LUND UNIVERSITY

Digital Systems Design Using Constraint Logic Programming

Szymanek, Radoslaw; Gruian, Flavius; Kuchcinski, Krzysztof

Published in:
Proceedings of the Practical Application of Constraint Logic Programming (PACLP) Conference

2000

Link to publication

Citation for published version (APA):

Szymanek, R., Gruian, F., & Kuchcinski, K. (2000). Digital Systems Design Using Constraint Logic
Programming. In Proceedings of the Practical Application of Constraint Logic Programming (PACLP)
Conference

Total number of authors:

General rights

Unless other specific re-use rights are stated the following general rights apply:

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors
and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the
legal requirements associated with these rights.

» Users may download and print one copy of any publication from the public portal for the purpose of private study
or research.

* You may not further distribute the material or use it for any profit-making activity or commercial gain

* You may freely distribute the URL identifying the publication in the public portal

Read more about Creative commons licenses: https://creativecommons.org/licenses/

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove
access to the work immediately and investigate your claim.

LUND UNIVERSITY

PO Box 117
221 00 Lund
+46 46-222 00 00

https://portal.research.lu.se/en/publications/dd2e2164-d743-4888-9351-6f920cd05ea2

DIGITAL SYSTEMS DESIGN USING
CONSTRAINT LOGIC PROGRAMMING

RADOSLAW SZYMANEK, FLAVIUS GRUIAN, KRZYSZTOF KUCHCINSKI

Lund University, Dept. of Computer Science, Lund, SWEDEN
Radoslaw.Szymanek@cs.lth.se

Abstract. This paper presents an application of finite domain constraint logic programming meth-
ods to digital system synthesis problems. The modeling methods address basic synthesis
problems of high-level synthesis and system-level synthesis. Based on the presented models, the
synthesis algorithms are then defined. These algorithms aim to optimize digital systems with
respect to cost, power consumption, and execution time.

Keywords. digital systems design, constraint logic programming

1. Introduction

Recently, the system-on-chip concept has been proposed which is integration of many different
system parts on a single chip. Current developments in the VLSI technology make it possible to
build complex systems consisting of millions of components thus there is the potential of reducing
cost while improving many design parameters, such as performance and reliability. The design
process of a system-on-chip requires new design methods which can help the designer to explore
the design space early in the design process.

The typical design problems which have to be solved during system synthesis include system par-
titioning, allocation of resources, assignment of basic system parts into allocated components and
scheduling (Eles et al., 1997). These design steps are performed sequentially with possible itera-
tions when the results are unsatisfactory. Many heterogeneous constraints have to be taken into
account during the design process. In addition to performance and area constraints, we often
would like to consider memory or power consumption constraints. These constraints are usually

difficult to include in automatic design methods and they have to be handled separately, which

This work was supported in part by the Wallenberg Foundation project “Information Technology for Autonomous Aircraft” anddae F
tion for Strategic Research, Integrated Electronic Systems program.

reduces the chance of reaching good final results.

System synthesis can be defined as an optimization problem. The system is modeled as a set of
constraints on fabrication cost, number of components, timing, and the goal is to find a solution
which minimize a given cost function. For example, we would like to implement a given function-
ality on a number of processors while minimizing the execution time. This optimization will
provide the fastest possible implementation with the available resources. Other optimization cri-
teria, such as cost, power consumption or a combination of them, can be also considered.

The synthesis process of a digital system starts with defining the system in an abstract way, usually
by describing its functionality. This abstract representation is then refined and it becomes a
description of the hardware (e.g. ASIC) and possibly some software modules, which together
implement the system. We believe that the use of Constraint Logic Programming (CLP) can
improve both quality and efficiency of system design steps. Below we will present a number of
examples where CLP has been used for high-level and system-level synthesis.

This paper is organized as follows. Section 2 defines the computational model for our framework
and presents the basic finite domain modeling techniques. Both the high-level and system-level
synthesis approaches using finite domain constraints are then presented in section 3 and 4 together
with a discussion on experimental results. Finally, the conclusions are presented in section 5.

2. Basic Modeling Techniques

In this paper, we consider that digital systems are modeled using graphs where the nodes represent
computations and the arcs data dependencies between them. The computation nodes can be either
simple operations, such as additions and multiplications, or complex tasks representing, for exam-
ple, signal or image processing algorithms. Figure 1 depicts an example of such graph. Each node
in this graph, Ty, T,, T3, Ty, T5, Tg), corresponds to a computation. An arc connects two nodes if

and only if there is a data dependency between the corresponding nodes. There is an arc in the
graph connecting a node with another node if the first node (sender) activates communication to
another node (receiver). For example, the arc between ig@es T; models the communication
between these nodes.

In general, the functionality represented by a node is activated when the communication on all its
input arcs took place. The graph models a single computation as a partial order of nodes’ execu-
tions. The graph is acyclic but an implicit iterative computation is assumed. An example of such
graph is depicted in Figure 1, each computation starts from the execution of haaledT, and
finishes with execution of nodg;.

Each node has a deterministic execution time. A communication time is also deterministic. Both
the execution time and communication time can be decided before the model is built. Communi-
cation between nodes is allowed only at the beginning or at the end of the node execution.

B . ®
BN
@7@8<

Figure 1. An example of a computation graph

2.1 Finite Domain Constraints Model

The graph introduced above is modeled as a set of finite domain constraints. The modeling con-
straints enforce the node ordering and a realistic resource access. We define first the variables
which represent the basic parameters of nodes and resources and then introduce the constraints on
these variables.

