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Abstract

In electromagnetic boundary value problems integral equations involving the free
space Green's function for the Helmholtz equation often occur. Using the method of
moments to numerically solve such an equation a matrix equation is obtained. The
entries of the matrix are given as multidimensional integrals which in general have to
be calculated numerically. This paper presents an efficient method to approximate
the main part of these integrals. The free space Green's function is expanded in
scalar spherical wave functions. The translation properties of these wave functions
then imply that the matrix elements can be expressed as a series of multipole
moments. The method is illustrated by an implementation in the static case - the
computation of the capacitance of a square plate. Basis functions with the correct
edge and corner behaviour are used. The calculations of the multipole moments are
done analytically. Numerical results using the point-matching and Galerkin's
method are presented.

1. Introduction

Electromagnetic boundary value problems are often formulated as integral equations
containing the free space Green's function for the Helmholtz equation. The unknown
function usually represents some source distribution to be determined. A method
frequently used to solve these integral equations numerically is the method of moments
(MoM) [1]. Basically, the method of moments is a projection method, where the original
integral equation is replaced by a finite dimensional matrix equation, which entries are
multidimensional integrals. In general these matrix elements cannot be calculated
analytically and numerical integration or various approximations are adopted. Galerkin's
method, which is favoured by many authors, implies that the matrix is symmetric. This
symmetry property is, however, usually lost when approximations are introduced in the
calculations of the matrix elements. Since high numerical performance is necessary in
modern computations, the development of approximation schemes that preserves this
symmetry is valuable.

In this paper an approximation method using multipole expansion is presented. The three-
dimensional case is analysed and the free space Green's function for the Helmholtz
equation is expanded in terms of the scalar spherical wave functions. Using subsectional
basis and weighting functions and taking advantage of the translation properties of the
scalar spherical wave functions the main part of the matrix elements can be expressed as a
series of multipole moments. One of the main advantage of the multipole expansion is
that the bulk of the entries of the matrix can be approximated by only a few terms in this
expansion, leaving a few diagonal terms left for more accurate considerations. Moreover,
this approximation method also preserves the symmetry of the matrix when Galerkin's
method is used. Special attention is paid to the static limit and the numerical performance
of the approximation is illustrated by the computation of the capacitance of a square plate.
Basis functions with the correct edge and corner behaviour are used. The point-matching
method as well as Galerkin's method are applied. It is in this context relevant to point out
that the approach presented in this paper differs from recent formulations utilizing
multipole expansions [2] which do not use the method of moments.

The plan of the paper is as follows. Section 2 contains an overview of the technique used
in the MoM. The approximation method using the multipole expansion is derived in
Section 3. In Section 4 the method is applied to calculate the capacitance of a square plate.
Diagrams illustrating the efficiency of the approximation and the enhanced convergence
due to the singular basis functions are presented in Section 5. Some conclusions are
given in Section 6. In Appendix A the relevant formulas concerning the translation
properties of the scalar spherical wave functions are summarized. In Appendix B the



static limit of the translation properties is derived. Some technical details are presented in
Appendix C.

2. Method of moments

The method of moments is an established technique to numerically solve linear operator
equations. It is frequently applied to integral equations of the first and second kind. The
MoM, which is a projection method, approximate the solution to the original infinite
dimensional problem by a finite dimensional solution. Projection methods in general, and
MoM in particular, are well-established methods, but for the sake of completeness and to
introduce our notations a short overview of the concept of the MoM is given. Only the
formal steps of the MoM are presented here. The readers interested in the more rigourous
mathematical aspects of the theory, e.g. convergence and completeness properties of
basis functions, are referred to, e.g., [3].

The linear operator equation is written as

LiH=g ey

where L denotes the linear operator, g is the known function and f is the function to be
found. The first step is to expand f in terms of a set of known basis functions fp in the
domain of L, with unknown coefficients .

