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PREFACE

This is the day for doubting axioms.

With mathematicians, the question is settled; there is
no reason to believe that the geometrical axioms are
exactly true. Metaphysics is an imitation of
geometry, and with the geometrical axioms the
metaphysical axioms must go too.

—C. S. Peirce, “One, Two, Three:
Kantian Categories”

This book grew out of my curiosity about what the world is like in its
most fundamental aspects. That curiosity got me interested in physics,
and later in metaphysics. At first, I was intoxicated by the contempo-
rary metaphysics movement and its aims to free metaphysical reasoning
from the shackles of epistemology and language. But, gradually, I be-
came more and more disillusioned. It seemed to me that standpoints
were generally accepted or rejected purely for psychological or social
reasons, and the naturalist in me felt that such reasons simply were not
relevant to questions of what the world is like.

In fact, as I discovered, much of contemporary philosophy is an
internal affair: a debate is set up on certain premisses, and these are
seldom questioned by the debating parties. As the debate proceeds, it
takes on a life of its own, and defines its own norms for evaluating what
is a good or a bad argument. Intuitions drive argument, and social
groups form intuitions. In the end, the debate can move any distance
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from the—often quite concrete—questions that motivated it. Perhaps
the most well-known philosophical school in which this is said to have
occurred was Scholasticism; I suspect that much of what goes on in
contemporary analytic and continental philosophy will be described in
similar terms in the future.

The sciences—both deductive and empirical—are not similarly sus-
ceptible. They are generally constrained by fairly stable intersubjective
methods of evaluation. These change slower than those of philosophy,
so even if much science of the past has been given up, much of it also
remains valid. Although purely social factors such as intellectual fash-
ion do influence both the sciences and philosophy, the sciences are far
less at their mercy. The greater subjectivity of traditional philosophy
deprives it of its power to find out what the world is like, and the only
way to regain that power, insofar as it is attainable at all, is to limit
that subjectivity.

I have here tried to sketch an image of what an approach to meta-
physics, as far as possible free of these defects, might be like. Ideas are
gathered both from the sciences and the arts. On the one hand, this
book is intended as a work of scientific naturalism, in that the proper
methodology of philosophy is taken to be very similar to that of the
sciences. On the other hand, the arts also have a large measure of ob-
jectivity by their role as image-providers, detached from questions of
truth. An image is, in itself, not anything subjective, even if an inter-
pretation of said image may be, and I believe the process of imaging to
be crucial both to the sciences and to philosophy.

Within philosophy, I have mostly been inspired by the works of the
giants of the 20" century: Carnap, Quine, Tarski and Wittgenstein
among the dead ones, and Michael Dummett and Bas van Fraassen
among those still living. Closer to me, I have received much inspira-
tion and support from my supervisor Bengt Hansson, and also from
professors Erik J. Olsson and Wlodek Rabinowicz of the Lund philoso-
phy department. Furthermore, I would like to thank various attendants
at seminars where parts of the book have been discussed, and my co-
workers at the department, who were always ready to discuss my ideas,
no matter how little sense they made: Robin Stenwall, Martin Jonsson,
Stefan Schubert, Carlo Proietti, and many others.
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INTRODUCTION

Metaphysics, despite being philosophy’s most venerable strain, also re-
mains one of its most questioned and criticised. For most part, this
criticism is well motivated. Metaphysics was supposed to tell us about
the fundamental constitution of reality, but since at least the 17th cen-
tury, that has been the work of theoretical physics, and not philosophy.
While physics has gone from success to success, metaphysics has seen
very little actual progress since Plato: modern metaphysicians still con-
cern themselves with problems of universals, instantiation, substance,
essences, and the rift between appearance and reality. It is easy to
draw the conclusion that metaphysics, as a research programme, has
gone into regression, and that the parts of it that were once viable have
been taken over by the sciences.

Why did this happen? The seeds of the collapse were sown already
in the battle between the British empiricists and the continental ratio-
nalists during the 17th and 18th centuries. It is safe to say that the
progress of science granted victory to the empiricists. Certainly, there
was the Kantian programme of trying to show that empirical knowledge
was confined to the world of appearances, and that a transcendental
metaphysics was necessary to grasp reality as it really is. But the fact
remains that the world of things—for—us is what we are immersed in,
and it is this world that most directly piques our curiousity. That there
may be another world behind the veil of appearance may be an intrigu-
ing thought, but perhaps more so for science fiction and theology than
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for science and philosophy.

