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Abstract

The effect of relic gravitational waves on the polarization of the CMB

is analytically studied. The equation of radiative transfer for the polariza-

tion is transformed into two coupled differential equations by Polnarev’s

method and an approximate solution is derived.
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4 1 INTRODUCTION

1 Introduction

Fluctuations of the Cosmic Microwave Background (CMB) caused by gravita-
tional waves will be studied analytically in this paper. This will be done in
the first order approximation of the metric perturbations caused by the relic
gravitational waves.

In the early universe photons were tightly coupled to matter by Thomson
scattering. As the universe expanded and cooled down to about 3000 K, protons
and electrons formed neutral Hydrogen. The baryon and photon fluids decou-
pled and the last scattering occured. Since then these photons have essentially
been decoupled from baryons, meaning that the radiation from last scattering
has been left intact. Therefore the CMB provides a picture of the universe at
last scattering and a way to examine the early stages of our universe.

A temperature map of the CMB shows small temperature fluctuations and
has confirmed one of the predictions of inflationary big bang theories, where a
period of rapid expansion follows the bang. The quantum fluctuations are en-
larged and cause inhomogeneities in the universe. One way to test inflationary
theories and indirectly detect gravitational waves is to measure the polariza-
tion of the CMB. Polarization can originate from temperature inhomogeneities
through Thomson scattering but also from metric perturbations, both scalar
and tensorial. The tensorial part is caused by gravitational waves and are the
main focus of this thesis. The polarization induced by tensorial perturbations
is of lower magnitude than the scalar induced, but gives rise to a different kind
of polarization, the magnetic type, and can also be important for the electric
type in long wavelengths.

Cosmic shear (gravitational lensing) can interfere with the picture of the
universe at last scattering by displacing the CMB. If the gravitational waves have
been strong enough they can be detected without correcting for this effect, and
if not, there are ways of subtracting the effect of cosmic shear [2]. The effects of
reionization and free streaming neutrinos have not been included. Reionization
will cause another peak in the visibility function, giving another peak in the
polarization power spectra while the neutrinos could cause a damping, slightly
lowering the spectra.

The organization of this thesis is as follows. In the second section some
background material is presented, such as the Stokes parameters, Thomson
scattering and relic gravitational waves (RGWs). The third section introduces
some consepts of a spherical manifold. In the fourth section the equation of
radiative transfer (The Boltzmann equation or BE) is introduced to describe
the time evolution of the polarization. In the fifth section the power spectra is
obtained in terms of the Legendre expansion of the solution to the BE. Before
actually solving the Boltzmann equation the visibility function, section six, and
the time evolution of the RGWs, section seven, are needed. Finally, in section
eight, the BE for the polarization is solved to the second order of the tight
coupling and the result is used to obtain the two types of polarization power
spectra. Thereafter follows a section with results and examination of the effect
of different parameters, such as the tensor to scalar ratio and the speed of the
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decoupling. The conclusions can be found in section 10. Appendix A contain
some rather lengthy derivations while appendix B discuss the differences be-
tween the results of this theisis and the one in [1], while including the second
order approximation of the tight coupling.

I have mainly used two papers, Analytic approach to the CMB polarization

generated by relic gravitational waves by W. Zhao and Y. Zhang [1], and Theory

of cosmic microwave background polarization by P. Cabella and M. Kamionkowski
[2]. Cosmic microwave background fluctuations from gravitational waves: An

analytic approach by J.R. Pritchard and M. Kamionkowski [9] has been impor-
tant in my attempts to comprehend.

I have done all intermediate steps in the analytical calculations of [1] and I
have analytically reproduced most results of [1].

2 Preliminaries

2.1 Stokes Parameters

The polarization of an electromagnetic wave can be described by the four Stokes
parameters (I, Q, U , V ). Where I is the intensity, Q and U are linear-
polarization parameters and V is a circular-polarization parameter.

The electric-field vector of a monochromatic wave propagating in the ẑ-
direction is

E = Exx̂+ Ey ŷ =
(

axe
iδx x̂+ aye

iδy ŷ
)

ei(kz−ωt) (1)

and the Stokes parameters are then














I = |Ex|2 + |Ey|2
Q = |Ex|2 − |Ey|2
U = 2ℜ(ExE

∗
y)

V = 2ℑ(ExE
∗
y)

. (2)

If the coordinate system is rotated by and angle δ, the Stokes parameters trans-
form as

I ′ = |E′
x|2 + |E′

y|2 = | cos δEx + sin δEy|2 + | − sin δEx + cos δEy|2

= I, (3)

Q′ = |E′
x|2 + |E′

y|2 = | cos δEx + sin δEy|2 + | − sin δEx + cos δEy|2

= (cos2 δ − sin2 δ)(|Ex|2 − |Ey|2) + 2 sin δ cos δ(ExE
∗
y +E∗

xEy)

= cos 2δQ+ sin 2δU, (4)

U ′ = 2ℜ(E′
xE

′∗
y ) = − sin 2δ(|Ex|2 − |Ey|2) + 2ℜ cos 2δExE

∗
y

= − sin 2δQ+ cos 2δU, (5)

V ′ = 2ℑ(E′
xE

′∗
y ) = 2ℑ cos 2δExE

∗
y = V. (6)

I and V are invariant while Q and U transform as
(

Q′

U ′

)

=

(

cos 2δ sin 2δ
− sin 2δ cos 2δ

) (

Q
U

)

(7)
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or equivalently when
x′ = Ak

i xk (8)

then

Pij =

(

Q −U
−U −Q

)

(9)

transforms as
P ′

ij = Ak
iA

l
jPkl. (10)

This means that Q and U transform as the components of a symmetric traceless
2×2 tensor, i.e. a spin-2 field [2]. Therefore the linear polarization can be given
a rotationally invariant description by the tensor, Pij .

2.2 The Goal of Calculations

The aim is to calculate the polarization tensor, Pab(n̂) and use this to get the
power spectra caused by the RGWs. We consider ourselves sitting in the center
of a sphere (earth), and measuring the polarization of the infalling radiation
from all directions (the surface of the sphere or the sky). The polarization map
created from experiments can then be used to obtain the correlation functions
and then the polarization power spectrum.

2.3 Thomson Scattering as a Source of Polarization

When electromagnetic radiation scatters on a charge particle, the electric and
magnetic components of the wave will accelerate the particle and thereby cause
it to emit radiation. The polarization of this scattered light will depend on
both the polarizations of the infalling light and the differences in intensities
from different directions. [2]

Radiation falling in on an electron in the y and x directions can be scat-
tered in the z direction. The scattered radiation will have the x part of the
polarization from the incoming y direction and the y part of the polarization
from the radiation incoming in the x direction, fig. 1. If the infalling radiation
from the two directions have different intensity and/or is polarized the scattered
radiation will be linearly polarized.

The observation of small temperature fluctuations in the background radi-
ation implies a temperature difference in different regions of the early universe
and thus, the radiation from different parts must have differed in intensity and
the scattered light will be polarized.

Since Thomson scattering does not induce any phaseshift, it will never pro-
duce any circular polarization, so V = 0.

2.4 Relic Gravitational Waves

Another cause of polarization of the CMB is Relic Gravitational Waves, caused
by the quantum fluctuations in the early, dense universe. The polarization
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y

x

z

Fig. 1: Radiation incident along the x and y axes scatter against an electron
causing a polarization in the radiation scattered along the z axis.

from the perturbation of the metric is different from that caused by temper-
ature anisotropies and scalar perturbations. The perturbed flat Friedmann-
Robertson-Walker metric is

ds2 = a2(η)
[

dη2 − (δij + hij)dx
idxj

]

, (11)

where η is the conformal time and the size of the horizon

η =

∫

a0(t)

a(t)
dt, (12)

hij are perturbations with |hij | << 1, a(η) is the scale factor. The perturbations
can be both scalar and tensorial but it is only the tensorial type that originates
from the RGWs [1].

The RGWs are symmetric and using the gauge freedom to choose the trans-
verse traceless gauge it is seen that there can only be two independent types
of gravitational waves, h+

ij and h×ij (A.1). An arbitrary gravitational wave can
be described as a superposition of plane waves. The problem is, to first order,
linear in the perturbations and therefore the polarization and anisotropy gener-
ated by a gravitational wave is the superposition of the polarization generated
by plane waves. This allows for the study of one plane gravitational wave and
then summarize in the end to get the total effect of arbitrary gravitational waves.
Choosing a gravitational wave propagating in the z-direction, the perturbations
can be described by

hij = h+
ij + h×ij = h+ǫ+ij + h×ǫ×ij , (13)

where

ǫ+ij =





1 0 0
0 −1 0
0 0 0



 (14)
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and

ǫ×ij =





0 1 0
1 0 0
0 0 0



 . (15)

Taking the normal spherical coordinates where θ is the polar angle and φ is the
azimuthal angle, defining µ = cos θ the cartesian coordinate vectors are

n̂x = (1 − µ2)1/2 cosφ (16)

n̂y = (1 − µ2)1/2 sinφ (17)

in the (µ, φ) base, leading to

ǫ+ij n̂in̂j = (1 − µ2) cos 2φ (18)

ǫ×ij n̂in̂j = (1 − µ2) sin 2φ. (19)

3 Full Sky Analysis

The CMB reach us from every direction of the sky and in order to analyse the
experimentally measured polarization over the full sky and to compare it with
computational, numerical or analytical, results, the curvature of the 2-sphere
has to be taken into account. Therefore this section introduces some of the
mathematical properties and how they are implemented in the calculations of
the polarization power spectra and correlation functions.

3.1 Living on the Sphere

The curvature of the 2-sphere is described by the metric

gab =

(

1 0
0 sin2 θ

)

. (20)

The covariant derivatives is denoted by (:). For a scalar field

S:a = S,a, (21)

for a vector field
V a

:b = V a
,b + V cΓa

bc (22)

and for a tensor field

T ab
:c = T ab

,c + T dbΓa
cd + T adΓb

cd, (23)

where the Christoffel symbols are

Γa
bc =

1

2
gad(gdb,c + gdc,b − gbc,d). (24)
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Any symmetric trace free rank-2 tensor can be written as the gradient of one
scalar field A

A:ab −
1

2
gabA

:c
c (25)

and the curl of another scalar field B

1

2
(B:acǫ

c
b +B:bcǫ

c
b), (26)

where

ǫab = sin θ

(

0 1
−1 0

)

(27)

is the antisymmetric tensor. Any scalar field on the sphere can be expanded in
spherical harmonics. Thus any 2-tensor on the 2-sphere can be expanded in the
complete orthonormal set of curl and divergence of spherical harmonics,

Y G
(lm)ab = Nl

(

Y(lm):ab −
1

2
gabY

c
(lm):c

)

, (28)

Y C
(lm)ab =

Nl

2

(

Y(lm):acǫ
c
b + Y(lm):bcǫ

c
a

)

. (29)

The normalization factor,

Nl =
√

2(l − 2)!/(l + 2)! =
√

2(l + 2)(l + 1)l(l − 1), (30)

is chosen so that
∫

dn̂Y X∗
(lm)ab(n̂)Y X′ ab

(l′m′) (n̂) = δll′δmm′δXX′ , (31)

where (X,X ′) = {G,C}. [2]

3.2 Polarization on the Sphere

The symmetric trace free polarization tensor, eq. 9, for the full sky in spherical
coordinates n̂ = (θ, φ) is

Pab(n̂) =
1

2

(

Q(n̂) −U(n̂) sin θ
−U(n̂) sin θ −Q(n̂) sin2 θ

)

, (32)

where the sin θ factors originates from that the basis of the two-sphere (θ, φ)
is not normalized [2]. Expanding the polarization tensor in the divergence and
curl of spherical harmonics,

Pab(n̂)

T0
=

∞
∑

l=2

l
∑

m=−l

[

aG
(lm)Y

G
(lm)ab(n̂) + aC

(lm)Y
C
(lm)ab(n̂)

]

. (33)
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T0 is the average temperature of the CMB and the coefficients of the expansion
aG
(lm) and aC

