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Abstract

This paper gives a mathematical tutorial on Synthetic Aperture Radar (SAR).

We see that with the usual mathematical model, the SAR reconstruction prob-

lem reduces to a problem in integral geometry. A number of mathematical

problems are posed; the paper concludes with a short description of the basic

idea underlying the algorithms used in most present systems. The challenge

to the mathematical community is to �nd algorithms that might be better.

1 Introduction and Mathematical Model

In the last forty years the engineering community has developed very successful
microwave systems for making high-resolution images of the earth from airplanes
and satellites. Such systems, which go under the general name Synthetic Aperture
Radar (SAR), have received little attention in the mathematical community. The
purpose of this paper is to give a tutorial on SAR and to point out some of the
associated interesting and challenging mathematical questions.

In strip-mode Synthetic Aperture Radar (SAR) imaging, an antenna (on a plane
or satellite) �ies along a nominally straight track, which we will assume is along
the x2 axis. The antenna emits pulses of electromagnetic radiation in a more-or-less
directed beam perpendicular to the �ight track (i.e., in the x1 direction). These
waves scatter o� the terrain, and the scattered waves are detected with the same
antenna. The received signals are then used to produce an image of the terrain.
(See Figure 1.)

The data depend on two variables, namely time and position along the x2 axis,
so we expect to be able to reconstruct a function of two variables.

1.1 The (simpli�ed) partial di�erential equation

The correct model for radar is of course Maxwell's equations, but the simpler scalar
wave equation is commonly used:(

∇2 − 1

c2(x)
∂2t

)
U(t, x) = 0. (1.1)

This is the equation satis�ed by each component of the electric and magnetic �elds
in free space, and is thus a good model for the wave propagation in dry air. When
the electromagnetic waves interact with the ground, their polarization is certainly
a�ected, but if the SAR system does not measure this polarization, then (1.1) is an
adequate model.

We assume that the earth is roughly situated at the plane x3 = 0, and that
for x3 > 0, the wave speed is c(x) = c0, the speed of light in vacuum (a good
approximation for dry air).

The fundamental solution of the free-space wave equation [19] is G0(t− τ, x−y),
given by

G0(t− τ, x− y) =
δ(t− τ − |x− y|/c0)

4π|x− y|
. (1.2)
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Figure 1: This shows the geometry of a conventional strip-mode SAR system.

It has the physical interpretation of the �eld at (x, t) due to a delta function point
source at position y and time τ . This �eld satis�es the equation(

∇2 − 1

c20
∂2t

)
G0(t− τ, x− y) = δ(t− τ)δ(x− y). (1.3)

1.2 The incident wave

The signal sent to the antenna is of the form

P (t) = A(t)eiω0t, (1.4)

where ω0 is the (angular) carrier frequency and A is a slowly varying amplitude that
is allowed to be complex.

If the source at y has the time history (1.4), then the resulting �eld Uy(t, z − y)
satis�es the equation(

∇2 − 1

c20
∂2t

)
Uy(t, z − y) = P (t)δ(z − y) (1.5)

and is thus given by

Uy(t, z) = (G0 ∗ P )(t, z − y) =

∫
δ(t− τ − |z − y|/c0)

4π|z − y|
P (τ)dτ

=
P (t− |z − y|/c0)

4π|z − y|

=
A(t− |z − y|/c0)

4π|z − y|
eiω0(t−|z−y|/c0).

(1.6)
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The antenna, however, is not a point source. Most conventional SAR antennas
are either slotted waveguides [8, 25] or microstrip antennas [18], and in either case, a
good mathematical model is a rectangular distribution of point sources. We denote
the length and width of the antenna by L and D, respectively. We denote the
center of the antenna by x; thus a point on the antenna can be written y = x + q,
where q is a vector from the center of the antenna to a point on the antenna. We
also introduce coordinates on the antenna: q = s1ê1 + s2ê2, where ê1 and ê2 are
unit vectors along the width and length of the antenna, respectively. The vector ê2
points along direction of �ight; for the straight �ight track shown in Figure 1, this
would be the x2 axis. For side-looking systems as shown in Figure 1, ê1 is tilted
with respect to the x1 axis so that a vector perpendicular to the antenna points to
the side of the �ight track.

