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c© Daniel Sjöberg et al., Lund, April 22, 2004



1

Abstract

Using Bloch waves to represent the full solution of Maxwell’s equations in
periodic media, we study the limit where the material’s period becomes much
smaller than the wavelength. It is seen that for steady-state fields, only a
few of the Bloch waves contribute to the full solution. Effective material
parameters can be explicitly represented in terms of dyadic products of the
mean values of the non-vanishing Bloch waves, providing a new means of
homogenization. The representation is valid for an arbitrary wave vector in
the first Brillouin zone.

1 Introduction

The behavior of the solutions of a partial differential equation with rapidly oscillat-
ing coefficients, considered over distances large compared to the oscillations, is in
several respects similar to the solutions of a PDE with slowly varying coefficients.
The problem of homogenization is to find these slowly varying coefficients by an
appropriate limit process of the rapidly oscillating ones. The results of homoge-
nization apply to several types of partial differential equations that are used in the
engineering sciences, such as heat conduction, elastic deformation, flow in porous
media, acoustics, and, to lesser extent, Maxwell’s equations.

The objective of this paper is to give a rather complete analysis of solutions
to Maxwell’s equations in periodic media, and study the limit when the unit cell
becomes small. This is done by expanding the solution in Bloch waves, i.e., eigen-
modes of the material, and it is seen that only a few Bloch waves contribute to
the macroscopic field. This enables us to find explicit representations of the effec-
tive material parameters in terms of these waves, providing an alternative means of
homogenization.

The observation that the macroscopic properties of a periodic material are ob-
tained in the long-wavelength limit of the Bloch waves dates back at least to [5], and
has recently been used in the physics literature to study optical activity [20]. The
common approach to find effective material parameters for “div-grad” type operators
using Bloch waves, is through differentiation of the principal eigenvalue with respect
to the Bloch parameter k, which represents the mismatch of the wave vector with
the period of the lattice. In the case of electron dynamics in metals this is the effec-
tive mass, see almost any book on solid state physics, for instance [17, p. 193]. This
method has received recent interest from the mathematics community [1, 7, 8, 13, 21],
and the effective material is found from studying the spectrum of the operator only.

Maxwell’s equations are more difficult to analyze than the traditional scalar el-
liptic equations. They constitute a system of partial differential equations, where
the “principal” eigenvalue is often degenerate, and it is not clear which one to differ-
entiate when the degeneracy is lifted. In this paper, we circumvene this difficulty by
expressing the homogenization primarily in terms of eigenvectors instead of eigen-
values. The main result is Theorem 6.2, a surprisingly simple representation of the
homogenized matrix, which is applicable for any wave vector within the first Bril-
louin zone. It states that it is possible to define a homogenized material matrix for a
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given wave vector k, and this matrix can be represented by calculating mean values
of the Bloch waves. In order to prove this theorem, we need to make a conjecture
in Section 6.1.

The method used is based on constitutive relations where the permittivity and
permeability are described by symmetric, positive definite matrices. With these
constitutive relations, we can define differential operators which are self-adjoint and
we are able to apply classical spectral theorems. Conductivity and dispersive con-
stitutive relations are at this stage not possible to include in this framework, since
they lead to non-self-adjoint operators for which a more advanced spectral theory is
needed, see for instance [19].

This paper is organized as follows. In Section 2 we present the notation and
the different function spaces used in this paper, and a variant of the famous Bloch
theorem is given in Section 3. Spectral properties for the curl operators in Maxwell’s
equations are given in Section 4, and they are used in Section 5 to give a represen-
tation of the general solution to Maxwell’s equations in periodic media. Section 6
presents the scaling arguments needed in homogenization, where we show that only
a few Bloch waves contribute to the macroscopic field. We show that the classical
homogenization technique can be obtained as a limit of our formalism, and present
a new representation of the homogenized matrix for a finite wave vector. The results
are discussed in Section 7.

2 Basic equations and notation

We use scaled electric and magnetic fields and flux densities in this paper, i.e., the
SI-unit fields ESI, HSI, DSI, and BSI are related to the fields E, H , D, and B
used in this paper by

ESI(x, t) = ε
−1/2
0 E(x, τ) HSI(x, t) = µ

−1/2
0 H(x, τ) (2.1)

DSI(x, t) = ε
1/2
0 D(x, τ) BSI(x, t) = µ

1/2
0 B(x, τ) (2.2)

where the permittivity and permeability of vacuum are denoted ε0 and µ0, respec-
tively. The time is scaled according to τ = c0tSI, where c0 is the speed of light
in vacuum, so that both space and time have the physical dimension length. The
corresponding relations for the current density JSI and the charge density ρSI are

JSI(x, t) = µ
−1/2
0 J(x, τ), ρSI(x, t) = ε

1/2
0 ρ(x, τ) (2.3)

In these units, Maxwell’s equations are{
∇× E(x, τ) = −∂τB(x, τ)

∇× H(x, τ) = J(x, τ) + ∂τD(x, τ)
(2.4)

and {
∇ · B(x, τ) = 0

∇ · D(x, τ) = ρ(x, τ)
(2.5)
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2.1 Six-dimensional vectors and differential operators

We adopt a six-dimensional notation. The fields are defined as

e(x, τ) =

(
E(x, τ)
H(x, τ)

)
, d(x, τ) =

(
D(x, τ)
B(x, τ)

)
(2.6)

and the material parameters are

M(x) =

(
ε(x) 0
0 µ(x)

)
(2.7)

where ε(x) and µ(x) are real, symmetric matrices with L∞ entries, and the matrix
satisfies

c|e|2 ≤ e∗ · M(x) · e ≤ C|e|2 (2.8)

for all six-vectors e, with positive constants c and C independent of x. We call such
a matrix uniformly coercive. The constitutive relations between the fields are

d(x, τ) = M(x) · e(x, τ) (2.9)

This constitutive relation models only the instantaneous response of the material
constituents, and neglects any dispersive effects.

In the following, we define a number of spatial differential operators, where it
helps to think of the nabla operator ∇ as a three-dimensional vector. Indeed, many
natural, bounded operators occur in the following sections by simply replacing the
∇ symbol with a three-vector, often denoted k. In many cases, the nabla operator
is multiplied by −i, in order to make the operator −i∇ self-adjoint in a sesqui-linear
scalar product. Define the curl operator ∇× J in C

6

∇× J =

(
0 −∇× I

∇× I 0

)
=




0 0 0 0 ∂3 −∂2

0 0 0 −∂3 0 ∂1

0 0 0 ∂2 −∂1 0
0 −∂3 ∂2 0 0 0
∂3 0 −∂1 0 0 0
−∂2 ∂1 0 0 0 0




(2.10)

where ∇ = ê1∂1 + ê2∂2 + ê2∂2, with ê1,2,3 being the unit vectors in three orthogonal
spatial directions and ∂1,2,3 denotes differentiation in the corresponding variable, and
I is the identity dyadic in C

3. The matrix J is

J =

(
0 −I
I 0

)
(2.11)

and 0 is the zero dyadic in C
3. The action on a six-dimensional vector is a new

six-dimensional vector

∇× J · e(x, τ) =

(
−∇× H(x, τ)
∇× E(x, τ)

)
(2.12)
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The divergence of a six-dimensional vector is a two-dimensional vector

∇ · d(x, τ) =

(
∇ · D(x, τ)
∇ · B(x, τ)

)
(2.13)

The gradient of a two-scalar φ = (φe, φh)T is also a six-vector:

∇φ =

(∇φe

∇φh

)
(2.14)

The usual differential orthogonalities are

∇ · [∇× J · e(x, τ)] ≡ 0, and ∇× J · ∇φ ≡ 0 (2.15)

Maxwell’s equations can then be written (curl equations, 6 scalar equations)

∇× J · e(x, τ) + ∂τM(x) · e(x, τ) + j(x, τ) = 0 (2.16)

where j = (J ,0)T, supplemented by the divergence equations (2 scalar equations)

∇ · [M(x) · e(x, τ)] = �(x, τ) (2.17)

where � = (ρ, 0)T is a two-scalar and satisfies
∫

�(y) dvy = 0. The last condition
means the total charge is zero, which is needed in the proofs below. Ignoring possible
boundary effects, the material’s response to an external field e0 can be considered
by using the polarization field (M−M0) · e0, where e0 is a solution in a background
medium M0, by introducing sources j = ∂τ (M−M0) · e0 and � = −∇· [(M−M0) · e0].