(lm), represent the electric and magnetic (divergence and curl) com-

ponents of the polarization [1]. The l = {0, 1} equals zero so they can be left
out of the sum. The expansion coefficients are given by

aG
(lm) =

1

T0

∫

dn̂Pab(n̂)Y G ab∗
(lm) (n̂), (34)

aC
(lm) =

1

T0

∫

dn̂Pab(n̂)Y C ab∗
(lm) (n̂). (35)

The polarization power spectra are defined as

〈aX∗
(lm)a

X′

(l′m′)〉 = CXX′

l δll′δmm′ , (36)

where the brackets indicate expectation value, or the average over all realiza-
tions [2]. For a given l the sum over m runs from −l to l containing 2l + 1
terms. The coefficients give us the electric and magnetic type of power spec-
trum. After measuring the polarization of the entire sky, the results can be used
to get a polarization map and calculate the correlation functions. The value of
the correlation between two points will depend on the coordinate system and
therefore the coordinates are always chosen so that one axis is parallel and one
perpendicular to the great arc connecting the two points. When calculating the
correlation function on the two-sphere, because of the spherical symmetry, one
of the points can be chosen freely and φ can be put to zero. It is convenient to
choose the north pole as one of the points and θ is then the parameter of the
great arc connecting the poles. Taking Q(0, 0) to be the limit when θ tends to
zero, the cross-correlation functions are defined as

CQQ(θ) =

〈

Q(0, 0)

T0

Q(θ, 0)

T0

〉

(37)

and

CUU (θ) =

〈

U(0, 0)

T0

U(θ, 0)

T0

〉

. (38)

With the expansion of the polarization tensor, eq. 33, Stokes parameters Q and
U are

Q(θ, φ) = T0

∞
∑

l=2

l
∑

m=−l

Nl

[

aG
(lm)W(lm) − aC

(lm)X(lm)

]

(39)

and

U(θ, φ) = −T0

∞
∑

l=2

l
∑

m=−l

Nl

[

aG
(lm)X(lm) + aC

(lm)W(lm)

]

(40)

whereW(lm)(θ, φ) andX(lm)(θ, φ) are defined in (A.5). W(lm)(0, 0) andX(lm)(0, 0)
differ from zero only when m = ±2,

W(lm) =
1

2

√

2l + 1

4π

(l + 2)!

(l − 2)!
(δm,2 + δm,−2) (41)
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and

X(lm) =
i

2

√

2l + 1

4π

(l + 2)!

(l − 2)!
(δm,2 − δm,−2). (42)

Thus the correlation functions are

CQQ(θ) =

〈

Q(0, 0)

T0

Q(θ, 0)

T0

〉

=
∑

lml′m′

NlNl′

〈

[

aG
(lm)W(lm)(0, 0) − aC

(lm)X(lm)(0, 0)
]

×
[

aG∗
(l′m′)W

∗
(l′m′)(θ, 0) − aC∗

(l′m′)X
∗
(l′m′)(θ, 0)

]

〉

.

=
∑

lml′m′

aG
(lm)

√

2l + 1

8π
Nl′

〈

aG
(lm)a

G∗
(l′m′)

〉

(δm,2 + δm,−2)W
∗
(lm)

+
〈

aC
(lm)a

G
(l′m′)

〉

(δm,2 − δl,−2)X
∗
(lm)

=
∑

l

√

2l + 1

8π
Nl

[

CGG
l (W ∗

l,2 +W ∗
l,−2) + iCCC

l (X∗
l,2 −X∗

l,−2)
]

(43)

and similarly

CUU (θ) =

〈

U(0, 0)

T0

U(θ, 0)

T0

〉

=
∑

lml′m′

NlNl′

〈

[

aG
(lm)X(lm)(0, 0) + aC

(lm)W(lm)(0, 0)
]

×
[

aG∗
(l′m′)X

∗
(l′m′)(θ, 0) + aC∗

(l′m′)W
∗
(l′m′)(θ, 0)

]

〉

=
∑

l

√

2l + 1

8π
Nl

[

iCGG
l (X∗

l,2 +X∗
l,−2) + CCC

l (W ∗
l,2 −W ∗

l,−2)
]

(44)

The cross-correlation vanishes, CUQ = 0, if parity is conserved in the early
universe [2].

4 The Boltzmann Equation

The polarization distribution function of photons can be represented by the
column vector f = (Ix, Iy, U) where the components are related to the Stokes
parameters, I = Ix + Iy and Q = Ix − Iy [1]. After Fourier transforming the
time dependence in the electromagnetic waves, f(η, xi, ν, µ, φ) is a function of
conformal time η, position xi, frequency of the electromagnetic radiation ν and
the direction of photon propagation, µ and φ.
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The time evolution of the distribution function is given by the Boltzmann
equation

∂f

∂η
+ n̂i ∂f

∂xi
= −dν

dη

∂f

∂ν
− q (f − J) . (45)

q(η) = σTnea is the differential optical depth and has the meaning of scattering
rate, a(η) is the scale factor, σT is the Thomson cross-section, ne(η) is the
number density of free electrons.

J(η, xi, ν, µ, φ) =
1

4π

∫ 1

−1

dµ′
∫ 2π

0

dφ′P (µ, φ, µ′, φ′)f(η, xi, ν, µ′, φ′), (46)

where µ = cos θ and

P =
3

4





µ2µ′2 cos 2(φ′ − φ) −µ2 cos 2(φ′ − φ) µ2µ′ sin 2(φ′ − φ)
−µ′2 cos 2(φ′ − φ) cos 2(φ′ − φ) −µ′ sin 2(φ′ − φ)
−2µµ′2 sin 2(φ′ − φ) 2µ sin 2(φ′ − φ) 2µµ′ cos 2(φ′ − φ)



 (47)

is the scattering matrix [1]. Primed index refer to incident and unprimed to
scattered radiation. The term −q (f − J) is the effect of the Thomson scatter-
ing. The first part, −qf , dampens the polarization and the second part, qJ,
changes the polarization. The term −dν

dη
∂f

∂ν describes the change due to metric

perturbations caused by the RGWs through the Sachs-Wolfe effect (A.3)

1

ν

dν

dη
=

1

2

∂hij

∂η
n̂in̂j . (48)

The perturbations caused by a gravitational wave propagating in the z-direction
is, by eq. 18 and 19,

1

2

∂hij

∂η
n̂in̂j =

1

2

∂

∂η

(

h+ǫ+ij + h×ǫ×ij
)

n̂in̂j

=
1

2
ḣ+(η)(1 − µ2) cos 2φ+

1

2
ḣ×(η)(1 − µ2) sin 2φ. (49)

Taking the statistical properties and the magnitudes to be the same for both
the h+ and the h× waves, i.e. they have the same expectation values, they can
be replaced by h(η). The perturbed radiation is, for the + polarization

1

ν

dν

dη
= −1

2
(1 − µ2) cos(2φ)

d

dη
h(η) (50)

and for the cross polarization

1

ν

dν

dη
= −1

2
(1 − µ2) sin(2φ)

d

dη
h(η). (51)

The gravitational wave causes an angular intensity pattern. However the
radiation is still unpolarized, consisting of an unperturbed part and a perturbed
part, a+(µ, φ) and a×(µ, φ) for respective polarization,
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a+(µ, φ) =
1

2
(1 − µ2) cos 2φ





1
1
0



 . (52)

and

a×(µ, φ) =
1

2
(1 − µ2) sin 2φ





1
1
0



 . (53)

As the perturbed radiation is Thomson scattered the distribution is changed
and the scattering matrix introduces a perturbed, polarized, part b (A.2). For
the + polarization

b+(µ, φ) =
1

2





(1 + µ2) cos 2φ
−(1 + µ2) cos 2φ

4µ sin 2φ



 (54)

and for the × polarization

b×(µ, φ) =
1

2





(1 + µ2) sin 2φ
−(1 + µ2) sin 2φ

4µ cos 2φ



 . (55)

(a,b) form a closed basis under Thomson scattering (A.4), and the perturbed
part of the distribution function can therefore be generally described by a linear
combination of these. Hence it is possible to divide f into one unperturbed part,
f0(ν) and one perturbed part f1(η, x

i, ν, µ, φ),

f = f0









1
1
0



 + f1



 (56)

where f0 is the blackbody radiation,

f0(ν) =
1

ehν/kT − 1
. (57)

f1 depend on what type of polarization the gravitational wave causing the per-
turbation have. To first order in the perturbations f1 for the + polarization

f+
1 =

ζ

2
(1 − µ2) cos 2φ





1
1
0



 +
β

2





(1 + µ2) cos 2φ
−(1 + µ2) cos 2φ

4µ sin 2φ





= ζ(η, xi, ν, µ)a+ + β(η, xi, ν, µ)b+ (58)

and for the × polarization

f×1 =
ζ

2
(1 − µ2) sin 2φ





1
1
0



 +
β

2





(1 + µ2) sin 2φ
−(1 + µ2) sin 2φ

4µ cos 2φ





= ζ(η, xi, ν, µ)a× + β(η, xi, ν, µ)b×. (59)
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The explicit φ dependence is due to the angular dependence of the gravi-
tational waves and the explicit µ dependence is simply chosen to simplify the
evolution equations [9].

ζ ∝ Ix + Iy = I represent the anisotropy of the photon distribution and
β ∝ Ix − Iy = Q represent the polarization of photons [1].

If unpolarized radiation f0 enters the Boltzmann equation the different terms
will be zero (A.4). Thus the time evolution of f is determined by the perturbed
part, f0f1, and eq. 45 is

f0
∂f1
∂η

+ f0n̂
i ∂f1
∂xi

= − 1

f0

dν

dη

∂f

∂ν
− f0q (f1 − J(f1)) . (60)

Since dν
dη , eq. 50 and 51, is of first order in the perturbations, ∂f

∂ν can, in the first

order approximation be replaced with ∂f0

∂ν0
. ν0 is the unperturbed frequency.

The anisotropy and polarization thus have the same frequency dependence and
since neither q nor P depend on ν, the different frequencies can be treated
independently. Dividing by f0 to obtain

∂f1
∂η

+ n̂i ∂f1
∂xi

= −1

2

ν0
f0

∂f0
∂ν0

∂hij

∂η
n̂in̂j − q (f1 − J) . (61)

Taking the spatial Fourier transformation gives

∂ f̃1
∂η

+ in̂ikif̃1 = −1

2

ν0
f0

∂f0
∂ν0

∂hij

∂η
n̂in̂j − q(η)

[

f̃1 − J̃
]

(62)

For the gravitational wave travelling in the z direction, i.e. ẑ = k̂, n̂iki

k = µ

and the angle of n̂i in the plane perpendicular to the vector k̂ is φk = φ. After
some calculations (A.4) the anisotropy and polarization can be described by two
coupled differential equations,

ξ̇k + (ikµ+ q) ξk(η, µ) = ḣk(η) (63)

and

β̇k+(ikµ+ q)βk(η, µ) =
3

16
q

∫ 1

−1

dµ′

[

(1 + µ′2)2βk(η, µ′) − 1

2
(1 − µ′2)2ξk(η, µ′)

]

,

(64)
where ξk = ζk + βk. The subscript k is the Fourier mode of the gravitational
waves.

