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Comparison of LTI and Event-Based Control for a Moving Cart with

Quantized Position Measurements

Toivo Henningsson and Anton Cervin

Abstract—Traditional linear time-invariant (LTI) control
design assumes that measurements are taken at regular time
intervals and have independent additive noise. A common prac-
tical case that violates this assumption is the use of encoders that
give quantized position measurements; when the quantization is
appreciable the measurement noise is far from LTI. This paper
develops a simple event-based controller based on simplifying
a joint maximum a posteriori estimator, which is applied to a
moving cart with quantized position measurements. The payoff
for implementing the somewhat more complex event-based
controller is to drastically reduce the effect of quantization
noise in the experiments. A sequence of simpler to better
adapted controllers are described and compared according to
experimental performance and implementation complexity.

I. INTRODUCTION

The majority of all feedback controllers today are im-
plemented using computers, relying on periodic sampling,
computation, and actuation. For linear time-invariant (LTI)
systems, sampled-data control theory [3] provides powerful
tools for direct digital design, while implementations of non-
linear control designs tend to rely on discretization combined
with fast periodic sampling.
There are however situations where it could be advanta-

geous to use other activation schemes. For first-order linear
stochastic systems, it has been shown that event-triggered
sampling can provide better regulation performance and/or
lower average activation rates than time-triggered sampling
[2], [7]. This can be useful for networked embedded control
systems with constrained communication, computation, or
energy resources. With similar arguments, heuristic event-
based PID controllers have been proposed in [1], [10].
Another motivation for event-based control are systems

where the events are inherent in the physics. Examples
include wheel encoders and accelerometers that deliver pulse
trains rather than continuous measurement signals. Previous
case studies have shown that accurate control can be ac-
complished even with very low-resolution encoders if the
controller is activated at measurement events rather than at
regular time intervals [9].
In this paper, we study the practical problem of imple-

menting a velocity control system for a moving cart using
a low-resolution position encoder and a low-end 8-bit mi-
crocontroller. Each time the quantized position measurement
changes value is considered an event, to be given special
consideration by the controller. Since the friction is appre-
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ciable and varying, we want to utilize also the information
contained in the absence of events.
It is well known that the problem of optimal estima-

tion and control with quantized measurements is extremely
difficult [5]. For instance, there is no separation theorem
in the general case. Even the pure estimation problem is
computationally intractable and essentially requires the on-
line solution of a partial differential equation.
Seeking simpler, sub-optimal solutions, we start from a

joint maximum a posteriori (JMAP) estimator [4]. This
formulation is powerful enough to model quantized measure-
ments, yet yields a tractable problem. The estimator is greatly
simplified and adapted to the control problem at hand in
order to be implementable on the small microcontroller. The
final controller is based on periodic state feedback from an
event-based observer implemented using fast sampling. The
state feedback design can be reused from the LTI controllers
designed for comparison, since the practical challenge lies
in state estimation.
The rest of the paper is laid out as follows. The setup is

explained in Section II. Section III attempts a first control
design using LTI methods, giving important insight into the
tradeoffs involved. The JMAP estimator is introduced in
Section IV as a systematic means for state estimation with
quantized measurements and is simplified in Section V into
something that can run online. Microcontroller implementa-
tion issues are described in Section VI. Section VII compares
different LTI and event-based controllers experimentally. The
conclusions are given in Section VIII.

II. SETUP

A. The Moving Cart

The process is a moving cart driven by a DC motor. The
control signal is the motor voltage, governed by a direction
bit and a 29 kHz PWM signal. A rotary encoder on the motor
axis is used for position sensing. The encoder output is two
square waves as a function of the position, 90◦ out of phase.
The measurements can be modeled as

y = ∆pquant. ·round
(

p

∆pquant.

)

, ∆pquant. = 5 ·10−5 m, (1)

where p is the position of the cart. Lower encoder resolutions
can be emulated in software; most tests are run with ∆pquant.
emulated to 3.2 mm.
The cart is equipped with an ATmega16 8-bit AVR

microcontroller clocked at 14.7 MHz, which handles encoder
sampling, motor drive, filtering, control, and communication
with a PC over a serial link.