2.2 Function spaces for periodic media

We further assume the medium is periodic. The unit cell is denoted with U , and the
periodic material satisfies M(x+xn) = M(x), n ∈ Z

3, where xn = n1a1+n2a2+n3a3

and ai, i = 1, 2, 3, are the basis vectors for the lattice. The reciprocal unit cell is
denoted with U ′, and a vector in the reciprocal lattice is kn = n1b1 + n2b2 + n3b3,
where b1 = 2π

|U |a2 × a3, b2 = 2π
|U |a3 × a1, b3 = 2π

|U |a1 × a2, and |U | = a1 · (a2 × a3).
This implies ai · bj = 2πδij, where δij is the Kronecker delta. For more on the
description of periodic media, see the introductory chapters in most books on solid
state physics, for instance [17].

We need some standard function spaces defined as below, where C∞
# (U ; C6) and

C∞
# (U ; C2) are the spaces of infinitely differentiable periodic functions on U with

values in C
6 and C

2, respectively.

L2
#(U ; C6) = the completion of C∞

# (U ; C6) in the L2 norm (2.18)

L2
#(U ; C2) = the completion of C∞

# (U ; C2) in the L2 norm (2.19)

H#(rot) = {v ∈ L2
#(U ; C6) : −i∇× J · v ∈ L2

#(U ; C6)} (2.20)

H1
#(U ; C2) = {φ ∈ L2

#(U ; C2) : −i∇φ ∈ L2
#(U ; C6)} (2.21)
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In Sections 4.2 and 4.3, we also introduce the more specialized spaces H#(divk ∝ �̃)
and H#(divk M ∝ �̃), which are closed subspace of L2

#(U ; C6).
Due to the periodic boundary conditions, these spaces contain functions which

are constants. The L2 spaces are equipped with either the ordinary L2 scalar product

(u, v) =

∫
U

u · v∗ dvx (2.22)

and its induced norm, or the weighted scalar product (u, M ·v) and its induced norm.
The norms are equivalent due to (2.8).

We often use the mean value of a quantity defined in the unit cell. This is the
integral over the unit cell,

〈f〉 ≡ 1

|U |

∫
U

f(x) dvx (2.23)

3 The Floquet-Bloch theorem

In this section we present a version of the celebrated Floquet-Bloch theorem, first
given in a one-dimensional setting by Floquet [12] and later rediscovered by Bloch
in [4]. The proof is given since these references may be difficult to find, and we need
to reference the explicit representations of the Bloch amplitude later in the paper.

Theorem 3.1. Any function u(x) ∈ L2(R3; C6) can be represented as

u(x) =

∫
U ′

eik·xũ(x, k) dvk (3.1)

where the Bloch amplitude ũ(x, k) is U-periodic in x and has the representations

ũ(x, k) =
∑
n∈Z3

û(k + kn)eikn·x =
|U |

(2π)3

∑
n∈Z3

u(x + xn)e−ik·(x+xn) (3.2)

where û(k) is the Fourier transform of u(x).

Proof. An L2 function can be represented with its Fourier transform û(k) according
to

u(x) =

∫
R3

û(k)eik·x dvk (3.3)

The integral can be divided into blocks of U ′

∫
R3

û(k)eik·x dvk =
∑
n∈Z3

∫
k∈U ′

û(k + kn)ei(k+kn)·x dvk

=

∫
U ′

eik·x
∑
n∈Z3

û(k + kn)eikn·x dvk =

∫
U ′

eik·xũ(x, k) dvk (3.4)



6

This proves the first representation of the Bloch amplitude. The second is shown
by using the Dirac delta distribution δ(k − k′) = |U |

(2π)3

∑
n∈Z3 e−i(k−k′)·(x+xn) (see

Appendix A for a derivation), and the Bloch amplitude can be written

ũ(x, k) =

∫
U ′

δ(k−k′)ũ(x, k′) dvk′ =
|U |

(2π)3

∑
n∈Z3

∫
U ′

e−i(k−k′)·(x+xn)ũ(x+xn, k′) dvk′

=
|U |

(2π)3

∑
n∈Z3

e−ik·(x+xn)

∫
U ′

eik′·(x+xn)ũ(x + xn, k′) dvk′

=
|U |

(2π)3

∑
n∈Z3

e−ik·(x+xn)u(x + xn) (3.5)

where we used the periodicity of ũ(x, k) in the first line.

By definition of the reciprocal lattice {kn}, we have
〈
eikn·x〉

= 0 for kn 	= 0.
The relation ũ(x, k) =

∑
n∈Z3 û(k + kn)eikn·x then implies that the mean value of

the Bloch amplitude is the Fourier amplitude of u for the corresponding wave vector,

〈ũ(·, k)〉 = û(k) (3.6)

Using the Bloch representation implies that all derivatives are shifted by k in the
following sense,

−i∇× J · (eik·xũ(x, k)) = eik·x(−i∇ + k) × J · ũ(x, k) (3.7)

−i∇ · (eik·xũ(x, k)) = eik·x(−i∇ + k) · ũ(x, k) (3.8)

In the following, we continue to use the terms “curl” and “divergence” when we
refer to the shifted differentials (−i∇ + k) × J · ũ and (−i∇ + k) · ũ.

One of our aims in this paper is to define expansion functions vn(x, k), called
Bloch eigenmodes, such that they can be used to represent the Bloch amplitudes as

ũ(x, k) =
∑

n

un(k)vn(x, k) (3.9)

and at the same time diagonalize Maxwell’s equations, in a manner to be made
precise in Section 5. Note that the expansion coefficients un in general depend on
the wave vector k.

4 Spectral properties of the curl operator

4.1 The vacuum eigenvectors

We expect the eigenvectors in the material case to be similar to the vacuum case,
which can be calculated explicitly. We study the unbounded operator

(−i∇ + k) × J : L2
#(U ; C6) → L2

#(U ; C6) (4.1)

with the dense domain H#(rot). We require k ∈ U ′.
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Theorem 4.1. The operator in (4.1) is self-adjoint.

Proof. The operator is symmetric in the usual L2 scalar product, and the equation
[(−i∇ + k) × J ± iI] · v = w is solvable for all w ∈ L2

#(U ; C6). This is shown
through expansion in Fourier series, where the operator is replaced by the matrix
(kn+k)×J± iI, which has an inverse bounded by 1/(1+ |kn+k|2)1/2 for all n ∈ Z

3.
Thus, the range of (−i∇+ k)× J± iI is all of L2

#(U ; C6), which is equivalent to the
operator in (4.1) being self-adjoint, see for instance [23, p. 513].