Accepting that metaphysics studies the world of things as they are
accessible to us should, however, not be confused with the quite different
programme of analysing our “common sense” metaphysical concepts,
mostly associated with Strawson’s descriptive metaphysics (Strawson,
1959). Metaphysics, as it interests us in this book, is a subject pur-
portedly dealing with what the world is like, and not primarily about
our concepts. If there is a viable notion of descriptive metaphysics,
apart from the psychological (and empirical) investigation into how we
represent things mentally, we will not have much to say about it here.
Our target is the real world, and what we think about it only serves as
a stepping-stone, since these thoughts say something about the world
only if what they say happens to be true.

The best methods for finding out what about this world is true or
false are empirical, so it is easy to see why traditional metaphysics in the
vein of the presocratics, Plato, Descartes and Leibniz must fail. “Arm-
chair philosophy”, as its detractors call it, is rationalistic, and though
no metaphysician would categorise herself as an armchair philosopher,
the fact remains that it is very rare for metaphysicians to do actual
empirical experiments, or even to design or propose them, and so the
armchair remains her weapon of choice.

We therefore ought to ask ourselves if we need metaphysics at all.
What use is there for it, given that the sciences seem so much better
at finding out about the world? This way of seeing the problem pits
metaphysics against the sciences, as if they were two exclusive tools
for finding out about the same thing. In a way this is true: both
metaphysics and the sciences are about what the world is like. But
it is also often held that there are important differences. Metaphysics
is sometimes said to be concerned with the more “abstract”, or the
more general features of reality, while the sciences are held to be more
specialised. Yet, physics certainly is as general as anyone could wish (it
applies to all interactions, since if we find some interaction that it does
not subsume, we will see that as an incentive to change our physics),
so we still have no explanation why metaphysics does not conflict with
physics.

Proceeding along Kantian lines, we may be drawn to the view that
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metaphysics should be transcendental, and investigate the presupposi-
tions of the sciences. This is the road that leads to metaphysics as “first
philosophy” — that which is required to justify the sciences. It is, of
course, a descendent of Descartes’ search for a secure foundation for all
our knowledge. The sciences, however, seem to have proceeded quite
well without such a foundation, and it is very doubtful that one will be
found, or that even if one is found, it will be relevant to our scientific
concerns. First philosophy, should it be possible at all, is of doubtful
interest. The proper answer to the problem seems to be to reverse the
priorities. Rather than first philosophy, metaphysics’s proper place is
as second science. It presupposes the sciences, and should work with
their results, rather than attempt to justify them.

But how do we know that there is any meaningful work left to do,
after the sciences have put forward their theories? We would have to
go fairly deep into the philosophy of science to answer this question. It
is worth noting, however, that instrumentalism did loom large in much
of 20th century science. Theories are selected due to their predictive
power, and we are regularly reminded not to read any kind of substan-
tial claims into them. Philosophical versions of this view include the
positivism of the logical empiricists, as well as van Fraassen’s construc-
tive empiricism (van Fraassen, 1980), in which commitment to a theory
is taken to be commitment to its empirical adequacy, and empirical
adequacy is explicated as truth of the observable parts of the theory.
According to constructive empiricism, science does not commit itself to
the whole of theories being descriptive of reality.

Science, in so far as its goals are instrumentalist, does leave room for
metaphysics. Where the sciences claim that no more can be said because
there are no empiciral tests that could settle the matter, metaphysics
presumably could pick up the reins and investigate further. We can
even envisage cases where its results may trickle back down into the
sciences; models of natural phenomena created by metaphysicians, since
they cannot conflict with the empirical data, are also models that are
are available for use in the sciences. This means that, as far as they are
described in scientifically useful terms, they can be used by scientists
as well.