5 Power Spectra and Correlation Functions

5.1 Expanding the Solutions

Eq. 63 and 64 have not been solved but once once the solution is found it can
be expanded in Legendre functions,

ξ(η, µ) =
∑

l

(2l + 1)ξl(η)Pl(µ) (65)
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and
β(η, µ) =

∑

l

(2l + 1)βl(η)Pl(µ). (66)

The expansion coefficients are

ξl(η) =
1

2

∫ 1

−1

dµξ(η, µ)Pl(µ) (67)

and

βl(η) =
1

2

∫ 1

−1

dµβ(η, µ)Pl(µ) (68)

The coefficients, aG
(lm) and aC

(lm), from the expansion of the polarization
tensor Pab, eq. 33, determining the electric and magnetic polarization spectra
can then be described as a function of ξl and βl. After some algebra, eq. 34 and
35, is (A.6)

aG
(lm) =

1

8
(δm,2 + δm,−2)

√

2π(2l + 1)

[

(l + 2)(l + 1)βl−2

(2l − 1)(2l + 1)

+
6(l − 1)(l + 2)βl

(2l + 3)(2l − 1)
+

l(l − 1)βl+2

(2l + 3)(2l + 1)

]

(69)

and

aC
(lm) =

−i
4

√

2π

(2l + 1)
(δm,2 − δm,−2) [(l + 2)βl−1 + (l − 1)βl+1] . (70)

5.2 Polarization Power Spectra

The polarization power spectra, eq. 36, is determined by, aG
(lm) and aC

(lm). Cal-
culating the power spectra, the subscript k from the different Fourier modes
as well as the two different types of gravitational waves , h+ and h×, have
to be remembered. The linearity enables a summation over all k and the two
gravitational wave polarizations to get the total polarization caused by relic
gravitational waves. For one wave the polarization is

CGG
l (k) =

1

(2l + 1)

∑

m

|aG
(lm)(k)|2 (71)

CCC
l (k) =

1

(2l + 1)

∑

m

|aC
(lm)(k)|2. (72)

Taking all Fourier modes and both types of RGWs into account,

CGG
l =

2

(2π)3(2l + 1)

∫

∑

m

|aG
(lm)(k)|2d3k

=
1

π2(2l + 1)

∫

∑

m

|aG
(lm)(k)|2k2dk
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=
1

16π

∫
∣

∣

∣

∣

(l + 2)(l + 1)βl−2

(2l − 1)(2l + 1)
+

6(l − 1)(l + 2)βl

(2l + 3)(2l − 1)

+
l(l − 1)βl+2

(2l + 3)(2l + 1)

∣

∣

∣

∣

2

k2dk (73)

CCC
l =

1

π2(2l + 1)

∫

∑

m

|aC
(lm)(k)|2k2dk

=
1

4π

∫
∣

∣

∣

∣

(l + 2)βl−1

2l + 1
+

(l − 1)βl+1

2l + 1

∣

∣

∣

∣

k2dk (74)

The cross-correlation power spectrum vanishes, if parity is conserved in the early
universe,

CGC
l =

∑

m

aG∗
(lm)a

C
(lm)

(2l + 1)
∝ (δm,2 + δm,−2)(δm,2 − δm,−2) = 0. (75)

6 Time Evolution of RGWs

The time evolution of Relic Gravitational Waves, ḣ, is the source of the CMB
polarization, eq. 63. Einstein’s field equations in the Friedmann-Lemâıtre-
Robertson-Walker-universe leads to the equation of motion for a RGW of mode
k,

ḧ+ 2
ȧ

a
ḣ+ k2h = 0. (76)

The initial values are

h(η = 0) = h(k) (77)

ḣ(η = 0) = 0 (78)

with
k3

2π2
|h(k)|2 = Ph(k) = AT

(

k

k0

)nT

(79)

where Ph is the primordial power spectrum of RGW, AT the amplitude, nT is
the tensor spectrum index and k0 = 0.005(Mpc)−1 is the pivot wavenumber.
The effect of the free streaming neutrinos has been ignored and could lower the
peaks of the spectrum slightly.

The scale factor a(η) can be determined by the Friedmann equation

ȧ2 = H2
0 [Ωr + aΩm + a4ΩΛ] (80)

where H0 = 0.72 is the Hubble parameter at present time and Ωr, Ωm, ΩΛ are
densities of radiation, matter and dark energy. [1]

However, the analytical derivations will have to rely on an approximation of
a(η) by a sudden transition between consecutive stages (A.8).
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The redshift can be expressed as a function of the scale factor

1 + zη =
λ0

λη
=
a0

aη
=

1

aη
. (81)

At the transition between a radiation and a matter dominated universe, the two
corresponding terms in eq. 80 is equal,

Ωr = aΩm ⇒ ae =
Ωr

Ωm
. (82)

Setting the fractional densities to be Ωr = 8.39 × 10−5, Ωm = 0.27 and ΩΛ =
0.73, matter/radiation equality takes place at redshift ze = 3229, i.e. ηe/η0 =
0.009, while matter/dark-energy equality is found at z = 0.39, i.e. ηE/η0 =
0.875. Setting the redshift of decoupling to zd = 1088 [11], gives the conformal
time of decoupling ηd/η0 = 0.0224.

Solving eq. 76 in this approximation (A.7) gives

h(η) = A0j0(kη), (η ≤ ηe), (83)

h(η) = A0
ηe

η
(A1j1(kη) +A2y1(kη)), (ηe < η ≤ ηE), (84)

with coefficients

A0 =

(

2π2AT

k3

(

k

k0

)nT
)1/2

, (85)

A1 =
3kηe − kηe cos(2kηe) + 2 sin(2kηe)

2k2η2
e

(86)

and

A2 =
2 − 2k2η2

e − 2 cos(2kηe) − kηe sin(2kηe)

2k2η2
e

. (87)

Taking the time derivative of the gravitational wave ḣ(η) and using the
relation for spherical Bessel and Neumann functions [6],

d

dx

(

x−nfn(x)
)

= −x−njn+1(x). (88)

The time evolution, ḣ(η), of a gravitational wave is

ḣ(η) = −A0
ηe

η
k

(

A1

(

j1(kη)

kη
+ j′1(kη)

)

+A2

(

y1(kη)

kη
+ y′1(kη)

))

= −A0
ηe

η
k (A1j2(kη) +A2y2(kη)) , (89)

during the matter dominated era. For the radiation dominated universe

ḣ(η) = A0kj̇(kη) = −A0kj1(kη). (90)
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The evolution of the RGWs are important primarily in the vicinity of the decou-
pling ηd, when the polarization is generated. The degree of polarization caused
by the gravitational wave around η = ηd depends on the wavenumber k. The
dependence of h(ηd) and ḣ(ηd) on k are shown in fig. 2 and fig. 3 respectively.

Before the RGW enter the horizon, the different parts of the wave have never
been in contact and it is left relatively intact, i.e. the amplitude stays the same,
as the universe expand. As the wave enters the horizon it quickly decreases
before entering a slowly decaying oscillatory state. Fig. 4 contains gravitational
waves for three different wavenumbers k and the steep slope of the wave with
k = 1000 occur at conformal time η ≃ 0.001, i.e. when the wavelength equals
the horizon size.

The exact solution of eq. 80 in the radiation and matter dominated eras is,

a(τ) = aeτ(τ + 2) (91)

where τ = (
√

2 − 1)η/ηe. The transition between the two stages is smooth, in
the new parameter, the time evolution is given by

h′′ + 2
a′

a
h′ + k2h = 0 (92)

where prime denotes d
dτ . To improve the sudden transition approximation one

can use the Wentzel-Kramers-Brillouin approximation [16], to solve this equa-
tion. [1]

However the WKB approximation will not be used in any analytic calcula-
tions throughout this thesis but is used to obtain numerical solutions to eq. 92
shown in fig. 2 and 3. Fig. 2 and 3 also contains numerical solutions of eq. 76.
This has been done with a(η) calculated numerically from eq. 80 taking the
fractional densities Ωr = 8.36 × 10−5, Ωb = 0.044, Ωdm = 0.225 and ΩΛ = 0.73
[1].
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Fig. 2: A RGW at decoupling, h(ηd), depending on wavenumber k. The sudden
transition approximation (solid line), WKB approximation (dashed line) and
numerical calculations (dotted line). The numerical and WKB lines are nearly
identical and are hard to distinguish by the naked eye. The initial amplitude is
set to h(k) = 1. Figure from [1].
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Fig. 3: Time derivative of the RGW, ḣ(ηd), depending on wavenumber k. The
sudden transition approximation (solid line), WKB approximation (dashed line)
and numerical calculations (dotted line). The numerical and WKB lines are
nearly identical. The initial amplitude is set to h(k) = 1. Figure from [1].
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Fig. 4: RGW of three different Fourier modes, k = 1000, 100, 10, depending
on the conformal time η. The k = 1000 wave enters the horizon at kη = 0.001
and the steep slope demonstrates the quick decrease of amplitude of a RGW as
it enters the horizon.
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7 Visibility Function

In the early universe when baryons were ionized and tightly coupled with the
photons through Thomson scattering, photons were repeatedly scattered causing
a bath of unpolarized radiation. When the temperature decreased the electrons
and ions formed neutral atoms, decoupling the photons and baryons. It was at
the time of decoupling that the last scattering took place and the probability
that a photon was last scattered at time η is described by the visibility function,

V (η) = q(η)e−κ(η0,η). (93)

The visibility function comes from solving the ionization equations during the
recombination [1]. The differential optical depth q = σTne(η)a(η) depends on
the number density of free electrons ne. The optical depth

κ(η0, η) =

∫ η0

η

q(η)dη (94)

describes the photon transparency of the universe. As electrons and ions form
atoms the number density of free electrons ne rapidly fall off towards zero. Thus
both q and κ quickly approach zero during the decoupling and thereby V (η) ≃ 0
for η > ηd. Going backwards in time, before ηd, the number density of free
electrons increase as the universe grows smaller and both q and κ(η) increase.
The visibility function is then dominated by the exponential which cause V (η)
to approach zero. Since the visibility function is a probability distribution, it
has to be normalized to one,

∫ η0

0

V (η)dη = 1. (95)

The visibility function is often approximated by a Gaussian function [9]

V (η) = V (ηd)e

(

−
(η−ηd)2

2∆η2
d

)

(96)

fitted to numerical calculations. V (ηd) is the amplitude at, and ∆ηd is the
width of, decoupling. WMAP data give ∆ηd/η0 = 0.00143 [1]. Following [1] a
half-Gaussian fitting consisting of two half-Gaussian functions is used in order
to improve the approximation.

V (η) =











V (ηd)e
−

(η−ηd)2

2∆η2
d1 η ≤ ηd

V (ηd)e
−

(η−ηd)2

2∆η2
d2 η > ηd

(97)

with (∆ηd1 + ∆ηd2)/2 = ∆ηd, ∆ηd1/η0 = 0.00110 and ∆ηd2 = 0.00176. Both
approximations obey eq. 95. The two approximations are plotted together with
the optical depth κ(η) and the differential optical depth q(η) in fig. 5. A com-
parison with numerical calculations of the visibility function is found in fig. 6.
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Fig. 5: The visibility function V (η), optical depth κ(η) × 10 and differential
optical depth q(η)/10 during decoupling. The latter two have been rescaled for
graphical demonstration.

Neither the Gaussian nor the half-Gaussian approximation manages to resemble
the steep uphill slope and the long tail very well, but the half-Gaussian does a
significantly better job. The effects of the approximation will be discussed in
more detail in later sections.

8 Solving the Boltzmann Equation

To get the polarization power spectra, eq. 73 and 74, the differential equations
for ξk eq. 63 and βk eq. 64 have to be solved. The subscript, k of ξ, β and ḣ,
will be hidden in this section for notational simplicity.

ξ̇ + (ikµ+ q) ξ(η, µ) = ḣ (98)

β̇ + (ikµ+ q)β(η, µ) =
3

16
q

∫ 1

−1

dµ′

[

(1 + µ′2)2β(µ′) − 1

2
(1 − µ′2)2ξ(µ′)

]

(99)

Initially the radiation is unperturbed, i.e. ξ(η = 0) = 0, and the solution to
eq. 98 is

ξ(η) =

∫ η

0

ḣ(η′)e
−

∫

η

η′
(ikµ+q)dη′′

dη′

=

∫ η

0

ḣ(η′)e−κ(η,η′)eikµ(η′−η)dη′. (100)
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Fig. 6: The visibility function V (η) as a function of conformal time η. Nu-
merical results (solid line), half-Gaussian approximation (dots) and Gaussian
approximation (dash). ηd/η0 = 0.0195, number from [1] which does not seem to
agree with solving the equations, and the three curves are normalized

∫

V dη = 1.
Figure from [1].