Q
f=fo=2 a,f, )
p=1
As L is linear we have
Q
L =), a, L(f,) =g 3)
p=1
Now form the residual Ry,

Ry =L(fy)-g )
Finally choose a set of weighting functions, W, in the range of L and take the inner
product of (4)

<Row,>=0 q=1,2,..0 (5)

The inner product is usually defined as

<ab> = Dj a(2)b(2) dz (6)

where D denotes the domain of @ and b.
The relation (5) can be written as

iap <L()j,)),wq> = <gwgz> qg=1,2,...0 @)
p:



The coefficients a;, are obtained by solving this matrix equation.

Certain choices of the weighting functions w, correspond to methods with their own
names, €.g.:

wq(z) = 5(z-zq) The point-matching method or Collocation method
wq(z) = fq(z) Galerkin's method
wy(2) = L(fq)(z) The method of least squares

The point-matching method is widely used due to its simplicity. In Galerkin's method the
calculations of the matrix elements generally become very time consuming if no
approximations are made. The method of least squares is probably the most reliable, but
also the most complex of the three methods.

The choice of the basis functions does also to a high degree affect the calculation time of
the matrix elements. The method of moments is often associated with the use of
subsectional basis functions. This involves the use of basis functions f, each of which
only differs from zero over subsections of the domain of f. Usually polynomials of low
degree are used as basis functions over these subsections.

The choice of basis functions does, however, also affect the achievable accuracy of the
approximation of f for a certain truncation Q. It is often possible to analytically determine
the behaviour of f at, e.g., the boundary of the domain. By choosing basis functions with
appropriate behaviour higher accuracy can be obtained. More complex basis functions
will, however, generally lead to an increase of the calculation time of the matrix elements.

Itis obvious that it is essential to find efficient approximation methods for calculating the
matrix elements.

3. Multipole expansion

The three-dimensional case is considered in this paper. Space vectors are denoted bold
face, and R, denotes the position of a fixed point p in space with respect to a general
origin. R, denotes the vector from point p to point g, i.e. R,,=R,-R,. A lower case
vector without index refers to a general origin, while those with 1ndex refer to local

origins, cf. Fig. 1. Whenever possible, we distinguish between source and field points,
by a prime on the vectors referring to a source point.

’ Source point

Local origin g Local origin p

Field point

General origin

Fig. 1. Space vector notations

When working with electromagnetic scattering and electrostatic problems in three-
dimensional space the following integral operator frequently occurs



L) = V[ f(r) G(r,r’) dv” (8)

where r’ is the integration variable and G(r,r) is the free space Green's function.
In the time harmonic case, G(r,r) is given by

eiklr-r’l

G@r,r) = An0rr )

where k is the wave number and the time factor e-i®" is suppressed. The electrostatic case
is obtained as the limit k—0.
Applying the method of moments we get matrix elements of the following kind

<L(f)wy> = J ‘)' £, Gr,r) v’ w,(r) dv (10)
Using point-matching, one obtains

<L(f,),8,> = V[ £,(r) G(R,r) dv’ (11)

where 8= &r-R,). The delta function &, is assumed to have support near the local origin

In cases where r >r', G(r,r’) can be expanded [4] in the scalar spherical wave functions
V/oml and lI/oml

Grr) =ik Y, wir) v (12)
n

where the summation over n denotes a triple sum over /,m and .
The scalar spherical wave functions are defined as

Yot () = jy(kP) Y P (13)
Vo) = 1 (k) ¥ o) (14)

where j; is the spherical Bessel function, h;l) the spherical Hankel function of the first
kind and Y, is the spherical harmonic defined by

Em 20+1 (I-m)! Y2 _m cosme
Yoml - ( 27[ 2 (l+m)' ) Pl (COSO) (Slnm(p) (15)

Here P;n is the Associated Legendre function and ¢,=2-8,,, , [=0,1,..., m=0,...] and
o=e,0 (even,odd). We employ the definitions in Ref. [5] for the Bessel, Hankel and
Associated Legendre functions.

Now let fo(r’) = 0 outside the subsection V, and introduce a circumscribed sphere
(radius r, pmax) to the subsection. Let the centre of the sphere define the origin of a local
spherical coordinate system K, cf. Fig. 2.