Metaphysics done within the sciences is often like this. As an ex-
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ample, we may take Minkowski’s model of Einstein’s special theory of
relativity in terms of what we now call Minkowski space (Minkowski,
1908). Although such a model does not, by itself, supply any new
testable consequences, and so is a “metaphysical” theory in the posi-
tivistic sense, its importance for understanding the theory of relativity
cannot be overestimated. Almost all current textbooks on special rel-
ativity present it in terms of Minkowski space, and not in the more
phenomenological terms that Einstein first gave it (Einstein, 1905). Tt
is also safe to say that without the picture of Minkowski space, the
question of other metrics—for instance those that are associated with
curved space-time—would never have arisen, and so we would have had
no general theory of relativity either.

Another example, also from physics,! is Bohm’s “hidden variable”
interpretation of quantum mechanics (Bohm, 1952). This interpreta-
tion is specifically designed not to give any new testable consequences,
but only to provide a sort of framework, seen from which quantum
mechanics makes sense in a classical manner. It has been criticised
because of its lack of testable consequences, but this kind of criticism
seems to me to miss the point. Its most important problems spring
rather from the difficulty of adapting it in a natural way to newer theo-
ries, such as quantum field theory. Comparing Bohm'’s interpretation of
quantum mechanics to Minkowski’s space-time model of relativity, we
may note what the second has, and what the first lacks, which makes
Minkowski’s metaphysical theory successful, and Bohm’s unsuccessful
so far. Minkowski spacetime, when used as a framework or a model,
allows us to frame new theories which are impossible to frame without
it, and which experiment have verified. Bohm’s, on the other hand,
makes the framing of an experimentally corroborated theory (quantum
field theory) almost impossible, or at least very hard. The point is

11 am well aware of the tendency of philosophers of science to take almost all
their examples from physics, to the neglect of all the other sciences, and I regret to
say that I will be following suit here. Part of the reason for this is because physics
is the science I am most familiar with, but it is also the case that physics, as being
concerned with the most general and fundamental aspects of reality, holds special
interest for metaphysics. Thus, while I in no way wish to promote the hegemony of
physics among philosophers of science, I believe that it is somewhat more excusable
when we are dealing with metaphysical questions.

Xiv



pragmatic: Minkowski spacetime, as a model, has a theoretical use-
fulness that has so far not been found to be shared by the Bohmian
interpretation of quantum mechanics.

A fundamental point of note here, for metaphysics, is that all math-
ematics may be done from the armchair (or at least from a desk with
a computer), and few question the worth of that — even its higher
reaches, whose applicability to empirical science may seem distant. Per-
haps metaphysics could be more like this? Mathematics concerns itself
with the design (or investigation, if you are a mathematical Platonist)
of abstract structures. These are often applicable to empirical phenom-
ena both in common-sense world views and the sciences. Can it be that
metaphysics, as well, can be seen as such a process of structure-creation,
with the actual fitting of structure to reality being left for the sciences?

This will indeed be the method primarily explored in this book.
Metaphysics, as I see it, is a branch of model theory, in an extended
sense of the word in which it stands for the discipline that studies
the semantical correlates of theories and languages. Model theory, like
classical metaphysics, is largely a priori, and does not purport to tell
us, on its own, what reality is like. For this, it needs semantics, which is
what connects it to theory, and an actual theory, which is what science
supplies us with. All of these notions have their own problems, and all
will concern us here. Our guiding methodology will however remain the
theory — semantics — model connection, and our intention is to show how
this may be put to use, in order to arrive at a conception of metaphysics
that is both viable and scientifically respectable.

The first chapter contains an overview of various approaches to
metaphysics. Starting with Quine’s programmatic On what there is,
the first chapter then discusses the perils involved in going from lan-
guage to metaphysics. It criticises contemporary intuition-driven meta-
physics, comments on naturalistic approaches, and then presents the
main proposition put forward in the thesis: we should base metaphysics
on model theory. But a model, logically speaking, is a mixture of inter-
pretation and metaphysics. Therefore an important task is to separate
these parts of it.