Theorem 4.2. Represent the arbitrary function v ∈ L2
#(U ; C6) with its Fourier

series v(x) =
∑

n∈Z3 v̂neikn·x. The eigenproblem in vacuum,

(−i∇ + k) × J · v = ωv (4.2)

has the following (non-normalized) solutions, where the index n′ ∈ Z
3 corresponds

to an enumeration of the eigenvalues and αn and βn are arbitrary constants,

ω = 0 : v̂n = αn

(
kn + k

0

)
v̂n = βn

(
0

kn + k

)
(4.3)

ωn′ = |kn′ + k| : v̂n = δn,n′

(
l̂

m̂

)
v̂n = δn,n′

(−m̂

l̂

)
(4.4)

ωn′ = −|kn′ + k| : v̂n = δn,n′

(
l̂

−m̂

)
v̂n = δn,n′

(
m̂

l̂

)
(4.5)

where δn,n′ is the Kronecker delta, and l̂ and m̂ are unit threevectors orthogonal to

kn′ + k, which satisfy l̂ × m̂ = (kn′ + k)/|kn′ + k|.

Proof. When substituting the Fourier series in the eigenvalue equation, the following
algebraic eigenvalue problem is obtained for each Fourier coefficient vn′ correspond-
ing to a fixed wave vector kn′ in the reciprocal lattice,

(kn′ + k) × J · v̂n′ = ωv̂n′ (4.6)

The eigenvectors and eigenvalues in the theorem are obviously the solution to this
algebraic problem for every wave vector kn′ in the reciprocal lattice. Since every L2

function is uniquely determined by its Fourier coefficients, the proof is complete.

Remark 1. Each non-zero eigenvalue has multiplicity two, whereas for ω = 0 there
are infinitely many undetermined constants αn and βn. This means the dimension
of the kernel (null space) of (−i∇ + k) × J is infinite.

4.2 Compactness of the vacuum resolvent

Instead of explicitly constructing the spectral properties of (−i∇ + k) × J, we can
study its resolvent, R0(z) = ((−i∇+ k)× J + zI)−1, where I is the identity operator
in C

6 and z ∈ C is chosen such that the resolvent exists as a bounded operator. The
standard procedure is to prove that the resolvent is compact and use the spectral
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theorem for compact, self-adjoint operators. However, it can be shown that the
resolvent R0(z) is proportional to the identity operator on the kernel of (−i∇+k)×J,
corresponding to ω = 0 in Theorem 4.2, which is obviously infinite-dimensional.
Since the identity operator is compact if and only if the space is finite-dimensional,
we need to work in a space smaller than L2

#(U ; C6) to prove compactness. We choose
the space where all divergences are proportional to the Bloch amplitude �̃(x, k, τ)
of the charge distribution �(x, τ),

H#(divk ∝ �̃) ≡ {v ∈ L2
#(U ; C6) : ∃z ∈ C, (−i∇ + k) · v = z�̃} (4.7)

since, as we see in the following theorem, the kernel of (−i∇ + k) × J is finite-
dimensional in this space.

Theorem 4.3. The space H#(divk ∝ �̃) is a closed linear subspace of L2
#(U ; C6),

i.e., it is a Hilbert space with the standard L2 scalar product. In this space, the
kernel of (−i∇ + k) × J has dimension 1 for k 	= 0, and dimension 7 for k = 0.

Proof. The first part of the proof concerns the closedness of the space. Any function
v ∈ L2

#(U ; C6) can be decomposed according to v = v1 +v0, where (−i∇+k) ·v1 = 0
and (v1, v0) = 0. The null space of the divergence operator (−i∇+k)· is characterized
by

v1 ∈ ker((−i∇ + k) · ) ⇔ (v1, (−i∇ + k)φ) = 0 ∀φ ∈ H1
#(U ; C2) (4.8)

i.e., it is the orthogonal complement of the image of the gradient operator (−i∇+k).
This is a closed space by definition.

Any function v0 which is orthogonal to v1 can then be written as a gradient,
v0 = (−i∇ + k)φ0. Lax-Milgram’s theorem can be used to show that for k 	= 0
the equation (−i∇ + k) · (−i∇ + k)φ0 = �̃ uniquely determines the function φ0 ∈
H1

#(U ; C2), including possible non-zero mean values of φ0, and for k = 0 the solution
is unique if we require 〈φ0〉 = 0. In the latter case, the mean values are included in
ker(−i∇·). The space can then be written as

H#(divk ∝ �̃) = ker((−i∇ + k) · ) ⊕ {v0} (4.9)

where {v0} is the linear hull of the unique function v0. Thus, H#(divk ∝ �̃) is a
direct sum of orthogonal, closed spaces, and is therefore closed in L2

#(U ; C6).
The second part concerns the dimension of the kernel of (−i∇ + k) × J. In

Appendix B, it is shown that

(−i∇ + k) × J · v = 0 ⇒ v = 〈v〉 + (−i∇ + k)φ, k × J · 〈v〉 = 0,

〈φ〉 = 0, φ ∈ H1
#(U ; C2) (4.10)

For k 	= 0, the condition k× J · 〈v〉 = 0 implies v = (−i∇+ k)(φ + Φ), where Φ is a
constant two-scalar. This corresponds precisely to the linear hull of the function v0

defined above, that is, ker((−i∇ + k) × J) = {v0}, which has dimension 1.
For k = 0, we have v ∈ ker(−i∇× J) ⇒ v = 〈v〉 − i∇φ, where 〈v〉 ∈ C

6 without
restrictions. The elliptic equation −i∇ · [(〈v〉 − i∇φ)] = z�̃ then has the solutions
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v = 〈v〉− i∇zφ0, where φ0 solves −∇2φ0 = �̃. Since there are six degrees of freedom
to choose the constant six-vector 〈v〉 ∈ C

6 and we allow for all z ∈ C, we conclude
that for k = 0 we have ker(−i∇×J) = C

6⊕{v0}, which has dimension 7. Note that
for k = 0, it is necessary to require 〈�̃〉 = 0 in order for the divergence condition to
make sense, i.e., for a solution to exist.

Theorem 4.4. The resolvent operator

R0(z) = [(−i∇ + k) × J + zI]−1 : H#(divk ∝ �̃) → H#(divk ∝ �̃) (4.11)

is a compact operator for z ∈ ρ((−i∇ + k) × J). Furthermore, there exists z′ ∈ R

such that R0(z
′) is a compact, self-adjoint operator in the standard L2 scalar product.

Proof. The resolvent operator is associated with the solution of a differential equa-
tion

[(−i∇ + k) × J + zI] · v = w ⇔ v = R0(z) · w (4.12)

Choosing z = i for simplicity and taking the Fourier transform of this equations, we
have

[(kn + k) × J + iI] · v̂n = ŵn (4.13)

Introduce the decomposition v̂n = v̂n⊥ + v̂n‖, where the index ⊥ indicates compo-
nents orthogonal to kn + k. We then have

[(kn + k) × J + iI] · v̂n⊥ = ŵn⊥, iv̂n‖ = ŵn‖ (4.14)

which demonstrates that the resolvent is proportional to the identity operator for
the ‖ components. This is precisely the space {v0} (or C

6 ⊕{v0} for k = 0) used in
the previous proof. Since this is a finite-dimensional space, the resolvent is compact
on this space.

For the ⊥ components, we square the equation and obtain

(|kn + k|2 + 1)|v̂n⊥|2 = |ŵn⊥|2 (4.15)

Using the notation w⊥ =
∑

n∈Z3 eikn·yŵn⊥, we have

‖R0(i) · w⊥‖2
L2 = ‖v⊥‖2

L2 =
∑
n∈Z3

|ŵ⊥|2
|kn + k|2 + 1

(4.16)

Define the operator SN , which restricts the number of Fourier coefficients, as

[SNv](y) =
∑
|n|≤N

v̂neikn·x (4.17)

This means the bounded operator SNR0(i) has finite rank, and is therefore compact.
We then have

‖(1 − SN)R0(i) · w⊥‖2
L2 =

∑
|n|>N

|ŵ⊥|2
|kn + k|2 + 1

≤ ‖w⊥‖2

|kN + k|2 + 1
→ 0 (4.18)
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uniformly for all w⊥ of unit norm, as N → ∞. This shows that R0(i) is the limit of
compact operators SNR0(i) in the operator norm, and is therefore compact [23, p.
495]. Since any function w ∈ H#(divk ∝ �̃) can be decomposed according to
w = w⊥+w‖ and the resolvent is compact on each associated subspace, it is compact
on all H#(divk ∝ �̃).