Fig. 2. The subsection Vp and a circumscribed sphere

At points outside the sphere, i.e. when Ry4 > Tomaxs EQ.(11) can be written as

<L(f,).8,> = ik Y, q,(F,) VR,,) (16)
where "

auf) = prm Wi () dv’ (17)

qn(fp) expresses the multipole moments associated with the basis function f When these
moments have been calculated all those matrix elements that correspond to Ry >,
are easily obtained.

The more general expression for the matrix elements Eq.(10) may, under the same
conditions as above, be rewritten as

pmax

<L(f,)wp> = J jfp(r) G(r,,r}) dv’ wy(r) dv =

=zk2 Vj £,(r) wih(r) dv'qu(r)wi(rp) dv (18)
o Vp

where the notations are defined in Fig. 3. The volume V is here any volume outside the
circumscribing sphere of V.

Fig. 3. The two interacting subsections Vp and Vq

Now, let the weighting function w, be zero outside the subsection V4. Introduce a
circumscribed sphere (radius r,,,,,) and define a local coordinate system K, at the origin



of the sphere. Furthermore, let the orientation of the coordinate axes of the two systems
K, and K, coincide. If the distance between the two local origins is greater than the

. . . e .
radius of the sphere 1.e., Ry > I'ymay, then the wave function V,(r,) can be expressed in
the new coordinates as [4]

Vi) = 2, PunRyg) Vil (19)

forallr,e V.
The matrix P, is given in Appendix A. Inserting Eq.(19) into Eq.(18) results in

<L) we> = ik 3, Prn(R,) 4,(f,) 4nw,) (20)
nn’

provided summation and integration can be changed. This is allowed when Ry > Nomax +
¥qmax> due to uniform convergence of the series. The functional q,(f,) is given by

Eq.(17) and qn(wq) is similarly defined as

W) = VJ W (1) Ya(r)dv 1)
q

In the numerical implementation the summations have to be truncated. When n and n’ are
truncated equally, the reciprocity of Eq.(10) is preserved in the approximation. Hence
using Galerkin's method, with gn(w,) = g,(fy) , the matrix of Eq.(7) will be symmetric.
Therefore, just half of the non-diagonal matrix elements have to be calculated and
numerical routines designed to symmetric matrices can be used when solving the
equation.

4. Capacitance of a square plate

The exact charge distribution and capacitance of a charged infinitely thin, conducting, flat
square plate in unbounded space is not known. Several authors, e.g. [1], [6] and [7],
have used moment methods to obtain numeric solutions. Methods involving simple basis
functions, such as pulse or roof-top functions which do not have the correct asymptotic
behaviour at the edges and corners, will converge [8], but very slowly. In the analogous
two-dimensional case, it is known from the literature [9], [10] that the correct edge
behaviour in the basis functions will improve the convergence. The corner singularity in
the three-dimensional case has been calculated in Refs. [11]-[14], using different
analytical methods combined with numerical algorithms. In the approximation method
described in Section 3, it is possible to introduce the edge and corner singularities in the
basis functions without any major difficulty.

The electrostatic potential V(r) caused by a finite charged conductor in homogeneous
unbounded space is given by (if r V(r) — constant as r — oo )

V) = sz oy —— ds- 22)

4me lr—rl

where §' is the surface of the conductor, o(r") is the surface charge density and € is the
permittivity of space outside S'. If we suppose that the constant potential at the plate,V,
is known, we obtain a linear integral equation of the first kind given by Eq.(8). The static



limit as £ — O of the analysis presented in Section 3 is described in Appendix B. The
capacitance C of the conductor is defined as

1 N 100

Divide the plate into Q equally sized square subsections. Number the subsections from 1
to Q. Denote the length of the side of each subsection p by 2A. Define a basis function Ip
on each subsection p such that Jp = 0 outside the subsection. The approximation opof o
can then be written

Q
%=3 ay, @
p=1

We have used three different types of basis functions bglepending on the position of the
plate. £~ is used on the subsections at the corners, J, on the subsections at the edges
and f, on the interior subsections. On each subsection the basis functions are expressed
in local Cartesian coordinates with the origin in the centre of the subsection and with the
x- and y-axes parallel with the edges of the subsection. The basis functions are defined as
follows:

£, =1 (25)

fp = (26)

L. (\/72)&_2 (\/ 1-y/A | \/ 1—x/A] o7
P ((1=x/8)%+(1=y/ A)z)m 1-x/A 1-y/A

where A=0.70 [11]-[14]. The local coordinate system for each subsection has to be
orientated with respect to the edges and corners, so that the correct singular behaviour is
obtained.