Chapter 2 introduces theories, which are defined as consequence
operators on sets of truth-bearers. These can be used both for mak-
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INTRODUCTION

ing claims, and for framing other theories. I avoid use of any ana-
lytic/synthetic or logic/material distinction. Some generalisations and
specialisations of the concept are discussed, among which are algebrai-
sation and probabilistic theories. Chapter 3 gives an abstract char-
acterisation of metaphysics using category theory, and also contains
examples of different kinds of metaphysics, and remarks on how these
relate to one another. The central notion here is that of model, and a
metaphysics, as a collection of ways something (e.g. the world) could
be, is identified with a category of models.

In Chapter 4, we encounter a specific sort of model, based on a
nondeterministic necessitation relation. These models (which I call
necessitarian models) have roughly the same structure as a multiple-
conclusion logic, and make up a very useful type of metaphysics, which
will be used later in the book to derive theorems on the relation between
theory and reality. Generalisations involving probabilistic necessitation
are discussed, and questions of how to interpret these models in terms
of more traditional metaphysical concepts are broached.

Chapter 5 is named “Semantics”, and here we discuss various ways
for theories to relate to models. One way, which fits well with ne-
cessitarian models, is based on the idea of truthmaking. Starting out
from a simple satisfaction relation between models and truthbearers, we
show that there are systematic ways to identify specific parts of models
as truthmakers. These concepts are used in chapter 6, where we de-
rive an isomorphism between the logical structure of a theory and the
necessitation-structure of a metaphysics. This isomorphism allows us
to go from theory to world, and thus gives us an answer to the question
of what this relationship is.

The final chapter and the epilogue contains applications and a con-
clusion. We look at how the theory-world isomorphism can be used to
answer questions about the philosophy of logic, mathematics, quantum
mechanics, and philosophical problems of mind and metaethics. Ques-
tions dealt with include the relation of intuitionistic to classical logic,
Platonism in mathematics, and the Bohr interpretation of quantum
mechanics. We then take a step back, and consider some truly funda-
mental questions: in what way is the world a model? How should we do
metaphysics? And, what considerations should we take into account,
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when we settle on a way to describe the world?

Two major influences on Theory and Reality are the conventional-
ism of Carnap, and the ontological relativism of Quine. These strains
are combined with the Dummettian insight that logic and metaphysics
are intimately related. Parts of the book are fairly heavily couched in
the language of mathematics, although I will make no apology for this.
Mathematics (and the part of it called logic) as I see it has as central
a place in philosophy as it has in physics or economics. It supplies us
with ways of thinking that can lead to much greater clarity and exact-
ness than any other method. It provides us with common languages
for communication, and it gives the often diverse opinions of various
philosophers a common ground: there is usually very little variation
in opinion over the validity of a mathematical proof, compared to a
traditional philosophical argument.

However, this is not a thesis about mathematics. There are no really
“deep” theorems in it, so I have avoided the practice of demarcating
a ruling class of “theorems” from an underclass of “propositions” or
“observations”. The formal requirements (except where I discuss quan-
tum mechanics) are only knowledge of first-order logic and Zermelo-
Fraenkel set theory, but as always, fulfilling the formal requirements
does not make everything easy. The reader is invited to skip parts she
finds difficult on a first reading. Altogether, the book is an applica-
tion of mathematics to philosophy. This, of course, invites the criticism
that it misses something: that there are things that cannot be treated
this way, and that applied mathematics is insufficient for metaphysics.
This type of criticism is not new; Duhem quotes a “Cartesian” in 1740,
commenting on Newton, as follows:

Opposed to all restraint, and feeling that physics would con-
stantly embarrass him, he banished it from his philosophy; and
for fear of being compelled to solicit its aid sometimes, he took
the trouble to construct the intimate causes of each particular
phenomenon in primordial laws; whence every difficulty was re-
duced to one level. His work did not bear on any subjects ex-
cept those that could be treated by means of the calculations he
knew how to make; a geometrically analyzed subject became an
explained phenomenon for him. Thus, this distinguished rival of
Descartes soon experienced the singular satisfaction of being a
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great philosopher by sole virtue of his being a great mathemati-
cian. (Duhem, 1954, p. 49)

We do not see Newton as a “philosopher” at all any more, and
nowadays we tend to see science and philosophy as crucially different.
Still, T believe that the best kind of philosophy will always be the kind
that lies close to science, and the best kind of science the one that
touches on philosophy.

