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ABSTRACT lower sidelobe levels, though the desired sidelobe levels a
Recent work has highlighted the benefits of exploiting ro-often not metdue_to imperfegt sensor calibration and/dtyfau
bust Capon beamformer (RCB) techniques in passive son&¥€NSOrs. Alternatively, adaptive beamformers based oorCap
Unfortunately, the computational requirements for comput©F Minimum variance distortionless response (MVDR) tech-
ing the standard RCB weights are cubic in the number oftiques design data-dependent weights that minimise tag arr
adaptive degrees of freedom, which may be computationall§UtPut power subject to a look direction constraint, which,
prohibitive in practical situations. Here, we examine rdce N theory, optimise the array output SNR, even for correlate
computationally efficient techniques for computing the RCBNOISE environments. These beamformers are able to adapt
weights and evaluate their performances for passive sondf€ir beampatterns to null out correlated noise sourcesas a
We also discuss the implementation of these efficient algonen required. The Capon/MVDR weights are a function of
rithms on parallel architectures, such as graphics prougss the signal-of-interest (SOI) array steering vector (ASM,,
units (GPUs), illustrating that further significant spags the spatial signature due to a SOI in the beam steer direction

are possible over a central processing unit (CPU) based infnd the array covariance matrix. In practice, a model fqr the
plementation. SOl ASV, here termed the assumed ASV, and an estimate

] ] ~of the array covariance are used. Unfortunately, errors in
Index Terms— Passive sonar, computationally efficient ihese Jead to a significant degradation in output SNRs for the

robust adaptive beamforming. standard MVDR/Capon beamformers. SOI ASV errors arise
as a result of angle-of-arrival or pointing errors, sensaf ¢
1. INTRODUCTION ibration errors, source wavefront distortions (e.g., du@t

homogeneities in the ocean) and scattering, all of whict lea
In many passive sonar systems, beamforming is used to forgs SOI cancellation. Thus, a wealth of robust adaptive tech-
receive beams on hydrophone arrays for the purposes @iques have been proposed to deal with errors in the SOI ASV
source localisation, power estimation (acoustic imagany)  and covariance matrix estimates (see, e.g., [2, 3] and fhe re
for increasing the signal-to-noise ratio (SNR). Convemdio  erences therein). In [4-7], robust Capon beamformer (RCB)
delay-and-sum (DAS) beamforming, which applies delays teechniques [8, 9], exploiting ellipsoidal (including spical)
the hydrophone outputs so that a source signal received SV uncertainty sets, have been shown to systematically al-
the specified beam direction will appear aligned in the detow for mismatch in passive sonar applications, without the
layed hydrophone outputs, is most often used. Summing theeed for the ad hoc parameter choices that are often needed
delayed outputs leads to coherent summation of the souregith other robust adaptive beamforming methods. Further-
signal, but not of noise that is uncorrelated between hymore, they are significantly more robust than Capon/MVDR
drophone outputs, leading to an increase in SNR. In fad, it ibeamformers to errors in the sample covariance matrix es-
well-known that the DAS beamformer is optimal for a singletimate. However, like the Capon/MVDR beamformers, the
source in uncorrelated (spatially white) noise [1]. Howeve complexity required to compute the RCB weights is cubic
in practice, there are typically multiple sources of noisett in the number of adaptive degrees of freedom, which can
have significant correlations between hydrophone outputge prohibitive in practice. Further, RCB weight computa-
including contacts (e.g., shipping) not in the steer dicgct tion requires eigenvalue decomposition (EVD) and New-
platform noise (such as machine induced vibration), flow angon search, neither of which are amenable to implementa-
flow-induced vibration, ambient noise and biological noisetion on parallel hardware such as graphical processing unit
Shading can be used with DAS beamformers to trade in(GPUs). The purpose of this work is to examine various re-
creased mainlobe width (leading to reduced resolution) fogent low complexity approximative implementations for com

This work was supported in part by Thales U K. self-fundesteech and puting RCB weights, which reqUIr_e a complexity that is only
development, the Swedish Research Council, and Carl Trigggendation. ~ quadratic in the number of adaptive degrees of freedom and




are amenable to implementation, e.g., on GPUs. In [9], it wasrhere) denotes a real-valued Lagrange multiplier. Minimiz-
shown that the RCB weights coincide (within a scale factor)ng (6) with respect ta yields

with the worst-case robust adaptive beamformer WC-RAB

weights [10, 11] and we will therefore also consider effitien JOL()\, a)
implementations of the WC-RAB. Specifically, we examine Oaf
the (second-order) constrained Kalman filter implemeniati ) )
of the WC-RAB [12], the gradient-based iterative implemen-Which can be re-arranged to yield
tation of the WC-RAB [13], a recursive version of the RCB

exploiting variable diagonal loading [14], and a steepest- 4 — (
descent based RCB exploiting scaled projections [15].