As shown in Appendix C the static multipole moments of these basis functions can be
analytically calculated.

The capacitance was calculated using the point-matching method and the method of
Galerkin. In the next section the numerical results are presented.

5. Numerical results

In the point-matching method, the matrix elements corresponding to the interior basis
functions, i.e. the potential from a constant charge distribution, can be calculated
analytically. This was used to find the error in the multipole approximation technique. In
Fig. 4 and Fig. 5 the relative error as a function of the distance is plotted using different
truncations. L denotes the maximum value of the summation index /, cf. Eq.(B3). The
radius of convergence of the multipole expansion is V2 A, see Section 3 and [4]. Figures
4 and 5 clearly confirm this property, and the numerical results do well agree with the
theory.



The Galerkin's case is illustrated in Figs. 6 and 7. The reference values were in this case
obtained by numerical integration. The indices / and [’, cf. Eq.(B5), are both truncated to
L. Although convergence can not be expected when the distance is less than 2 V2 A, the
accuracy in the x-direction is reasonable even for lower values of d/A. Other
approximation schemes to simplify the computations in projection methods have been
suggested in the literature [15]. If the analogous technique is adopted in our static case,
we obtain the shadowed curves in Figs. 6 and 7. The outer integral of Eq.(10) is
calculated by approximating the inner integral by its value at the centre of the subsection.
It is clearly shown that the approximation scheme suggested in this paper provides a great
improvement in accuracy.

The capacitance of the square plate was calculated using the point-matching method and
the method of Galerkin. When the point-matching method was applied, collocation points
at the centre of each subsection were used. In both cases, all the non-diagonal matrix
elements were calculated using the multipole approximation. Hence, in the Galerkin case,
the convergence rules were violated when computing matrix elements corresponding to
adjacent subsections. This was noticed as a slightly variation of the obtained capacitance
dependent on the chosen truncation. As comparison the capacitance was also calculated
using constant basis functions in all subsections. The point-matching case can be found
in [1]. The results are shown in Fig. 8. The convergence is, as seen, greatly enhanced
when basis functions having the correct the edge and corner singularities are used.
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6. Summary and conclusion

Electromagnetic boundary value problem can be solved numerically by the method of
moments. The appropriate integral equation is then replaced by a matrix equation. In this
paper a method to compute the main part of the matrix elements as a series of multipole
moments has been presented. The technique is applicable to integral equations in which
the kernel consists of the free space Green's function of the Helmholtz equation. The
three-dimensional case was considered. It can be noticed that using cylindrical wave
functions, rather than the spherical ones used in this paper, the method may be adapted to
two-dimensional space in a straightforward manner. The expansion of the two-
dimensional Green's function in cylindrical wave functions as well as the translation
properties of these wave functions are well known [4].

The method was applied to a canonical static problem - the calculation of the capacitance
of a square plate. The accuracy of the approximations of the matrix elements has been
illustrated. The method simplifies the use of complicated basis and weighting functions.
Hence, basis functions with the correct edge and corner behaviour could be chosen and
greatly enhanced convergence was obtained using the point-matching method as well as
the method of Galerkin. When Galerkin's method was used only half of the non-diagonal
matrix elements had to be computed as the approximation preserves the symmetry of the
matrix.

