
LUND UNIVERSITY

PO Box 117
221 00 Lund
+46 46-222 00 00

Digital Systems Design Using Constraint Logic Programming

Szymanek, Radoslaw; Gruian, Flavius; Kuchcinski, Krzysztof

Published in:
Proceedings of the Practical Application of Constraint Logic Programming (PACLP) Conference

2000

Link to publication

Citation for published version (APA):
Szymanek, R., Gruian, F., & Kuchcinski, K. (2000). Digital Systems Design Using Constraint Logic
Programming. In Proceedings of the Practical Application of Constraint Logic Programming (PACLP)
Conference

Total number of authors:
3

General rights
Unless other specific re-use rights are stated the following general rights apply:
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors
and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the
legal requirements associated with these rights.
 • Users may download and print one copy of any publication from the public portal for the purpose of private study
or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal

Read more about Creative commons licenses: https://creativecommons.org/licenses/
Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove
access to the work immediately and investigate your claim.

https://portal.research.lu.se/en/publications/dd2e2164-d743-4888-9351-6f920cd05ea2

eth-
nthesis
els, the
with

fferent
ible to
ucing
esign

explore

m par-
ts and

e itera-
en into

e often
sually
which
DIGITAL SYSTEMS DESIGN USING
CONSTRAINT LOGIC PROGRAMMING

RADOSLAW SZYMANEK, FLAVIUS GRUIAN, KRZYSZTOF KUCHCINSKI

Lund University, Dept. of Computer Science, Lund, SWEDEN

Radoslaw.Szymanek@cs.lth.se

Abstract. This paper presents an application of finite domain constraint logic programming m
ods to digital system synthesis problems. The modeling methods address basic sy
problems of high-level synthesis and system-level synthesis. Based on the presented mod
synthesis algorithms are then defined. These algorithms aim to optimize digital systems
respect to cost, power consumption, and execution time.

Keywords. digital systems design, constraint logic programming

1. Introduction

Recently, the system-on-chip concept has been proposed which is integration of many di
system parts on a single chip. Current developments in the VLSI technology make it poss
build complex systems consisting of millions of components thus there is the potential of red
cost while improving many design parameters, such as performance and reliability. The d
process of a system-on-chip requires new design methods which can help the designer to
the design space early in the design process.

The typical design problems which have to be solved during system synthesis include syste
titioning, allocation of resources, assignment of basic system parts into allocated componen
scheduling (Eles et al., 1997). These design steps are performed sequentially with possibl
tions when the results are unsatisfactory. Many heterogeneous constraints have to be tak
account during the design process. In addition to performance and area constraints, w
would like to consider memory or power consumption constraints. These constraints are u
difficult to include in automatic design methods and they have to be handled separately,

This work was supported in part by the Wallenberg Foundation project “Information Technology for Autonomous Aircraft” and the Founda-
tion for Strategic Research, Integrated Electronic Systems program.

a set of
lution
ion-
will
n cri-

.

usually
es a
ether
) can
er of

work
-level

together
n 5.

present
be either
exam-
h node
s if
c in the
tion to

all its
execu-
such

. Both
muni-
.

reduces the chance of reaching good final results.

System synthesis can be defined as an optimization problem. The system is modeled as
constraints on fabrication cost, number of components, timing, and the goal is to find a so
which minimize a given cost function. For example, we would like to implement a given funct
ality on a number of processors while minimizing the execution time. This optimization
provide the fastest possible implementation with the available resources. Other optimizatio
teria, such as cost, power consumption or a combination of them, can be also considered

The synthesis process of a digital system starts with defining the system in an abstract way,
by describing its functionality. This abstract representation is then refined and it becom
description of the hardware (e.g. ASIC) and possibly some software modules, which tog
implement the system. We believe that the use of Constraint Logic Programming (CLP
improve both quality and efficiency of system design steps. Below we will present a numb
examples where CLP has been used for high-level and system-level synthesis.

This paper is organized as follows. Section 2 defines the computational model for our frame
and presents the basic finite domain modeling techniques. Both the high-level and system
synthesis approaches using finite domain constraints are then presented in section 3 and 4
with a discussion on experimental results. Finally, the conclusions are presented in sectio

2. Basic Modeling Techniques

In this paper, we consider that digital systems are modeled using graphs where the nodes re
computations and the arcs data dependencies between them. The computation nodes can
simple operations, such as additions and multiplications, or complex tasks representing, for
ple, signal or image processing algorithms. Figure 1 depicts an example of such graph. Eac
in this graph, (T1, T2, T3, T4, T5, T6), corresponds to a computation. An arc connects two node
and only if there is a data dependency between the corresponding nodes. There is an ar
graph connecting a node with another node if the first node (sender) activates communica
another node (receiver). For example, the arc between nodesT1 andT3 models the communication
between these nodes.

In general, the functionality represented by a node is activated when the communication on
input arcs took place. The graph models a single computation as a partial order of nodes’
tions. The graph is acyclic but an implicit iterative computation is assumed. An example of
graph is depicted in Figure 1, each computation starts from the execution of nodesT1 andT2 and
finishes with execution of nodeT6.

Each node has a deterministic execution time. A communication time is also deterministic
the execution time and communication time can be decided before the model is built. Com
cation between nodes is allowed only at the beginning or at the end of the node execution

Figure 1. An example of a computation graph

T2

T1

T3

T5

T4

T6a1

a2

a3

a4

a5

a6

g con-
riables
raints on

-

s and
related

tween

usually
1997).
us, we
in the
system

pre-
ing the

es. The
for

sing

, dif-
clock

ecution
een
2.1 Finite Domain Constraints Model

The graph introduced above is modeled as a set of finite domain constraints. The modelin
straints enforce the node ordering and a realistic resource access. We define first the va
which represent the basic parameters of nodes and resources and then introduce the const
these variables.