=R 'a+ \a-—a), (7

-1

A

-1
+I) a=a—(I+AR) 'a. (8)

2. DATA MODEL, RCB AND WC-RAB The Lagrange multipliei is found from

Here, we implement the beamformers in the frequency- g(\) = H(I+ /\R)_1 5”2 =€, 9)
domain (see, e.g., [7] for more details) and model ttie 2

frequency-domain snapshot, from frequency bin with centrynich can be solved via the EVD & and a Newton search.
frequencyf, from anM element array as Substituting the\ that solves (9) into (8) yields the estimated

A T ASV, a. The RCB weight vector is then given by
Xe=| T1e ... Tmk | =aosor+ng (1)
where z,,, ., aop, so,x, andn, denote thekth frequency- WRCE = R 'a ) (10)
domain output of thenth sensor, the SOI ASV, the SOI afR-1a

complex amplitude, and the noise-plus-interference vecto ) . o
defined similarly tax, respectively. Assuming that the noise USing the re-scaled estimated AS\= v Ma/ [a|, instead
and interference are uncorrelated with the SOI and that botff @ in (10) leads to more accurate power estimation, but as

are zero mean, the array covariance is given by it amounts to a re-scaling of the weights, it has no effect on
the signal-to-interference-plus-noise ratio (SINR). Duéhe
R2E {kakH} - ggaoagf +Q, (2)  required EVD, solving the RCB requir€x(M?) operations.

whereo? = E{[sox|*} is the desired signal power afgi = _ _
E{n;nf!} is the noise-plus-interference covariance. In prac2-2. The WC Robust Adaptive Beamforming
tice, R is replaced by the sample covariance matrix (SCM

: )The worst-case robust adaptive beamformer (WC-RAB)
estimate

| K problem, under spherical uncertainty, is formulated a$ [10
R=— xkxﬁl. 3)
K kz:‘: minw”/Rw s.t. ‘wHa| >1

The ASV model for the SOI at frequengy impinging on the

. o Vaela—al,<e (11)
array from locatiord, is written as

a(f, ) 2 [ e—i2nfr(0)  g—i2nfrai(6) }T (@) yvherg tht_a constraints ensure that the Qistortionless “nBt

’ ’ is maintained for the worst-case steering vector contaimed
wherer,, () denotes the propagation delay to th¢h sen- the set, i.e., for the steering vectarsuch thatjw'’a| has
sor, relative to some reference point, for the desired signdhe smallest value. The optimization (11), which contains a
impinging from a location described I#y infinite number of non-convex constraints, can be benefficial

re-written using a convex constraint as [10]
2.1. The Robust Capon Beamforming Weights = -
minw”Rw st.w”a =1+ e|w]|, (12)

For a spherical uncertainty set with radiy/s, the RCB esti- w

mates the SOI ASV by solving [8, 9] providing that

mina”R™'a st la—al2=e (5) \wa| > e |lw|,. (13)

wherea is the assumed ASV and is usually formed from (4), The weights that solve (12), here termed the WC-RAB
with @ set as the beam direction. The Lagrangian functiorweights, have been shown to be equivalent to the RCB
associated with (5) is given by weights in (10) [9]. Thus, in the following sections, we
examine efficient approximative implementations of both th
L(\a)=a"R™"a+ ) (Ila —al; - 6) ., (6) RCBandthe WC-RAB.



3. KALMAN BASED WC-RAB Algorithm 1 The WC-IG algorithm

] ) ) 1: Update the sample covariance mati.
The Kalman filter based implementation of the WC-RAB, wHR2w,

proposed in [12], starts from the worst-case formulation in Wi Riwy | _ X
(12). The mean square error (MSE) between a desired signaf* UPdate the unconstrained MV weight vecter,,, =

2: Computeu, = «

of 0 and the beamformer output is given by Wik — /MkaVYk- A
, 4. if Re{wfl a} —1 < \/e||Wy41], then
MSE = E{’() - wiix| } =w/Rw. (14) 5 Computer = =bEv=dac where
Therefore, minimizing the MSE in (14) is equivalent to min- o, o\ 2 2
imizing the beamformer output power, which is the objective “@ = M [(Re{pk’ aj)” —e ”pkHz}
function in (12). The constraint function in (12) may be ex- b — 9 [XRe Hal _ Relwh }
pressed as Pk {pi'a} — eRe{Wi | pi}
|2 2 c = X?—c|Wipl
[1—wal” = [—vellwl,|", (15) ’

with X = Re{w/’, ,a} — 1andpy = a — Ve .