The presented approximation method may obviously be applied to a wide range of static
problems. Without loosing the simple structure, more advanced basis functions, such as



bilinear or Hermite bicubic functions, may be used. Other polygonial shapes of
subsections, e.g. triangles, can be introduced. Another convenient property with the
approximation method suggested in this paper is the calculation of the external field. The
external field is obtained by simply adding all contributions from the multipoles. The
method is, therefore, attractive from several points of view. The calculations of the
external field is, however, not pursued in this paper, but will be addressed in a
subsequent paper on the dynamic case. Work is in progress on this case and will be
presented elsewhere.
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Appendix A

The transformation properties of the scalar wave functions can be found in Ref. [4]. This
appendix summarizes important formulas concerning the translation properties of the

scalar spherical wave functions.

Denote by K and K two spherical coordinate systems with different origins but with
parallel axes, cf. Fig. Al. Let the origin of K, have the coordinates (R,1,¢) (space vector
R) in K. Let an arbitrary point in space be described by the space vectors r and r; with

reference to Ky and K, respectively.

We then have
Vr) = 3, P (R Wal(r) R>r
_
Wfl("o) = 2 R,,(R) V/i,'(rl) (valid everywhere )
<

The matrices R, and P, are given by
Ruw(R) = 8,(R;j2)
ey
P AR) = S, (R;h; )
S,..(R;z;) may be written

SO‘mI,O)n'I'(R’.ZA) = (’l)m Bml,m'l’(R: T’:'ZA) Cos(m-m')(p
+ (-1)7 By 1R 1;25) cos(m+m")@
Som,omrR;zz) = (-1)" +°JBmz,m'z'(R,77;Za) sin(m-m")¢

+ B, (RN, 2)) sin(m+m) @
where

c _ 1 (e}
1 —{ -1 (o]

e
o

and

(A1)

(A2)

(A3)

(A4)

(A5)

(A6)

13
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I ENT s
Btz = (O™ (5 (P @y
A=ILLY

x((2l+1)(2l’+1)(/1-(m-m3)!)”2(1 g ,1)(1 rooA )

(A+(m-m")! 000 m -m’ m’-m

x 20k R) P7" (cosn) (A7)

The definition of the Wigner 3-j symbol ( ' ) can be found in, e.g. [16].



Appendix B

In this appendix the static limit, k — 0, of the results reviewed in Appendix A is
presented. More specifically, the translation properties of the static, scalar spherical wave
functions are given. In this context it should be noted that these properties can be
obtained by other means [17]-[20]. It is, however, advantageous for future work on the
dynamic case to pursuit the £ — 0 limit approach in this paper.

When kr << 1 the spherical Bessel and Hankel functions have the following asymptotic
properties [5]

1
Jitkr) —»(T(Ik;% (B1)
HD ) — - D (B2)
(kr)

Using the point-matching method, the matrix elements are given by Eq.(16). Hence, -
when kr << 1 we have

)
kr, 20-1)11
<L(f,).8,> = k Z J fp(r)—f’—(z(l . 1))” Y gi(Fy) 00" (2t ),HYom,(ﬁpq)
n Vp (kRpg)

In the limit £ — O the electrostatic matrix elements are obtained as

N\

Y 5 (R
<L(f,),8,;> = z qﬂap) QI-n!! —"%Ml (B3)

n RP‘I

where

0 1 A AN

anp)=(meP(r) 7> Y omi(rp)dv (B4)
P

Inserting Eq.(B1) into the more general expression for the matrix elements, Eq.(20), one
obtains in the same way

<LGIw> = D, PonRog) GFy) 4iw) (B5)
nn

where the matrix P,?n: is given by
0 : 1+0'+1
P=1lmik" " P, (B6)
From Eqs.(A4) - (A7) we get

¢ 1
Pos(R) =S,,(R; lim it pS") (B7)
k—0

15
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Taking the limit of Eq.(A7) using Eq.(B2) results in

, . N2
’ k—0

(I+I'+(m-mH)! 00 O m -m’ m'-m

§ ((2l+1)(21'+1)(l+l'-(m-m’))!)1/2 (1 I 1+1')( I I+ )

P (cosm)

X g (B8)
Rl+l+1

The special form of the Wigner 3-j symbol in this expression can be explicitly written
as [16]