A node is modeled as a 3-tuple= (1, o, p) wheret, d andp are finite domain variables repre-
senting the activation time of the nodg,(the execution time of the nod&)(and the resource
used to execute the nog®.(

For example, for the graph depicted in Figure 1, the following definition of the fgdan be
made:

T,=(14, &5 py,where 1;:0.50, 0;::[2,5], p;::3..4.

NodeT; is activated sometime between 0 and 50, its execution time is either 2 or 5 time units and
it uses either resource 3 or 4. A constraint solver assigns then single value from domains of related
finite domain variables, 6, andp, providing a possible solution. For examgdle= (0, 2, 4).

A single node specification does not include graph information on the execution order between
nodes. This is modeled as inequality constraints. If there is an arc from aptwle nodeT; in
the graph then the following inequality constraint is defined:

T;+0 <T;
Two arbitrary nodes can not, in general, use the same resource at the same time. This is usually
expressed through disjunctive constraints imposed on each pair of nodes (Kuchcinski, 1997).
These constraints have to be defined for all nodes which can be executed in parallel, and thus, we
can avoid overlapping execution of tasks. This leads to the creat 1) constraints, in the
worst case. The work presented in this paper uses CHIP 5 constrained logic programming system
(Beldiceanu et al., 1997), therefore we use the global constiiffivit. ~ to disallow overlapping
execution of taskDiffn/l makes use of a rectangle interpretation of nodes. A node, repre-
sented by a 3-tuple, can be interpreted as a rectangle in the time/resource space having the
following coordinates ((, p;), (t;, pj+1), (t;+9;, p;), (T;+§;, p;+1)). This is not a limitation in
practice since the nodes, which need more resources, can be modeled as several nodes. The
diffn/1 constraint takes as an argument a lish@limensional rectangles and ensures that for
each pair of, j (i#)) of n-dimensional rectangles, there exist at least one dimension wikexker
j orj is afteri. Then-dimensional rectangle is defined by a tugly [...,O,, Ly, ...,L,], whereO;
andL; are called the origin and the length of the n-dimensional rectangle intthéimension
respectively. Theliffn/1 ~ constraint can replace the set of disjunctive constraints by imposing
that all rectangles representing nodes, sudRexs = [1;, p;, §;, 1] andRect =[1;, p;, &;, 1], can
not overlap.

A node execution time is deterministic but it is not the same for all resources. For example, dif-
ferent microprocessors require different execution time for the same task depending on the clock
frequency and architecture of processor. Our model makes it possible to define the node execution
time as a finite domain variable capturing several execution time values. The relation b&tween
andp, can be expressed using thlement/3 constraint. The execution tim@,, for a nodeT;

on a resourcep;, is defined by the following constraint:

element(p;, [T, T, .. wl, %)

This constraint enforces a finite relation between the first and the third variable. The finite relation
is given by the vector of values passed as the second argument.

2.2 Redundant Constraints

The formulation presented above fully describes the graph model of the digital system and can be
directly used for synthesis. However, in most of the developed applications we used redundant
constraints to improve the constraint propagation. The most important redundant constraint we
used iscumulative/8

Thecumulative/8 constraint has been defined in CHIP to specify requirements on the tasks
which need to be scheduled on a limited number of resources. It expresses the requirement that,
at any time instant, the corresponding total of the resources for the tasks does not exceed a given
limit. The following four parameters are used: a list of the start times of 3skslist of durations
D; of tasks, a list of the amount of resourdggequired by the task, and the upper limit of the
amount of resourcedL. All parameters can be either domain variables or integers. Formally,
cumulative/s enforces the following constraint:

010 [, 70,00 IO+ S RS UL
wheren is the number of tasks, whileinandmaxare the minimum and maximum values in the
domain of the variable respectively.

The cumulative constraint can be used to describe two types of constraints. In the first formula-
tion, O, is replaced byr;, D; by §; and, finally, R by 1. This models the task allocation and
scheduling on the limited number of resources represented.byhe second formulation repre-
sents the bin packing proble®; is replaced by;, D; is always 1 and finallyr; is replaced by, .

The variabldJL is constrained to the value lower or equal the execution time of the graph. Please
note that the first formulation uses ortlyandd; while the second one onfy: andd,. Therefore

they are able to offer different types of propagation.

We use also another redundant constnaietedence/5 . This constraint takes into account, in
addition to precedence constraints expressed by inequalities, the resource limitations on which
jobs can be scheduled. This redundant constraint gives better propagation than inequalities alone.

3. High-Level Synthesis

High-Level Synthesis (HLS) refers to that step in the synthesis of a digital system where a func-
tional (behavioral) specification of a system or sub-system is transformed into a Register-Transfer
Level (RTL) representation. This RTL representation will be later implemented as hardware.

3.1 Introduction

During HLS one must decide the type and number of resources (adders, multipliers, ALUs, reg-
isters) needed, the right time to perform each operation, and resource which will performit. These
three problems are referred to as resource allocation, operation scheduling, and binding. Each of
these problems has been proven to be NP complete. At high-level, the data operations are simple
arithmetic operations such as additions, multiplications, and comparisons. Most of the digital sys-

tems are synchronous, meaning the operations are performed at well established moments
triggered by a global signal named clock. The time units characterizing the delays of the opera-
tions are, at this level, always related to the clock signal frequency. The right times to perform
certain operations are thus expressed in clock cycles. HLS usually targets minimization of execu-
tion time or resources cost, but other parameters, such as, power consumption, need to be
addressed sometimes. Depending on the user specifications, HLS can be constrained by the avail-
ability of different resources or execution time.

