r2|

4πk|r1 − r2|
dS1 dS2,

(D.2)
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where m,n = 1, ..., N . The differentiated MoM impedance matrix

k ∂Zmn
η0 ∂k

=

∫
∂Ω

∫
∂Ω

j
(
k2ψm(r1) ·ψn(r2) +∇1 ·ψm(r1)∇2 ·ψn(r2)

) e−jk|r1−r2|

4πk|r1 − r2|

+
(
k2ψm(r1) ·ψn(r2)−∇1 ·ψm(r1)∇2 ·ψn(r2)

) e−jk|r1−r2|

4π
dS1 dS2 (D.3)

is used to estimate the stored energy determined. The differentiated reactance
matrix, X′ = ImZ′, gives the stored magnetic and electric energies

Wm ≈
1

8
IH
(
∂X

∂ω
+

X

ω

)
I and We ≈

1

8
IH
(
∂X

∂ω
− X

ω

)
I, (D.4)

respectively. These expressions are identical to the stored energy expressions in-
troduced by Vandenbosch [113] using a MoM approximations, see also [62, 64].
Introduce the electric Xe, and magnetic Xm, reactance matrices

Xe =
1

2

(
ω
∂X

∂ω
−X

)
and Xm =

1

2

(
ω
∂X

∂ω
+X

)
. (D.5)

The total radiated power is determined from R = Re{Z} as

Prad ≈
1

2
IHRI. (D.6)

The far field (3.7) in the direction r̂ projected on ê is approximated by the N×1
matrix FI ≈ ê∗ · F (r̂) defined as

FI ≈ −jkη0

N∑
n=1

In

∫
∂Ω

ê∗ ·ψn(r1)
ejkr̂·r1

4π
dS1. (D.7)

In this paper it is assumed that the numerical approximation is sufficiently accurate
so the approximate equal to (≈) above can be replaced with equalities.

Appendix E Numerical results for the presented an-
tennas

Numerical simulation data for the antennas presented in this chapter are collected
in Tab. 3 for wire antennas and Tab. 4 for planar antennas.
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