A node is modeled as a 3-tupleT = (τ, δ, ρ) whereτ, δ andρ are finite domain variables repre
senting the activation time of the node (τ), the execution time of the node (δ), and the resource
used to execute the node (ρ).

For example, for the graph depicted in Figure 1, the following definition of the nodeT1 can be
made:

T1 = (τ1, δ1, ρ1), where τ1::0..50, δ1::[2,5], ρ1::3..4.

NodeT1 is activated sometime between 0 and 50, its execution time is either 2 or 5 time unit
it uses either resource 3 or 4. A constraint solver assigns then single value from domains of
finite domain variablesτ, δ, andρ, providing a possible solution. For example,T1 = (0, 2, 4).

A single node specification does not include graph information on the execution order be
nodes. This is modeled as inequality constraints. If there is an arc from a nodeTi to a nodeTj in
the graph then the following inequality constraint is defined:

τi +δi ≤ τj

Two arbitrary nodes can not, in general, use the same resource at the same time. This is
expressed through disjunctive constraints imposed on each pair of nodes (Kuchcinski,
These constraints have to be defined for all nodes which can be executed in parallel, and th
can avoid overlapping execution of tasks. This leads to the creation of constraints,
worst case. The work presented in this paper uses CHIP 5 constrained logic programming
(Beldiceanu et al., 1997), therefore we use the global constraintdiffn/1 to disallow overlapping
execution of tasks.Diffn/1 makes use of a rectangle interpretation of nodes. A node, re
sented by a 3-tuple, can be interpreted as a rectangle in the time/resource space hav
following coordinates ((τi , ρi), (τi , ρi +1), (τi +δi , ρi), (τi +δi , ρi +1)). This is not a limitation in
practice since the nodes, which need more resources, can be modeled as several nod
diffn/1 constraint takes as an argument a list ofn-dimensional rectangles and ensures that
each pair ofi, j (i≠j) of n-dimensional rectangles, there exist at least one dimension wherei is after
j or j is afteri. Then-dimensional rectangle is defined by a tuple [O1, ...,On, L1, ...,Ln], whereOi
andLi are called the origin and the length of the n-dimensional rectangle in thei-th dimension
respectively. Thediffn/1 constraint can replace the set of disjunctive constraints by impo
that all rectangles representing nodes, such asRecti = [τi , ρi , δi , 1] andRectj = [τj , ρj , δj , 1], can
not overlap.

A node execution time is deterministic but it is not the same for all resources. For example
ferent microprocessors require different execution time for the same task depending on the
frequency and architecture of processor. Our model makes it possible to define the node ex
time as a finite domain variable capturing several execution time values. The relation betwδi
andρi can be expressed using theelement/3 constraint. The execution time,δi , for a nodeTi
on a resourceρi , is defined by the following constraint:

n n 1–()⋅
2

lation

can be
ndant
int we

asks
nt that,
a given

e
ally,

e

mula-
d
-

lease

n
which
alone.

func-
ansfer
e.

, reg-
These
ach of
simple
l sys-
element(ρi , [τi1 , τi2 , ..., τiN], δi).

This constraint enforces a finite relation between the first and the third variable. The finite re
is given by the vector of values passed as the second argument.

2.2 Redundant Constraints

The formulation presented above fully describes the graph model of the digital system and
directly used for synthesis. However, in most of the developed applications we used redu
constraints to improve the constraint propagation. The most important redundant constra
used iscumulative/8 .

Thecumulative/8 constraint has been defined in CHIP to specify requirements on the t
which need to be scheduled on a limited number of resources. It expresses the requireme
at any time instant, the corresponding total of the resources for the tasks does not exceed
limit. The following four parameters are used: a list of the start times of tasksOi, a list of durations
Di of tasks, a list of the amount of resourcesRi required by the task, and the upper limit of th
amount of resourcesUL. All parameters can be either domain variables or integers. Form
cumulative/8 enforces the following constraint:

wheren is the number of tasks, whileminandmaxare the minimum and maximum values in th
domain of the variable respectively.

The cumulative constraint can be used to describe two types of constraints. In the first for
tion, Oi is replaced byτi , Di by δi and, finally,Ri by 1. This models the task allocation an
scheduling on the limited number of resources represented byUL. The second formulation repre
sents the bin packing problem:Oi is replaced byρi , Di is always 1 and finallyRi is replaced byδi .
The variableUL is constrained to the value lower or equal the execution time of the graph. P
note that the first formulation uses onlyτi andδi while the second one onlyρi andδi . Therefore
they are able to offer different types of propagation.

We use also another redundant constraintprecedence/5 . This constraint takes into account, i
addition to precedence constraints expressed by inequalities, the resource limitations on
jobs can be scheduled. This redundant constraint gives better propagation than inequalities

3. High-Level Synthesis

High-Level Synthesis (HLS) refers to that step in the synthesis of a digital system where a
tional (behavioral) specification of a system or sub-system is transformed into a Register-Tr
Level (RTL) representation. This RTL representation will be later implemented as hardwar

3.1 Introduction

During HLS one must decide the type and number of resources (adders, multipliers, ALUs
isters) needed, the right time to perform each operation, and resource which will perform it.
three problems are referred to as resource allocation, operation scheduling, and binding. E
these problems has been proven to be NP complete. At high-level, the data operations are
arithmetic operations such as additions, multiplications, and comparisons. Most of the digita

i Oj()
1 j n≤ ≤
min Oj D j+()

1 j n≤ ≤
max,∈∀ Rk UL≤

k Ok i Ok Dk+<≤:
∑:

oments
pera-

rform
xecu-
to be

e avail-

l data-
efore,
des in
ile the
r clar-

be

prob-
nment

sis. To
occu-

lifetimes
s over
edge
rect-

ed to
g, and

, in
igure 2

n-

oper-
r with
repre-
ifferent
nsion.
height
tems are synchronous, meaning the operations are performed at well established m
triggered by a global signal named clock. The time units characterizing the delays of the o
tions are, at this level, always related to the clock signal frequency. The right times to pe
certain operations are thus expressed in clock cycles. HLS usually targets minimization of e
tion time or resources cost, but other parameters, such as, power consumption, need
addressed sometimes. Depending on the user specifications, HLS can be constrained by th
ability of different resources or execution time.