We consider points z that are far from the antenna; for such points, for which
|q| << |z − x|, we have the approximation

|z − y| = |z − x| − (ẑ − x) · q +O(L2/|z − x|), (1.7)

where the hat denotes a unit vector. We use this expansion in (1.6):

Uy(t, z) ∼
A(t− |z − x|/c0 + ẑ − x · q/c0 + · · · )

4π|z − x|
eiω0(t−|z−x|/c0)eikẑ−x·q (1.8)

where we have written k = ω0/c0. This expansion is valid because we also have
kL2 << |z − x|. We now make use of the fact that |z − x| >> ẑ − x · q and that A
is assumed to be slowly varying to write

Uy(t, z) ∼
P (t− |z − x|/c0)

4π|z − x|
eikẑ−x·q. (1.9)

Far from the antenna, the �eld from the antenna is

U in
x (t, z) =

∫ L/2

−L/2

∫ D/2

−D/2
Ux+s1ê1+s2ê2(t, z)ds1ds2

∼
∫ L/2

−L/2

∫ D/2

−D/2

P (t− |z − x|/c0)
4π|z − x|

eikẑ−x·(s1ê1+s2ê2)ds1ds2

∼ P (t− |z − x|/c0)
4π|z − x|

∫ L/2

−L/2
eiks2ẑ−x·ê2ds2

∫ D/2

−D/2
eiks1ẑ−x·ê1ds1

∼ P (t− |z − x|/c0)
4π|z − x|

w(ẑ − x),

(1.10)

where
w(ẑ − x) = 2Dsinc(kẑ − x · e1D/2) 2Lsinc(kẑ − x · e2L/2) (1.11)

is the antenna beam pattern and where sinc β = (sin β)/β. The sinc function has its
main peak at β = 0 and its �rst zero at β = π; this value of β gives half the width
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Figure 2: This is a diagram that shows that if p = ẑ − x is a unit vector, then
p̂ · ê2 = p2 ≈ sin θ and p̂ · ê1 = p1 ≈ sinφ. The antenna lies on the x1-x2 plane.

of the main peak. Thus the main beam of the antenna is directed in the direction
perpendicular to the antenna.

We determine the width of the beam by noting that the �rst zero of sinc(kẑ − x ·
e2L/2) occurs when kẑ − x · ê2L/2 = π. Using the fact that 2π/k is precisely the
wavelength λ, we can write this as ẑ − x · ê2 = λ/L. To understand this condition,
we write ẑ − x · ê2 ≈ cos(π/2 − θ) = sin θ ≈ θ, an approximation that is valid for
small angles θ. (See Figure 2.) Here θ is the angle between the vector normal to the
antenna and the projection of ẑ − x on the plane spanned by ê2 and ê3. Thus when
λ << L and thus θ is small, the condition ẑ − x · ê2 = λ/L reduces to θ ≈ λ/L. In
this case, the main lobe of the antenna beam pattern has angular width 2λ/L in the
ê2 direction. Similarly the angular width in the ê1 direction is 2λ/D. We note that
smaller wavelengths and larger antennas correspond to more tightly focused beams.

The antenna beam pattern is not always precisely a product of sinc functions:
the signal emanating from di�erent parts of the antenna can be weighted so that
the integrals appearing in (1.10) are Fourier transforms of functions smoother than
characteristic functions [17]. Such weighting suppresses the sidelobes at the expense
of broadening the main beam slightly.

The Swedish CARABAS system [13, 21, 22] uses two parallel wire antennas of
length L that are oriented along the �ight track. Each antenna can be considered a
linear distribution of point sources, so the beam pattern of each antenna is

wC(ẑ − x) = 2Lsinc(kẑ − x · e2L/2) (1.12)

The length L is chosen to be half the wavelength of the carrier wave (i.e., kL/2 = π),
so that the antenna produces only one single main lobe.

1.3 A linearized scattering model

From classical scattering theory we know that a scattering solution of (1.1) can be
written

Ψ(t, x) = Ψin(t, x) + Ψsc(t, x), (1.13)
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Figure 3: The geometry of the CARABAS SAR system.

where Ψin satis�es (1.1) with c(x) = c0 and where (see Appendix)

Ψsc(t, x) =

∫ ∫
G0(t− τ, x− z)V (z)∂2τΨ(τ, z)dτdz (1.14)

and

V (z) =
1

c2(z)
− 1

c20
. (1.15)

For commonly used carrier frequencies ω0, the waves decay rapidly as they penetrate
into the earth. Thus the support of V can be taken to be a thin layer at the earth's
surface. This is discussed in more detail in section 3.