The input to the HLS process, the functional specification, can be represented as a control data-
flow graph (CDFG). A CDFG and the graph presented in Figure 1 are very much alike. Therefore,
the modeling techniques introduced in the previous section are directly applicable. The nodes in
CDFG represent simple operations, such as additions, multiplications, comparisons, while the
arcs describe the conditional or non-conditional data flow between different operations. For clar-
ity we will consider here only data flow graphs (DFG), although control information can be
handled as shown in (Kuchcinski, 1997).

The constraints described in the previous section form the basic model for the general HLS prob-
lem. Additional constraints for modeling application specific issues, such as, register assignment
and power consumption minimization, are described in the following part.

Registers are assigned to input, output, and temporary variables during high-level synthesis. To
allow register sharing, the lifetimes of the variables, representing the period that the variable occu-
pies a register, are computed and a related analysis determines register assignment. The lifetimes
of the variables are modeled in our approach using rectangles which span on time axes over
define-use time of the variable. This resembles a definition of variable lifetimes used in left-edge
algorithm (see, for example (Beldiceanu et al., 1997)). Defining the lifetimes of variables as rect-
angles provides a natural way to use biffn/l ~ andcumulative/8 constraints (Kuchcinski,

1998).

3.2 Advanced Features

A number of useful extensions to the basic formulation introduced in section 2 can be defined to
consider special features such as pipelined components, chaining, algorithmic pipelining, and
conditional execution. They are discussed in this section.

Modeling pipelined componenisan be accomplished by defining 3-dimensional rectangles, in
which the third dimension represents subsequent stages of the component. For example, Figure 2
depicts a design which uses a two stage pipelined component. The first$tageepresented

by the cube of height 1 located betwagmndt, and originated at coordinate 0 in the third dimen-
sion. The second stags,, is represented by the cube of height 1 located betweandt, and
originated at coordinate 1 in the third dimension. All non-pipelined operations, such as the oper-
ation Op; depicted in Figure 2, have heights of 2 and therefore can not be placed together with
neither the first, nor the second stage of the pipelined sub-task. “Packing” of operations repre-
sented by 3-dimensional rectangles enables placement of the stage one and two of different
operations at the same resource/time location since they do not overlap in the third dimension.
Other non-pipelined operations can not collide with the pipelined ones, since they have the height
2. The finite domain constraint definition for the example in Figure 2 is the following:

diffn(C [Tjsz, 00, s 1AL [Tys2w Pl s 11L [T, 0,0, §;,1,2]]) 0 1g
+ 051 = Tgp

pipeline resources

O .
stages Y e

2
1 SZ Op/-
O Sl
To 1 T2 time

Figure 2. Resource sharing constraints for pipelined components.

This formulation can be extended into n-dimensions, if there are more different pipelined
components.

Chainingrefers to the high-level synthesis technique of scheduling two or more data-dependent
operations during the same clock cycle. It is achieved by connecting the output of one functional
unit directly to the input of the following functional unit without storing a temporary value in a
register. During the same clock cycle the functional unit can not be reused by another operation
because it still propagates results which are stored at the end of this clock cycle. This introduces
additional constraints on resource sharing in chaining.

Figure 3 illustrates the basic idea of modeling chaining using finite domain constraints. Three
dimensional rectangles are used for this purpose. The three dimensions are used to represent
resources, clock cycle and a relative position of an operation within a clock cycle, called here a
step. Each clock cycle can be filled with several operations as long as they fit within the limits of
the clock cycle (the rectangle boundaries). Tdiftn/1 ~ constraints are used to impose basic
requirements on the implementation. The lih/1 constraint specifies the structure depicted

in Figure 3 and is defined by the following constraint:

dlﬁn([[Ts,', Pi, TC,', 6,‘,1,1] yeery [Tl‘, pj’ TCI‘, 6/,1,1]])

The second constraint is used to forbid situations when the same resource is shared within the
same clock cycle. Itis defined using a projection of rectangles on the resource/clock cycle surface
as adiffn/1 constraint on two dimensional rectangles as given below.

difn([1, p;,1,1], ..., [™, p, 120D

The relation between previously introduced start time of an operati@nd the two new param-
eterst andt® is defined for every operation by the following equation:

T = TC,'*N"' TS,'

whereN is the number of steps in the clock cycle.

lock (T°
clock (T°) resources (P)
2
1
1 T
01 23 step (T°)

Figure 3. Rectangle representation of chaining.

Pipelining a data-flow graph is an efficient way of accelerating a design (Kuchcinski, 1997). It
introduces, in fact, new constraints on the location of rectangles. This method is well known in
computer architecture area, where two dimensional reservation tables are used for pipeline anal-
ysis. This approach is compatible with our methodology. Introducing stage pipeline of the
initiation rate ofk time units is equivalent to a placementnafopies of existing rectangles, starting

at positionsk, 2[K, 3K, etc. This prevents placing operations in forbidden locations, which are to

be used by subsequent pipeline instances. Since the operation parameters are defined by domain
variables, the copies of the current rectangles do not define final operation positions but these posi-
tions will be adjusted during an assignment of values to domain variables.