B. Process Model

A simple dynamical model for the cart was postulated as
(

ṗ
v̇

)

=

(
0 1
0 −T−1

d

)(
p
v

)

+

(
0
1

)

(u + ubias),

where p is the position, v is the velocity, u = KuuV is
the control signal, uV is the control signal in units of full
motor voltage, ubias is the disturbance from friction and
other sources, and Ku and Td are process parameters. A
sequence of step response experiments were made and the
parameters estimated by linear regression to Td = 0.23 s,
Ku = 25.5 m/s2. The disturbance ubias was assumed con-
stant within each step response.
As the controllers to be designed will have cross-over

frequency ωc ≥ 5 rad/s, T−1

d is approximated to 0 for
simplicity. With this approximation the process is a pure
double integrator, Gp(s) = 1

s2 , and the cross-over frequency
of a control design can be adjusted by just changing the time
scale. The time scale of the process is adjusted by additional
gain in the controller.

C. Control Objectives

We will design velocity controllers for the moving cart.
The objectives are:

• Fast reference tracking and attenuation of process dis-
turbances (friction).

• Low noise in the control signal.
• Reasonable robustness.

Reasonable robustness is an absolute demand. Given this
constraint, the controllers should try to optimize for the first
two objectives, using the cross-over frequency ωc to adjust
the tradeoff.

D. Implementation Structure

A multi-rate structure is used, where fast sampling at
100 kHz is used to read the encoder, while the control output
is generated at 1 kHz. For simplicity, the implementation
is not event-triggered per se; rather, the estimator may use
time stamps of the latest measurement events (i.e., changes
in encoder value) when forming its estimate.

III. LTI CONTROL DESIGN

In this section, we design two PI controllers under simpli-
fying assumptions. The design is carried out in continuous
time, ignoring the fact that the measurement disturbance
comes from quantization. Still, the design provides important
insight into robustness issues.

A. Pure PI Controller

To do velocity control, we need to estimate the cart
velocity. We use a simple first-order filter on the position
output:

V̂ =
sY

sTfilter + 1
. (2)

A PI controller

U = K(βVref − V̂ ) − K
V̂ − Vref

sTi

(3)

gives the following controller transfer function from −y to u:

Gc(s) =
K

Ti

sTi + 1

sTfilter + 1

This is in effect a lead filter that lifts the phase of the loop
gain around the cross-over frequency ωc above the constant
phase Gp(iω) = −180◦ of the process.
We want to place the zero and pole far apart to get a

large phase margin, but on the other hand we want short Ti

and long Tfilter for good rejection of process disturbances and
measurement noise. The best trade-off is achieved by placing
the zero and pole on either side of the cross-over frequency
ωc at equal logarithmic distance,

Tfilter = r−1ω−1
c , Ti = rω−1

c ,

where r > 1 determines the phase margin φm. We take
φm ≈ 50◦ =⇒ r ≈ 3 as a reasonable compromise between
robustness and disturbance rejection.
The cross-over frequency ωc is left as a design parameter,

to be varied in the experiments. The reference weighting
parameter β = 0.5 is used to eliminate overshoot in the
reference step response.

B. Observer-Based PI Controller

The standard PI controller makes no use of the process
model. To exploit our process knowledge, we can instead
use the control law

U = K(Vref − V̂ )
︸ ︷︷ ︸

UP

−K
sY − V̂

sTi
︸ ︷︷ ︸

Ûbias

, (4)

where the I-part now integrates only the difference between
actual and estimated velocity, and the velocity estimate

V̂ =
sY + TfilterUP

sTfilter + 1
(5)

includes feedforward from the P-part. Since the I-part pro-
vides the bias estimate, it should not be fed forward into V̂ .
Reacting only to differences between the model prediction
and measurements, the I-part will no longer wind up during
reference steps, which eliminates the need for the β tuning
parameter. Using U + Ûbias instead of UP for feedforward
in the velocity filter, this disturbance estimation scheme also
provides anti-windup.
With the observer-based control law, the controller transfer

function becomes

Gc(s) =
K

Ti

s(Ti + Tfilter) + KTfilter

sTfilter + 1 + KTfilter
,

i.e., a lead filter with slower zero and faster pole than for
the pure PI controller. The observer gives extra phase lead
around the cross-over frequency, which can be exploited by
more aggressive tuning. We take

• T ′

i = Ti/4 for improved disturbance rejection.
• T ′

i = Ti/2, Tfilter
′ ≈ 2Tfilter for improved measurement

noise rejection. This is useful for the PI controller since
it is bad at handling the measurement quantization. We



do not want to make Tfilter slower than ω−1
c , since this

would impede process disturbance rejection.