Thus, the spectrum is a discrete subset of C, which in turn implies that R0(z)
is compact for all z in the resolvent set, see for instance [23, p. 516]. Furthermore,
there exists a number z′ ∈ R ∩ ρ((−i∇ + k) × J), such that R0(z

′) is a compact,
self-adjoint operator.

4.3 Compact resolvent with a material

The spectral results from the vacuum case can be extended to the material case,
where we are interested in the eigenproblem

M−1 · (−i∇ + k) × J · vn = ωnvn (4.19)

We put the material dependence on the left hand side, so that the operator M−1 ·
(−i∇ + k) × J is self-adjoint in the weighted scalar product (u, M · v). We use this
scalar product in the space

H#(divk M ∝ �̃) ≡ {v ∈ L2
#(U ; C6) : ∃z ∈ C, (−i∇ + k) · [M · v] = z�̃} (4.20)

which is a natural generalization of H#(divk ∝ �̃). The operator defined by multi-
plication with M,

M : H#(divk M ∝ �̃) → H#(divk ∝ �̃) (4.21)

is a bijective mapping between these spaces. It is straight-forward to show that
Theorem 4.3 continues to hold for the space H#(divk M ∝ �̃), and the following
theorem generalizes Theorem 4.4.

Theorem 4.5. The resolvent operator

R(z) = [M−1 · (−i∇ + k) × J + zI]−1 : H#(divk M ∝ �̃) → H#(divk M ∝ �̃) (4.22)

is a compact operator for z ∈ ρ(M−1 · (−i∇ + k) × J). Furthermore, there exists
z′ ∈ R such that R(z′) is a compact, self-adjoint operator in the weighted L2 scalar
product (u, M · v).

Proof. The resolvent can be written using the vacuum resolvent R0(z),

R(z) = [M−1 · (−i∇ + k) × J + zI]−1 = [(−i∇ + k) × J + zI + z(M − I)]−1 · M
= [R0(z)−1 + z(M − I)]−1 · M = [I + zR0(z) · (M − I)]−1 · R0(z) · M (4.23)

Since M is bounded, the operator R0(z) · M : H#(divk M ∝ �̃) → H#(divk ∝ �̃)
is compact. It is multiplied by [I + zR0(z)(M − I)]−1, which is bounded unless −1
is an eigenvalue of zR0(z)(M − I). This cannot occur since, from Theorem 4.2,
the eigenvalues of (−i∇ + k) × J are real and we can assume Im z 	= 0. Thus,
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the resolvent R(z) is compact, which implies it has a discrete spectrum. Since the
operator M−1 · (−i∇ + k) × J is self-adjoint in L2

#(U ; C6) with the weighted scalar
product (u, M · v), the arguments from the proof of Theorem 4.4 can be repeated.
Thus, there exists a real number z′ such that R(z′) is compact and self-adjoint in
this space.

In conclusion, we have the following theorem.

Theorem 4.6. The set of eigenfunctions for the resolvent operator R(z′) is countable
and forms an orthogonal basis for the space H#(divk M ∝ �̃) with the scalar product
(u, M · v), and the only accumulation point for the real eigenvalues is 0. This set of
eigenvectors is equivalent to the set of eigenvectors for the original operator M−1 ·
(−i∇+k)×J, where the accumulation points for the real eigenvalues {ωn} are ±∞.

Proof. Follows from Theorem 4.5 and the spectral theorem for compact, self-adjoint
operators. See also [23, p. 516].

Remark 2. The eigenvalues are continuous functions of the wave vector, i.e.,

|ωn(k) − ωn(k0)| ≤
1

c
|k − k0| (4.24)

where c is defined in (2.8). This is clear from Theorem V-4.10 in [16], which states
that when perturbing a self-adjoint operator with a bounded, symmetric operator,
the change of the spectrum is bounded by the norm of the perturbing operator. In
our case, the operator is

M−1 · (−i∇ + k) × J = M−1 · (−i∇ + k0) × J︸ ︷︷ ︸
self-adjoint

+ M−1 · (k − k0) × J︸ ︷︷ ︸
bounded perturbation

(4.25)

and the norm of the perturbing operator is∥∥M−1 · (k − k0) × J
∥∥ ≤ (sup

x∈U
|M−1(x)|)|k − k0| (4.26)

and supx∈U |M−1(x)| ≤ 1/c.

Remark 3. Since (−i∇ + k) · (−i∇ + k) × J ≡ 0, we have

ωn(k) 	= 0 ⇒ (−i∇ + k) · [M(x) · vn(x, k)] = 0 (4.27)

i.e., non-zero eigenvalues implies zero divergence after multiplication with M. Only
modes with ωn(k) = 0 can have non-zero divergence, which is exploited in the
following section.
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5 Bloch decomposition

The Bloch eigenmodes are defined from the following eigenvalue problem [2, 7, 8, 21]

(−i∇ + k) × J · vn(x, k) = ωn(k)M(x) · vn(x, k), x ∈ U (5.1)

with periodic boundary conditions and the normalization

(vn, M · vn) = |U | (5.2)

Since M is dimensionless, this normalization means the functions {vn} are dimen-
sionless. The enumeration is chosen such that n = 0 corresponds to the unique
function v0(x, k) satisfying (−i∇ + k) × J · v0 = 0 and (−i∇ + k) · [M · v0] = z�̃
for some z ∈ C (where z is determined by the normalization of v0). This means
ω0(k) = 0 for all k ∈ U ′. All other modes are enumerated by n > 0.

The following theorem is equivalent to a generalized Fourier series in Hilbert
space, and a scalar version is given in [7]. See also [3, p. 619].

Theorem 5.1. Let u ∈ L2
#(U ; C6) with ∇ · u = �. The n:th Bloch coefficient of u is

defined as follows for all n ∈ Z and k ∈ U ′:

un(k) =
1

(2π)3

∫
R3

e−ik·xvn(x, k)∗ · M(x) · u(x) dvx (5.3)

Then the following inverse formula holds:

u(x) =
∑
n≥0

∫
U ′

un(k)eik·xvn(x, k) dvk (5.4)

Further, we have Parseval’s identity:∫
R3

u(x)∗ · M(x) · u(x) dvx = (2π)3
∑
n≥0

∫
U ′
|un(k)|2 dvk (5.5)

Finally, for all u in the domain of ∇× J, we have

∇× J · u(x) =
∑
n>0

∫
U ′

iωn(k)un(k)M(x) · vn(x, k)eik·x dvk (5.6)

Proof. With u ∈ L2
#(U ; C6) and ∇ · u = �, it is clear that the Bloch amplitude

ũ(x, k) defined in Theorem 3.1 is in H#(divk M ∝ �̃). From Theorem 4.6 it is clear
that for each k ∈ U ′ the spectral problem (5.1) admits a discrete sequence of real
eigenvalues and a complete set of eigenvectors in the Hilbert space H#(divk M ∝ �̃).
The general Fourier series expansion in Hilbert spaces guarantees that for all k the
Bloch amplitude ũ(x, k) can be expanded in the corresponding eigenvectors,

u(x) =

∫
U ′

eik·xũ(x, k) dvk =

∫
U ′

eik·x
∑

n

un(k)vn(x, k) dvk (5.7)
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with

un(k) =
(vn, M · ũ)

(vn, M · vn)
=

1

|U |

∫
U

vn(x, k)∗ · M(x) · ũ(x, k) dvx (5.8)