The following constraints define two-stage pipeline for two operat@psandOp;, depicted in
Figure 4, with initiation raté:

Tk = T + Kk, Tj,k = Tj + kK,
dlﬁn([[T, P, 6,‘,1], [Tj’ p/’ 6j,l], [T,‘,k, Pj, 6,‘,1], [Tj’k’ p/, 6],1]])
The graphical, rectangle representation of these constraints is depicted in Figure 4

The rectangle based resource constraints can be easily extended tacchaddlenalnodes. The
conditional node is executed only if the conditions assigned to its input arcs are true. The value of
this condition can not be statically determined and therefore we need to schedule both true and
false execution cases. The presented formulation of the resource constraints, which uses 2-dimen-
sional rectangles in the time/resource space, needs to be extended to cover conditional execution.
The main idea of representing conditional nodes is to extend rectangles into higher dimensions.
In principle, one more dimension is used for each new condition. The conditional nodes start in
the third dimension either at 0 or 1, depending on the condition, and have height 1. They can share
the same time/resource place since they can be placed “one on top of the other”. Other computa-
tional nodes can not be placed together with conditional ones since in this formulation they have
height 2.

3.3 Power Consumption Minimization

System power consumption is another important design issue. For CMOS digital circuits the
power consumption depends mainly on the supply voltagg)(\tlock frequency (f), and
switched capacitancetC):

I:)switching = a [COf D\/gd

Considering that the voltage and frequency are usually fixed as design requirements, and the
capacitance is determined by the technological process, the only way to minimize power con-
sumption is by minimizing switching activity. The switching activity of a node is a measure

resource

Figure 4. A graphical representation of the resource constraint for algorithmic pipelining.

a b c d\ e
Om%_) op, #O%
f
Op,

Figure 5. A simple DFG y
of how much a certain node in a CMOS circuit has to switch from 1 to 0 to compute something.
In other words, if the signals in a circuit are changing as little as possible during computation
then the circuit will consume less power. With this observation, one could carefully schedule the
order of operations on each resource such that the data is changing as little as possible at the
inputs and inside the resource. Briefly, binding and scheduling influence the values and the
sequence of signals applied to each resource

Consider simple DFG shown in Figure 5. There are several possible schedules and bindings for
this graph using two adders. Each solution yields different switching activities, thus different
power consumptions. Two of these possible bindings and schedules are depicted in Figure 6. First
let us consider that each operation of the DFG is executed on its own functional unit yielding a
switching activity that can be calculated using signal probabilities or computed by a fast RT level
simulator. Let us call this switching activity the unbounded switchiig, () for operationOp,.

In general, during high-level synthesis, several operations will be bound to the same resource
determining the switching activity of the design. For example, if on a certain resource, operations
Op andOp are executed in that order, the switching activity cannot be computed as a simple sum
Swy,i + Swpj since the switching produced B is dependent on the signal values produced by

the previous operatiodp. It is closer to reality to consider switching &gy ; + Sw ; whereSw;

is the relative switching between operati@g andOp. The relative switching activity describes

the bit correlation of two signals and is defined as the number of different bit values of the two
signals (Raghunathan et al, 1994).

What we finally need to minimize is exactly the total switching yielded by certain sequences of
operations on their resources. For that we have to know the sequence of operations on each
resource which can be obtained in CHIP usingdhee/n constraint. Actually we have to deal

with a slightly modified travelling salesman problem (TSP) (Reeves, 1993) where there are as
many cycles as there are resources. The nodes in the graph are the op@atiansi the weights
assigned to the arcs in the graph are the relative switching values. For eX@u)pethe weight

of the arc going fronOp, to Op. The unbounded switchings can be seen as arcs from a dummy
node representing a resourde a normal operation node (see Figure 8).

b c d e b c a

/N
N step 1 0
Op, Ops op, . dp4
a
- O -

-

Opy \@ OP1 gtep 2 Opy E’{ Op;
' '

adder 1 adder 2 adder 1 adder 2
solution A solution B

Figure 6. Two possible schedules with different bindings for the DFG in Figure 5

Figure 7. Another simple DFG

3.4 Example

For the DFG example depicted in Figure 7, a possible design which uses three resources, two
adders and one multiplier, is described in Figure 8. The operadpnps, Op; are executed on
resourcel in this orderOpg, Op, on resourc@ in this order andp; on resourcd. The switching

activity is the sum of the weights of the arcs involved:

Sw=(SW gq tSW 45 +SW 51)H(SW e +SWg2)tSW g3

Observe that the arcs closing the cycles, back to the dummy nodes, have weight zero. In particular
we usectycle/9 to group theéN operations in sets for each resource:

cyce(R, [S 4 S, .o S R Spip 0 S gy [0, ..., 0], MinimalCycle-
Length, MaxCycleLength, [1, 2, ..., R], unused, [1, 2, ..., R, P, P
pnl, [unused, ..., unused, T, Ty e, ™)

whereRis the number of resources us&d,1< s <N, is the domain variable indicating an imme-
diate successor of operatioon the specific resource, angd p; are the same as defined before.
Having the ordering of operations on each resource, it is easy to compute the overall switching
activity which is the objective function to be minimized. To extract exactly the switching values
needed for the computation of this function, we used an additioye#d/11 constraint. For

more information please refer to (Gruian et al., 1998).