The input to the HLS process, the functional specification, can be represented as a contro
flow graph (CDFG). A CDFG and the graph presented in Figure 1 are very much alike. Ther
the modeling techniques introduced in the previous section are directly applicable. The no
CDFG represent simple operations, such as additions, multiplications, comparisons, wh
arcs describe the conditional or non-conditional data flow between different operations. Fo
ity we will consider here only data flow graphs (DFG), although control information can
handled as shown in (Kuchcinski, 1997).

The constraints described in the previous section form the basic model for the general HLS
lem. Additional constraints for modeling application specific issues, such as, register assig
and power consumption minimization, are described in the following part.

Registers are assigned to input, output, and temporary variables during high-level synthe
allow register sharing, the lifetimes of the variables, representing the period that the variable
pies a register, are computed and a related analysis determines register assignment. The
of the variables are modeled in our approach using rectangles which span on time axe
define-use time of the variable. This resembles a definition of variable lifetimes used in left-
algorithm (see, for example (Beldiceanu et al., 1997)). Defining the lifetimes of variables as
angles provides a natural way to use bothdiffn/1 andcumulative/8 constraints (Kuchcinski,
1998).

3.2 Advanced Features

A number of useful extensions to the basic formulation introduced in section 2 can be defin
consider special features such as pipelined components, chaining, algorithmic pipelinin
conditional execution. They are discussed in this section.

Modelingpipelined componentscan be accomplished by defining 3-dimensional rectangles
which the third dimension represents subsequent stages of the component. For example, F
depicts a design which uses a two stage pipelined component. The first stage,S1, is represented
by the cube of height 1 located betweenτ0 andτ1 and originated at coordinate 0 in the third dime
sion. The second stage,S2, is represented by the cube of height 1 located betweenτ1 andτ2 and
originated at coordinate 1 in the third dimension. All non-pipelined operations, such as the
ationOpj depicted in Figure 2, have heights of 2 and therefore can not be placed togethe
neither the first, nor the second stage of the pipelined sub-task. “Packing” of operations
sented by 3-dimensional rectangles enables placement of the stage one and two of d
operations at the same resource/time location since they do not overlap in the third dime
Other non-pipelined operations can not collide with the pipelined ones, since they have the
2. The finite domain constraint definition for the example in Figure 2 is the following:

diffn([[τi,S1 , ρi ,0, δi,S1 ,1,1], [τi,S2 , ρi ,1, δi,S2 ,1,1], [τj , ρj ,0, δj ,1,2]]) ∧ τS1
+ δS1 = τS2.

lined

ndent
tional
n a
ration
duces

hree
present
ere a
its of
ic
d

hin the
urface
This formulation can be extended into n-dimensions, if there are more different pipe
components.

Chainingrefers to the high-level synthesis technique of scheduling two or more data-depe
operations during the same clock cycle. It is achieved by connecting the output of one func
unit directly to the input of the following functional unit without storing a temporary value i
register. During the same clock cycle the functional unit can not be reused by another ope
because it still propagates results which are stored at the end of this clock cycle. This intro
additional constraints on resource sharing in chaining.

Figure 3 illustrates the basic idea of modeling chaining using finite domain constraints. T
dimensional rectangles are used for this purpose. The three dimensions are used to re
resources, clock cycle and a relative position of an operation within a clock cycle, called h
step. Each clock cycle can be filled with several operations as long as they fit within the lim
the clock cycle (the rectangle boundaries). Twodiffn/1 constraints are used to impose bas
requirements on the implementation. The firstdiffn/1 constraint specifies the structure depicte
in Figure 3 and is defined by the following constraint:

diffn([[τs
i , ρi , τc

i , δi ,1,1] ,..., [τj , ρj , τc
j , δj ,1,1]]).

The second constraint is used to forbid situations when the same resource is shared wit
same clock cycle. It is defined using a projection of rectangles on the resource/clock cycle s
as adiffn/1 constraint on two dimensional rectangles as given below.

diffn([[τc
i , ρi ,1,1], ..., [τc

j , ρj ,1,1]]).

The relation between previously introduced start time of an operation,τi, and the two new param-
etersτc

i andτs
i is defined for every operation by the following equation:

τi = τc
i *N + τs

i

whereN is the number of steps in the clock cycle.

pipeline
stages

resources

timeτ1 τ2

1

2

Figure 2. Resource sharing constraints for pipelined components.

S1

S2

τ0

Opj

Opi

0

clock (τc)
resources (ρ)

step (τs)20

1

2

1

Figure 3. Rectangle representation of chaining.

3

). It
wn in
e anal-

g
e to
domain

e posi-

lue of
ue and
-dimen-
ecution.
sions.

tart in
share

mputa-
have

ts the

nd the
r con-
e

Pipelininga data-flow graph is an efficient way of accelerating a design (Kuchcinski, 1997
introduces, in fact, new constraints on the location of rectangles. This method is well kno
computer architecture area, where two dimensional reservation tables are used for pipelin
ysis. This approach is compatible with our methodology. Introducing ann stage pipeline of the
initiation rate ofk time units is equivalent to a placement ofncopies of existing rectangles, startin
at positionsk, 2⋅k, 3⋅k, etc. This prevents placing operations in forbidden locations, which ar
be used by subsequent pipeline instances. Since the operation parameters are defined by
variables, the copies of the current rectangles do not define final operation positions but thes
tions will be adjusted during an assignment of values to domain variables.