From Theorem 3.1 the Bloch amplitude can be written ũ(x, k) = |U |
(2π)3

∑
n∈Z3 u(x +

xn)e−ik·(x+xn), and the expansion coefficients are

un(k) =
1

(2π)3

∑
n∈Z3

∫
U

vn(x, k)∗ · M(x) · u(x + xn)e−ik·(x+xn) dvx

=
1

(2π)3

∫
R3

vn(x, k)∗ · M(x) · u(x)e−ik·x dvx (5.9)

The Parseval identity in the theorem is shown by using the Bloch representation of
u(x),∫

R3

u(x)∗ · M(x) · u(x) dvx

=

∫
x∈R3

[ ∫
k∈U ′

eik·xũ(x, k) dvk

]∗
· M(x) ·

[ ∫
k′∈U ′

eik′·xũ(x, k′) dvk′

]
dvx

=

∫
x∈R3

∫
k∈U ′

∫
k′∈U ′

ei(k′−k)·xũ(x, k)∗ · M(x) · ũ(x, k′) dvk dvk′ dvx

=
∑
n∈Z3

∫
x∈U

∫
k∈U ′

∫
k′∈U ′

ei(k′−k)·(x+xn)ũ(x+xn, k)∗ ·M(x+xn)·ũ(x+xn, k′) dvk dvk′ dvx

=

∫
x∈U

∫
k∈U ′

∫
k′∈U ′

ũ(x, k)∗ · M(x) · ũ(x, k′)
∑
n∈Z3

ei(k′−k)·(x+xn) dvk dvk′ dvx

=
(2π)3

|U |

∫
x∈U

∫
k∈U ′

ũ(x, k)∗ · M(x) · ũ(x, k) dvk dvx = (2π)3
∑

n

∫
k∈U ′

|un(k)|2 dvk

(5.10)

where we used the representation |U |
(2π)3

∑
n∈Z3 ei(k−k′)·(x+xn) = δ(k− k′) of the delta

distribution, and the periodicity of ũ(x, k) and M(x). The last equality follows from
the Parseval equality for a general Fourier series expansion in Hilbert spaces, when
expanding the Bloch amplitude ũ(x, k) =

∑
n un(k)vn(x, k). The factor |U | in the

denominator in the last line vanishes due to the normalization (vn, M · vn) = |U |.
The final part of the theorem, the representation of the curl operator (5.6), is

an immediate consequence of the definition of the eigenvectors. The summation is
only over n > 0 due to the multiplication with ωn.

Remark 4. Since the eigenvectors are undetermined by an arbitrary phase eiθ, the
expansion does not really make sense, i.e., the expansion coefficients un(k) may not
be continuous or even measurable as a function of k. However, in our final results
the phase always cancels, and we assume there exists a structured way of dealing
with this problem, see [26] for further details.
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5.1 Consequences for solutions of Maxwell’s equations

The solution e(x, τ) of Maxwell’s equations, (∇×J+∂τM)·e+j = 0 and ∇·[M·e] = �,
is expanded in the Bloch waves as

e(x, τ) =
∑
n≥0

∫
U ′

en(k, τ)eik·xvn(x, k) dvk (5.11)

The following theorem demonstrates that the expansion coefficients en(k, τ) can be
controlled by choosing the time dependence of the generating current suitably. This
is exploited in the following section.

Theorem 5.2. The time-depending expansion coefficients en(k, τ) are given by

en(k, τ) = −e−iωn(k)τ 1

(2π)3

∫
R3

e−ik·xvn(x, k)∗ ·
∫ τ

−∞
eiωn(k)τ ′

j(x, τ ′) dτ ′ dvx (5.12)

Proof. Multiply Maxwell’s equations (∇×J+∂τM)·e+j = 0 with (eik·xvn(x, k))∗/(2π)3

and integrate over R
3. Using (5.3) and (5.6), we see that the time depending ex-

pansion coefficients en(k, τ) must satisfy

(iωn(k) + ∂τ )en(k, τ) = − 1

(2π)3

∫
R3

e−ik·xvn(x, k)∗ · j(x, τ) dvx (5.13)

that is,

en(k, τ) = −e−iωn(k)τ 1

(2π)3

∫
R3

e−ik·xvn(x, k)∗ ·
∫ τ

−∞
eiωn(k)τ ′

j(x, τ ′) dτ ′ dvx (5.14)

where we assumed en(k, τ) → 0, τ → −∞. This is the standard convolution solution
of a time-invariant differential equation.

6 Homogenization

We now assume that the unit cell U is much smaller than the typical wavelength.
The electromagnetic field is represented with its spatial Fourier transform

e(x, τ) =

∫
R3

eik·xê(k, τ) dvk =

∫
U ′

eik·xê(k, τ) dvk +

∫
R3\U ′

eik·xê(k, τ) dvk (6.1)

As the unit cell U shrinks to zero, the reciprocal cell U ′ fills R
3, and since ê ∈

L2(R3; C6) the integral over R
3 \ U ′ must vanish in this limit. Thus, only Fourier

amplitudes ê(k, τ) with k ∈ U ′ contribute to the field when the unit cell is small.
But as shown in Section 3, these Fourier amplitudes are precisely the mean values
of the corresponding Bloch amplitudes, ê(k, τ) = 〈ẽ(·, k, τ)〉, and we have

e(x, τ) →
∫

U ′
eik·x 〈ẽ(·, k, τ)〉 dvk, |U | → 0 (6.2)
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Figure 1: Plot of a typical band structure. The eigenvalues Ωn for the geometry
in the upper left figure (unit cell U = ]0, 1[3) are depicted as functions of the wave
vector η in the reciprocal unit cell U ′ = ]−π, π[3 in the lower left figure. The shaded
area in the lower left part of the diagram indicates the approximate validity range
of classical homogenization [22]. The thin grey strip is a band gap, where there
are no eigenvalues regardless of the wave vector. Thus, in this frequency interval
there can exist no fixed frequency solutions to Maxwell’s equations. In this plot, the
optical modes are above the band gap, and the acoustic are below. There are only
two acoustic modes, since we do not plot the negative frequencies corresponding to
propagation in the negative η-direction. The calculations are made with the program
described in [15], and the scaffold geometry is taken from [9]. The thickness of the
bars is 20% of the unit cell, and the permittivity in the bars is 12.96.

This suggests that the mean value of the Bloch amplitude carries the relevant infor-
mation for the solution when the unit cell becomes small. To capture the effect of
the microstructure, we introduce the dimensionless variables y and η as

x = ay, k = a−1η (6.3)

where a is a typical size of the unit cell. Using this scaling, the eigenvalue problem
can be represented in dimensionless variables as

(−i∇y + η) × J · vn(ay, a−1η)︸ ︷︷ ︸
un(y,η)

= aωn(a−1η)︸ ︷︷ ︸
Ωn(η)

M(ay)︸ ︷︷ ︸
M0(y)

· vn(ay, a−1η)︸ ︷︷ ︸
un(y,η)

(6.4)

From this formulation we conclude that the eigenvectors un(y, η) and eigenvalues
Ωn(η) can be calculated independent of the physical size a of the unit cell. A typical
plot of the eigenvalues as functions of the wave vector is given in Figure 1.
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From (6.4) it is seen that the eigenvalues scale with the size of the unit cell as

ωn(k) =
Ωn(ak)

a
(6.5)

For eigenvalues with Ωn(η) 	= 0 for all η, this means |ωn(k)| → ∞ when a → 0.
Apart from ω0(k), which is identically zero, only eigenvalues corresponding to the
index set

I = {n > 0; |Ωn(ak)|/a < ∞, a → 0} (6.6)

remain bounded when a → 0. The modes with n ∈ I are often called the acoustic
branch in the physics literature on lattice vibrations, and n 	∈ I ∪{0} are the optical
branch, see for instance [17, p. 88] or [18, p. 210]. Observe that n = 0 is not
included in I, which means that n ∈ I ⇒ (−i∇ + k) · [M · vn] ≡ 0.