3.5 High-Level Synthesis - Experimental Results

We carried out several experiments using a prototype of the synthesis system implemented in
CHIP 5, a constrained logic programming system (Cosytec, 1996). This is a Prolog system with
constraints solvers over finite and rational domains. In the experiments, we used only the finite
domain solver. All experiments have been run on a 50 MHz SPARCCenter 2000 machine.

Four HLS benchmarks have been selected for experiments: differential equation (DIFFEQ), fifth
order elliptic wave filter (EWF), AR lattice filter (AR) and discrete cosine transform (DCT). The
benchmarks varies much in complexity. The simplest example, DIFFEQ, has only 11 operations

Figure 8. Example of cycle generation for the DFG

and 16 variables, the AR benchmark has 28 operations and 47 variables, the EWF has 34 opera-
tions and 41 variables, and the DCT has 48 operations and 48 variables. All benchmarks use
adders and multipliers. We assumed that addition requires one and multiplication two clock
cycles. This assumption is realistic as indicated in many research reports.

We evaluated our modeling method by making synthesis, using different design styles, for exist-
ing benchmarks (Kuchcinski, 1998). Each example has been synthesized using multicycle
components (two-cycle multipliers), two-stage pipelined multipliers and chaining. In chaining,
different lengths of the clock cycle has been tried.

The optimal assignment of functional units and the schedule was obtained for all examples in sev-

eral seconds. This result is very surprising since known ILP based synthesis results, e.g. (Lee et
al., 1989), usually produce the same solutions in tenths of seconds. Even heuristic solutions which
can not guarantee optimal results usually require several seconds to come out with a solution. For
example, simulated annealing based algorithm used in SALSA Il needs up to 13 seconds for the
DCT benchmark to produce the solution (Rhinehart et al., 1993). The register assignment optimi-

zation performed after the synthesis requires a fraction of a second.

Finite domain constraints offer a convenient way of combining different design constraints and
solve them in one framework. We achieved this when we combine register, functional units
assignment, scheduling, and register assignment constraints into one synthesis step. This
approach, as expected, provides better synthesis results even in cases when optimal results can not
be computed due to the problem complexity. In many cases, the system has been able to generate
lower number of registers for the same number of functional units and steps than the other
reported approaches.

We have also synthesized the four examples using pipelining of the whole algorithm. We assumed
first a two and then a three stage-pipeline. The synthesis algorithm optimizes a number of steps in
the pipeline stage satisfying resources constraints. For DIFFEQ and EWF optimal results for dif-
ferent resource constraints have been obtained. For other two examples, in the situations of a low
number of resources (AR- 2 adders and 4 multipliers and DCT- 4 adders and 4 multipliers), a par-
tial search method had to be used to generate good solutions. In all other cases optimal results have
been obtained.

To show the behavior of our low-power oriented modeling method, based on switching minimi-
zation, as described in 3.3, we used three benchmarks: DIFFEQ, AR, and DCT. For each of these
we assumed different allocations of resources and examine how scheduling and binding influence
the switching activity. For DIFFEQ, because of its simplicity, we could obtain optimal results,
while for the other two we used credit-based partial search and obtain near optimal results. We
found out that, in some cases, having a switching activity sensitive synthesis strategy may give up
to 60% decrease in power consumption, for the same allocation. In worst cases, this decrease was
2% only. The power consumption can be decreased even more if the constraints on resources and
deadline are relaxed (Gruian et al., 1998).

4. System-Level Synthesis

Given the specification of the system functionality, the main goal of system-level synthesis is to
make decisions concerning the system architecture and the system implementation on this archi-
tecture. The functional specification of the system is compiled into a task graph. The graph

introduced in section 2 is interpreted as a task graph where the nodes represent tasks and the arcs
represent communications between them. Each task must be executed on a single processor, so
for each task we need to reserve a time slot, code and data memory on the chosen processor. In

our approach, we assume that there is no need for communication when two tasks are executed

on the same processor since both tasks have access to the same local memory.

An architecture consists of processors and com- L, L,
munication devices, such as busses and Iinks.| P |:| P2 | | P3 |:| Py |
Figure 9 depicts an example target architecture
which consists of four processors, P,, P;, and

P,, two links, L and Ly, and a bus, B _ B1
Figure 9. Target architecture

In our view, the goal of the system-level synthesis

is to find an architecture with a minimal cost which can execute all tasks while fulfilling timing

and memory constraints. The architecture is created from a set of components specified by the
designer. The whole process is guided by the designer. The constraint system enforces the correct-
ness of the solution by rejecting all the decisions which violate constraints.

4.1 System Modeling

The constraints taken into account in the presented synthesis system can be classified into two
groups:

* timing constraints and

* resource constraints.
The data dependency constraints belong to the first group and they are modeled using inequalities,
as presented in section 2.1. There are two kinds of data dependency between tasks. Indirect data
dependency exists when two communicating tasks, for exampad T, are executed on dif-
ferent processors. In this case, communicatipdepends on task;Tand task T depends on
communication a Direct data dependency occurs when two communicating tasks are executed
on the same processor. These two possibilities of data dependency are encoded using conditional
constraints.