The following constraints define two-stage pipeline for two operationsOpi andOpj , depicted in
Figure 4, with initiation ratek:

τi,k = τi + k, τj,k = τj + k,

diffn([[τi , ρi , δi ,1], [τj , ρj , δj ,1], [τi ,k, ρi , δi ,1], [τj ,k, ρj , δj ,1]]).

The graphical, rectangle representation of these constraints is depicted in Figure 4

The rectangle based resource constraints can be easily extended to handleconditionalnodes. The
conditional node is executed only if the conditions assigned to its input arcs are true. The va
this condition can not be statically determined and therefore we need to schedule both tr
false execution cases. The presented formulation of the resource constraints, which uses 2
sional rectangles in the time/resource space, needs to be extended to cover conditional ex
The main idea of representing conditional nodes is to extend rectangles into higher dimen
In principle, one more dimension is used for each new condition. The conditional nodes s
the third dimension either at 0 or 1, depending on the condition, and have height 1. They can
the same time/resource place since they can be placed “one on top of the other”. Other co
tional nodes can not be placed together with conditional ones since in this formulation they
height 2.

3.3 Power Consumption Minimization

System power consumption is another important design issue. For CMOS digital circui
power consumption depends mainly on the supply voltage (Vdd), clock frequency (f), and
switched capacitance (α*C):

Considering that the voltage and frequency are usually fixed as design requirements, a
capacitance is determined by the technological process, the only way to minimize powe
sumption is by minimizing switching activityα. The switching activity of a node is a measur

Figure 4. A graphical representation of the resource constraint for algorithmic pipelining.

resource

time
τi τj

Opi

Opj

ρi

ρj

τi,k τj,k

Opi ’

Opj ’

Pswitching α C f Vdd
2⋅ ⋅ ⋅=

hing.
ation
le the

at the
d the

ngs for
rent
6. First
ing a
level

ource
ations
e sum
by

s
two

es of
n each
l
re as

my
of how much a certain node in a CMOS circuit has to switch from 1 to 0 to compute somet
In other words, if the signals in a circuit are changing as little as possible during comput
then the circuit will consume less power. With this observation, one could carefully schedu
order of operations on each resource such that the data is changing as little as possible
inputs and inside the resource. Briefly, binding and scheduling influence the values an
sequence of signals applied to each resource

Consider simple DFG shown in Figure 5. There are several possible schedules and bindi
this graph using two adders. Each solution yields different switching activities, thus diffe
power consumptions. Two of these possible bindings and schedules are depicted in Figure
let us consider that each operation of the DFG is executed on its own functional unit yield
switching activity that can be calculated using signal probabilities or computed by a fast RT
simulator. Let us call this switching activity the unbounded switching (Sw0,i) for operationOpi.
In general, during high-level synthesis, several operations will be bound to the same res
determining the switching activity of the design. For example, if on a certain resource, oper
Opi andOpj are executed in that order, the switching activity cannot be computed as a simpl
Sw0,i + Sw0,j since the switching produced byOpj is dependent on the signal values produced
the previous operationOpi. It is closer to reality to consider switching asSw0,i + Swi,j whereSwi,j
is the relative switching between operationsOpi andOpj. The relative switching activity describe
the bit correlation of two signals and is defined as the number of different bit values of the
signals (Raghunathan et al, 1994).

What we finally need to minimize is exactly the total switching yielded by certain sequenc
operations on their resources. For that we have to know the sequence of operations o
resource which can be obtained in CHIP using thecycle/n constraint. Actually we have to dea
with a slightly modified travelling salesman problem (TSP) (Reeves, 1993) where there a
many cycles as there are resources. The nodes in the graph are the operations,Opi, and the weights
assigned to the arcs in the graph are the relative switching values. For exampleSwi,j is the weight
of the arc going fromOpi to Opj. The unbounded switchings can be seen as arcs from a dum
node representing a resourcei to a normal operation node (see Figure 8).

+ ++

+

a b c d

Op2

Op1

Op3Op4

e

f

Figure 5. A simple DFG

+ +

+ +

a

b c e

Op2

Op1

Op3

Op4

d

f

adder 1 adder 2

step 1

step 2

+

+

+

+

ab c

d
Op2

Op1 Op3

Op4
e

f

adder 1 adder 2

Figure 6. Two possible schedules with different bindings for the DFG in Figure 5

solution A solution B

s, two

rticular

-
e.
tching
lues

ted in
with

finite
.

), fifth
he
ations
3.4 Example

For the DFG example depicted in Figure 7, a possible design which uses three resource
adders and one multiplier, is described in Figure 8. The operationsOp4, Op5, Op1are executed on
resource1 in this order,Op6, Op2on resource2 in this order andOp3on resource3. The switching
activity is the sum of the weights of the arcs involved:

Sw = (Sw 0,4 + Sw 4,5 + Sw 5,1)+(Sw 0,6 + Sw 6,2) + Sw 0,3

Observe that the arcs closing the cycles, back to the dummy nodes, have weight zero. In pa
we usedcycle/9 to group theN operations in sets for each resource:

cycle (R, [S 1, S 2, ..., S R, S R+1, ..., S R+N], [0, ..., 0], MinimalCycle-
Length, MaxCycleLength, [1, 2, ..., R], unused, [1, 2, ..., R, ρ1, ρ2,
..., ρN], [unused, ..., unused, τ1, τ2, ..., τN]).

whereR is the number of resources used,Si, , is the domain variable indicating an imme
diate successor of operationi on the specific resource, andτi, ρi are the same as defined befor
Having the ordering of operations on each resource, it is easy to compute the overall swi
activity which is the objective function to be minimized. To extract exactly the switching va
needed for the computation of this function, we used an additionalcycle/11 constraint. For
more information please refer to (Gruian et al., 1998).