or, equivalently, -
Then, update weights a8, 11 = Wit1 + L APk

ha(w) 2 ¢|w|? — wHaalw + wHa+af'w=1, (16) 6 else
. . 7. Setwk+1 = WkJrl.
allowing the WC-RAB problem (12) to be written as g end if
min MSE s.t.he(w) = 1. a7)
Since the Kalman filter is a minimum MSE (MMSE) filter, it 5. THE RCB-VDL-SD ALGORITHM

can be used to solve (17). We refer the reader to [12] for fur-
ther details, terming the algorithm the WC-KF beamformer.The steepest-descent based RCB with variable diagonal load
In this paper, we set the user parameters- 1, o2 = 0, ing (RCB-VDL-SD), introduced in [14], minimises the RCB
02 = M—2af’Ra, ando? = 1012, Lagrange function (6) using gradient minimisation tech-
nigues, updating the SOI ASV recursively using
4. GRADIENT MINIMIZATION BASED WC-RAB . ~
ay = ax—1 — [1SDkGk> (21)
We proceed to discuss the gradient minimization based . . . .
WC-RAB implementation proposed in [13]. It was thereWhere the gradiend, is obtained via (7) as
noted that the Lagrange function for the WC-RAB problem
(12) may be written as

J(w,\) = wHRw — )\(WHé —1— /e ||w\|2>7 (18) and the optimal step size is given by

where \ denotes the Lagrange multiplier. One approach is _owvpL ||gk||§ 23
to set the derivatives of (18) with respect#o” and \ to Hsbk = ngRglgk +6 (23)
zero and solve fow and\; however, this requires afi(M?)
complexity. Instead, the approach proposed in [13] uses dfihe inverse covariance matriR,;1 is also updated recur-
iterative gradient minimization scheme to update the weighsively. We refer the reader to [14] for further details, not-
vector as ing that the algorithm is initialized witmg1 =1, 4 = a,
Wil = Wi — ukék, (19) Ao = 0,gp = a, andayp. = 0.01. The updated SOI ASY,
where, for thekth snapshoty;, andd; denote the step-size and inverse covariancﬁ,:,1 are inserted in the weight equa-

parameter and the gradient vector of the cost function (18)tjon (10).
respectively. Thus, the weight vector is updated in thecdire

gr = R, 'a,_1 + \Ma,_, — a), (22)

tion of steepest descent. The gradient is given by 6. THE RCB-SP-SD ALGORITHM
Wi
0r = Rwy — A (a - ﬁHW:H ) : (20)  In the steepest-descent based scaled projection RCB (RCB-
2

SP-SD), introduced in [15], the RCB Lagrange function (6) is
We refer the reader to [13] for the derivation of the algarith  minimised iteratively using gradient minimisation, whéine
which we here term the WC-IG beamformer. After initializ- SOI ASV is updated recursively using

ing with Ry = I, wg = a, anda = 1, the WC-IG algorithm

iterates the steps given in Algorithm 1. ap = ap_1 — Usp,kBk, (24)
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Fig. 1. Spatial spectra for simulated data, assuniing: 128. Fig. 2. SINR versus SOI power fak’ = 128.
where ando2 = 45 dB. The AOAs of the discrete interferers are
1 0, = 70°, 6, = 88°, andf; = 100°, where the angle of
Mok = 4 R} (25)  arrival is measured from along the axis of the line array, i.e
. 1 F from end-fire, so thaf € [0,180°]. The azimuth space is
g = Ry ap. (26) sampled usingM = 192 equally cosine-spaced beams and

the tightest possible spherical uncertainty sets are ledémll
for each beam, where the sphere centers correspond to theo-
retical ASVs for the beam centers and the sphere radii were
_ Ve(ag —a) ia (27) Calculated, according to the AOA uncertainty resultingriro
 lag — all, ' the spacing of the beams (see, e.g., [4, 5] for further d®tail

) ] . The SOl is assumed to belong to the beam whose center is at
The updated SOI AS\4;, and inverse covariancR, "~ are 6o = 90.25°. The uncertainty sphere radius (squared) for the