The following theorem shows that the steady-state response to a band-limited
current can only consist of acoustic modes in the limit a → 0.

Theorem 6.1. Denote the temporal Fourier transform of the current density by

ĵ(x, ω) =

∫ ∞

−∞
eiωτ j(x, τ) dτ (6.7)

Let ĵ(x, ω) = 0 for |ω| > ω0, where ω0 > 0 is a given constant. The steady-state
electromagnetic field in the limit a → 0 is then

lim
τ→∞

e(x, τ) =
∑
n∈I

∫
U ′

en(k)ei(k·x−ωn(k)τ)vn(x, k) dvk (6.8)

where

en(k) = − 1

(2π)3

∫
R3

e−ik·xvn(x, k)∗ · ĵ(x, ωn(k)) dvx (6.9)

Proof. The steady-state expansion coefficients are calculated by taking the limit
τ → ∞ in (5.12)

lim
τ→∞

en(k, τ)eiωn(k)τ = − 1

(2π)3

∫
R3

e−ik·xvn(x, k)∗ ·
∫ ∞

−∞
eiωn(k)τ ′

j(x, τ ′) dτ ′ dvx

= − 1

(2π)3

∫
R3

e−ik·xvn(x, k)∗ · ĵ(x, ωn(k)) dvx (6.10)

Since ωn(k) = Ωn(ak)/a, only the eigenvalues ωn(k) corresponding to n ∈ I∪{0} can
satisfy |ωn(k)| ≤ ω0 when a → 0. Since v0(x, k) can be written as (−i∇+k)φ(x, k),
the expansion coefficient for n = 0 is (ω0(k) = 0)

lim
τ→∞

e0(k, τ) = − 1

(2π)3

∫
R3

e−ik·x[(−i∇ + k)φ(x, k)]∗ · ĵ(x, 0) dvx

= − 1

(2π)3

∫
R3

[−i∇(eik·xφ(x, k))]∗ · ĵ(x, 0) dvx (6.11)
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But Maxwell’s equations imply the time-harmonic continuity equation ∇ · ĵ(x, ω) =
iω�̂(x, ω), and for ω = 0 this implies ∇ · ĵ(x, 0) = 0, which is equivalent to ĵ(x, 0)
being orthogonal to all gradients. This means limτ→∞ e0(k, τ) = 0, and all expansion
coefficients with n 	∈ I are zero in the limit τ → ∞. The steady-state field is then

lim
τ→∞

e(x, τ) =
∑
n∈I

∫
U ′

en(k)ei(k·x−ωn(k)τ)vn(x, k) dvk (6.12)

where en(k) = limτ→∞ en(k, τ)eiωn(k)τ .

Remark 5. The limits a → 0 and τ → ∞ in the above theorem do not have to be
taken literally. In some respect they are complementary, depending on whether the
current is limited in time or in frequency. If the current density j(x, τ) is zero after
some time T , the limit τ → ∞ is reached as soon as τ > T . But as a consequence, the
Fourier transform ĵ(x, ω) is small but not zero for large ω (due to the “uncertainty
principle” for Fourier transform pairs), which requires an infinitesimal a in order to
make ĵ(x, ωn(k)) small enough. On the other hand, if the current is band-limited in
frequency (as in the theorem), there is a finite A such that |ωn(k)| = |Ωn(ak)|/a > ω0

for all n 	∈ I ∪ {0} as soon as a < A, which implies ĵ(x, ωn(k)) = 0. But a current
limited in frequency is small but not zero for large times, requiring τ → ∞. In
practice, a trade-off is made between these requirements, choosing τ large enough
and a small enough, but we do not go into detail here.

We are now ready to state the main result of this paper, where the index ⊥
denotes components perpendicular to k̂ = k/|k|, which is the unit vector in the
k-direction.

Theorem 6.2. Define the homogenized matrix Mh
⊥(k) as

lim
τ→∞
a→0

〈d̃(·, k, τ)〉 = lim
τ→∞
a→0

〈M(·) · ẽ(·, k, τ)〉 = Mh
⊥(k) · lim

τ→∞
a→0

〈ẽ(·, k, τ)〉 (6.13)

For every non-zero k ∈ U ′, this matrix has the representation

Mh
⊥(k) =

∑
m∈I

〈M · vm〉 〈v∗m · M〉
〈v∗m · M〉 · 〈vm⊥〉

(6.14)

Proof. Theorem 6.1 ensures that only modes with m ∈ I survive in the limit τ → ∞,
a → 0. Since (−i∇ + k) · [M · vm] = 0 for m ∈ I, we have k̂ · 〈M · vm〉 = 0 which
implies k̂ · 〈d̃〉 = 0. The proof is complete if we can find a matrix Mh

⊥(k) such
that 〈M · vm〉 = Mh

⊥ · 〈vm〉 for all m ∈ I. That such a matrix exists and has the
above representation is proven in Section 6.1, Theorem 6.3. The proof is based on
a conjecture.

6.1 Proof of the homogenization theorem

Some of the properties of the mean values which are needed in this paper seem
intuitively reasonable but difficult to prove. Therefore, we state the following con-
jecture.
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Conjecture 1. For each non-zero k ∈ U ′, precisely four eigenvectors correspond to
the index set I defined in (6.6). The mean values {〈vm⊥〉}m∈I are linearly indepen-
dent, i.e., the components orthogonal to k̂ constitute a basis in the four-dimensional
space {v ∈ C

6 : k̂ · v = 0}.

Remark 6. That I only consists of four indices and not six (the dimension of the
zero-divergence kernel of (−i∇+k)×J at k = 0) might seem counter-intuitive. This
kernel consists of six functions of the form 〈v〉 −∇φ, and it is reasonable to believe
that all these could be continued as eigenvectors for k 	= 0. The intuitive explanation
is of a geometric nature. We first note that of the four eigenvectors corresponding to
I, two of them are associated with propagation in the −k direction. These can be
found from the other two by reversing the direction of the electric or the magnetic
field. This leaves two fundamentally independent modes, often named TE and TM
modes, for each propagation direction k. In three-dimensional space we have three
fundamental directions, which are indistinguishable at k = 0. This leaves us with
3 × 2 = 6 independent modes corresponding to I, which is precisely the dimension
of the zero-divergence kernel of (−i∇ + k) × J at k = 0.

The conjecture is supported by the explicit representation of the eigenvectors in
the vacuum case (Theorem 4.2), and experience from numerical calculations. Also,
since the mean values of Bloch amplitudes correspond to the Fourier amplitudes,
〈ẽ〉 = ê(k), the conjecture describes the expected behavior of the electromagnetic
field at small wavenumbers.

To proceed we need a lemma on linear algebra:

Lemma 6.1. For a set of linearly independent (constant) vectors {wm}, there exists
αmm′ ∈ C, such that the orthogonality relations[∑

m′∈I

αmm′w∗
m′

]
· wm′′ = δmm′′ (6.15)

hold for m, m′′ ∈ I, where δmm′′ is the Kronecker delta.

Proof. Due to the linear independence of the vectors {wm}, the square matrix with
entries Am′m′′ = w∗

m′ · wm′′ is invertible. This means the equation
∑

m′ Am′m′′am′ =
bm′′ has a unique solution am′ for each bm′′ . Fixing m and choosing bm′′ = δmm′′ , this
uniquely determines am′ = αmm′ .