A commonly used approximation, often called the Born approximation or the
single scattering approximation, is

Ψsc(t, x) ≈ ΨB(t, x) =

∫ ∫
G0(t− τ, x− z)V (z)∂2τΨ

in(t, x)dτdz

=

∫
V (z)

4π|x− z|
∂2t Ψ

in(t− |x− z|/c0, z)dz. (1.16)

The value of this approximation is that it removes the nonlinearity in the inverse
problem: it replaces the product of two unknowns (V and Ψ) by a single unknown
(V ) multiplied by the known incident �eld.

The Born approximation makes the problem simpler, but it is not necessarily a
good approximation. This issue is discussed brie�y in section 3.2. Another lineariz-
ing approximation that can be used at this point is the Kirchho� approximation, in
which the scattered �eld is replaced by its geometrical optics approximation [14].
Here, however, we consider only the Born approximation.

In the case of SAR, the antenna emits a series of �elds of the form (1.10) as it
moves along the �ight track. In particular, we assume that the antenna is located at
position xn at time nT , and there emits a �eld of the form (1.10). In other words,
the incident �eld is

Ψin(τ, z) =
∑
n

Ψin
n (τ, z), (1.17)
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where

Ψin
n (τ, z) ∼ P (τ − nT − |z − xn|/c0)

4π|z − xn|
w(ẑ − xn) (1.18)

is the nth emission. We use this expression in (1.16) to �nd an approximation to the
scattered �eld due to the nth emission. The resulting expression involves two time
derivatives of P (t, x). In calculating these time derivatives, we use the fact that A
is assumed to be slowly varying to obtain

∂2t P (t, x) ≈ −ω2
0P (t, x). (1.19)

Thus the Born approximation to the scattered �eld due to the nth emission, mea-
sured at the center of the antenna, is

Sn(t) ≈ ΨB
n (t− nT, xn)

≈ −
∫
ω2
0P (t− nT − 2|z − xn|/c0)

4π|z − xn|
V (z)

4π|z − xn|
w(ẑ − xn)dz. (1.20)

In (1.20), we note that 2|z − xn|/c0 is the two-way travel time from the center of
the antenna to the point z. The factors 4π|z − xn| in the denominator correspond
to the geometrical spreading of the spherical wave emanating from the antenna and
from the point z.

In practice, the received signal is not measured at a single point in the center of
the antenna; rather, the signal is received on the entire antenna. This means that
the received signal is subject to the same weighting as the transmitted signal. Thus
w in (1.20) should be replaced by w2. We continue to write simply w.

2 Reduction to a delta function impulse

The SAR reconstruction problem would be a problem in integral geometry if the
transmitted signal P were a delta function. Unfortunately, a delta function cannot
be produced in practice. Nor can an approximate delta function be used: any
short-time, limited-amplitude wave will contain little energy, and the re�ected wave
contains even less energy. A very low-energy wave will get drowned out by noise.

To circumvent this di�culty, SAR systems use pulse modulation, in which the sys-
tem transmits a complex waveform and then compresses the received signal mathe-
matically, to synthesize the response from a short pulse. This processing is explained
in this section. The �nal result is that to a good approximation, P can indeed be
replaced by a delta function.

2.1 Matched �lter processing

The mathematical processing is done by applying a matched �lter [20]. Applying a
matched �lter to the received signal means integrating it against a shifted copy of
the complex conjugate of the transmitted signal:

O(t′, xn) =

∫
P (t− t′)Sn(t)dt
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Figure 4: The chirp sin(.3t2).

≈ −
∫
P (t− t′)

∫
ω2
0P (t− nT − 2|z − xn|/c0)

(4π|z − xn|)2
V (z)w(ẑ − xn)dzdt

≈
∫
ω2
0ζ(nT + 2|z − xn|/c0 − t′)

(4π|z − xn|)2
V (z)w(ẑ − xn)dz. (2.1)

where

ζ(s− t′) =

∫
P (t− t′)P (t− s)dt =

∫
P (s′)P (s′ − (s− t′))ds′ (2.2)

is the range ambiguity function [10]. We see that matched-�lter processing has the
e�ect of replacing the waveform P in (1.20) by the compressed waveform ζ.