Since the transfer functions Gc(s) have the same form,
the pure and observer-based PI controllers can be tuned to
more or less the same behaviour in closed loop. The real gain
of using an observer will be evident when we introduce the
event-based controller, where the control runs in open loop
as long as the measurements do not contradict the observer’s
predictions.

IV. THE JMAP ESTIMATOR

A problem with the PI controller is that it does not exploit
the fact that the main source of measurement noise comes
from quantization. In this section, we explore how to model
quantization in the state estimator, and the properties that
follow. Insight into the behavior of the estimator will be
used to simplify it in the next section.

A. Process Model

Consider a system in discrete time,

x(k + 1) = Ax(k) + Bu(k) + w(k), (6)

where x is the state, u is the control signal, and w is a zero-
mean white Gaussian noise process with variance R. The
available measurements specify an interval for the output at
each sample:

y(k) − ∆y ≤ Cx(k) ≤ y(k) + ∆y. (7)

The initial state may be fully known or Gaussian distributed.

B. The Estimation Problem

We consider the joint maximum a posteriori (JMAP)
approach to state estimation: find the most probable trajec-
tory of the state x conditioned on the measurements, and
use the state at the current time as state estimate. With
additive Gaussian measurement noise, this approach yields
the Kalman filter (see [4]). With the quantized measurements
(7), the solution is a bit more complex.
The log-likelihood l(x) of a state trajectory x(k), k0 ≤

k ≤ k1, considering the dynamics (6) and initial distribution
of the state is given by

l(x) = − 1

2

(

||x(k0) − x0||
2

R−1

0

+

k1−1∑

k=k0

||w(k)||2R−1

)

, (8)

w(k) = x(k + 1) − Ax(k) − Bu(k),

when x(k0) has a Gaussian distribution with mean x0 and
variance R0, and where ||x||2R = xT Rx and w(k) has been
solved for from (6). The most probable state trajectory x is
found by maximizing l(x) subject to the linear measurement
constraints (7) and any known initial conditions. This is a
quadratic program, which can be solved reasonably fast on
a PC. Ideally, the history k0 ≤ k ≤ k1 should go as far
back as possible to use all measurements in the estimation.
An approach often used in practice is to fix k1 − k0 = ∆k,
resulting in moving horizon estimation, see [8].

At any sample k, the constraint (7) is considered active

if the optimal trajectory would be different without it. If it
is known which constraints are active, the optimal solution
can be obtained by fixing the constrained variables at their
constraints and optimizing freely over the rest. This is the
same solution as we would get from a Kalman filter when the
available measurements are perfect position measurements at
the active constraints.

C. Time Update

When moving forward one sample to k = k1 + 1 without
adding new measurements, the estimate update is very sim-
ple. Suppose that there is a unique optimal state trajectory.
The new cost term in (8) will add no cost iff w(k1) = 0,
i.e. the next state is predicted by the dynamics (6) with the
disturbance set to zero.

D. Measurement Update

If the constraint (7) from the new measurement agrees with
the current state estimate, i.e. if the trajectory from the time
update is still feasible, it is also still optimal. Otherwise,
the estimator must add the most probable correction to
the trajectory so as to satisfy (7), over the entire horizon.
This correction will move the estimated position the shortest
distance necessary, i.e. to the constraint.
The most influential measurements will be at events,

when the quantized position measurement changes value.
The position is then known to be exactly half way between
the two quantization levels some time during the short period
between the two measurements.