Lemma 6.2. There exists a matrix Mh
⊥(k), not depending on the space variable x

or the index m, such that

〈M(·) · vm(·, k)〉 = Mh
⊥(k) · 〈vm⊥(·, k)〉 (6.16)

for every m ∈ I.
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Proof. With {〈vm⊥〉}m∈I being linearly independent, there exist orthogonality rela-
tions [

∑
m′∈I αmm′ 〈vm′⊥〉] · 〈vm′′⊥〉 = δmm′′ due to Lemma 6.1. We then have

〈M · vm〉 = 〈M · vm〉
[∑

m′∈I

αmm′ 〈vm′⊥〉
]
· 〈vm⊥〉

︸ ︷︷ ︸
=1

=

[ ∑
m′,m′′∈I

〈M · vm′′〉αm′′m′ 〈vm′⊥〉
]
· 〈vm⊥〉 = Mh

⊥ · 〈vm⊥〉 (6.17)

where we used the orthogonality to include the sum over m′′.

As alluded to above, Theorem 6.2 is a consequence of the following theorem,
which concludes the proof of Theorem 6.2.

Theorem 6.3. The homogenized matrix is hermitian symmetric and positive defi-
nite, and has the representation

Mh
⊥(k) =

∑
m∈I

〈M · vm〉 〈v∗m · M〉
〈v∗m · M〉 · 〈vm⊥〉

(6.18)

In addition, the orthogonality relations

〈v∗m · M〉 · 〈vm′⊥〉
〈v∗m · M〉 · 〈vm⊥〉

= δmm′ (6.19)

hold for each m, m′ ∈ I.

Proof. Taking the mean value of (5.1), we find

k̂ × J · 〈vm〉 =
ωm

|k| 〈M · vm〉 (6.20)

where k̂ = k/|k| is the unit vector in the k-direction. Introducing the homogenized
matrix Mh

⊥, and observing k̂ × J · 〈vm〉 = k̂ × J · 〈vm⊥〉, we have the algebraic
generalized eigenvalue problem

k̂ × J · 〈vm⊥〉 =
ωm

|k|M
h
⊥ · 〈vm⊥〉 (6.21)

also known as the simultaneous diagonalization of k̂ × J and Mh
⊥. Since k̂ × J is

a real, symmetric matrix and all eigenvalues ωm/|k| are real, the matrix Mh
⊥ must

be hermitian symmetric, which is also clear from the symmetry of M(x). Using the
eigenvalue problem, we find

〈v∗m′⊥〉 · Mh
⊥ · 〈vm⊥〉 =

|k|
ωm

〈v∗m′⊥〉 · k̂ × J · 〈vm⊥〉 =
ωm′

ωm

〈v∗m′⊥〉 · Mh
⊥ · 〈vm⊥〉 (6.22)

which implies the eigenvectors 〈vm⊥〉 are mutually orthogonal over Mh
⊥ since gener-

ally we have ωm′ 	= ωm for m 	= m′. We ignore the technical problem of multiple
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eigenvalues; these occur in macroscopically isotropic media, and can be removed by
considering the medium as a limit of macroscopically anisotropic media, which have
distinct eigenvalues. Noting that Mh

⊥ · 〈vm⊥〉 = 〈M · vm⊥〉, we have the orthogonality
relations

〈v∗m · M〉 · 〈vm′⊥〉
〈v∗m · M〉 · 〈vm⊥〉

= δmm′ (6.23)

This means the matrix

A =
∑
m∈I

〈M · vm〉 〈v∗m · M〉
〈v∗m · M〉 · 〈vm⊥〉

(6.24)

satisfies A · 〈vm⊥〉 = 〈M · vm〉, and therefore A = Mh
⊥. This matrix is hermitian

symmetric and positive definite by construction.

Remark 7. The homogenized matrix is computed from the mean values of the
acoustic modes only. The representation is valid for any non-zero k ∈ U ′, irre-
spective of the scale of the unit cell. In the space {v ∈ C

6; k̂ · v = 0}, the matrix Mh
⊥

is hermitian, positive definite by construction.

6.2 Interpretation of the homogenized matrix

We first comment that there is no information on the k̂k̂ part of the homogenized
matrix, corresponding to static fields. This is not surprising, since we are studying
the limit of wave propagation in a periodic medium. In wave propagation, there is no
interaction with static fields, unless nonlinear effects are taken into account. This
part of the homogenized matrix could possibly be recovered from the divergence
condition built into the function space H#(divk M ∝ �̃), but we do not proceed
along those lines in this paper.

Theorem 6.2 is a statement on the mean value of the Bloch amplitudes, i.e.,
〈d̃(·, k, τ)〉 = Mh

⊥(k) · 〈ẽ(·, k, τ)〉, or, equivalently, the Fourier amplitudes d̂(k, τ) =
Mh

⊥(k) · ê(k, τ), k ∈ U ′. But what does this mean in the spatial domain? If the
entire spectral content of ê(k) is contained in the first Brillouin zone U ′ we can at
least formally invert the Fourier transform to find

d(x, τ) = [F−1
3 Mh

⊥(k)] ∗ e(x, τ) (6.25)

where ∗ indicates spatial convolution and F−1
3 is a three-dimensional inverse Fourier

transform. This is a non-local constitutive relation, which shows that, at least
formally, the constitutive relation exhibits spatial dispersion.

7 Discussion and conclusions

We have presented a method to compute effective material parameters for elec-
tromagnetic waves propagating in a periodic medium. The result is an explicit
representation in terms of mean values of the Bloch eigenvectors, which can be com-
puted with standard photonic band gap computational techniques, such as described
in [15], or a general finite element program [10]. There are very few results in the
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literature regarding qualitative results on mean values of eigenvectors, which indi-
cates there is more work to be done in this field before a proper evaluation of this
new method can be done.

In spite of the latter point, we can speculate whether this new formulation of
homogenization seems to have any potential advantages compared to existing meth-
ods. We recall that the major step in classical homogenization consists in solving
an elliptic equation of the form ∇ · [ε(x) · (I − ∇χ)] = 0. In [6, 11], the accu-
racy and computational time of solving the local, elliptic problem is compared to
solving the eigenvalue problem with the corresponding operator and differentiating
the eigenvalue (effective mass homogenization). It is found that there is no signifi-
cant difference between the two methods from a numerical point of view, neither in
accuracy nor in computational time.

It is shown in [6], that the “Bloch approximation”, which expresses the homog-
enized solution in terms of the first Bloch eigenvector and thus has similarities with
the method presented in this paper, is a better approximation to the exact solution
than the classical first-order corrector method, at least in the smooth coefficient
case. In our case, the first Bloch eigenvector corresponds to the acoustic modes,
m ∈ I. As we can see from Theorem 6.1, we can actually represent the full solution
using only acoustic modes under certain conditions, even when the wavelength is
not necessarily infinitely large compared to the unit cell.

One drawback of the Bloch wave method is that the spectral results only deal
with real, symmetric material matrices. This means dispersion effects and a fi-
nite conductivity cannot be handled with this method, unless additional analysis
is performed to guarantee the existence and suitable properties of eigenvalues and
eigenvectors. The finite conductivity was a vital component of the derivation of the
local problem in [25], which demonstrates that, at least at the present understand-
ing, the two methods live in somewhat different worlds. On the other hand, one
advantage of the Bloch wave expansion, is that it represents the full solution of the
electromagnetic problem in periodic media. This makes it possible to estimate the
range of validity for the homogenized result, where some first steps have been taken
in [22].
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Appendix A A representation of the Dirac delta

distribution

The following representation of the delta distribution is proven here since the authors
have not succeeded in finding a suitable reference when the basis vectors a1,2,3 are
not necessarily mutually orthogonal.

Lemma A.1. The Dirac delta distribution can be represented by a sum over the
lattice points:

δ(k) =
|U |

(2π)3

∑
n∈Z3

eik·xn, k ∈ U ′ (A.1)

where xn = n1a1 + n2a2 + n3a3, n1,2,3 ∈ Z, and a1,2,3 are the basis vectors for the
lattice.