Finally, I would like to make a remark on various references to his-
torical philosophers I that have used here and there. These are not
to be taken as expositions of what the philosophers in question meant,
or how they should be interpreted. Just as this book is not a book
about mathematics, it is not one about the history of philosophy ei-
ther. But just as mathematics, the history of philosophy furnishes us
with a common conceptual framework. It can therefore be very useful
for communication of ideas and for making comparisons and drawing
analogies.
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CHAPTER 1
WHAT METAPHYSICS CAN
AND CANNOT BE

In this chapter, we give a brief overview of various approaches
to metaphysics. We start with Quine’s approach from On what
there is, and try to gauge its strengths and weaknesses. The
most important of these weaknesses will be found to be its close
ties to first-order logic. The second section continues this thread,
and deals with general problems inherent in inferring facts about
the structure of the world from the structure of language. While
language and world might not be completely separate, we have
no reason to believe that they coincide completely either.

Section 3 discusses and criticises the currently common ten-
dency to rely on intuition for metaphysical theorising. In con-
tradistinction, I hold that intuition has no place at all in meta-
physics, and ideally should play no role. This opens up the ques-
tion of how to proceed, given that projecting language onto the
world and employing intuition are both to be avoided. Section
4 treats possibilities for naturalism: the idea that philosophy
should avail itself of roughly the same methods as the sciences.
However, this turns out to be hard to do in practice.

Finally, I introduce the view of metaphysics that I prefer:
metaphysics as model theory. For this purpose, we need a notion
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of “model” that lies somewhere between how it is used in logic,
and how it is used in the sciences. I give some general remarks
on what this kind of model theory might be, and then go into
the question of how to connect theory to reality through model
theory. This is to be done by the use of the concept of truth, and
I therefore take up the question of what we are to mean by this
word, and what role it plays for us.

1.1 The Last Great Metaphysician

Scientifically, the last progressive research programme in metaphysics
was initiated by Quine in On what there is (Quine, 1948). Very freely
summarised, the Quinean strategy for metaphysics (or ontology, which
is the part of metaphysics he discusses) is as follows:

(i) Look to science for what theories of the world we have reason
to believe are true.

(i) Formalise these theories in classical first-order predicate logic
with identity.

(ii1) What we should believe exists is what the values of the bound
variables in these formalisations have to range over in order
for the theories to be true.

We have given the first step in terms of which theories are to be
believed true, instead of the customary rendering “our best theories”.
Given Quine’s pragmatism, the difference may be slight, but focusing on
truth instead of “goodness” lets us avoid a problem noted by Melia: we
have reason to believe many of our current best theories to be false, and
thus these cannot be used for finding actual ontological commitments
(Melia, 1995). It is better to let scientists (or possibly theorists of
science) decide what theories are true as well, and treat this as given
for the metaphysician. With this modification, it also becomes evident
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that the primary task of metaphysics (or ontology) is not to find out
new truths, but rather to interpret (or in some cases reinterpret) old
ones.

The other side of the coin is that if most of our best theories are
false, then it seems like we have very little to go by, if we are to apply
Quine’s methodology. This is not so, however. Many theories may be
false, but they still contain subtheories (for instance, those dealing with
the theory’s observable consequences in given situations) that we have
good reasons to believe to be true. This is why we have said that we
should “look to” science for true theories: not every scientific theory is
useful for finding ontological commitments, but almost all such theories
contain theories that are.

The second step is where the metaphysician’s ingenuity comes into
play. Formalising a theory is somewhat like translating poetry. It is as
much a creative as a deductive task, and different formalisations may
be compared according to several criteria. Quine’s first interest here
was parsimony. If a formalisation F' does not require quantification
over some entities X and formalisation G does, but F' and G are both
adequate formalisations of the same theory, that theory itself is not
committed to the entities in X. More specifically, if G is reducible to
F, but F is not reducible to G, only the values of F’s bound variables
are among the theory’s ontological commitments.!