To determine ζ, we use (1.4):

ζ(s) =

∫
A(t)eiω0tA(t− s)eiω0(t−s)dt; (2.3)

we see that ζ is a complex number of modulus one multiplied by the autocorrelation
function of A.

The modulation A should be chosen so that ζ is close to a delta function.
The most commonly used modulated pulse is a chirp, which involves linear fre-

quency modulation. The idea is to label di�erent parts of the wave by their fre-
quency, and then superimpose these di�erent parts in the compression process.
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2.2 Instantaneous frequency

The notion of instantaneous frequency of a wave F (t) = eiφ(t) derives from a station-
ary phase analysis of the usual Fourier transform integral: we think of the integrand
of the Fourier integral

f(ω) =

∫
F (t)e−iωtdt =

∫
ei(φ(t)−ωt)dt (2.4)

as being written in the form exp(iλ(φ(t) − ωt)), where λ = 1. The usual large-λ
stationary phase calculation shows that the leading order contribution comes from
the values of t at which the phase is not changing rapidly with respect to t. This
occurs when 0 = (d/dt)(φ(t) − ωt), or in other words, when ω = dφ/dt. Thus we
call dφ/dt the instantaneous frequency of F .

2.3 Chirps

A chirp is a �nite wavetrain P (t) = χ[−τ/2,τ/2](t) exp(iφ(t)) in which the instan-
taneous frequency changes linearly with time. Here χ[−τ/2,τ/2] denotes the charac-
teristic function of the time interval [−τ/2, τ/2], which is one in this time interval
and zero outside. In an upchirp, the instantaneous frequency increases linearly with
time as dφ/dt = ω0 + Bt/τ , where ω0 is the (angular) carrier frequency and B
is called the (angular) bandwidth. To determine φ, we simply integrate to obtain
φ(t) = ω0t+Bt2/(2τ). Thus an upchirp is a wavetrain of the form

P (t) = χ[−τ/2,τ/2](t)e
iαt2eiω0t, (2.5)

where α = B/(2τ). We note that such a pulse is of the form (1.4), where

A(t) = χ[−τ/2,τ/2](t)e
iαt2 . (2.6)

2.4 The compressed waveform ζ for a chirp.

For a chirp, ζ is

ζ(s) = e−iω0s

∫
A(t)A(t− s)dt (2.7)

= e−iω0s

∫
χ[−τ/2,τ/2](t)eiαt

2χ[−τ/2,τ/2](t− s)eiα(t−s)
2

dt. (2.8)

After calculating the integral on the right side of (2.8), we obtain

ζ(s) = e−iω0seiBs
2/(2τ)2τ sin(Bs(1− |s|/τ)/2)

Bs
χ[−τ,τ ](s) (2.9)

By taking B su�ciently large, we can make ζ peak arbitrarily sharply at zero.
Other modulated waveforms besides chirps can also be used to obtain a range

ambiguity function ζ that approximates a delta function.
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Figure 5: The amplitude of the function ζ for τ = 1 and B = 100.

3 Mathematical Problems

If we replace ζ in (2.1) by a delta function, then (2.1) becomes

Oc(t′, xn) =
ω2
0

(2π2c0(t′ − nT ))2

∫
δ((nT − t′)− 2|z−xn|/c0)V (z)w(ẑ − xn)dz (3.1)

We see that the radar reconstruction problem becomes a problem in integral
geometry: reconstruct V (z) from its weighted integrals over the spheres |z − xn| =
c0(nT − t′)/2. Here xn = x(nT ), where x(s) is a known path (�ight track) in space.
This problem requires some discussion.

In (3.1), for a straight �ight track, O depends on two variables, namely time and
position along the line, whereas V appears to depend on three variables. However,
as mentioned earlier, V can be considered to have support in a thin layer at the
surface. In the case in which the terrain is planar (a good approximation when the
�ight track is at satellite height), we can replace V (z) by V (z1, z2)δ(z3 − 0), where
V (z1, z2) is referred to as the ground re�ectivity function. In this case (3.1) reduces
to a two-dimensional integral.