3.5 High-Level Synthesis - Experimental Results

We carried out several experiments using a prototype of the synthesis system implemen
CHIP 5, a constrained logic programming system (Cosytec, 1996). This is a Prolog system
constraints solvers over finite and rational domains. In the experiments, we used only the
domain solver. All experiments have been run on a 50 MHz SPARCCenter 2000 machine

Four HLS benchmarks have been selected for experiments: differential equation (DIFFEQ
order elliptic wave filter (EWF), AR lattice filter (AR) and discrete cosine transform (DCT). T
benchmarks varies much in complexity. The simplest example, DIFFEQ, has only 11 oper

+ +

+

+

*

*

a b c d e f

g

Op4

Op2

Op1

Op3

Op5

Op6

Figure 7. Another simple DFG

Sw0,4 Sw0,6

Sw0,3

Op4

Sw4,5

Op5

Sw5,1

Op1

0
0

0

Sw6,2

Op6

Op3

Op2

1 2

3

Figure 8. Example of cycle generation for the DFG

1 Si N≤ ≤

opera-
ks use
clock

exist-
ticycle
ing,

in sev-
(Lee et
which

on. For
for the
ptimi-

s and
units
p. This
s can not
enerate
other

sumed
teps in
or dif-
f a low
a par-
lts have

nimi-
f these
luence
ults,
ts. We
ive up
se was

ces and

is to
s archi-
raph
and 16 variables, the AR benchmark has 28 operations and 47 variables, the EWF has 34
tions and 41 variables, and the DCT has 48 operations and 48 variables. All benchmar
adders and multipliers. We assumed that addition requires one and multiplication two
cycles. This assumption is realistic as indicated in many research reports.

We evaluated our modeling method by making synthesis, using different design styles, for
ing benchmarks (Kuchcinski, 1998). Each example has been synthesized using mul
components (two-cycle multipliers), two-stage pipelined multipliers and chaining. In chain
different lengths of the clock cycle has been tried.

The optimal assignment of functional units and the schedule was obtained for all examples
eral seconds. This result is very surprising since known ILP based synthesis results, e.g.
al., 1989), usually produce the same solutions in tenths of seconds. Even heuristic solutions
can not guarantee optimal results usually require several seconds to come out with a soluti
example, simulated annealing based algorithm used in SALSA II needs up to 13 seconds
DCT benchmark to produce the solution (Rhinehart et al., 1993). The register assignment o
zation performed after the synthesis requires a fraction of a second.

Finite domain constraints offer a convenient way of combining different design constraint
solve them in one framework. We achieved this when we combine register, functional
assignment, scheduling, and register assignment constraints into one synthesis ste
approach, as expected, provides better synthesis results even in cases when optimal result
be computed due to the problem complexity. In many cases, the system has been able to g
lower number of registers for the same number of functional units and steps than the
reported approaches.

We have also synthesized the four examples using pipelining of the whole algorithm. We as
first a two and then a three stage-pipeline. The synthesis algorithm optimizes a number of s
the pipeline stage satisfying resources constraints. For DIFFEQ and EWF optimal results f
ferent resource constraints have been obtained. For other two examples, in the situations o
number of resources (AR- 2 adders and 4 multipliers and DCT- 4 adders and 4 multipliers),
tial search method had to be used to generate good solutions. In all other cases optimal resu
been obtained.

To show the behavior of our low-power oriented modeling method, based on switching mi
zation, as described in 3.3, we used three benchmarks: DIFFEQ, AR, and DCT. For each o
we assumed different allocations of resources and examine how scheduling and binding inf
the switching activity. For DIFFEQ, because of its simplicity, we could obtain optimal res
while for the other two we used credit-based partial search and obtain near optimal resul
found out that, in some cases, having a switching activity sensitive synthesis strategy may g
to 60% decrease in power consumption, for the same allocation. In worst cases, this decrea
2% only. The power consumption can be decreased even more if the constraints on resour
deadline are relaxed (Gruian et al., 1998).

4. System-Level Synthesis

Given the specification of the system functionality, the main goal of system-level synthesis
make decisions concerning the system architecture and the system implementation on thi
tecture. The functional specification of the system is compiled into a task graph. The g

the arcs
ssor, so
ssor. In
ecuted

ing
by the
correct-

nto two

alities,
ect data

cuted
ditional

es and

ns can
other

third
om-
non-

needed
whole

ors c
essor
i-

tasks’
introduced in section 2 is interpreted as a task graph where the nodes represent tasks and
represent communications between them. Each task must be executed on a single proce
for each task we need to reserve a time slot, code and data memory on the chosen proce
our approach, we assume that there is no need for communication when two tasks are ex
on the same processor since both tasks have access to the same local memory.

An architecture consists of processors and com-
munication devices, such as busses and links.
Figure 9 depicts an example target architecture
which consists of four processors, P1, P2, P3, and
P4, two links, L1 and L2, and a bus, B1.

In our view, the goal of the system-level synthesis
is to find an architecture with a minimal cost which can execute all tasks while fulfilling tim
and memory constraints. The architecture is created from a set of components specified
designer. The whole process is guided by the designer. The constraint system enforces the
ness of the solution by rejecting all the decisions which violate constraints.

4.1 System Modeling

The constraints taken into account in the presented synthesis system can be classified i
groups:

• timing constraints and
• resource constraints.

The data dependency constraints belong to the first group and they are modeled using inequ
as presented in section 2.1. There are two kinds of data dependency between tasks. Indir
dependency exists when two communicating tasks, for example T1 and T3, are executed on dif-
ferent processors. In this case, communication a1 depends on task T1 and task T3 depends on
communication a1. Direct data dependency occurs when two communicating tasks are exe
on the same processor. These two possibilities of data dependency are encoded using con
constraints.