The problems of binding tasks to processors and communication to communication devices and
scheduling them are modeled, as indicated in section 2diffofl ~ constraint. This constraint
requires the task duration to be greater than zero. Since, in our model, some communications can
be performed in zero time, using local memory, we have to distinguish them from tasks and other
communications. The way of handling “disappearing” communication is by introducing a third
dimension in theliffn/1 constraint in addition to time and resource dimensions. These com-
munications will have different values in the third dimension. This policy ensures that non-
existing communications do not restrict the solution space.

Code memory is used to store programs implementing tasks. The amount of code memory needed
to implement a task depends on the processor type, but it is fixed during the execution of the whole
task graph. We used the reified version of ¢hquence/5 constraint to obtain matrig, where

Py equals 1 denotes that m-th task is executed by i-th processor. Multiplication of two vectors ¢
andp;, where ¢, denotes amount of code memory required to execute m-th task on i-th processor
andp; is the i-th column from matrip, gives the overall utilization of the code memory on the i-

th processor. This utilization must not exceed the available memory.

Data memory constraint is the most complex since data memory utilization changes during tasks’

a) two communicating tasks

B1 v A
P2 | T |
P1 T |

b) schedule for two communicating tasks

DM
P2 | D,

DM
P1 D; |
c) data memory utilization for processors executing these tasks
Figure 10. Data memory requirements

execution. Data are associated with communications and tasks. Each task requires fixed amount
of data memory during the execution. Before we can start executing a task we need all input data

of the task stored in a local memory therefore some of the data memory requirement appear before
execution of the task. When task finishes its execution we need to reserve data memory for output

data until it is consumed by successor task. In the case of transferring the data from one processor
to the other we have to reserve memory on both processors during the transmission. Each time
there is a need to reserve data memory this is done dynamically. The memory is freed when not

needed any more. Dynamic allocation schema makes the handling of data memory much more

difficult than handling code memory.

4.2 An lllustrative Example

Consider two tasks and the communication between them as depicted in Figure 10a, where task
T, is executed on processoy 8nd task F is executed on processog. Zommunication ¢is
scheduled on bus BThe data transfer can occur between finishing time of tgsknf starting

time of task T which is expressed by the following inequalities:

T +0 STy Ul +0=Typ

Each communication results in two data requirements as depicted in Figure 10c. Progessor P
must reserve data memory, denoted Qyfbr task T; fromt;; until 1,;+d.;, wheret,;, d,; denote

the start time and duration of the communication respectively. Processesd?Pves data memory

for task T, denoted by B, from 1, until T, +8;,. D; and D, have the same height denoting the
memory size. Since tasksg @&nd T, are executed on different processors, the data memory during
communication must be reserved on both processors. This results in higher overall data memory
utilization than in the case when taskahd task } are executed on the same processor.

For each processor, one cumulative constraint is created as depicted in Figure 11. The data
requirement Dappears in the cumulative for both processoysitel B, because both processors

Py
Dy’ Dy
P>
D, D,

Figure 11. Data memory constraint

can execute task;TTask T, can also be executed on both processors, sexi3ts in both cumu-
lative constraints. Since processqreecutes task ;[rectangle Qin the cumulative constraint
for processor P, denoted by [, is placed in the dotted area and rectanglarbthe cumulative

constraint for Ris placed outside dotted area. The same principle applies to jeskdlits data

requirement, R The actual data requirements are represented by rectanglesi,’.

In addition tocumulative/8 we have to use conditional aptdment/3 constraints in order to
assure that there is only ong’ Bnd D,’ and following equalities hold:

Tpr = Try UTpyr +0py = Tey+ 8¢y Ulpy = Teg U Trp+ 872 = Tpy +3py
when T, and T, are executed on different processors or

Tpz = Tp1 +0py = Trp UTrp+0rp = Tppy +3pp Uipy = Ty

when T; and T, are executed on the same processor. Using this formulation, we can ensure that
cumulative utilization of data memory depicted as rectangles in the dotted area does not exceed
the available data memory.

4.3 Optimization Heuristic

The task assignment and scheduling are NP-complete problems. The inclusion of memory con-
straints makes the problem even more complex. We developed new heuristic which performs
assignment and scheduling. The new heuristic takes into account memory constraints.

4.3.1 Parameters Estimations

A solution to a synthesis problem is an assignment of each task to a processor and a time slot. In
addition, each communication task has to be assigned to a communication device and scheduled.
A number of parameters are estimated to guide our heuristic during the process of finding good
solution.

A distributed execution of the task graph results in bigger data memory requirement than execu-
tion on the single resource as discussed in section 4.2. Delaying the execution of not urgent tasks
for the favor of the tasks which belong to the critical path decrease the schedule length but it
increases data memory requirement. There are two conflicting goals. Either the schedule length is
decreased or data memory requirement is decreased. Our heuristic tries first to schedule tasks
from the critical path until the estimate of data memory utilization is below memory size. When
the estimate of data memory utilization exceeds memory size then our heuristic aims at choosing
a task which will lower the estimated data memory utilization. Since the actual data memory uti-
lization depends on the schedule, it is difficult to know in advance exactly how the assignment of
task T; on processor;mvill influence the peak of data memory requirements on all processors.