V. SIMPLIFIED EVENT-BASED ESTIMATOR

Although the JMAP estimation problem is tractable, it is
far too demanding to solve in real time on a small micro-
controller. In this section, we derive a realistic estimator by
simplifying the JMAP estimator. The key simplifications are:

• In the JMAP approach, ubias would be a state variable.
We assume that it varies slowly, and can be estimated
separately from p and v.

• Active position measurement constraints are considered
only at the current time and last event, which is con-
sidered as a known position at a known time.

• When applying measurement updates, it is preferred to
change the state estimate as little as necessary. This rule
is needed since the simplified estimation problem would
otherwise be underdetermined.

The states of the estimator will be estimates of the current
state p̂, v̂, and ûbias together with a history described by the
time of the last event.

A. Time Update

As in the JMAP case, the time update is simply the
dynamics of the process model without noise
(

p̂(k + 1)
v̂(k + 1)

)

=

(
1 h
0 1

)

︸ ︷︷ ︸

A

(
p̂(k)
v̂(k)

)

+

(
1

2
h2

h

)

︸ ︷︷ ︸

B

(

u(k)+ûbias(k)
)

.

(9)



There is no systematic drift of ubias in the model, so ûbias is
not changed in the time update. There is no reason to believe
that ubias has changed unless indicated by the measurements.

B. Measurement Update

When the current position measurement y disagrees with
the current position estimate p̂, i.e. y differs from the
quantization of p̂ according to (1), a measurement update
is applied. The most probable cause of estimation error is
taken to be an error ∆v in the velocity estimate at the
last event—the only error that requires no disturbance after
the last event to explain it. By superposition, this leads to
a velocity error ∆v and a position error ∆p = ∆v∆t at
the current time, where ∆t is the time since the last event.
Adjusting the position estimate to lie at the constraint p̂ = p,
i.e. to just agree with the measurement y, the measurement
update becomes

p̂+ = p = p̂ + ∆p, v̂+ = v̂ +
∆p

∆t
. (10)

As in the PI controller with observer, ûbias is formed from
the time integral of the difference between estimated and
measured velocity, i.e., it accumulates the difference between
estimated and measured position. The measurement update
for ûbias thus becomes

û+

bias = ûbias +
K

Ti

∆p, (11)

in analogy to Ûbias = K
Ti

(Y − 1

s
V̂ ) in (4).

C. Fixes

The gains from position error ∆p to velocity and distur-
bance corrections ∆v and ∆ubias given above usually work
well. Since the estimator is a considerable simplification and
because of some unmodeled effects, there is a need to fix
some corner cases.
1) LTI Mode Timeout: When there is a long time between

events, a position error only indicates a small velocity
correction, and the gain from ∆p to ∆v goes down (as
∆t−1). This works as intended for steady motion.
The low gain should no longer be used, however, when

the position errors become big, e.g. when the cart is stuck
due to friction. The estimator time update will predict a
high velocity due to prolonged control signal activity, but
the measurement update should actually keep v̂ down.
To handle this case, a timeout of Ttimeout = 2Tfilter is

used. If measurement constraints have been active for the
last Ttimeout time, the time constant ∆t = Tfilter of the LTI
velocity estimators is used in the measurement update, giving
a relatively high, and fixed, gain from ∆p to ∆v.
2) Measurement Gain Limitation: The case when the time

∆t between events is very short is also problematic. Since the
gain from errors in ∆t and y to ∆v becomes very high, any
measurement noise that is not captured by the quantization
model will be heavily amplified. Since we use the K and Ti

parameters from the PI controller, which has been designed
to tolerate a lag of Tfilter in the velocity estimate, we limit ∆t
in (10) to be no shorter than Tfilter. Beyond this limit, v̂ will

behave more like the first order filters of the PI controllers,
introducing some low pass filtering on the measurements.

VI. IMPLEMENTATION ISSUES

In this section, a variety of the issues encountered when
implementing the LTI and event-based controllers on a
low-end microcontroller are discussed. More details on the
implementation can be found in [6].