Expanding ξ and β in Legendre polynomials according to eq. 65 and eq. 66, the
right side of eq. 99 is

G(η) =

∫ 1

−1

dµ′

[

(1 + µ′2)2β(η, µ′) − 1

2
(1 − µ′2)2ξ(η, µ′)

]

=
3

16

∑

l

(2l + 1)

∫ 1

−1

dµ′(1 + µ′2)2βlPl +

3

16

∑

l

(2l + 1)

∫ 1

−1

dµ′(1 − µ′2)2ξlPl

=
3

16

∑

l

(2l + 1)

∫ 1

−1

dµ′

(

196

105
P0 +

200

105
P2 +

8

35
P4

)

βlPl

+
3

16

∑

l

(2l + 1)

∫ 1

−1

dµ′

(

56

105
P0 −

80

105
P2 +

8

35
P4

)

ξlPl. (101)
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The integral is evaluated, by using the orthogonality relation for Legendre poly-
nomials

∫ 1

−1

dµ′Pl(µ
′)Pl′(µ

′) =
2

2l + 1
δll′ [6], (102)

with the result

G(η) =
3

35
β4 +

5

7
β2 +

7

10
β0 −

3

70
ξ4 +

1

7
ξ2 −

1

10
ξ0. (103)

Eq. 99 is then
β̇ + [ikµ+ q]β = qG, (104)

with the solution, β(η = 0) = 0,

β(η, µ) =

∫ η

0

G(η′)q(η′)e−κ(η,η′)+ikµ(η′−η)dη′. (105)

Setting the above limit to the present time, η0, and identifying the visibility
function, from eq. 93, resulting in

β(η0, µ) =

∫ η0

0

G(η)V (η)eikµ(η−η0)dη. (106)

The integral contains the unknown functions βl and ξl. Take the expansion,
eq. 65, and put it into eq. 98,

∑

l

(2l + 1)ξ̇lPl = −q
∑

l

(2l + 1)ξlPl − ik
∑

l

ξl(2l + 1)µPl + P0(µ)ḣ. (107)

Use the recurrence relation for the Legendre polynomials [6],

(2l + 1)µPl = (l + 1)Pl+1 + lPl−1. (108)

The last sum in eq. 107 can be expressed as

∑

l

ξl(2l + 1)µPl =
∑

l′=l+1

ξl′−1l
′P ′

l +
∑

l′′=l−1

ξl′′+1(l
′′ + 1)Pl′′ . (109)

Because of the orthogonality of Pl the relation has to be true for every l, thus
after renaming the dummy indices a system of coupled differential equations for
ξ(η) is obtained. Repeating the procedure for β and the result is

ξ̇0 = −qξ0 − ikξ1 + ḣ (110)

β̇0 = − 3

10
qβ0 − ikβ1 + q

(

3

35
β4 +

5

7
β2 −

3

70
ξ4 −

1

7
ξ2 −

1

10
ξ0

)

(111)

ξ̇l = −qξl −
ik

2l + 1
[lξl−1 + (l + 1)ξl+1] , l ≥ 1 (112)

β̇l = −qβl −
ik

2l + 1
[lβl−1 + (l + 1)βl+1] , l ≥ 1. (113)
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1/q is the mean free path of photons. In the tight coupling limit the mean free
path is close to zero and q tends to infinty. Expanding to first order in the
small parameter 1/q, starting with unperturbed radiation, the equations reduce
to (A.9)

ξ̇0 + qξ0 = ḣ (114)

β̇0 +
3

10
qβ0 = − 1

10
qξ0 (115)

ξl = βl = 0, l ≥ 1. (116)

G(η) from eq. 103 is then

G(η) =
1

10
(7β0 − ξ0). (117)

and satisfies

Ġ+
3

10
qG = − 1

10
ḣ, (118)

with the solution

G(η) = − 1

10

∫ η

0

ḣ(η′)e−(3/10)κ(η,η′)dη′. (119)

Substituting this into eq. 106 for β(η0) yields

β(η0, µ) =

∫ η0

0

V (η)

[

− 1

10

∫ η

0

ḣ(η′)e−(3/10)κ(η,η′)dη′
]

eikµ(η−η0)dη

= − 1

10

∫ η0

0

dηV (η)eikµ(η−η0)

∫ η

0

dη′ḣ(η′)e−(3/10)κ(η′)+(3/10)κ(η) (120)

where κ(η, η′) = κ(η′) − κ(η) and κ(η) = κ(η0, η). The tight coupling approx-
imation is only good on scales larger than the mean free path of photons. On
smaller scales the anisotropies and polarizations will be damped by photon dif-
fusion, to include this effect the second order of 1/q is needed [1]. Meaning that
ξ1 differs from zero because of the ξ0 source term in the differential equation.
The equations for ξ in this second order approximation of the tight coupling is
(A.9)

ξ̇0 = −qξ0 − ikξ1 + ḣ, (121)

ξ̇1 = −qξ1 −
ik

3
ξ0, (122)

ξl = 0, l ≥ 2. (123)

According to [1] this leads to an additional damping term exp (−
∫

qdη).
However, this factor is present in the first order approximation as well. See
appendix (B) for further discussion. This section will be completed as if the
factor occured.
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Keeping the tight-coupling limit for the polarization β, β0 also gets the
damping factor

β̇0 = −3q

10
β0 −

q

10
ξ0. (124)

The extra factor appear in eq. 118 and the solution for the polarization inherits
it through the solution of G(η). Eq. 120 takes the form

β(η0, µ) = − 1

10

∫ η0

0

dηV (η)eikµ(η−η0)

∫ η

0

dη′ḣ(η′)e−(3/10)κ(η′)−(7/10)κ(η).

(125)
Since V (η) peaks around ηd while exp(−(3/10)κ(η′′)) ≈ 0 when η < ηd and
exp(−(3/10)κ(η′′)) ≈ 1 when η > ηd, ḣ(η) can be taken outside the integrals
approximating it with ḣ(ηd). However, this approximation is only good at long
wavelengths when ḣ(η) varies slowly over V (η). This can be improved by taking
the average of ḣ(η) over the visibility function,

〈

ḣd(η)
〉

=

∫ η0

0

dηV (η)ḣ(η). (126)

The resulting equation for the polarization is

β(η0, µ) = − 1

10

∫ η0

0

dηV (η)eikµ(η−η0)ḣ(η)

∫ η

0

dη′e−(3/10)κ(η′)−(7/10)κ(η). (127)

Define x ≡ κ(η′)/κ(η) and replace η′. Since V (η) peaks around ηd with width
∆ηd, dη ≈ dx

x ∆ηd holds approximately.

β(η0, µ) = − 1

10
∆ηd

∫ η0

0

dη′V (η′)eikµ(η′−η0)ḣ(η)

∫ ∞

1

dx

x
e−(3/10)κ(η)x−(7/10)κ(η)

(128)
Comparing the Legendre expansion of β, eq. 68, and ξ, eq. 67, with

eikrµ =
∞
∑

l=0

(2l + 1)iljl(kr)Pl(µ) (129)

and noting that the only dependence on µ in β(η0, µ) is in the form of the
exponential exp (ikµ(η′ − η)) leads to

βl(η0) =
1

2

∫ 1

−1

dµβ(η0, µ)Pl(µ)

= − 1

20

∫ η0

0

dηV (η)

∞
∑

l′=0

il
′

jl′(k(η − η0)Pl′(µ)Pl(µ)ḣ(η)

∫ ∞

1

dx

x
e−(3/10)κ(η′)−(7/10)κ(η)

= − 1

10
∆ηdi

l

∫ η0

0

dηV (η)ḣ(η)jl(k(η − η0))

∫ ∞

1

dx

x
e−(3/10)κ(η)x−(7/10)κ(η). (130)
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The approximations of V (η) contains a term of the type eγ(η−ηd)2 where γ is a
constant, ḣ contains a mixture of oscillating modes eikη and e−ikη and so does
the spherical Bessel functions. Therefore ḣ(η)j(k(η − η0)) will contain terms
proportional to e−ibk(η−η0) with b ∈ [−2, 2]. By using the formula [1]

∫ ∞

−∞
e−γy2

eibkydy = e−((bk)2/4γ)

∫ ∞

−∞
e−γy2

dy, (131)

with y = k(η− ηd) and γ identified from the Gaussian or half-Gaussian approx-
imation of the visibility function.

∫ η0

0

dηV (η)ḣ(η)jl(k(η − η0)) ≃
∫ η0

0

dηeγ(η−ηd)2e−ibk(η−η0)

≈
∫ ∞

−∞
dηeγ(η−ηd)2e−ibk(η−η0) = e−((bk)2/4γ)

∫ ∞

−∞
dηe−γ(η−ηd)2

≃ e−((bk)2/4γ)ḣ(ηd)jl(k(ηd − ηo))

∫ η0

0

dηV (η). (132)

The Gaussian approximation give

e−((bk)2/4γ) = e−α(k∆ηd)2 (133)

with α ∈ [0, 2]. The half Gaussian fitting will give two different terms. The
integral will split into two and then merge when going back to the general
expression again. The terms are

e−((bk)2/4γ) =
1

2
[e−α(k∆ηd1)

2

+ e−α(k∆ηd2)
2

] ≡ D(k). (134)

The remaining integral is

∫ η0

0

dηV (η)

∫ ∞

1

dx

x
e−(3/10)κ(η)xe−(7/10)κ(η). (135)

Making the substitution

dκ = −q(η)dη ⇒ dκ

q
= dη; V (η) = qe−κ(η) (136)

gives

∫ ∞

0

dκe−(17/10)κ

∫ ∞

1

dx

x
e−(3/10)κx. (137)

Since κ(η) ≃ 0 when η is large and κ(η) → ∞ when η → 0

∫ ∞

0

dκe−(17/10)κ

∫ ∞

1

dx

x
e−(3/10)κx
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= −
∫ ∞

1

dx

x

[

(

17

10
+

3

10
x

)−1

e−(17/10)κ−(3/10)xκ

]∞

0

= 10

∫ ∞

1

dx

x

1

17 + 3x
= 10

∫ Λ

1

dx

(

1

x
− 3

17 + 3x

)

=
10

17
ln

(

20

3 + 17/Λ

)

= /Λ → ∞/ =
10

17
ln

20

3
. (138)

Combining this with the results in eq. 132 gives the approximate solution for
the polarization

βl(η0) =
1

17
ln

20

3
il∆ηdḣ(ηd)jl(k(ηd − η0))D(k) (139)

where

D(k) =
1

2

(

e−α(k∆ηd1)
2

+ e−α(k∆ηd2)
2
)

. (140)

If the Gaussian fitting had been used, D(k) would have been

D(k) = e−α(k∆ηd)2 (141)

Together with eq. 73 and eq. 74 the expression for the magnetic and electric
polarization spectra is calculated,

CXX
l =

1

16π

(

1

17
ln

20

3

)2 ∫

P 2
Xl(k(η − η0))|ḣ(ηd)|2∆η2

dD
2(k)k2dk. (142)

The index X can be either G or C,

PGl(x) =
(l + 2)(l + 1)

(2l − 1)(2l + 1)
jl−2(x)+

6(l − 1)(l + 2)

(2l − 1)(2l + 3)
jl(x)+

l(l − 1)

(2l + 3)(2l + 1)
jl+2(x)

(143)
and

PCl(x) =
2(l + 2)

2l + 1
jl−1(x) −

2(l − 1)

2l + 1
jl+1(x). (144)

9 Results and Discussion

The CMB polarization was generated by RGWs at the surface of last scattering,
i.e. when matter and light decoupled. The greatest contribution to the polar-
ization is from RGWs with wavelengths that entered the horizon just before
the last scattering. This is because RGWs with wavelengths larger than the
horizon size at decoupling does not change during the time the decoupling takes
place. When a gravitational wave enters the horizon the amplitude quickly de-
creases and then enters an oscillatory stage with a slowly decaying amplitude [8].
Therefore the waves that enter the horizon at penultimate scattering will give
the greatest polarization. Waves that entered the horizon before penultimate
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scattering will still contribute, but not as much. Shorter wavelengths having
lesser impact.

The final expression for the magnetic and electric polarization spectra eq. 142

contains a numerical factor 1
16π

(

1
17 ln 20

3

)2
. Without the extra damping fac-

tor that appeared in the second order approximation of [1] this factor would

be 1
16π

(

1
7 ln 10

3

)2
(B). The expression also contains the damping factor D2(k)

which depends on the parameter α ∈ [0, 2], the width of the decoupling ∆η2
d,

the amplitude of the time derivative of the gravitational waves |ḣ(ηd)|2 and a
combination of spherical Bessel functions jl(k(ηd − η0)). Different features of
the universe influence these parts in different ways, and thereby cause different
changes in the polarization spectra.