We use two estimates of data memory utilization. First one is computed as a sum of ingoing com-
munications of ready to execute tasks. These communications represent data that were produced
by already scheduled tasks and have to be stored somewhere. This estimate is fast but not accurate
because it does not take time into consideration. The second estimate is used when the first one
cannot guarantee with high degree of probability that data memory will not be overused. It obtains
more precise estimate of the upper bound of the data memory requirement. To have a more accu-
rate estimate we use the lower bound of the schedule length denotgd Biadtightest possible
schedule, defined by means the best possible parallelism and this can potentially result in the

highest data memory requirement. In addition, we compute the latest possible start time for each
task denoted by max(). The latest possible start time of tagknfeans that incoming data to this

task will need to be stored for the longest possible time. Bgthrkdl maxt;) are then used in the
cumulative constraint to estimate data memory requirement. The second data memory estimate
cannot guarantee that data memory will not be overused on one of the processors, but it is accurate
enough too be useful.

Two kinds of measure&lCM (utilization of code memory) andTS(utilization of processor time
slots), are used by our heuristic. Based on them we decide on which processeriRe task;T
UCM andUTSuse lower bounds for used amount of code membGM) and processor time
units L TS.

UCM = 224, whereACM - available code memory
UTS= ;sz, whereATS- available processor time units

Similar measures are defined for the situation when taswill be executed on processoy.P
These measures are denotedJM; andUTS; .

These two kinds of measures are used when computing th&/co$implementing task jTon
processor P The cost function uses, in addition, the amount of code men@yrfeeded to
execute task ;Ton processor PandT; which represents the time needed to execute task T
processor P

0 S
E LCM; if-1 <Ind <-L, (1)
E Ci + T x(1-|Ind) .
OLCM; LTS, if-L; =Ind <-L (2)
O
v, = B G, Ty o

ij 0 LCMIJ LTSJ if -|_2 <Ind _L2 (3)

E&X(l lInd|) + Ly, <ind <L (4)
- 2 =1

qcMm LTS
0 T.
O i if L, <Ind <1 (5)
O LTS

wherelnd = UTS- UCM. The valudnd s in the range <-1, 1%.; andL, are heuristic constants
and are equal 0.16 and 0.08 respectively.

In case (1), wheind < -L4, the code memory is much more used than processor time and there-
fore only code memory contributes to cd¥4t The heuristic should minimize further increase in
code memory utilization. On the other hand, when véthads greater that ;, the heuristic aims

at minimizing further increase of processors utilization. When the utilization of processor time
and code memory is balanced (3) then both factors are taken into consideration with the same
weight. The remaining cases describe situation when one of the resources is slightly overused. To
counteract this, the weight of the other resource is decreased.

4.3.2 The Pseudo Code of the Heuristic

In this section we present the pseudo-code of our heuristic as depicted in Figure 12. In each iter-
ation of the while loop we first choose a task to be scheduled. The selection of the actual task
depends on data memory requirement estimate. Next step is to assign the chosen task to a proces-
sor which is selected according to the introduced cost function. After assignment of the task to the
processor, ingoing communications are assigned and scheduled on the communication device and
finally the task is scheduled.

while (R=0){
/7 S - set of tasks which are already scheduled
// T - set of all tasks

// R-setof all ready tasks {x | x J T -S [pred(x) O S}

Dl i
.o TR
if(——<L
“ADM o)
// ADM - available data memory
/7L, - heuristic constant equals 0.4
ay - start time of task T;

/7 Choose the task according to schema minimize_schedule_length

find a task T; among tasks in R with smallest max(Tj).
(the second criteria is smallest Ad;)

// Ad; = DO; - DIj, where

// DO, - amount of data transmitted from task T;

// DJ; - amount of data transmitted to task T;
else {

estimate E,

estimate max(Tj) for all tasks in R

estimate data memory utilization (EDMU) using cumulative/8
and previous estimates

if EDMU < ADM) {
/7 Choose the task according to schema minimize_schedule_length
find a task T; among tasks in R with smallest max(Tj).

(the second criteria is smallest Adj)}

else {
// Choose the task according to schema minimize_data_memory
find a task T; among tasks in R with smallest Ad;.

(the second criteria is smallest max(Tj))}}}

Compute V;; for each processor which can execute task T;. Assign task T; to processor P; with the smallest Vj;.
Schedule incoming communications of task Tj, in such a way, that the start time of task T; - (;) is minimal.
Schedule task T;

// Task T; and all incoming communications are assigned and scheduled }

Figure 12. The pseudo-code of the heuristic

The heuristic described above balances the utilization of the code memory and available time
slots. The relation between the distributed execution and data memory requirement is also
addressed and coped with.

4.4 System-Level Synthesis - Experimental Results

At the system level, a video coding algorithm H.261 has been used for evaluation. The task graph

contains 12 sub-tasks and 14 interconnections between them. We conducted three experiments.
The first one is the non-pipeline implementation. It was generated in a fraction of a second and
proved to be optimal. The pipelined designs use 3 stage pipeline and two buses has the stage
latency 1154 and the total execution time of 3373. This result is different from the one known
from (Bender, 1996) which provides 1320 latency time and 3027 total execution time. The differ-
ence in the results comes from the additional constraint introduced in (Bender, 1996). They do not
allow to start a new computation on a given resource before all previous computations did not fin-
ish their executions. Our approach does not need this simplifying assumption and therefore can
produce better results. Finally, we have generated the pipelined designs with one and three buses
instead of two. All pipeline designs improve the performance.