LU N e D QI I+l mem)! (41 Gm-m )] NP2
(m m’ m'-m )‘('1) ((21+21'+1)1 T+m)! @-m)! ()] (l’+m’)!) B9



Appendix C

This appendix presents some of the technical details in the computation of the static
multipole moments. All multipole moments can be calculated analytically and no
numerical integration has to be employed. This feature becomes especially advantageous
in the numerical implementation of the method. The results presented in this appendix
also extend to other basis functions as well. More specifically, to basis functions which
are obtained by multiplying the basis functions in Section 4, Egs.(25)-(27), by two-
dimensional polynomials of arbitrary degree. Moreover, the results of this appendix
extend to other polygonial shapes of subsections - not necessarily squares.

Before the explicit calculation of the static multipole moments two important tools are
derived.

Translation of the origin of a static multipole
In Section 4 the origin of the local coordinates of a subsection has been defined as the
centre of the circumscribed sphere. To determine the static multipole moments we need to
shift the origin of the local coordinates.
Using Eq.(A2) and the notations used in Appendix A, the dynamic multipole moment
q,(h, defined by Eq.(17), can be expressed as

ah = [Fr) W) v’ = 3 Ry R) [ £r) Whtridav”
1% n' Vv
Denote the shifted multipole moment by g,(f:R), i.e.,

4.(FR) = V[f(r') i (r)dv’ €D

Hence, in the dynamic case we have

4 = X Ron(R) q,(fR) (C2)

When krg << 1 we have, according to Eq.(B1) and Eq.(B4)
1 0
g.(N = k q,(f (C3)
and similarly when krj << 1

0.FR) = ¥ ¢2¢R) (C4)

where the shifted static multipole moment is defined analogously to the dynamic moment.
From Eqs.(C2) - (C4) we obtain

4N =%, Row ®) qu(iR) (€5)

. o . .
where the matrix R,,,. is given by

17
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0 -1 Il
R, =1lmk R, =S5 R; imk j (C6
k=0 = Sn'( k—0 2y )

Taking the limit of Eq.(A7) using Eq.(B1) we find that for [’ > [ every term of the
summation in Eq.(A7) will vanish. Hence the summation in Eq.(C5) will be finite. This
fact is also known from the classical theory of static multipoles [21]. When [ > [’ only the
term corresponding to A = /-’ will differ from zero. We get

v L mem (€ € |2 1
Brimr®RM; B k) = (1) ( 2 ) Q2D

y ((21+1)(21'+1)(1-1'-(m-m'))!)1/2 (1 I 1-1')(1 I )

(-I'+(m-m")! 00 O m -m’" m'-m

x Pl’f‘l',""(cosn) R (C7)

Even permutations of the columns in the Wigner 3-j symbol do not change the value of
the symbol [16], hence

[ -l l -r 1
(m -m’' m’-m ):( -m’" m'-m m ) (C8)
Making the substitutions L=/’, L'=[-I', M=-m’ and M'=m-m’ we obtain
I U -l L L' L+L'
(m -m’' m’-m ) =(M -M' M'-M ) (C9)

This is the same form of the Wigner 3-j symbol as in Eq.(B9).

An integral
To determine the static multipole moments the following integral is canonical:

%o

I (@t Virm) = 6[ sin”¢ cos”9 (‘;’Sm':(f) do (C10)

where o and m are defined as in Section 3 and i and v are real numbers.
Using the binomial expansion theorem, the integral in Eq.(C10) can be written as
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b0 im¢
I (oot Vorm) = OJ sin¢ cos (Re "}MJ dg =
Ime

2 (r,:l) (-1)n/2i(¢0,/.t+n,v+m-n)

— n=(r)’;2,... (C12)
> () 0 Piggg pin,vam-n)
n=1,3,...
where
%o o 8
i(¢g,0,B) = [ sin ¢ cos ¢ d¢ (C13
0

In the case when o or § are integers the integral i(¢g,c, ) can be calculated using
successive partial integrations stepping o or 8 towards zero. In the general case the
integral can be expressed as the incomplete Beta function B,(a,b) [5].