To determine CXX
l the initial amplitude of ḣ(ηd) is necessary, but this de-

pends on the ratio between the tensor and scalar perturbations r [1],

r =
Ph(k0)

PR(k0)
. (145)

The ratio is yet undetermined by observations, but some constraint has been
given by the observation of the temperature anisotropies, which is generated
both from scalar and tensorial perturbations. The third year report from
WMAP limits r < 0.22 at 95% C.L. and r < 0.37 at 99.9% C.L. [1]. Here,
r is taken as a parameter and the power spectra dependence on r is examined.
WMAP observations indicates that the power spectrum of scalar perturbations
is

PR(k0) = 2.95 × 10−9A(k0) (146)

with pivot wavenumber k0 = 0.05 Mpc−1 and amplitude A(k0) ≃ 0.8 [1]. With
a RGW spectrum index nT = 0 (scale-invariant), the amplitude from eq. 79
AT = 2.95 × 10−9A(k0)r. A smaller r yields a smaller amplitude AT and
greater difficulties in detecting the CMB polarization.

9.1 The Effect of the Visibility Function

The electric and magnetic type of power spectrum, CGG
l and CCC

l , calculated
from eq. 142 and the numerical results from cmbfast, with tensor to scalar ratio
r = 1, can be seen in fig. 7 and 8 [1]. The first and highest peak of the spectra can
be found around l ≃ 100. The figures include both the result using the Gaussian
and the half-Gaussian approximation for the visibility function, leading to the
two different damping factors D(k), eq. 141 and 140. CCC

l and CGG
l have a high

sensitivity to the visibility function, i.e. to D(k), at large l implying that D(k)
is more significant at small scales. A larger α causes a heavier damping. In the
half-Gaussian approximation, CCC

l for α = 1.7 fits the numerical results well at
the third peak, but are a bit too high for the second one, while α = 2 is good at
the second peak but too low at the third. Both the Gaussian and half-Gaussian
approximations yields a too low power spectrum. Comparing them, with the
same α, shows that the Gaussian visibility function gives a greater damping than
the half-Gaussian. This is because e−α(k∆ηd) < 1/2(e−α(k∆ηd1) + e−α(k∆ηd2)) in
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the region where the wavenumber k is sufficiently large for the D(k) term to
have a noticeable effect.
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Fig. 7: The electric polarization spectrum CGG
l . Numerical results from cmbfast

code (solid line), results using half-Gaussian with α = 1.7, 2 and Gaussian
approximation with α = 2 (dotted lines). Figure from [1].

9.2 The Dependence on Tensor/Scalar Ratio

The analytic expression (142) shows that CXX
l ∝ |ḣ(ηd)|2. In a scale invari-

ant universe (nT ≃ 0), |ḣ(ηd)| is directly related to the tensor/scalar ratio r.
Fig. 9 shows the magnetic polarization power spectrum CCC

l with three differ-
ent values r = 0.3, 0.1, 0.01 as well as estimates of the sensitivity of WMAP
and Planck (one-sigma sensitivity estimates). The WMAP estimate is based on
noise measured during 8 years of operation, while the Planck estimate is based
on 1.2 year of testing with a prototype [1] (Planck is planned to be launched on
July 31st 2008 [22]). As seen in fig. 9 any detection of the magnetic polarization
spectrum from the WMAP would be highly unlikely, but Planck should be able
to observe CCC

l from RGWs for r > 0.1.
The effect of reionization was left outside our analytic derivation. It will

cause another peak in the visibility function, long after the decoupling, and give
an additional contribution to the power spectra. Results from WMAP indicate
that the reionization has an optical depth κr = 0.09 ± 0.03 [10]. Numerical
calculations using cmbfast include this effect and it can be observed as the first
peak at low l in fig. 10 [1].
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Fig. 8: The magnetic polarization spectrum CCC
l . Numerical results from cmb-

fast code (solid line), results using half-Gaussian with α = 1.7, 2 and Gaussian
approximation with α = 2 (dotted lines). Figure from [1].

9.3 Dependence on the Baryon Density

CXX
l depends directly on the width of the decoupling, ∆ηd, but also on the

damping factor D(k), which in turn depends on ∆ηd. At very large scales (very
small l) the effect of D(k) is neglectable and a smaller ∆ηd will cause a lower
spectrum. When the scale is smaller (large l) the contribution of D(k) can no

longer be ignored. For a fixed k, D(k) = 1
2 (e−α(k∆ηd1)

2

+ e−α(k∆ηd1)
2

) grows
when ∆ηd decrease, causing a more complex dependence. The total effect is
determined by CXX

l ∝ ∆η2
dD

2(k).
The decoupling speed is mainly determined by the baryon density Ωb. In

the flat ΛCDM universe a larger Ωb will increase the decoupling speed and ∆ηd

will be smaller. A fitting function for the optical depth is

κ(z) = Ωc1

b

( z

1000

)c2

(147)

where c1 = 0.43 and c2 = 16 + 1.8 ln(Ωb).[1]
A larger Ωb causes a larger κ and therefore a more localized visibility function

V (η) and a smaller ∆ηd. The influence of Ωb on V (η) can be seen in fig. 11. Fig.
12 shows the influence of Ωb on the magnetic polarization spectrum. Where a
larger density, i.e. a shorter decoupling time, gives a lower spectrum.
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Fig. 9: The analytic magnetic polarization spectrum CCC
l with tensor to scalar

ratio r = 0.3, 0.1, 0.01 in the ΛCDM universe with Ωb = 0.044, Ωdm =
0.226 and ΩΛ = 0.73. Dotted lines are WMAP and Planck satellite sensitivity
estimates for measuring the CMB magnetic polarization signal. Figure from [1]
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Fig. 10: The numerical magnetic polarization spectrum CCC
l with tensor to

scalar ratio r = 0.3, 0.1, 0.01 in the ΛCDM universe with Ωb = 0.044, Ωdm =
0.226 and ΩΛ = 0.73. Dotted lines are WMAP and Planck satellite sensitivity
estimates for measuring the CMB magnetic polarization signal. Figure from [1]
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Fig. 11: Dependence of the visibility function V (η) on the baryon density Ωb

in the ΛCDM universe with ΩΛ = 0.73 and Ωdm = 1 − ΩΛ − Ωb. Figure from
[1].
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9.4 Location of the Peaks

The CXX
l spectrum peak at l ≃ 100, fig. 7 and 8. P 2

Gl(k(ηd − η0)), eq. 143,
and P 2

Cl(k(ηd − η0)), eq. 144, are combinations of spherical Bessel functions
jl(k(ηd−η0)). Their graphs for l = 100 can be seen in fig. 13 and 14 respectively.

The spherical Bessel functions jl(x), x >> 1 peaks about l ≃ x [1]. Therefore
jl(k(ηd − η0)) peaks around l ≃ k(ηd − η0) ≃ kη0 for l >> 1. Fig. 13 shows that
PGl peaks at kη0 ≃ l and fig. 14 shows that PCl peaks at kη0 ≃ 1.27l. This
implies that the peak location of the polarization power spectrum is given by

CXX
l ∝ |ḣ(ηd)|2k2D2(k)|k=l/η0

. (148)

D(k) causes a greater damping at larger l so the first peak has the highest
amplitude. Studying the first peak, with D(k) ≈ 1. Eq. 89 gives

|ḣ(ηd)|2 = A2
0k

2(
ηe

ηd
)2 |A1j2(kηd) +A2y2(kηd)|2 . (149)

For RGWs with a wavelength comparable to the horizon size at decoupling (l ∼
100) A1j2(kηd) >> A2y2(kηd) and the last term can be neglected. Therefore
|ḣ(ηd)|2 ∝ |A1j2(kηd)|2 and since j2(kηd) peaks at kηd ≃ 3, |ḣ(ηd)|2 peaks at
kηd ≃ 3, thereby causing the CXX

l to peak around

l ≃ kη0 ≃ 3η0/ηd. (150)

A ΛCDM universe with ηd/η0 = 0.0195 gives a value of kη0 ≃ 154. This
result is based on the sudden transition approximation of a(η). Using the WKB
approximation, numerical calculations show that |ḣ(ηd)|2k2 peaks at kη0 ∼ 127,
fig. 15, and the analytic results is approximately correct.

The value of ηd/η0 is mainly determined by the dark energy, ΩΛ, and the
baryon density Ωb. A larger ΩΛ gives a larger η0/ηd and a longer lifetime of the
universe. This would increase l in eq. 150, giving a way to study the age of the
universe through CMB polarization. [1]

The time evolution of the gravitational wave ḣ(η) also depends on the dark
energy, fig. 16. As seen in the figure, a larger ΩΛ shifts the peaks of ḣ(η)
to smaller scales and thereby causing a shift of the peaks in the polarization
spectrum CXX

l to smaller scales, fig. 17.
The baryon density, Ωb, also affect the decoupling time ηd. If ΩΛ is held

fixed a larger Ωb increases ηd, causing a smaller 3ηd/η0 and the peaks of CXX
l

shifts slightly to larger scales, as can be seen in fig. 12.

9.5 Influence of the spectrum index

The spectrum index nT influences the spectrum of both the magnetic and the
electric type through |ḣ(ηd)|2. Fig. 18 show the electric spectrum with three
different values, nT = −0.1, 0.0, 0.1. A larger value corresponding to a higher
spectrum. This is because |ḣ(ηd)|2 differs from zero only at larger kη0, fig. 3,
and |ḣ(ηd)| ∝ k|h(ηd)| and k3|h(ηd)|2 ∝ knT . For a large k, a larger nT causes
a larger |ḣ(ηd)| and a stronger polarization power spectrum CXX

L .
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Fig. 12: Dependence of the magnetic polarization spectrum CCC
l on the baryon

density in ΛCDM universe with ΩΛ = 0.73 and Ωdm = 1−ΩΛ −Ωb and r = 1.
Figure from [1].
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Gk(k) with l = 100 as a function of wavenumber k. Peaked around

kη0 ∼ 100. Figure from [1].
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Fig. 14: P 2
Ck(k) with l = 100 as a function of wavenumber k. Peaked around

kη0 ∼ 127. Figure from [1].
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10 Conclusions

The effect on the polarization in the CMB from metric perturbations due to
gravitational waves has been studied analytically in this thesis. The polarization
caused by metric perturbations induced by relic gravitational waves are different
from those induced by scalar perturbations. The derived analytic expression has
qualitatively explained the features of the polarization spectra obtained by more
exact numerical calculations and give an insight in the physics behind.

The greatest cause of polarization arise due to the gravitational waves that
enter the horizon between penultimate and last scattering. The polarization
spectra have a strong dependence on the width of decoupling and thereby the
visibility function at that time. Also, the derivations have shown that including
the effect of photon diffusion, i.e. the second order of the tight coupling, does
not produce an extra, wavenumber independent damping factor.

The dependence of the spectra on different cosmological parameters give the
CMB polarization measurements a position as one of the key projects of astro-
physics and cosmology. Measurements of polarization in the CMB might soon
be within observational reach and the results, weather they are detected or not,
will constrain theories about the development in the early universe. Therefore
the analytical insight in the physics causing this polarization is important.
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A Appendix

A.1 Transverse-Traceless Gauge

This section is only valid in Minkowski space, with a metric tensor gαβ = ηαβ +
hαβ where ηαβ is the Minkowski spacetime and the scale factor a(η) = 1. The
different convention with the minus sign in front of the time part of the metric
is used and time is denoted by t. However, locally one can always work in a
Minkowski space thus the result should hold for gravitational waves of short
enough wavelengths for the Minkowski approximation to be good.
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Einstein’s equation in vacuum is [4]

(

− ∂2

∂t2
+ ∇2

)

h̄αβ = 0 (151)

Where h̄αβ is the trace reverse of hαβ ,

h̄αβ = hαβ − 1

2
ηαβh. (152)

ηαβ is here the metric of a flat universe. Eq. 151 has a solution of the form

h̄αβ = Aαβeikµxα

. (153)

This implies that
h̄αβ

µ = kµh̄
αβ . (154)

Combining with h̄αβ
,β = 0 gives

Aαβkβ = 0, (155)

meaning that the amplitudes of the gravitational wave must be orthogonal to the
direction of propagation, k̂. Using the gauge freedom to choose the transverse-
traceless gauge imposing the two more conditions on the amplitude

Aα
α = 0 (156)

and
AαβU

β = 0 (157)

where Uβ is any fixed four momentum, i.e. any constant timelike vector. The
first condition implies that h̄αβ = hαβ . While the second condition together
with the previous orthogonality one implies that

ATT
αβ =









0 0 0 0
0 Axx Axy 0
0 Axy −Axx 0
0 0 0 0









(158)

It is then obvious that there can only be two independent polarizations modes
of gravitational waves. These two correspond to the h+ and h× polarizations.