Proof. Represent the vector k ∈ U ′ as k = k1b1 + k2b2 + k3b3, |k1,2,3| ≤ 1/2, where
the reciprocal vectors b1,2,3 satisfy ai ·bj = 2πδij and δij is the Kronecker delta. The
sum can be written

∑
n∈Z3

eik·xn =

(∑
n1∈Z

ei2πk1n1

) (∑
n2∈Z

ei2πk2n2

) (∑
n3∈Z

ei2πk3n3

)
= δ(k1)δ(k2)δ(k3)

(A.2)
where we used the standard representation of the one-dimensional delta distribution
δ(a) =

∑
n∈Z

ei2πan, |a| < 1. Now, identifying (k1, k2, k3) as Cartesian coordinates for
a dimensionless vector η in R

3, we identify δ(k1)δ(k2)δ(k3) as the three-dimensional
delta distribution δ(η). The physical vector k is a smooth mapping k(η), and
we have the standard scaling for delta distributions composed with smooth maps
δ(k(η)) = | det k′(η)|−1δ(η), see for instance [14, p. 136]. Since detk′(η) = b1 ·(b2×
b3) is the volume of the reciprocal unit cell U ′, it can also be written det k′(η) =
|U ′| = (2π)3/|U |, and we have

∑
n∈Z3

eik·xn = δ(η) =
(2π)3

|U | δ(k) (A.3)

which completes the proof.

Corollary A.1. The Dirac delta distribution can be represented as

δ(k) =
|U |

(2π)3

∑
n∈Z3

eik·(x+xn), k ∈ U ′ (A.4)

Proof. Follows from the lemma since eik·xδ(k) = ei0·xδ(k) = δ(k).

Appendix B The null space of the curl operator

The following lemma is well known and is proved in, for instance, [25]:
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Lemma B.1. Let f ∈ H1
#(U ; R3) and assume that ∇×f(x) = 0. Then there exists

a unique function φ ∈ H2
#(U)/R such that

f(x) = 〈f(x)〉 + ∇φ(x) (B.1)

The following lemma generalizes this result for the shifted curl operator:

Lemma B.2. Let f ∈ H1
#(U ; C3). Assume that (−i∇ + k) × f(x) = 0, where

k ∈ R
3. Then there exists a vector kn0 in the reciprocal lattice and a unique function

φ ∈ H2
#(U) such that

f(x) =
〈
e−ikn0 ·xf(x)

〉
eikn0 ·x + (−i∇ + k)φ(y) (B.2)

and
〈
e−ikn0 ·xφ(x)

〉
= 0. Furthermore, (kn0 + k) ×

〈
e−ikn0 ·xf(x)

〉
= 0.

Proof. The periodicity of the function f ∈ H1
#(U ; R3) implies that f has a Fourier

expansion

f(x) =
∑
n∈Z3

f̂neikn·x (B.3)

The sequence f̂n belongs to (�2
1)

3
. Due to the condition (−i∇ + k) × f = 0, the

coefficients f̂n also satisfy

(kn + k) × f̂n = 0, ∀n ∈ Z
3 (B.4)

Construct the function g(x) = f(x)−
〈
e−ikn0 ·xf(x)

〉
eikn0 ·x, where n0 is determined

from
|kn0 + k| = min

n∈Z3
|kn + k| (B.5)

This new function has zero Fourier component for n = n0, i.e., ĝn0
= 0. The other

components satisfy (kn + k)× ĝn = 0, where now |kn + k| is clearly bounded from
zero. Therefore, we can write gn on the form

ĝn = (kn + k)φ̂n, ∀n 	= n0 (B.6)

The coefficients φ̂n are in �2
2 and

g(x) =
∑

n
=n0

(kn + k)φ̂neikn·x = (−i∇ + k)φ(x, k) (B.7)

where
φ(x, k) =

∑
n
=n0

φ̂neikn·x ∈ H2
#(U) (B.8)

Using this construction in the original equation, we find

0 = (−i∇ + k) × f(x)

= (−i∇ + k) ×
(〈

e−ikn0 ·xf(x)
〉
eikn0 ·x + (−i∇ + k)φ(x, k)

)
= eikn0 ·x(kn0 + k) ×

〈
e−ikn0 ·xf(x)

〉
(B.9)

which completes the proof.

Corollary B.1. If k ∈ U ′, the index n0 is 0. Thus, if (−i∇ + k) × f(x) = 0, we
have

f(x) = 〈f(·)〉 + (−i∇ + k)φ(x, k) (B.10)

with 〈φ〉 = 0. Furthermore, k × 〈f(·)〉 = 0.
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Appendix C Classical homogenization

We show that the classical formulas for the homogenized material matrix, see for
instance [24, 25], can be obtained from the Bloch expansion for zero wave vector k.

Theorem C.1. For k = 0, we can find six functions vm ∈ H#(div M ∝ �̃) and a
homogenized matrix Mh such that

〈M(·) · vm(·,0)〉 = Mh · 〈vm(·,0)〉 (C.1)

where the functions vm are in the kernel of ∇× J and

Mh = 〈M(·) · (I −∇χ(·))〉 =

〈(
ε(·) 0
0 µ(·)

)
·
(
I −∇χe(·) 0

0 I −∇χh(·)

)〉
(C.2)

and the six-vector potential χ(x) = [χe(x), χh(x)]T satisfies the elliptic equation

∇ · [M(x) · (I −∇χ(x))] = 0 (C.3)

with periodic boundary conditions.

Proof. For k = 0 the modes in the kernel satisfy ∇× J · vm(x,0) = 0, which implies
that (see Appendix B)

vm(x,0) = 〈vm〉 − ∇φm(x) (C.4)

where φm(x) is a two-scalar with zero mean, and 〈vm〉 is an arbitrary constant six-
vector. From Theorem 4.3 it is clear that there exists seven independent functions
satisfying

∇ · [M(x) · (〈vm〉 − ∇φm(x))] = zm�̃, m = 0, 1, 2, . . . , 6 (C.5)

Choose z0 = 1 and 〈v0〉 = 0. The potential φ0 is then uniquely determined by the
elliptic equation −∇ · [M · ∇φ0] = �̃, and the requirement 〈φ0〉 = 0. In order for the
seven functions to be linearly independent, we must set zm = 0 for m = 1, 2, . . . , 6.
The remaining six functions are then determined by the zero divergence condition

∇ · [M(x) · (〈vm〉 − ∇φm(x))] = 0, m = 1, 2, . . . , 6 (C.6)

This elliptic problem is uniquely solvable for φm in terms of the mean value 〈vm〉,
and the solution can be represented as

∇φm(x) =

(
∇φe

m(x)
∇φh

m(x)

)
=

(
∇χe(x) 0

0 ∇χh(x)

)
· 〈vm〉 = ∇χ · 〈vm〉 (C.7)

where the six-vector χ(x) is independent of m. Since the mean values 〈vm〉 can be
chosen to span C

6, χ(x) must satisfy

∇·[M(x)·(I−∇χ)] = ∇·
[(

ε(x) 0
0 µ(x)

)
·
(
I −∇χe(x) 0

0 I −∇χh(x)

)]
= 0 (C.8)
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which are 2 × 3 scalar equations that together with periodic boundary conditions
determine the solution χ(x) = [χe(x), χh(x)]T. We get

vm(x,0) = (I −∇χ(x)) · 〈vm〉 (C.9)

The homogenized matrix is then

〈M(·) · vm(·,0)〉 = 〈M(·) · (I −∇χ(·))〉︸ ︷︷ ︸
Mh

· 〈vm(·,0)〉 (C.10)

which completes the proof.
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