X
Bab) = [ ' (1-0""ds (C14)
0

Using the substitution ¢ = sin2¢ we get
i(¢o.0.B) = %Bsm2¢0((a+ D/2,(B+1)/2) (C15)

For our purpose the incomplete Beta function may ,e.g., be computed by the help of the
hypergeometric function ,F;.

a

B.(ab) =75 F(@,1-bia+1:x) (C16)

The static multipole moments

Define a local spherical coordinate system with reference to the local Cartesian
coordinates in which the basis functions are expressed, cf. Fig. C1.

V4

Fig. C1. The local coordinates of a subsection



The multipole moment is obtained as (6=7/2 )

0 _ [ {COSm
0h) = Ky 5[ £ r (sinm ¢)ds

where the matrix x;,; is given by

1 @mnwm)mm
"”d"(21+1)!z(27z 7 @rmy ) PO

Interior subsections
Divide the integration area as shown in Fig. C2.

Fig. C2. The division of an interior subsection

The multipole moment of part 1 can be expressed as

4
/4 cosg 0
0 1 {cosm
2D =k, J J . ( _ )rdrdd):
-4 sinm¢@
AIJr2 A 1.2, {cosm
= Knl T _”);COS ¢(sinm¢) d¢=

1+2
= K T3 Us(m/4,0,-1-2,m)+] (-7/4,0,-1-2,m))

(C17)

(C18)

(C18)

Obviously, the multipole moments of the other parts of the subsection can be obtained by
a rotation of the part 1 moments. It is easy to show that rotating the source distribution an

angle o in the ¢-direction keeping the origin fixed results in
0 0 0 .
GemiFo) = demi(f) cosmor — qomi() sinma

0 0 0 .
qoml(fa) = qoml(f) cosma + qeml(f) simo

(C19a)

(C19b)
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Edge subsections
Using the basis function expressed by Eq.(26) we have to modify the method described
above. Divide the subsection according to Fig. C3a. To calculate the moments of part 1
use shifted coordinates with the origin at point A and rotated 7 radians, cf. Fig. C3b.

y y y
A A
o ¢
Part 1 ,/’ /r
» L X X X
. r
/’ Part 2 "
. ¢
B B
Fig. C3a Fig. C3b Fig. C3c

The division of an edge subsection and the local coordinates used in the calculations

With the notations introduced in Eq.(C1) and Eq.(C19) we get

2A
QrER ) = 5/4 jmp r (Cosm )rdrdtp (C20)
n\ g MYA) — ml .
V1-(A-rcospya  \Sinmd

After some calculations and the use of (C12) one obtains

0 E 2l+3/2
anfn 3RY) = Ky — 3 16(H4,0,-1-2,m) (C21)

Now rotate and shift the origin of the moments to the correct position at the centre of the
subsection using Eq.(C19) and Eq.(C5) respectively.

The multipole moments of part 2 can be calculated using coordinates with the origin at
point B, cf. Fig. C3c.

24
/4 cosp :
G ER) = Ky J J (€00, 4rdg (C22)
\/ 1-(rcosg-A)/A sinmg

Make the substitution cos2a =(rcos¢)/2A. The result is

1+5/2 1+2 I+2)!!

A ST oA 40,1-2,m) (C23)

0
qn(fERp) = Ky 2

Now shift the origin of the moments back to the centre of the subsection using Eq.(C5).
Finally add the contributions from the two parts.
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Corner subsections

Divide the subsection as shown by Fig. C3a. To calculate the moments of part 1 use the
same technique as in Eq.(C20), cf. also Fig. C3b. With the basis function given by
Eq.(27) expressed in the spherical coordinates we get

. 7}/4 cos¢ Ao Ai2-1 sing [ cos¢ Cosm¢ drd¢p  (C24)
Qn(fn Q) = Ky COS¢ sing Slnm(pj

Straightforward calculations result in

I+1-A/2
pHL-AZ 412

0,.C _ £ 4

Rotate and shift to get the desired multipole moments.

The contribution from part 2 can obviously be obtained from Eq.(C25) in a similar
manner with an additional reflection.
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