A.2 Base Functions for Thomson Scattering

The perturbed radiation a = (1 − µ′2) cos 2(φ′ − φ)





1
1
0



 is Thomson scat-

tered,

J =
1

4π

∫ 1

−1

dµ′
∫ 2π

0

dφ′ ×
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



µ2µ′2 cos 2(φ′ − φ) −µ2 cos 2(φ′ − φ) µ2µ′2 sin 2(φ′ − φ)
−µ′2 cos 2(φ′ − φ) cos 2(φ′ − φ) −µ′ sin 2(φ′ − φ)
−2µµ′2 sin 2(φ′ − φ) 2µ sin 2(φ′ − φ) 2µµ′ cos 2(φ′ − φ)



 ×

(1 − µ′2) cos 2φ′





1
1
0





=
3

32

∫ 1

−1

dµ′(1 − µ′2)





µ2µ′2 cos 2φ −µ2 cos 2φ 0
−µ′2 cos 2φ cos 2φ 0
−2µµ′2 sin 2φ 2µ sin 2φ 0





=
1

320





−16µ2 cos 2φ
16 cos 2φ

−32µ sin 2φ





=
1

20
(a − b), (159)

where

b =
1

2





(1 + µ2) sin 2φ
−(1 + µ2) sin 2φ

4µ cos 2φ



 . (160)

Similar calculations lead to essentially the same results for the h× polariza-
tion. Hence, as radiation polarized by RGWs undergo Thomson scattering the
polarization is changed to a linear combination of ã and b̃.

A.3 Sachs-Wolfe Effect

The derivation of the Sachs-Wolfe effect in the FRW-universe to first order in
the perturbations. The Geodesic Equation is

d2xµ

dλ2
= −Γµ

αβ

dxα

dλ

dxβ

dλ
. (161)

For a photon
gµνP

µP ν = 0 (162)

and
d

dλ
=
dx0

dλ

d

dx0
=
dη

dλ

d

dη
= P 0 d

dη
. (163)

P 0 is the photon energy, which is constant in an unperturbed universe, multi-
plied by the scale factor a. [2] The perturbed metric is

ds2 = gµνdx
µdxnu = a2

[

dη2 − (δij + hij)dx
idxj

]

. (164)

Taking the 0’s component of the geodesic equation, the left hand side is

d2x0

dλ2
=

d

dλ
P 0 = P 0 d

dη
P 0 =

1

a2
P0

d

dη

(

1

a2
P0

)

=
1

a4
P0

(

d

dη
P0 −

2

a
P0

d

dη
a

)

. (165)
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For the right hand side the Christoffel symbols are needed,

Γµ
βα =

1

2
gµν (gνα,β + gνβ,α + gαβ,ν) (166)

⇒











Γ0
00 = 1

2a2 g00,0 = 1
2a2

d
dηa

2

Γ0
ii = 1

2a2 gii,0 = 1
2a2

d
dηa

2(1 + hii)

Γ0
ij = Γ0

ji = 1
2a2

d
dηa

2(hij) ∀i 6= j

. (167)

Thus, with µ = 0

−Γµ
αβ

dxα

dλ

dxβ

dλ
= −Γ0

00(P
0)2 − Γ0

xx(P x)2 − Γ0
yy(P y)2 − Γ0

zz(P
z)2

−2Γ0
xyP

xP y − 2Γ0
xzP

xP z − 2Γ0
yzP

yP z

= − 1

2a2

[

(P 0)2
d

dη
a2 + P iP j d

dη
a2(1 + hij)

]

= − 1

2a2

[

(P 0)2
d

dη
a2 + P iP j(1 + hij)

d

dη
a2 + P iP ja2 d

dη
hij

]

= − 1

a2
(P 0)2

d

dη
a2 − 1

2
P iP j d

dη
hij , (168)

where

0 = gµνP
µP ν = a2

(

(P 0)2 − δijP
iP j − hijP

iP j
)

(169)

and
(P 0)2 = δijP

iP j + hijP
iP j (170)

have been used in the last equality. The first term on the RH side cancels out
the second term in the LH side and what’s left is

1

a4
P0

d

dη
P0 = −1

2

dhij

dη
P iP j . (171)

On the RH side there already is one power of h+, thus to first order

Pµ =
(

P 0, P 0 sin θ sinφ, P 0 sin θ cosφ, P 0 cos θ)
)

(172)

Which gives us

1

P0

d

dη
P0 = −1

2

dhij

dη

P iP j

(P 0)2
= −1

2

dhij

dη
n̂in̂j . (173)

Substituting P0 with the frequency yields the general expression for the Sachs-
Wolfe effect,

1

ν

dν

dη
=

1

2

∂hij

∂η
n̂in̂j . (174)
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A.4 Coupled Differential Equations

A.4.1 Unperturbed Radiation

Examining the Boltzmann equation, eq. 45 for the unperturbed radiation, i.e.
f0.

f0 =
1

ehν/kT − 1
(175)

∂f0
∂η

= 0 (176)

since f0 is independent of the conformal time.

∂f0
∂xi

= 0 (177)

since there is no explicit dependence on any spatial coordinate. The part orig-
inating from the Thomson scattering q[f − J ] equals zero because due to the
spherical symmetry of the scattering matrix

J(f0) = f0 (178)

and in the unperturbed part there is no gravitational perturbation so the grav-
itational term vanishes as well.

A.4.2 Perturbed Radiation

Specializing eq. 62 to the case of RGWs with h+ polarization by substituting
f1 in eq. 58.

1

2
cos 2φ(1 − µ2)





1
1
0



 (ζ̇k + ikµζk) +
1

2





(1 + µ2) cos 2φ
−(1 + µ2) cos 2φ

4µ sin 2φ



 (β̇k + ikµβk)

= −1

2

v

f0

∂f0
∂ν0

(1 − µ2) cos 2φ
dhk(η)

dη

−q(η)1

2



ζk(1 − µ2)





1
1
0



 cos 2φ+ βk





(1 + µ2) cos 2φ
−(1 + µ2) cos 2φ

4µ sin 2φ







 + qJ̃ . (179)

Moving all the terms containing ζk or βk to the LH side, the result is,

1

2
cos 2φ(1 − µ2)





1
1
0



 (ζ̇k + ikµζk) +
1

2





(1 + µ2) cos 2φ
−(1 + µ2) cos 2φ

4µ sin 2φ



 (β̇k + ikµβk)

−q(η)1

2



ζk(1 − µ2)





1
1
0



 cos 2φ+ βk





(1 + µ2) cos 2φ
−(1 + µ2) cos 2φ

4µ sin 2φ









= −1

2

v

f0

∂f0
∂ν0

(1 − µ2) cos 2φ
dhk

dη
+ qJ̃ . (180)
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This gives three different equations:

(1 − µ2)ζ̇k + (1 + µ2)β̇k + (ikµ+ q)
[

(1 − µ2)ζk + (1 + µ2)βk

]

= −(1 − µ2)
v

f0

∂f0
∂ν0

dhk

dη
+

2q

cos 2φ
J1 (181)

(1 − µ2)ζ̇k − (1 + µ2)β̇k + (ikµ+ q)
[

(1 − µ2)ζk − (1 + µ2)βk

]

= −(1 − µ2)
v

f0

∂f0
∂ν0

dhk

dη
+

2q

cos 2φ
J2 (182)

4µ sin 2φ
[

β̇k + (ikµ+ q)βk

]

= cos 2φ[−(1 − µ2)
v

f0

∂f0
∂ν0

dhk

dη
+ 2qJ3]. (183)

J̃ is given by eq. 46.

J̃ =
3

16π

∫ 1

−1

dµ′
∫ 2π

0

dφ′ ×




µ2µ′2 cos 2(φ′ − φ) −µ2 cos 2(φ′ − φ) µ2µ′ sin 2(φ′ − φ)
−µ′2 cos 2(φ′ − φ) cos 2(φ′ − φ) −µ′ sin 2(φ′ − φ)
−2µµ′2 sin 2(φ′ − φ) 2µ sin 2(φ′ − φ) 2µµ′ cos 2(φ′ − φ)



 ×





ζk
2

(1 − µ′2) cos 2φ′





1
1
0



 +
βk

2





(1 + µ′2) cos 2φ′

−(1 + µ′2) cos 2φ′

4µ′ sin 2φ′









=
3

16π

∫ 1

−1

dµ′π





µ2µ′2 cos 2φ −µ2 cos 2φ µ2µ′ cos 2φ
−µ′2 cos 2φ cos 2φ −µ′ cos 2φ
2µµ′2 sin 2φ −2µ sin 2φ 2µµ′ sin 2φ



 ×





ζk
2

(1 − µ′2)





1
1
0



 +
βk

2





(1 + µ′2)
−(1 + µ′2)

4µ′







 , (184)

here
∫ 2π

0

cos 2(φ′ − φ) cos 2φ′dφ′ = π cos 2φ, (185)

∫ 2π

0

sin 2(φ′ − φ) cos 2φ′dφ′ = −π sin 2φ, (186)

∫ 2π

0

cos 2(φ′ − φ) sin 2φ′dφ′ = π sin 2φ, (187)

∫ 2π

0

sin 2(φ′ − φ) sin 2φ′dφ′ = π cos 2φ (188)

was used. This leads to the different J’s:

J1 =
3

32
µ2 cos 2φ

∫ 1

−1

dµ′[−(1 − µ′2)2ζk + (1 + µ′2)2βk + 4µ′2βk]

=
3

16
µ2 cos 2φI (189)
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J2 =
3

32
cos 2φ

∫ 1

−1

dµ′[(1 − µ′2)2ζk − (1 + µ′2)2βk − 4µ′2βk]

= − 3

16
cos 2φI (190)

I(η, k) =

∫ 1

−1

dµ′[(1 + µ′2)2βk − 1

2
(1 − µ′2)2(ζk + βk)] (191)

Plugging this into eq. 181 and 182:

(1 − µ2)ζ̇k + (1 + µ2)β̇k + (ikµ+ q)
[

(1 − µ2)ζk + (1 + µ2)βk

]

= −(1 − µ2)
v

f0

∂f0
∂ν0

dhk

dη
+

3q

8
µ2I (192)

and

(1 − µ2)ζ̇k − (1 + µ2)β̇k + (ikµ+ q)
[

(1 − µ2)ζk − (1 + µ2)βk

]

= −(1 − µ2)
v

f0

∂f0
∂ν0

dhk

dη
− 3q

8
I (193)

Multiplying eq. 193 by µ2, adding it to eq. 192 and dividing by two to obtain
eq. 195. Subtracting eq. 193 from eq. 192 leads to eq 194.

(1 + µ2)β̇k + (ikµ+ q)(1 + µ2)βk = (1 + µ2)
3q

16
I (194)

ζ̇k + β̇k + (ikµ+ q)(ζk + βk) = − v

f0

∂f0
∂ν0

dhk

dη
(195)

Dividing the first one by (1 + µ2), define

ξk = ζk + βk (196)

and note that

− v

f0

∂f0
∂ν0

dhk

dη
=
d ln f0
d ln ν0

ḣk. (197)

The result is

β̇k + (ikµ+ q)βk =
3q

16
I (198)

ξ̇k + (ikµ+ q)ξk =
d ln f0
d ln ν0

ḣk (199)

Repeating the calculations for h× leads to the same result, so the ḣ in eq. 199
can be either ḣ+ and ḣ×. In the Rayleigh-Jeans zone ln f0

ln ν0
≈ 1 [1].