On what there is thus in essence contains the basics of a research
programme for metaphysics. It contains a methodology (briefly as de-
scribed above) and principles for evaluation of theories, in terms of the
sizes of their ontological commitments. Much good metaphysics was
done in it, from Quine’s own disentangling of Plato’s beard in 1948,
to Lewis’s reduction of ZFC set theory to mereology and a primitive
singleton operator in 1991 (Lewis, 1991). Lately it has become less and
less prominent, although the principle that to quantify over something
is to acknowledge its existence is often adhered to still, as we do not
have any other criteria for ontological commitment that are as clear as

1The condition that F should not be reducible to G is necessary here. Two
theories may be reducible to one another without being the same theory, or even
logically equivalent. In such a case, it seems that neither the formalisation F’s nor
G’s ontological commitments could be those of the theory.
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Quine’s.

There are probably as many reasons for this decline of Quinean
metaphysics as there are metaphysicians. The most important, as I
see it, is the primary place it grants to first-order predicate logic, with
its standard referential semantics. This is quite arbitrary, as I shall
argue by posing a few questions, in approximately increasing order of
generality, about the choice of logic and semantics.

Why referential semantics? The standard Tarskian semantics of
first-order logic is only one of the multitude that are conceivable. For
Frege, for instance, semantics involved relations between signs and func-
tions and arguments, rather than just objects and sets thereof. Using a
Fregean semantics therefore would commit us to the existence of func-
tions, no matter if we succeed in reducing them away or not.

We also have the various sorts of substitutional semantics, defended
by Ruth Barcan Marcus (1961) and Peter Geach (1963). Interpreted
this way, quantification commits us to nothing but the singular terms
that may occupy the variable positions. Quine, of course, is critical to
such attempts, since he takes the fundamental notion of variable to be
the referential one:

The variable qua variable, the variable an und fir sich and par
excellence, is the bindable, objectual variable. It is the essence
of ontological idiom, the essence of the referential idiom. (Quine,
1972, p. 272).

However, he does not disallow use of substitutional quantification
altogether. Rather, we have to translate a substitutionally-quantified
theory into the “referential idiom” for us to be able to find the theory’s
true ontological commitments (Quine, 1969, p. 106). But, what if we
simply avoid using the referential quantifiers in constructing our theory,
and have no rules in mind for translating the theory into one that uses
referential quantifiers either? Quine’s method ceases to be applicable
in such a case, and yet we may have good reason to hold substitutional
theories to be true or false, and so to say something about reality.

Why first-order logic? Quine famously held second-order logic to
be “set theory in sheep’s clothing” (Quine, 1986, p. 66). Yet, to both

4



1.1 THE LAST GREAT METAPHYSICIAN

Frege and Russell, higher-order logics were not separate forms of logic
at all, but just as logical as the first-order kind. More recent advocates
of second-order logic such as Boolos (1975, 1984) and Shapiro (1991)
have argued that limiting logic to the first-order kind is unnecessary
and arbitrary, since, for instance, monadic second-order logic even is
decidable (Skolem, 1919).

There are also other forms of quantification available, such as Hen-
kin’s branching quantifiers (Henkin, 1961) and Hintikka’s independence-
friendly logic (Hintikka, 1996). And while standard first-order logic, as
Quine puts it, may possess “an extraordinary combination of depth
and simplicity, beauty and utility” (Quine, 1969, p. 113), the question
remains as to why these properties should make it the canonical vehicle
for ontological commitment as well.

Why predicate logic? This may, at first, seem like a strange ques-
tion. Standard sentential logic is not expressive enough for the needs of
science, and so our interest in finding the ontological commitments of
actual theories seems to force us into this choice. But it is still a prob-
lematic one, since predicate logic, especially with identity, is far from
neutral when it comes to metaphysics. Vague objects, for instance, are
ruled out, and also entities without identity conditions. Relations be-
tween infinitely many entities require set theory to be representable.
More fundamentally, there is a kind of metaphysics inherent in predi-
cate logic, in which self-subsistent objects have properties and stand in
relations. While this very well may be a workable metaphysics, it is
still a choice that should not be made in the logic, as it excludes alter-
natives without giving them a fair hearing. Ladyman and Ross (2007),
for example, argue that contemporary physics is incompatible with the
notion of a world of self-subsistent individuals. By tying ourselves to
predicate logic with identity, we rule out such arguments beforehand.