For lower-altitude �ight tracks, the ground topography becomes important. In
this case, we replace V (z) by V (z1, z2)δ(z3−h(z1, z2)), where h is the ground altitude.
In this case, the problem is to reconstruct two functions of two variables; generally
one uses data from two parallel �ight tracks.

Some key aspects of the reconstruction problem depend on the weighting function
w: the CARABAS system, for example, has a symmetrical beam pattern (1.12), so
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that from a single antenna moving along a straight line, it is not possible to determine
whether a given re�ection originated from a point to the left of the antenna or to
the right. It is for this reason that the CARABAS system uses two antennas.
Conventional side-looking SAR avoids this problem by using a focused beam (1.11)
that is directed to one side of the �ight track (see Figure 1).

To be of most practical use, reconstruction algorithms should be fast, accurate,
and should use as little memory as possible. Ideally they should allow an image to
be constructed in real time as the aircraft or satellite �ies along the �ight track. The
amount of data collected by SAR systems can be enormous.

3.1 Integral geometry problems

We simplify the problem by making the change of variables t = c0(nT − t′)/2. Then
for planar topography, the idealized SAR reconstruction problem is to reconstruct
V from

data(t, x(s)) = c

∫
t=|z−x|

V (z1, z2)δ(z3)w(ẑ − x)dz (3.2)

where c is a known constant, x(s) is a known path above the plane z3 = 0 and
w is the known antenna beam pattern that depends only on the direction ẑ − x.
Because the spheres t = |z − x| intersect the plane z3 = 0 in circles, this problem
is to reconstruct V (z1, z2) from its weighted integrals over circles or circular arcs.
Relevant references here are [2, 12, 13, 15, 21].

For non-planar topography, the idealized SAR reconstruction problem is to re-
construct both V and h from the integrals

data(t, x) = c

∫
t=|z−x|

V (z)δ(z3 − h(z1, z2))w(ẑ − x)dz, (3.3)

where x lies on one or more �ight tracks above the plane z3 = 0. A relevant reference
is [22].

Before making an attack on the full non-planar topography problem, a reasonable
warm-up problem is to begin with the case V = 1, w = 1. This problem is to recover
the surface height h from

data(t, x) = c

∫
t=|z−x|

δ(z3 − h(z1, z2))dz. (3.4)

Probably at least two paths x(s) are needed; a relevant reference is again [22].
In addition to the challenge of developing and analyzing reconstruction algo-

rithms, some relevant questions are the following.

3.1.1 Problems related to the �ight track

Generally the �ight tracks are approximately straight lines. Are straight lines best?
Here [2] is relevant. A robust reconstruction algorithm must be able to deal with
�ight tracks x(t) that deviate from a straight line by known perturbations. Air-
planes, in addition, are subject to turbulence in the atmosphere, which means that
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they are subject to pitch, roll, and yaw. In terms of (1.11), this means that the
orientation of the vectors e1 and e2 varies with time or with n. In terms of the ide-
alized problem (3.2), this means that w depends on x as well as on the unit vector
ẑ − x. A book on SAR with a section about motion correction is [12].

Issues related to a non-ideal �ight track become even more important in military
applications, when enemy �re can induce the aircraft to take evasive action. Can
we �nd a reconstruction algorithm that can use data from a wild �ight track? In
the study of this issue, [2] is relevant.

3.1.2 Breaking the left-right symmetry

How can a reconstruction algorithm best take advantage of the two antennas of the
CARABAS system? In this case one can assume that the weighting function w is
simply one, but that there are two parallel �ight tracks. Presumably, if the antennas
were moved closer together, it would become more di�cult to determine whether a
given re�ection comes from the left or the right of the �ight track. This should be
quanti�ed.

3.1.3 Resolution

For a given carrier frequency ω0, antenna pattern w, and bandwidth B, what is the
best resolution that can be achieved? Is the resolution improved by incorporating
information from many �ight tracks? Relevant references are [16] and [21].

3.2 Other mathematical problems

3.2.1 Scatterers that move

For moving objects such as trains on a railway, the Doppler e�ect combined with
pulse compression techniques results in incorrect estimates for the location of the
moving object. How can this be corrected?

For systems that use the correlation between many �looks" to form an image,
smaller moving objects tend to disappear. How can these moving objects be imaged?
Can their velocity be determined? A relevant reference is [23].