46 A APPENDIX

A.5 Curl and Divergence of Spherical Harmonics

The covariant derivatives of the spherical harmonics on the two sphere are







Y(lm):θθ = Y(lm),θθ

Y(lm):θφ = Y(lm):φθ = Y(lm),θφ − cot θY(lm),φ

Y(lm):φφ = Y(lm),φφ + sin θ cos θY(lm),θ

(200)

The divergence is therefore

Y c
(lm):c = gµcY =

(lm):cµg
θθY(lm):θθ + gφφY(lm):φφ

= Y(lm):θθ +
1

sin2 θ
Y(lm):φφ (201)

Y G
(lm)θθ = Nl(Y(lm):θθ −

1

2
gθθY

c
(lm):c )

=
Nl

2
(Y(lm),θθ −

Y(lm),φφ

sin2 θ
− cot θY(lm),θ) (202)

Y G
(lm)θφ = Y G

(lm)φθ = NlY(lm)θφ (203)

Y G
(lm)φφ = − sin2 θY G

(lm)θθ (204)

and the curl is

Y C
(lm)θθ = −2

Y(lm):θφ

sin θ
=

−2m

sin θ
(∂θ − cot θ)Y(lm)

Y C
(lm)φφ = −2Y(lm):φθ sin θ = 2m sin θ(∂θ − cot θ)Y(lm)

Y C
(lm)φθ = Y C

(lm)θφ = Y(lm):θθ sin θ − Y(lm):φφ

sin θ

=

(

sin θ∂2
θ − m2

sin θ
− cos θ∂θ

)

Y(lm) (205)

The divergence and curl of the spherical harmonics are

Y G
(lm)ab(n̂) =

Nl

2

(

W(lm) X(lm) sin θ
X(lm) sin θ −W(lm) sin2 θ

)

(206)

and

Y G
(lm)ab(n̂) =

Nl

2

(

−X(lm) W(lm) sin θ
W(lm) sin θ X(lm) sin2 θ

)

(207)

defining W (n̂) and X(n̂).

W(lm)(θ, φ) =

(

∂2
θ − cot θ∂θ +

m2

sin2 θ

)

Y(lm)

=

(

−2 cot θ∂θ + 2
m2

sin2 θ
− l(l + 1)

)

Y(lm) (208)
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Expressing the spherical harmonics in Legendre polynomials

Y(lm)(θ, φ) =

√

(2l + 1)

4π

(l −m)!

(l +m)!
P(lm)(cos θ)eimφ (209)

and then using the recurrence relation [7]

−(1 + µ2)
dPm

l (µ)

dµ
= lµPm

l − (l +m)Pm
l−1, (210)

W(lm) = 2

√

(2l + 1)

4π

(l −m)!

(l +m)!
eimφ

(

− cot θ∂θ +
m2

sin2 θ
− l(l + 1)

2

)

Pm
l

= 2

√

(2l + 1)

4π

(l −m)!

(l +m)!
eimφ

×
[ µ

µ2 − 1

(

lµPm
l − (l +m)Pm

l−1

)

+
m2

1 − µ2
P 2

l − l(l + 1)

2
P 2

l

]

= 2

√

(2l + 1)

4π

(l −m)!

(l +m)!
eimφ

×
[

m− l

sin2 θ
Pm

l +
l(l − 1)

2
Pm

l +
cos θ(l +m)

sin2 θ
Pm

l−1

]

. (211)

Similarly

X(lm) =
i2m

sin θ
(∂θ − cot θ)Y(lm) = 2m(∂µ + cot θ)Y(lm)

= −2im

√

(2l + 1)

4π

(l −m)!

(l +m)!
eimφ(∂µ + cot θ)Pm

l

= 2

√

(2l + 1)

4π

(l −m)!

(l +m)!
eimφ

[

cos θ

sin2 θ
(l − 1)Pm

l − (l +m)

sin2 θ
Pm

l−1

]

.(212)

A.6 Expansion Coefficients

The expansion coefficients are given by:

aG
(lm) =

1

T

∫

dn̂Pab(n̂)Y G ab∗
(lm) (n̂) (213)

aC
(lm) =

1

T

∫

dn̂Pab(n̂)Y C ab∗
(lm) (n̂) (214)

where

Y G
(lm)ab = Nl

(

Y(lm):ab −
1

2
gabY

c
(lm):c

)

(215)
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Y C
(lm)ab =

Nl

2

(

Y(lm):acǫ
c
b + Y(lm):bcǫ

c
a

)

(216)

where
Nl =

√

2(l − 2)!/(l + 2)! (217)

and

Pab(n̂) =
1

2

(

Q(n̂) −U(n̂) sin θ
−U(n̂) sin θ −Q(n̂) sin2 θ

)

(218)

Integrating eq. 213 by parts to obtain

aG
(lm) =

Nl

T0

∫

dn̂Y ∗
(lm)P

:ab
ab (219)

and

aC
(lm) =

Nl

T0

∫

dn̂Y ∗
(lm)P

:ac
ab ǫ b

c . (220)

A.6.1 The Electric Type

The coefficient of the electric type of polarization aG
(lm).

P :ab
ab = P ab

:ab = P θθ
,θθ + 2P θφ

θφ + Pφφ
φφ − sin θ cos θPφφ

θ + 2 cot θP θθ
θ

+4 cot θP θφ
φ + (1 − 3 cos2 θ)Pφφ − P θθ. (221)

Plugging the different components of the polarization tensor Pab and changing
the derivative with respect to θ to the derivative with respect to µ yields

1

2

{

sin2 θQ,µµ + 2U,µφ − Q,φφ

sin2 θ
− 4µQ,µ − 2µU,φ

sin2 θ
− Q

sin2 θ
+

µ2Q

sin2 θ
−Q

}

(222)

From eq. 56 and 58 it follows that

Q(θ, φ) =
T0

4

∑

l

(2l + 1)Pl(cos θ)(1 + cos2 θ) cos 2φβl (223)

U(θ, φ) =
T0

4

∑

l

(2l + 1)Pl(cos θ)2 cos θ sin 2φβl. (224)

Taking these expansions and performin the derivations on φ gives

T0

8

∑

l

(2l + 1)βl cos 2φ
{

(1 − µ2)[(1 + µ2)Pl],µµ − 4µ[(1 + µ2)Pl],µ

+

(

3 − µ2

1 − µ2
− q

)

[(1 + µ2)Pl] + 8[µPl],µ − 8µ

1 − µ2
[µPl]

}

=
T0

8

∑

l

(2l + 1)βl cos 2φ

×
{

(1 − µ2)(1 + µ2)Pl,µµ + 8µ(1 − µ2)Pl,µ + 12(1 − µ2)Pl

}
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=
T0

8

∑

l

(2l + 1)βl cos 2φ

×
{

(1 + µ2)P 2
l − 8µ(1 − µ2)1/2P 1

l + 12(1 − µ2)P 0
l

}

. (225)

In the last equality Pl was transformed into Pm
l by [7]

Pm
l (µ) = (−1)m(1 − µ2)m/2 d

mPl

dµm
. (226)

Continuing by using the two recurrence relations [7]

(2l + 1)µPm
l = (l −m+ 1)Pm

l+1 + (l +m)Pm
l−1 (227)

−(2l + 1)(1 − µ2)1/2Pm
l = Pm+1

l+1 − Pm+1
l−1 (228)

leads to

T0

8

∑

l

βl cos 2φ

×
{

P 2
l+2

[

l(l − 1) + 8l + 12

2l + 3

]

+P 2
l

[

2l + 1 +
(l − 1)(l + 3) + 8(l + 3) − 12

2l + 3
+

(l + 2)(l − 2) − 8(l − 2) − 12

2l − 1

]

+P 2
l+2

[

(l + 2)(l + 1) − 8(l + 1) + 12

2l − 1

]

}

=
T0

8

∑

l

βl cos 2φ
{

AlP
2
l+2 +BlP

2
l ClP

2
l+2

}

(229)

where the last step defines Al, Bl and Cl. Rewriting cos 2φ in exponential form,
defining

Dl =

√

4π

2l + 1

(l + 2)!

(l − 2)!
(230)

and transforming the Legendre polynomials into spherical harmonics results in

P :ab
ab =

T0

16

∑

l

βl

{

AlDl+2

(

Y(l+2,2) + Y(l+2,−2)

)

+BlDl

(

Y(l,2) + Y(l,−2)

)

+ClDl−2

(

Y(l−2,2) + Y(l−2,−2)

)

}

. (231)

Going back to eq. 219 to calculate aG
(lm),

aG
(lm) =

Nl

T0

∫

dn̂Y ∗
(lm)P

:ab
ab
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=
Nl

16

∑

l′

βl′

×
{

Al′Dl′+2

∫

dn̂Y ∗
(lm)

(

Y(l+2,2) + Y(l+2,−2)

)

+Bl′Dl′

∫

dn̂Y ∗
(lm)

(

Y(l,2) + Y(l,−2)

)

Cl′Dl′−2

∫

dn̂Y ∗
(lm)

(

Y(l−2,2) + Y(l−2,−2)

)

}

. (232)

The orthogonality property of the spherical harmonics [6]

∫

dn̂Y ∗
(lm)Y(l′m′) = δl,l′δm,m′ (233)

will reduce the sum of l and force m = ±2.

aG
(lm) =

1

8
(δm,2 + δm,−2)

√

2π

2l + 1
[Al−2βl−2 +Blβl + Cl+2βl+2]

=
1

8
(δm,2 + δm,−2)

√

2π

(2l + 1)

[

(l + 2)(l + 1)βl−2

(2l − 1)

+
6(l − 1)(2l + 1)(l + 2)βl

(2l + 3)(2l − 1)
+
l(l − 1)βl+2

(2l + 3)

]

(234)

A.6.2 The Magnetic Type

P :ac
ab ǫ b

c = P ab
:acǫ

c
c

= sin θP θφ
,θθ + sin θPφφ

,φθ −
P θθ

,θφ

sin θ
−
Pφθ

,φφ

sin θ
− cos θ

sin2 θ
P θθ

,φ

+5 cos θP θφ
,θ + 3 cos θPφφ

,φ +
3 cos2 θ

sin θ
P θφ − 3 sin θP θφ

=
1

2

{

− U,θθ −
2Q,θφ

sin θ
+

U,φφ

sin2 θ
− 3 cos θ

sin θ
U,θ

−2 cos θ

sin2 θ
Q,φ + 2U

}

=
T0

8

∑

l

(2l + 1) sin 2φβl

×
{

− 2µ(1 − µ2)Pl,µµ + −8(1 − µ2)Pl, µ
}

=
T0

4

∑

l

(2l + 1) sin 2φβl

×
{

− µP 2
l + 4(1 − µ2)1/2P 1

l

}

=
T0

4

∑

l

βl sin 2θ
{

(l + 3)P 2
l+1 − (l − 2)P 2

l−1

}
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=
iT0

8

∑

l

βl

{

(l + 3)D(l + 1)
(

Y(l+1,2) − Y(l+1,−2)

)

+(l + 2)D(l − 1)
(

Y(l−1,2) − Y(l−1,−2)

)

}

(235)

Thus calculating aG
(lm) from eq. 220

aC
(lm) =

Nl

T0

∫

dn̂Y ∗
(lm)P

:ac
ab ǫ b

c

=
iNl

8

∑

l′

βl′

{

(l′ + 3)Dl′+1

∫

dn̂Y ∗
(lm)

(

Y(l′+1,2) − Y(l′+1,−2)

)

+(l′ − 2)Dl′−1

∫

dn̂Y ∗
(lm)

(

Y(l′−1,2) − Y(l′−1,−2)

)

}

=
iNl

8
(δm,2 − δm,−2)

∑

l′

βl′
{

(l′ + 3)Dl′+1δl,l′+1 + (l′ − 2)Dl′−1δl,l′−1

=
i

4
(δm,2 − δm,−2)

√

2π

2l + 1
[(l + 2)βl−1 + (l − 1)βl+1] (236)

Y ∗
(lm) = (−1)mY(l,−m) (237)

P(l,−m) = (−1)m (l −m)!

(l +m)!
P(lm) (238)

Y ∗
(lm)(θ, φ) =

√

(2l + 1)

4π

(l −m)!