Why classical logic? Despite Quine’s insistence in Two Dogmas on
the revisability of even the laws of logic, he remained a defender the
sufficiency of its classical variant to his end. Yet, seeing the explosion
of alternative systems from the 70’s onward, with modal, many-valued,
substructural, nonmonotonic, and constructive variants to mention a
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few, each with seeming applicability to their own areas, one cannot
help but feel what a strait-jacket this is. The use of intuitionistic logic,
for instance, does not necessarily have to make the idea of ontological
commitment otiose, as we shall see in chapter 7. A methodology for
metaphysics should ideally be neutral on the question of what logic, if
any, is the “correct” one.

Why logic at all? Quine’s idea is to let scientists determine what
exists, but these do not, generally, express themselves in formal logics
at all. Indeed, any thing that can be true or false (i.e., that purports to
describe reality) seems to be possible to raise questions of ontological
commitment over. Beliefs, diagrams, depictions, equations, speech acts,
and natural-language discourse are all ways in which scientists represent
their theories, and forcing this into the mold of a given logical system
takes both creativity and skill. It also opens the question of whether
the formalised version of the theory is equivalent to the pre-formalised
one, since otherwise it will be of no use for determining the theory’s
ontological commitments. The more difference between the expressive
strength of the theory’s “natural” representation and the logical system
we use, the harder this equivalence will be to establish.

As an example, we may take the difference between classical logic
and English. Since Montague’s papers on the semantics of natural lan-
guage (Montague, 1970, 1973), it has been accepted that we can study
the inferential properties of ordinary language discourse without prior
translation into a formal language. But non-formal systems, such as
those that admit of analytical consequence, generally lack the property
of structurality (see section 2.4), which is commonly taken to be nec-
essary for a notion of consequence to be logical (Wéjcicki, 1988). In
taking something else than logical form as grounds for consequence, we
are therefore leaving the confines of logical systems. But since scientific
theories in general at least depend on analytical consequence, we may
want a methodology that accepts this habit as it is.

These questions all highlight the fact that Quine’s reliance on first-order
logic is a very real limitation on the applicability of his methodology.

6
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But there are also other considerations: according to Quine, it is only
the quantified variables that commit us to anything, so sentential-logical
theories, for instance, have no ontological commitments at all. But
what we take as quantifiable and what is not is to some extent up
to us. Consider a language £ for discussion about worlds in which
where there are two objects, a and b, each of colour Red or Blue. The
predicate-logical languages £1, Lo and Lg of table 1.1 are all versions of
this language:

Individuals Predicates

L1 the world Is Such That a Is Red & b Is Red (z),
Is Such That a Is Red & b Is Blue(z),
Is Such That a Is Blue & b Is Red(x),
Is Such That a Is Blue & b Is Blue (z)

Ly a,b Red(z), Blue(x)

L3 d's redness, Is Instantiated(zx)
a's blueness,
b's redness,
b's blueness

Table 1.1: The languages Ly, Lo and Ls.

Although £, may seem the best choice among these, in terms of perspic-
uousness, Quine’s preference for formalisations with minimal ontologies
(his taste for “desert landscapes”) recommends £;. The problem is that
when we formalise, we generally have to make a trade off between onto-
logical commitment and what Quine calls ideology — the predicates that
our language must contain for the theories we are interested in to be ex-
pressible in them. The Quinean methodology’s reliance on ontological
commitment only captures one side of this trade off.?

2The opposite position—that only what predicates we use determine a theory’s
simplicity—is defended by Goodman in The Structure of Appearance (Goodman,
1951, pp. 59-63). David Lewis seems to place himself somewhere in the middle,
since he argues that it is not commitment to entities that is to be avoided, but
commitment to kinds of entities (Lewis, 1973, p. 87).
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It is well known that Quine later came to distance himself from the
metaphysical research programme that he incited. The main reason for
this was his doctrine of ontological relativity (Quine, 1969), according to
which a theory never by itself has an ontological commitment, but only
in relation to some theory we may reduce it to. This is a corollary to his
thesis of indeterminacy of translation from Word and Object (Quine,
1960b): in cases like that of the field linguist, not only the meaning of
“gavagai” is indeterminate, but also its reference. This means that in
order to secure reference for our terms, we need a system of analytical
hypotheses—a kind of coordinate system that may be used to fix the
references. The upshot is, as he puts it that “it makes no sense to say
what the objects of a theory are, beyond saying how to interpret or
reinterpret that theory in another.” (Quine, 1969, p. 50)