A. Multi-rate Sampling

The encoder must be sampled every 10 µs = 128 clock
cycles to be able to follow cart speeds of up to 5 m/s. There
is not much time for calculation in 128 clock cycles and
no need to run the controller that often, so it executes at a
slower rate. The estimator first updates v̂ and ûbias, and then
the controller computes u = K(βvref − v̂) − ûbias.
At each invocation of the estimator, it reads the current

position. For the event-based estimators, the encoder sampler
also saves the direction and time stamp of the last event,
allowing the estimator to use a much higher time resolution
than its own sampling period. If there was an event during
the last sample, the time update is taken up to the event, the
measurement update applied, and the time update then taken
for the remaining part of the time step. Otherwise, the time
update is taken for the whole time step, and the measurement
update applied afterwards, if needed.

B. Step by Step Estimator Implementation

The implementation of the event-based estimator requires
a number of steps, but with the sequence suggested here,
the controller can be verified to work after each. The Basic
Event Estimator is an approximation that should be good
when events are quite frequent, and is refined gradually. It
is naturally implemented starting from an implementation of
the Pure PI controller, which supplies the control law that is
used throughout:

u = K(βvref − v̂) − ûbias

(though β is set to one in the end).
1) Basic Event Estimator: The estimates p̂ and v̂ are

constant between events: there is no time update, and mea-
surement updates are at events only. The measurement update
(10) is simplified with

v̂+ =
∆p

∆t
, ∆p = p̂+ − p̂,

to work when there is no time update for p̂. The ûbias update
mirrors the Pure PI controller’s Ûbias = K

sTi

(V̂ −Vref) in (3):

ûbias(k) = ûbias(k − 1) +
K

Ti

(

p̂(k) − p̂(k − 1) − hvref(k)
)

.

2) Position Prediction: Now v̂ is used to predict the
evolution of p̂ between events, introducing as time update
the relevant part of (9):

p̂(k + 1) = p̂(k) + hv̂(k).

With this time update, the intended form (10) of the mea-
surement update should be used. It is now possible to lower



limit ∆t by Tfilter according to section V-C.2; the correction
form of the measurement update (10) will ensure that v̂
eventually converges to the correct value. The only other
visible difference from taking this step is to remove the I-
part windup between events when v ≈ vref.
3) Measurement Updates Between Events: Now it is

straight forward to apply the measurement update (10) as
soon as the position measurement disagrees with p̂, allowing
the controller to react faster to drops in speed.
4) LTI Mode Timeout: The LTI Mode Timeout fix of sec-

tion V-C.1 is added. This is needed in the last implementation
step to avoid the controller becoming too soft during startups.
5) Full Event Estimator: The full time update (9) is

implemented by adding the v̂ part, and ûbias is now updated
only in the measurement update, using (11). Finally, the
analysis of the Observer-Based PI controller in section III-B
applies, so we set β = 1 and make Ti four times faster to
improve disturbance rejection.

VII. EXPERIMENTAL COMPARISON

The controllers to be compared are the Pure PI controller,
the Observer-Based PI controller, the Basic Event Estimator,
the Event Estimator with Position Prediction, and the Full
Event Estimator. Since it takes a only minor implementation
effort, the Event Estimator with Position Prediction has
measurement updates also between events.
To compare the performance of the different controllers

under different conditions, a number of step response exper-
iments were performed. In each experiment, the cart begins
at rest at position p = 0 with all estimates at zero. At time
t = 0, a step in vref is made. The cart is allowed to run
for 1 m, counting the first 0.3 m as startup and the rest as
stationarity. After 1 m, vref is stepped back to zero.
To have an accurate way to compare the velocity trajec-

tories for the different controllers, the full resolution of the
encoder was used for offline evaluation, while in most of the
experiments, all feedback was based on a software emulated
encoder with the q = 6 lowest bits dropped. To reconstruct
the velocity trajectory from an experiment, a simple form of
the JMAP estimator is used. Only p̂ and v̂ are used as states,
and the effect of u is ignored. Since there is some jitter in the
serial communication, the measurement constraints (7) are
relaxed to allow that each measurement may have arrived
one sample to soon or too late. The optimization problem
for the whole trajectory conditioned on all measurements is
solved simultaneously.
Fig. 1 shows typical experimental results for the Pure PI

and Full Event controllers at q = 6, ωc = 20 rad/s, vref =
0.8 m/s. We see that the PI controller spends a considerably
greater control effort, and that the Full Event controller has
slightly better reference tracking.