(l +m)!
P(lm)(cos θ)e−imφ (239)

∂n
φY

∗
(lm) = (−im)nY ∗

(lm) (240)

A.7 Solution to RGWs Equation of Motion

In the sudden transition approximation the solution of eq. 76 is divided into
three parts, for the three different eras of our universe. Since the time devel-
opment of h(η) is interesting primarly at the time of decoupling, ηd, only the
solution during the first two epochs is needed.

A.7.1 Radiation Era

During the radiation era, the scale factor from eq. 261,

a(η) = arη, (241)

gives the equation of motion for a RGW, eq. 76,

ḧ+
2

η
ḣ+ k2h(η) = 0. (242)
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Multiplying by η2 gives

η2ḧ+ 2ηḣ+ η2k2h(η) = 0, (243)

which is the radial part of Helmholtz equation with n = 0. The solution is then
on the form of spherical Bessel and Neumann functions. The Neumann solution
must be discarded because it can not fulfill the initial condition, eq. 77, since
y0(kη) tends towards minus infinity when kη approach zero, and the solution is

h(η) = A0j0(kη). (244)

A0 is determined from the initial condition eq. 78,

h(η = 0) = A0 = |h(k)| =

(

2π

k3
AT

(

k

k0

)nT
)1/2

. (245)

A.7.2 Matter Era

In the matter dominated universe the scale factor is, eq. 263 approximately

a(η) = amη
2, (246)

leading to an equation of motion

η2ḧ+ 4ηḣ+ η2k2h(η) = 0. (247)

Setting g = ηh give
η2g̈ + 2ηg + (η2k2 − 2)g = 0 (248)

which can be identified as the radial part of Helmholtz equation with n = 1
with the solution

g(η) = A1j1(kη) +A2y1(kη). (249)

Substituting g for ηh and the solution in the matter dominated era is

h(η) =
1

η
(A1j1(kη) +A2y1(kη)) . (250)

The constants A1 and A2 are determined by fitting the two solutions, for the
different eras, together at ηe. i.e. demanding the function and the first derivative
to be continuous. The solutions are

h(η) = A0j0(kη), η ≥ ηe (251)

h(η) = A0

(

ηe

η

)

[A1j1(kη) +A2y1(kη)] , ηe < η ≤ ηE (252)

with the time derivatives

ḣ(η) = A0
d

dη
j0(kη), η ≥ ηe (253)

ḣ(η) = −A0

(

η2
e

η

)

[A1j1(kη) +A2y1(kη)]

+A0

(

ηe

η

)

[

A1j̇1(kη) +A2ẏ1(kη)
]

, ηe < η ≤ ηE . (254)
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At η = ηe

j0(kηe) = A1j1(kηe) +A2y1(kηe)

j̇0(kηe) = A1j̇1(kηe) +A2ẏ1(kηe) −
1

ηe
((A1j1(kηe) +A2y1(kηe)) .(255)

The spherical Bessel functions are

j0(kη) =
sin(kη)

kη
(256)

j1(kη) =
sin(kη)

k2η2
− cos(kη)

kη
(257)

y1(kη) = −cos(xη)

k2ηe
− sin(kη)

kη
. (258)

After some algebra the constants are

A2 =
j̇0j1 − j0j̇1 + (1/ηe)j0j1

ẏ1j1 − y1j̇1

=
2 − 2 cos(2kηe) − kηe sin(2kηe) − 2k2η2

e

2k2η2
e

(259)

and

A1 =
j0 −A2y1

j1

=
3kηe − kηe cos(2kηe) + 2 sin(2kηe)

2k2η2
e

. (260)

A.8 Sudden Transition Approximation

Solving eq. 80 in the sudden transition approximation. In the radiation era
η ≤ ηe,

ȧ2 = H2
0Ωra(η) ⇒ a(η) = H0

√

Ωrη +A (261)

where A = 0 to make a(0) = 0. The time of radiation/matter equality is then

ηe =
ae

H0

√
Ωr

, (262)

where ae = Ωr/Ωm.
At the time of matter domination

ȧ2 = H2
0aΩm ⇒ a(η) =

(

H0

√
Ωm

2
η +B

)2

. (263)

B can be determined with fitting the two solutions together,

B =

√

H0

√

Ωrηe −
1

2
H0

√

Ωmηe (264)



54 A APPENDIX

At the transition between matter and dark-energy domination the conformal
time is

ηE =
2(
√
aE −B)

H0

√
Ωm

, (265)

where aE = (Ωm/ΩΛ)1/2.
When the universe is dominated by dark energy ΩΛ

a =
1

C −H0

√
ΩΛη

(266)

where the constant C can be determined by fitting the solutions for the matter
and energy eras together,

C =
1

1
2H0

√
Ωm(ηE − ηe) +

√

H0

√
Ωrηe

+H0

√

ΩΛηE . (267)

To determine the present time η0 the normalization of a(η0) = 1 is used, i.e.

η0 =
C − 1

H0

√
ΩΛ

(268)

A.9 Tight Coupling Expansion

Expanding the set of equations, eq 110-113, in the small parameter 1/q by
defining ǫ = 1/q thus q is of order 1, while k and ḣ is of order ǫ. With the
anzats

ξl =
∑

n

ξ
(n)
l ǫn, (269)

and
βl =

∑

n

β
(n)
l ǫn. (270)

The time evolution is then
ξ̇l =

∑

n

ξ̇
(n)
l ǫn, (271)

and
β̇l =

∑

n

β̇
(n)
l ǫn. (272)

A.9.1 Zero Order

To zero order in ǫ
ξ̇
(0)
l = −qξ(0)l , l ≥ 0, (273)

β̇
(0)
0 = − 3

10
qβ

(0)
0 − 1

10
qξ

(0)
0 + q

(

3

35
β

(0)
4 +

5

7
β

(0)
2 − 3

70
ξ
(0)
4 +

1

7
ξ
(0)
2

)

(274)

and
β̇

(0)
l = −qβ(0)

l , l ≥ 1. (275)
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Since the radiation initially is unperturbed, ξ(0) = β(0) = 0,

ξ
(0)
l = β

(0)
l = 0, l ≥ 0 (276)

and therefore, to zero order in ǫ

ξl(η) = βl(η) = 0. (277)

A.9.2 First Order

To first order in ǫ

ξ̇
(1)
0 = −qξ(1)0 + ḣ,

ξ̇
(1)
l = −qξ(1)l , l ≥ 1 (278)

and

β̇
(1)
0 = − 3

10
qβ

(1)
0 − ikβ

(0)
1 − 1

10
qξ

(1)
0 + q

(

3

35
β

(0)
4 +

5

7
β

(0)
2 − 3

70
ξ
(0)
4 +

1

7
ξ
(0)
2

)

,

β̇
(1)
l = −qβ(1)

l − ik

2l + 1

(

lβ
(0)
l−1 + (l + 1)β

(0)
l+1

)

. (279)

Since the radiation initially is unperturbed, ξ(0) = β(0) = 0,

ξ
(1)
l = β

(1)
l = 0 l ≥ 1. (280)

Together with eq. 276 this leaves

ξ̇
(1)
0 = −qξ(1)0 + ḣ,

β̇
(1)
0 = − 3

10
qβ

(1)
0 − 1

10
qξ

(1)
0 , (281)

and therefore, to first order in ǫ

ξ̇0 + qξ0 = ḣ, (282)

β̇0 +
3

10
qβ0 = − 1

10
qξ0, (283)

ξl = βl = 0, l ≥ 1. (284)

A.9.3 Second Order

To second order in ǫ the ξl equations are

ξ̇
(2)
0 = −qξ(2)0 − ikξ

(1)
1 ,

ξ̇
(2)
1 = −qξ(2)1 − ik

3

(

ξ
(1)
0 + 2ξ

(1)
2

)

,

ξ̇
(2)
l = −qξ(2)l − ik

2l + 1

(

ξ
(1)
l−1 + 2ξ

(1)
l+1

)

, l ≥ 2. (285)
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Since the radiation initially is unperturbed, ξ(0) = 0,

ξ
(2)
l = 0, l ≥ 2. (286)

Combining this with eq. 280 the second order equations are

ξ̇
(2)
0 = −qξ(2)0 ,

ξ̇
(2)
1 = −qξ(2)1 − ik

3
ξ
(1)
0 , (287)

and therefore, to second order in ǫ

ξ̇0 = −qξ0 − ikξ1 + ḣ, (288)

ξ̇1 = −qξ1 −
ik

3
ξ0, (289)

ξl = 0, l ≥ 2. (290)

B Second Order Approximation

In the second order of the tight coupling approximation article [1] claims to find
an extra damping factor, exp(i

∫

qdη), independent of wavenumber, k. This
section will first redo their derivations and then solve the second approxima-
tion exactly. Comparing these solutions to the one obtained in the first order
approximation one realizes that there is no such extra damping. In the exact
solution there is an extra damping from a cosine term but the effect of this one
will not give the damping described in [1].

The first order of the tight coupling would result in a slightly different inte-

gral in eq. 135 giving a numerical factor of 1
16π

(

1
7 ln 10

3

)2
.

To get the damping caused by photon diffusion on smaller scales the second
order of 1/q is needed. Meaning that the fact that ξ1 differs, from zero because
of the ξ0 term in it’s equation, has to be included.

ξ̇0 = −qξ0 − ikξ1 + ḣ (291)

ξ̇1 = −qξ1 −
ik

3
ξ0 (292)

ξl = 0, l ≥ 2 (293)

Setting

ξ0 = C0e
i
∫

ωdη ⇒ ξ̇0 = C0iωe
i
∫

ωdη (294)

and

ξ1 = C1e
i
∫

ωdη ⇒ ξ̇1 = C1iωe
i
∫

ωdη (295)

and ignoring the variations of ω on the expansion scale ȧ/a. Plugging this into
eq. 291 and eq. 292 yields

C0iωe
i
∫

ωdη = −qC0e
i
∫

ωdη − ikC1e
i
∫

ωdη + ḣ (296)
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and

C1iωe
i
∫

ωdη = −qC1e
i
∫

ωdη − ik

3
C0e

i
∫

ωdη (297)

Ignoring ḣ which is close to zero at low frequency gives

iω = −q − C1

C0
ik (298)

and

iω = −q − C0

3C1
ik (299)

which implies that
C1

C0
= ± 1√

3
(300)

and then

ω = iq ± k√
3

(301)

This shows that ξ0 will get an extra damping factor (compared to the tight-

coupling limit), e−
∫

qdη independent of wavenumber k [1].
Solving the second order approximation exactly,

(

ξ̇0
ξ̇1

)

=

(

−q −ik
−ik/3 −q

) (

ξ0
ξ1

)

+

(

ḣ
0

)

= A

(

ξ0
ξ1

)

+

(

ḣ
0

)

. (302)

The eigenvalues to the matrix are

λ1 = −q − ik√
3

λ2 = −q +
ik√
3
, (303)

with eigenvectors

v1 =

(

1
1√
3

)

v2 =

(

1
−1√

3

)

. (304)

Defining the matrix

R =

(

1 1
1√
3

−1√
3

)

(305)

allow us to express ξ0,1 in the base where A is diagonalized,

(

ξ0
ξ1

)

= R

(

ψ0

ψ1

)

. (306)
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The differential equations decouple

(

ψ̇0

ψ̇1

)

= R−1AR

(

ψ0

ψ1

)

+R−1

(

ḣ
0

)

(307)

and can be solved separately

ψ0 =

∫ η0

0

ḣ

2
(η′)e−κ(η0,η′)e

− ik√
3
(η′−η0)dη′ (308)

ψ1 =

∫ η0

0

ḣ

2
(η′)e−κ(η0,η′)e

ik√
3
(η′−η0)dη′. (309)

Transforming back to the original base

ξ0 = ψ0 + ψ1 =

∫ η0

0

ḣ(η′)e−κ(η0,η′) cos

(

k√
3
(η′ − η0)

)

dη′, (310)

and the soluction to the first order approximation is

ξ0 =

∫ η0

0

ḣe−κ(η)dη =

∫ η0

0

ḣe−
∫

q(η′)dη′

dη. (311)

Instead of the k independent damping factor we can see an extra cos k√
3
(η′−η0)

in the exact solution to the second order approximation.
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