To satisfy the spherical constraint in (), is projected onto
the uncertainty set constraint boundary, yielding

ak

inserted in the weight equation (10). SOl beam iss = 4.2029. To allow for the typical case that
AOA errors exist, the SOl is simulated anywhere in the inter-
7. SIMULATED DATA EXAMPLES val [0;,6,], whered, (,) is the angle midway between the

center of the SOI beam and the center of the adjacent beam
Initially, we evaluate the above discussed algorithms on giith lower (higher) angle. Furthermdrene assume that the
simulated half-wavelength spaced uniform linear arrajnwit SOI and interference ASVs are subject to independent arbi-
M = 64 elements, recreating the simulated scenario detrary errors and, at each Monte-Carlo simulation, add th eac

scribed in [6]. The data were simulated using (2) with ASV an arbitrary error vector
d ~ ~
Q=> c?aal + 0%+ 02 Qo (28) e =¢&/llel,, (30)
i=1

where each element éfis drawn from a zero-mean circularly
Thus, the simulated noise plus interference covaria¥e, symmetric distribution with unit variance. In the follovgn
consists of terms due t@ zero-mean uncorrelated interfer- ywe examine the beamformer SINR, defined as

ing sources, where, for thih interferer,o? anda,; denote

the source power and the ASV, respectively, as well as a term odlwilag|?

modeling the sensor nois€1I, with sensor noise power?, SINR = wi Qw (31)

and a term modeling an isotropic ambient no&s?go,Qiso, with . . o

powera?,. The isotropic noise covariance is given by Itis well known that the optimal SINR is given by
[Qisolm.n = SINGTA(m — n)]. (29) SINRopt = o2all Q*ay. (32)

In the following, unless otherwise statetl= 3, o2 = 0 dB, 1We note that our simulated scenario differs slightly to thg6j, as here

0i250 = 1 dB, 0'(2) = 10 dB, 0% = 10 dB, O’% = 20 dB, we have added arbitrary ASV errors to the source ASVs.
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Fig. 3. For the strong controlled source run, bearing time recaitts ' = 80 for (a) NBRCB-EVD, (b) NBWC-IG, (c) SDAS.
For sample 75, (d) the azimuth spectra.

Since we simulate mismatch in the source ASVs, we com- 8. EXPERIMENTAL DATA RESULTS

pare the beamformer SINRs to the mean optimal SINR, ob-
tained by averaging SINf: over the Monte-Carlo simula- We proceed to examine the performance using experimental

tions. We assume thd = 2M = 128 snapshots are avail- data from a hull-mounted sonar wittf = 35 adaptive de-
able for covariance matrix estimation. Figure 1 illustsate grees of freedom, details of which can be found in [7], which
the spatial spectra, indicating that MVDR, RCB-SP-SD, and-ontains signals from a known, strong, controlled acoustic
RCB-VDL-SD all exhibit severe SOI cancellation. The stan-source in the far-field of the array, on which we were able
dard RCB-EVD provides the best power estimates, followedo check if the algorithms protected against (desired) sig-
closely by WC-IG. The Kalman-filter based WC-KF gives nal cancellation, when pointing towards the source, anal als
poor spatial power estimates. Figure 2 shows the SINR versubeir ability to null out the strong source when pointing gwa
the SOI power, clearly showing that WC-IG performs the besfrom it. We thus proceed to compare results obtained from
out of the efficient techniques and even better than the motde RCB-based NBRCB used in [4, 7], which requires EVD
complex standard EVD-based RCB. In summary, on simuand is here denoted NBRCB-EVD, with an implementation

lated data, the WC-IG approach performs the best out of theased on the WC-IG, which we denote NBWC-IG. In the
following, we assumey = 80 frequency-domain snapshots

efficient schemes examined.
per frequency-bin are available for covariance estimation



Since K > 2M, we are not here concerned with snapshofound that NBWC-IG performed similarly to NBRCB, and
deficiency. We also examine results obtained from a shadesignificantly better than the conventional shaded DAS beam-
DAS (SDAS) beamformer. Figure 3(a)—(c) shows the bearindormer. In summary, the efficient WC-1G based implementa-
time records (BTRS), clearly showing that the robust adaption provide excellent performance at a significantly restlic
tive methods improve the output SNR and spatial resolutiomomputationally complexity. We also found that the WC-1G
compared to the SDAS. Notably, when using robust adapalgorithm is amenable to implementation on GPUs and was
tive beamforming, it is possible to see four weaker sourceable to provide significant speed increases over a CPU-based
around beams 40, 90, 125, and 150, which are masked bmplementation.

high sidelobes when using SDAS. Figure 3(d) shows the
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