3.2.2 Improvement of the model

All the current processing is based on a linearizing assumption such as the Born
approximation (1.16), which amounts to assuming that the wave scatters only once
before returning to the antenna. But in many cases, this model is believed to be too
simple. For example, in scanning a forest at low frequencies, the most important
scattering mechanism is believed to be double scattering (see Figure 6) in which the
wave re�ects �rst from the ground and then from the tree trunk (or vice versa).

The mathematical di�culty is that including multiple scattering makes the in-
verse problem nonlinear. Can we develop reconstruction algorithms for the nonlinear
case?
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Figure 6: Double scattering from a tree trunk and ground.

The entire theory should be extended to the case of Maxwell's equations, for a
model of polarimetric SAR.

3.2.3 Theoretical issues

Little is known about the nature of the inverse scattering problem for the wave
equation in the case when only backscattering data is measured. Does backscattering
data uniquely determine a scatterer?

4 How the Processing is Done Currently

Present SAR image reconstruction algorithms are based on the notion of matched
�lters: at each �look" (i.e., at each n), a matched �lter is applied to the received
signal Sn(t):

In(y) =

∫
P (t− nT − 2|y − xn|/c0)Sn(t)dt. (4.1)

This correlates the received signal with a signal proportional to that due to a �point
scatterer� at position y (i.e., take V (z) = δ(z − y) in the Born approximation).

If we use expression (1.20) (with |z−xn| replaced by R0) in (4.1) and interchange
the order of integration, we �nd

In(y) ≈
∫
Wn(y, z)

−ω2
0V (z)

(4πR0)2
dz. (4.2)

Here

Wn(y, z) = w(ẑ − xn)

∫
P (t− nT − 2|y − xn|/c0)P (t− nT − 2|z− xn|/c0)dt (4.3)

represents the point spread function of this single-look imaging system: if V (z) =
δ(z− z0), then In(y) = Wn(y, z0) would be proportional to the resulting image of V .
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The key idea of SAR is that this point spread function can be made closer to
a delta function by summing over n, i.e., by combining information from multiple
looks. Thus the �nal image is formed as

I(y) =
∑
n

In(y) ≈
∫
W (y, z)

−ω2
0V (z)

(4πR0)2
dz, (4.4)

with the point spread function

W (y, x) =
∑
n

Wn(y, z) (4.5)

This point spread function is called the generalized ambiguity function of the SAR
system. By taking P to be a chirp or other modulated waveform, W becomes an
approximate delta function. An analysis of W , which gives the resolution of the
SAR system, can be found in [4, 6], and many other sources.

The matched �lter reconstruction algorithm results in a complex-valued image.
The phase of this image contains information about the distance of the scatterer
from the antenna. To recover the ground topography, one uses a technique called
interferometric SAR [3, 12], in which one uses the interference pattern from two
complex images from parallel �ight tracks.

Standard matched �lter reconstruction algorithms cannot be used for the CARA-
BAS system; instead a �ltered backprojection scheme [15] is currently used.
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Appendix A Classical scattering theory

To obtain (1.14), we �rst write U = Ψ = Ψin + Ψsc in (1.1); this gives us(
∇2 − c−20 ∂2t

)
Ψsc − V ∂2t Ψ = 0 (A.1)

We then multiply (A.1) by G0, multiply (1.3) by Ψsc, and subtract the resulting two
equations to obtain

G0∇2Ψsc −Ψsc∇2G0 −G0V ∂
2
t Ψ = G0Ψ

scδ (A.2)



14

We then integrate over all time and over a large ball, use Green's identity, and let
the radius of the ball go to in�nity. The integral involving the spatial derivatives
vanishes, and we are left with (1.14).

We note that (1.14) shows that the notion of a a point scatterer is problematic.
If we take V (y) = δ(y − y0) in (1.14), we obtain

Ψsc(t, z) =

∫
G0(t− τ, z, y0)∂2τΨ(τ, y0)dτ =

∂2t Ψ(t− |z − y0|/c0, y0)
4π|z − y0|

, (A.3)

which shows that the scattered �eld at the point y0 is singular ( unless ∂2t Ψ(t, y0) is
zero for all time). But the product of a delta function with a singular function has
no conventional meaning. The issue of point scatterers has been studied in [1].

Note, however, that in the Born approximation, the �eld scattered from a point
scatterer is well-de�ned and nonzero.
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