The problems of binding tasks to processors and communication to communication devic
scheduling them are modeled, as indicated in section 2.1, bydiffn/1 constraint. This constraint
requires the task duration to be greater than zero. Since, in our model, some communicatio
be performed in zero time, using local memory, we have to distinguish them from tasks and
communications. The way of handling “disappearing” communication is by introducing a
dimension in thediffn/1 constraint in addition to time and resource dimensions. These c
munications will have different values in the third dimension. This policy ensures that
existing communications do not restrict the solution space.

Code memory is used to store programs implementing tasks. The amount of code memory
to implement a task depends on the processor type, but it is fixed during the execution of the
task graph. We used the reified version of thesequence/5 constraint to obtain matrixρ, where
ρmi equals 1 denotes that m-th task is executed by i-th processor. Multiplication of two vecti
andρi , where cim denotes amount of code memory required to execute m-th task on i-th proc
andρi is the i-th column from matrixρ, gives the overall utilization of the code memory on the
th processor. This utilization must not exceed the available memory.

Data memory constraint is the most complex since data memory utilization changes during

P1 P2 P3 P1

B1

L1 L2

Figure 9. Target architecture

amount
ut data
before
output
cessor
h time
en not

more

re task

sor P

e
ring
emory

e data
s

execution. Data are associated with communications and tasks. Each task requires fixed
of data memory during the execution. Before we can start executing a task we need all inp
of the task stored in a local memory therefore some of the data memory requirement appear
execution of the task. When task finishes its execution we need to reserve data memory for
data until it is consumed by successor task. In the case of transferring the data from one pro
to the other we have to reserve memory on both processors during the transmission. Eac
there is a need to reserve data memory this is done dynamically. The memory is freed wh
needed any more. Dynamic allocation schema makes the handling of data memory much
difficult than handling code memory.

4.2 An Illustrative Example

Consider two tasks and the communication between them as depicted in Figure 10a, whe
T1 is executed on processor P1 and task T2 is executed on processor P2. Communication C1 is
scheduled on bus B1. The data transfer can occur between finishing time of task T1 and starting
time of task T2 which is expressed by the following inequalities:

Each communication results in two data requirements as depicted in Figure 10c. Proces1
must reserve data memory, denoted by D1, for task T1 fromτt1 until τc1+δc1 , whereτc1 , δc1 denote
the start time and duration of the communication respectively. Processor P2 reserves data memory
for task T2, denoted by D2, from τc1 until τt2 +δt2 . D1 and D2 have the same height denoting th
memory size. Since tasks T1 and T2 are executed on different processors, the data memory du
communication must be reserved on both processors. This results in higher overall data m
utilization than in the case when task T1 and task T2 are executed on the same processor.

For each processor, one cumulative constraint is created as depicted in Figure 11. Th
requirement D1 appears in the cumulative for both processors, P1 and P2, because both processor

τt1 δt1 τc1≤+ τ∧ c1 δc1 τt2≤+

T1

C1

T2

DM

DM
D2

P1

B1
P2

D1
P1

P2

T1 T2
C1

a) two communicating tasks

b) schedule for two communicating tasks

c) data memory utilization for processors executing these tasks

Figure 10. Data memory requirements

P1

P2

D1

D1’ D2

D2’

Figure 11. Data memory constraint

e that
exceed

y con-
rforms

slot. In
eduled.
good

xecu-
t tasks
but it
ngth is
le tasks
hen

oosing
y uti-
ent of
rs.

com-
roduced
accurate
irst one
btains
e accu-

the
can execute task T1. Task T2 can also be executed on both processors, so D2 exists in both cumu-
lative constraints. Since processor P1 executes task T1, rectangle D1 in the cumulative constraint
for processor P1, denoted by D1’, is placed in the dotted area and rectangle D1 in the cumulative
constraint for P2 is placed outside dotted area. The same principle applies to task T2 and its data
requirement, D2. The actual data requirements are represented by rectangles D1’ and D2’.

In addition tocumulative/8 we have to use conditional andelement/3 constraints in order to
assure that there is only one D1’ and D2’ and following equalities hold:

when T1 and T2 are executed on different processors or

when T1 and T2 are executed on the same processor. Using this formulation, we can ensur
cumulative utilization of data memory depicted as rectangles in the dotted area does not
the available data memory.

4.3 Optimization Heuristic

The task assignment and scheduling are NP-complete problems. The inclusion of memor
straints makes the problem even more complex. We developed new heuristic which pe
assignment and scheduling. The new heuristic takes into account memory constraints.

4.3.1 Parameters Estimations
A solution to a synthesis problem is an assignment of each task to a processor and a time
addition, each communication task has to be assigned to a communication device and sch
A number of parameters are estimated to guide our heuristic during the process of finding
solution.

A distributed execution of the task graph results in bigger data memory requirement than e
tion on the single resource as discussed in section 4.2. Delaying the execution of not urgen
for the favor of the tasks which belong to the critical path decrease the schedule length
increases data memory requirement. There are two conflicting goals. Either the schedule le
decreased or data memory requirement is decreased. Our heuristic tries first to schedu
from the critical path until the estimate of data memory utilization is below memory size. W
the estimate of data memory utilization exceeds memory size then our heuristic aims at ch
a task which will lower the estimated data memory utilization. Since the actual data memor
lization depends on the schedule, it is difficult to know in advance exactly how the assignm
task Tj on processor Pi will influence the peak of data memory requirements on all processo

We use two estimates of data memory utilization. First one is computed as a sum of ingoing
munications of ready to execute tasks. These communications represent data that were p
by already scheduled tasks and have to be stored somewhere. This estimate is fast but not
because it does not take time into consideration. The second estimate is used when the f
cannot guarantee with high degree of probability that data memory will not be overused. It o
more precise estimate of the upper bound of the data memory requirement. To have a mor
rate estimate we use the lower bound of the schedule length denoted by Em. The tightest possible
schedule, defined by Em, means the best possible parallelism and this can potentially result in

τD1′ τT1= τD1′∧ δD1′+ τC1 δC1+= τD2′∧ τC1 ∧= τT2 δT2+ τD2′ δD2′+=

τD2′ τD1′ δD1′+ τT2= = τ∧ T2 δT2+ τD2′ δD2′ ∧+= τD1′ τT1=

r each
s

stimate
ccurate

ere-
in

time
same

sed. To
highest data memory requirement. In addition, we compute the latest possible start time fo
task denoted by max(τj). The latest possible start time of task Tj means that incoming data to thi
task will need to be stored for the longest possible time. Both Emand max(τj) are then used in the
cumulative constraint to estimate data memory requirement. The second data memory e
cannot guarantee that data memory will not be overused on one of the processors, but it is a
enough too be useful.