The heuristic presented in section 4.3 was applied to a number of randomly generated task graphs.
Each of these examples consists of 100 computation tasks and 120 communication tasks. Search-
ing for a solution for these examples was done with different initial constraints for the execution
deadline. The results of the heuristic do not degrade when the constraint for the execution deadline
was considerably tighten. An important advantage of this heuristic is its ability to exploit the par-
allelism existing in the graph. The heuristic was able to obtain very good results. Providing
average utilization over a number of different execution deadlines for buses between 73% and
80% and for processors between 86% and 90%. The resources used in the architecture were also
constraining significantly the solution space. The average utilization of data memory of the pro-
cessors was between 80% and 88% and the average utilization of code memory was between 85%
and 89%. The average values were obtained from totally 100 experiments.

5. Conclusions

In this paper, we have presented methods for digital system modeling and synthesis using finite
domain constraints and CLP paradigm. We have addressed both high-level and system-level syn-
thesis targeting different optimization goals. First, the basic formulation of the computation
graphs has been introduced and formalized using finite domain constraints. Then we have shown
how to use this formulation together with different extensions for high-level synthesis. The pre-
sented methods make it possible to optimize execution time of the design, resource utilization and
power consumption. System-level synthesis has been defined in a similar way but it was extended
with important code and data memory constraints. The introduced modeling technigues have been
later used for synthesis by applying optimization methods based on B&B algorithms and domain
specific heuristics.

Standard CLP optimization method is based on branch and bound (B&B) algorithm. It can be suc-
cessfully applied to middle size problems, but large problems with heterogeneous constraints
require more sophisticated optimization methods. The big advantage of CLP is the possibility to
create new heuristics using the available meta-heuristics. In our systems, we use credit search heu-
ristic (Beldiceanu et al., 1997), as well as our domain specific heuristic. Using credit search, we
are able to partially explore the search space and to avoid situations when the search is stuck at
one part of the tree.

We carried out extensive experiments for broad class of applications. The modeling framework
incorporates different design styles. Different design constraints, such as power consumption,
memory size, timing constraints and designer specific constraints, guide the constraint solver
towards a better final solution. The final solution can be further optimized using different synthe-

sis goals, such as cost, performance. The experimental results presented in [(Gruian et al., 1998),
(Kuchcinski, 1997), (Kuchcinski, 1998), (Szymanek et al, 1999)] prove the usability of the pro-
posed methods for large scale designs which contain up to ~200 computational and
communication tasks. They show that CLP with finite domain constraints and particularly the
CHIP system provide a good basis for solving many problems from the area of digital system
design which require combinatorial optimization methods. These methods are especially well
suited for the cases when many heterogeneous constraints are required for the problem
specification.

6. References

1. Beldiceanu N., Bourreau E., Simonis H. and Chan P.: Partial search strategy in CHIP, Presented at 2nd
Metaheuristic International Conference MIC97, Sophia Antipolis, France, 21-24 July 1997

2. Bender A.: Design an Optimal Loosely Coupled Heterogeneous Multiprocessor Syst&mclnof the
European Design and Test Confergnidarch 11-14, 1996, Paris, France, pp. 275-281.

3. COSYTEC: CHIP, System Documentation, 1996

4. Eles P., Kuchcinski K. and Peng Z.: System Synthesis with VHDL, Kluwer Academic Publisher, 1997

5. Gruian F. and Kuchcinski K.: Operation Binding and Scheduling for Low Power Using Constraint Logic
Programming, Proc. 24th Euromicro Conference, Workshop on Digital System Design, Vasteras, Sweden,
August 25-27, 1998

6. Kuchcinski K.: Embedded System Synthesis by Timing Constraints Solving, Proc. of the 10th Int. Symposium
on System Synthesis, Sep. 17-19, 1997, Antwerp, Belgium

7. Kuchcinski K.: An Approach to High-Level Synthesis Using Constraint Logic Programming, Proc. 24th
Euromicro Conference, Workshop on Digital System Design, Vasteras, Sweden, August 25-27, 1998

8. Lee J-H., Hsu Y-Ch. and Lin Y-L.: A New Integer Linear Programming Formulation for The Scheduling
Problem in Data Path Synthedi®apc. IEEE International Conference on Computer-Aided Dedipvember
5-9, 1989.

9. Raghunathan A. and Jha N. K.: Behavioral Synthesis for Low Power, Proceedings of ICCD 1994

10. Reeves C. R.: Modern Heuristic Techniques for Combinatorial Problems, Blackwell Scientific Publications,
1993

11. Rhinehart M. R. and Nestor J. A.: SALSA IlI: A Fast Transformational Scheduler for High-Level Synthesis,
Proc. of IEEE International Symposium on Circuits and Systhtag 1993, pp. 1678-1681.

12. Szymanek R. and Kuchcinski K.: Design Space Exploration in System Level Synthesis under Memory
Constraints, 25th Euromicro Conference, Workshop on Digital System Design, Milan, Italy, September 8-10,
1999

	1. Introduction
	2. Basic Modeling Techniques
	2.1 Finite Domain Constraints Model
	2.2 Redundant Constraints

	3. High-Level Synthesis
	3.1 Introduction
	3.2 Advanced Features
	3.3 Power Consumption Minimization
	3.4 Example
	3.5 High-Level Synthesis - Experimental Results

	4. System-Level Synthesis
	4.1 System Modeling
	4.2 An Illustrative Example
	4.3 Optimization Heuristic
	4.3.1 Parameters Estimations
	4.3.2 The Pseudo Code of the Heuristic

	4.4 System-Level Synthesis - Experimental Results

	5. Conclusions
	6. References