A. Performance Metrics

To measure the control effort, we use

σu =
std(u)

mean(u)
,
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Fig. 1. Experimental results for the Pure PI and Full Event controllers
with ωc = 20 rad/s. The dotted line shows vref. The friction varies faster
at the far end of the track, degrading the velocity tracking in the later half.

where the standard deviation and mean are taken over the
last 0.7 m of the trajectory. The mean is taken over all
experiments with the same vref. The reference tracking error
is measured by the RMS error over the last 0.7 m, normalized
by vref:

Ev =

√
√
√
√ 1

N

N∑

k=1

(
v̂(k)

vref
− 1

)2

.

B. Controller Comparison

To compare the controllers, experiments were made with
vref = 0.8 m and q = 6, varying ωc = 5, 10, 20, 40, 80 rad/s.
This gives about 1.7 events/Tfilter for the Pure PI controller
at ωc = 5 rad/s, and decreasing. For the Full Event and
Observer-Based PI controllers, which had reduced Ti, Ti

had to be lower bounded to the value used by the Pure PI
Controller at ωc = 80 rad/s to avoid instability.
Fig. 2 compares the control effort and velocity tracking

for different controllers and cross-over frequencies. We see
that as the control loops become faster, the control effort of
the LTI controllers rises much steeper than for the event-
based controllers. At first, the velocity tracking improves in
much the same way for all controllers, but eventually the
Full Event controller wins out.
The greatest gain comes from going from LTI control to

the Basic Event controller, but for high bandwidth, there is
more to gain with the Full Event controller. The break point
where event-based control gives lower control effort than LTI
seems to be around one event per Tfilter, somewhere between
ωc = 5 rad/s and ωc = 10 rad/s in this experimental setup.

C. Quantization Dependence

To explore quantization effects, the experiments with ωc =
40 rad/s above were rerun with vref = 0.4 m/s, varying the
quantization as q = 0 . . . 6. The Basic Event Estimator was
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Fig. 2. Experimental comparison of control signal activity σu versus
velocity RMS error Ev for the LTI controller and three development
stages of the event-based controller. Each controller is used with cross-over
frequency ωc = 5, 10, 20, 40, 80 rad/s, (indicated by numbers in the figure)
giving successively lower velocity error but higher control signal activity. At
ωc = 80 rad/s, the two simplified event-based controllers become unstable
in this case. Each dot corresponds to one experiment.

excluded, since its inability to lower bound ∆t made the
control signal very noisy at low quantization q.
Figs. 3 and 4 show the tracking error Ev and control

effort σu with the different encoder resolutions. As the
quantization decreases, both Ev and σu generally improve,
seeming to settle at a quantization free level. The best
tracking performance is almost achieved already at q = 5,
at which point the Full Event controller has also achieved
minimum control effort. The Event controller with Position
Prediction achieves minimum σu at q = 4. The control effort
of the LTI controllers decreases only gradually, the Observer-
Based PI controller being a bit more gentle.
The Full Event controller actually performs at its best

with some extra quantization in this case, so there is some
room for improvement to make it behave more like the other
controllers when events are frequent.

VIII. CONCLUSION

This paper presented a simple event-based state estimator
for a moving cart with quantized position measurements,
derived as a simplification of a joint maximum a posteriori
(JMAP) estimator. Velocity control based on the event-
based estimator was compared experimentally to classical
linear time-invariant (LTI) controllers. In the experiments,
it was seen that the benefits of event-based control begin
to appear when the LTI controllers are unable to filter out
the quantization noise efficiently, around the point of one
quantization step per velocity filter time constant.
The foremost benefit with event-based control is to greatly

reduce the noise in the control signal. The lowered control
effort makes it practical to use a much higher gain in the
control loop, improving disturbance rejection. Already a sim-
plified event-based controller comes a long way compared
to the LTI controllers, but with high controller gain, the full
event-based estimator shows superior performance.
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