Two kinds of measures,UCM (utilization of code memory) andUTS(utilization of processor time
slots), are used by our heuristic. Based on them we decide on which processor Pi execute task Tj.
UCM andUTSuse lower bounds for used amount of code memory (LCM) and processor time
units (LTS).

UCM = , whereACM - available code memory

UTS = , whereATS - available processor time units

Similar measures are defined for the situation when task Tj will be executed on processor Pi .
These measures are denoted byUCMij andUTSij .

These two kinds of measures are used when computing the costVij of implementing task Tj on
processor Pi. The cost function uses, in addition, the amount of code memory (Cij) needed to
execute task Tj on processor Pi andTij which represents the time needed to execute task Tj on
processor Pi.

whereInd = UTS- UCM. The valueInd is in the range <-1, 1>.L1 andL2 are heuristic constants
and are equal 0.16 and 0.08 respectively.

In case (1), whenInd < -L1, the code memory is much more used than processor time and th
fore only code memory contributes to costVij . The heuristic should minimize further increase
code memory utilization. On the other hand, when valueInd is greater thanL1, the heuristic aims
at minimizing further increase of processors utilization. When the utilization of processor
and code memory is balanced (3) then both factors are taken into consideration with the
weight. The remaining cases describe situation when one of the resources is slightly overu
counteract this, the weight of the other resource is decreased.

LCM
ACM

LTS
ATS

Vij

Cij

LCMij

Cij

LCMij

Tij

LTSij
------------- 1 Ind–()×+

Cij

LCMij

Tij

LTSij
-------------+

Cij

LCMij
---------------- 1 Ind–()

Tij

LTSij
-------------+×

Tij

LTSij
-------------


















=

if -1 < Ind < -L1 (1)

if -L1 ≤ Ind < -L2 (2)

if -L2 ≤ Ind ≤ L2 (3)

if L2 < Ind ≤ L1 (4)

if L1 < Ind < 1 (5)

h iter-
l task
proces-
to the
ice and

e time
s also

graph
4.3.2 The Pseudo Code of the Heuristic
In this section we present the pseudo-code of our heuristic as depicted in Figure 12. In eac
ation of the while loop we first choose a task to be scheduled. The selection of the actua
depends on data memory requirement estimate. Next step is to assign the chosen task to a
sor which is selected according to the introduced cost function. After assignment of the task
processor, ingoing communications are assigned and scheduled on the communication dev
finally the task is scheduled.

The heuristic described above balances the utilization of the code memory and availabl
slots. The relation between the distributed execution and data memory requirement i
addressed and coped with.

4.4 System-Level Synthesis - Experimental Results

At the system level, a video coding algorithm H.261 has been used for evaluation. The task

while (R ≠ ∅) {
// S - set of tasks which are already scheduled

// T - set of all tasks

// R- set of all ready tasks {x | x ∈ T - S ∧ pred(x) ⊆ S}

if () {

// ADM - available data memory

// L0 - heuristic constant equals 0.4

// τj - start time of task Tj

// Choose the task according to schema minimize_schedule_length

find a task Tj among tasks in R with smallest max(τj).

(the second criteria is smallest ∆dj.)

// ∆dj = DOj - DIj, where

// DOj - amount of data transmitted from task Tj

// DIj - amount of data transmitted to task Tj

else {
estimate Em

estimate max(τj) for all tasks in R

estimate data memory utilization (EDMU) using cumulative/8

and previous estimates

if (EDMU < ADM) {
// Choose the task according to schema minimize_schedule_length

find a task Tj among tasks in R with smallest max(τj).

(the second criteria is smallest ∆dj)}
else {

// Choose the task according to schema minimize_data_memory

find a task Tj among tasks in R with smallest ∆dj.

(the second criteria is smallest max(τj))}}}

Compute Vij for each processor which can execute task Tj. Assign task Tj to processor Pi with the smallest Vij.

Schedule incoming communications of task Tj, in such a way, that the start time of task Tj - (τj) is minimal.

Schedule task Tj

// Task Tj and all incoming communications are assigned and scheduled }

DI j
t j R∈
∑
ADM

--------------------- L0<

Figure 12. The pseudo-code of the heuristic

riments.
d and
e stage
own
iffer-
do not
ot fin-
re can
e buses

graphs.
Search-
ution
adline
par-
iding
% and
ere also
pro-

en 85%

g finite
el syn-

ation
shown
pre-

on and
tended
e been
main

e suc-
traints
ility to
rch heu-
h, we
tuck at

ework
ption,

solver
nthe-
contains 12 sub-tasks and 14 interconnections between them. We conducted three expe
The first one is the non-pipeline implementation. It was generated in a fraction of a secon
proved to be optimal. The pipelined designs use 3 stage pipeline and two buses has th
latency 1154 and the total execution time of 3373. This result is different from the one kn
from (Bender, 1996) which provides 1320 latency time and 3027 total execution time. The d
ence in the results comes from the additional constraint introduced in (Bender, 1996). They
allow to start a new computation on a given resource before all previous computations did n
ish their executions. Our approach does not need this simplifying assumption and therefo
produce better results. Finally, we have generated the pipelined designs with one and thre
instead of two. All pipeline designs improve the performance.

The heuristic presented in section 4.3 was applied to a number of randomly generated task
Each of these examples consists of 100 computation tasks and 120 communication tasks.
ing for a solution for these examples was done with different initial constraints for the exec
deadline. The results of the heuristic do not degrade when the constraint for the execution de
was considerably tighten. An important advantage of this heuristic is its ability to exploit the
allelism existing in the graph. The heuristic was able to obtain very good results. Prov
average utilization over a number of different execution deadlines for buses between 73
80% and for processors between 86% and 90%. The resources used in the architecture w
constraining significantly the solution space. The average utilization of data memory of the
cessors was between 80% and 88% and the average utilization of code memory was betwe
and 89%. The average values were obtained from totally 100 experiments.

5. Conclusions

In this paper, we have presented methods for digital system modeling and synthesis usin
domain constraints and CLP paradigm. We have addressed both high-level and system-lev
thesis targeting different optimization goals. First, the basic formulation of the comput
graphs has been introduced and formalized using finite domain constraints. Then we have
how to use this formulation together with different extensions for high-level synthesis. The
sented methods make it possible to optimize execution time of the design, resource utilizati
power consumption. System-level synthesis has been defined in a similar way but it was ex
with important code and data memory constraints. The introduced modeling techniques hav
later used for synthesis by applying optimization methods based on B&B algorithms and do
specific heuristics.

Standard CLP optimization method is based on branch and bound (B&B) algorithm. It can b
cessfully applied to middle size problems, but large problems with heterogeneous cons
require more sophisticated optimization methods. The big advantage of CLP is the possib
create new heuristics using the available meta-heuristics. In our systems, we use credit sea
ristic (Beldiceanu et al., 1997), as well as our domain specific heuristic. Using credit searc
are able to partially explore the search space and to avoid situations when the search is s
one part of the tree.

We carried out extensive experiments for broad class of applications. The modeling fram
incorporates different design styles. Different design constraints, such as power consum
memory size, timing constraints and designer specific constraints, guide the constraint
towards a better final solution. The final solution can be further optimized using different sy

, 1998),
pro-
l and
y the
stem
y well
roblem

at 2nd

ogic
eden,

osium

24th

ling

tions,

esis,

mory
8-10,
sis goals, such as cost, performance. The experimental results presented in [(Gruian et al.
(Kuchcinski, 1997), (Kuchcinski, 1998), (Szymanek et al, 1999)] prove the usability of the
posed methods for large scale designs which contain up to ~200 computationa
communication tasks. They show that CLP with finite domain constraints and particularl
CHIP system provide a good basis for solving many problems from the area of digital sy
design which require combinatorial optimization methods. These methods are especiall
suited for the cases when many heterogeneous constraints are required for the p
specification.

6. References
1. Beldiceanu N., Bourreau E., Simonis H. and Chan P.: Partial search strategy in CHIP, Presented

Metaheuristic International Conference MIC97, Sophia Antipolis, France, 21-24 July 1997
2. Bender A.: Design an Optimal Loosely Coupled Heterogeneous Multiprocessor System, InProc. of the

European Design and Test Conference, March 11-14, 1996, Paris, France, pp. 275-281.
3. COSYTEC: CHIP, System Documentation, 1996
4. Eles P., Kuchcinski K. and Peng Z.: System Synthesis with VHDL, Kluwer Academic Publisher, 1997
5. Gruian F. and Kuchcinski K.: Operation Binding and Scheduling for Low Power Using Constraint L

Programming, Proc. 24th Euromicro Conference, Workshop on Digital System Design, Västerås, Sw
August 25-27, 1998

6. Kuchcinski K.: Embedded System Synthesis by Timing Constraints Solving, Proc. of the 10th Int. Symp
on System Synthesis, Sep. 17-19, 1997, Antwerp, Belgium

7. Kuchcinski K.: An Approach to High-Level Synthesis Using Constraint Logic Programming, Proc.
Euromicro Conference, Workshop on Digital System Design, Västerås, Sweden, August 25-27, 1998

8. Lee J-H., Hsu Y-Ch. and Lin Y-L.: A New Integer Linear Programming Formulation for The Schedu
Problem in Data Path Synthesis,Proc. IEEE International Conference on Computer-Aided Design, November
5-9, 1989.

9. Raghunathan A. and Jha N. K.: Behavioral Synthesis for Low Power, Proceedings of ICCD 1994
10. Reeves C. R.: Modern Heuristic Techniques for Combinatorial Problems, Blackwell Scientific Publica

1993
11. Rhinehart M. R. and Nestor J. A.: SALSA II: A Fast Transformational Scheduler for High-Level Synth

Proc. of IEEE International Symposium on Circuits and Systems, May 1993, pp. 1678-1681.
12. Szymanek R. and Kuchcinski K.: Design Space Exploration in System Level Synthesis under Me

Constraints, 25th Euromicro Conference, Workshop on Digital System Design, Milan, Italy, September
1999

	1. Introduction
	2. Basic Modeling Techniques
	2.1 Finite Domain Constraints Model
	2.2 Redundant Constraints

	3. High-Level Synthesis
	3.1 Introduction
	3.2 Advanced Features
	3.3 Power Consumption Minimization
	3.4 Example
	3.5 High-Level Synthesis - Experimental Results

	4. System-Level Synthesis
	4.1 System Modeling
	4.2 An Illustrative Example
	4.3 Optimization Heuristic
	4.3.1 Parameters Estimations
	4.3.2 The Pseudo Code of the Heuristic

	4.4 System-Level Synthesis - Experimental Results

	5. Conclusions
	6. References