The framework for metaphysics I am going to defend in this book
will be compatible with the truth of ontological relativity, as I think it
must be, if we are to remain naturalists when it comes to the philoso-
phy of language.® But there is still work left for metaphysics to do, for
metaphysics does not have to be just ontology, in Quine’s sense. For
one thing, we may have things that are common to all frameworks that
a theory can be interpreted in. These would permit us to infer some-
thing about what the theory says exists, since just because theories do
not have unique ontologies by themselves, that does not mean that any
ontology would be acceptable for any theory. Instead of a single onto-
logical commitment, we would have a class of ontological commitments
compatible with the theory.

Secondly, it is also the case that not all systems of analytical hy-
potheses are equally interesting. In general, we are not interested in
a theory’s ontological commitments per se, but rather in its ontologi-
cal commitments as seen from our current theoretical framework. The
posing of a metaphysical question usually supplies us with a system of
analytical hypotheses, which we can use for our answer.

The conclusion we arrive at is thus that Quine’s methodology cannot

31t might occur to some current metaphysicians to take the problems of referential
inscrutability to be soluble by use of the causal theory of reference. This merely
pushes the problem back, however; instead of analytical hypotheses, we now need
metaphysical hypotheses about the causal network of the world, in order to fix a
term’s reference.



be pursued, as it was laid out in On what there is. This does not mean
that we cannot draw important lessons from it, and that some variant of
it may be viable. The view of metaphysics I propose in section 1.5 may
be seen as such a variant, since it shares many of Quine’s fundamental

1.2 THE PERILOUS SEAS OF LANGUAGE

standpoints, while trying to avoid some of its problems.

1.2

For Quine, as well as for Russell before him, studying the logical struc-
ture of language was a way to find out about the structure of the world.
Yet, the supposed connection has also come under heavy fire recently.
John Heil attacks what he calls the Picture Theory, and its use as a

The Perilous Seas of Language

guiding principle:

The picture theory is thus, at bottom, a theory about language. As
such, it is of course not only criticised by metaphysicians, but also by
philosophers of language. Ryle, to mention an influential example, calls
it the ‘Fido’~Fido fallacy (Ryle, 1957) — the idea that every part of a
sentence corresponds to a part of reality. Austin (1950) explicitly dis-
tances himself from picture-type correspondence theories of truth, such

What exactly is the Picture Theory? As I conceive of it, the
Picture Theory is not a single, unified doctrine, but a family of
loosely related doctrines. The core idea is that the character of
reality can be ‘read off’ our linguistic representations of reality—
or our suitably regimented linguistic representations of reality. A
corollary of the Picture Theory is the idea that to every mean-
ingful predicate there corresponds a property. If, like me, you
think that properties (if they exist) must be mind independent,
if, that is, you are ontologically serious about properties, you
will find unappealing the idea that we can discover the proper-
ties by scrutinizing features of our language. This is so, I shall
argue, even for those predicates concerning which we are avowed
‘realists’. (Heil, 2003, p. 6)
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as that of the Tractatus, and holds the correlation of sentences to the
world to be purely conventional. And one of the view’s strongest critics
is Wittgenstein himself, who opens his Philosophical Investigations with
a parody of it, as he finds it in Augustine’s Confessions (Wittgenstein,
1953).

An instance of the Picture theory’s influence is the tendency to base
one’s metaphysics on the subject-predicate distinction: many philoso-
phers have held the contents of the world to be divided into individuals
and properties such that the first of these instantiate the second. But,
as Ramsey pointed out, it might very well be that this distinction is
purely grammatical. Indeed, all singular terms could be like Quine’s
“sake”, which looks like a name for an object, but is not reasonably
taken to function as one (Quine, 1960b, p. 244). A more subtle influ-
ence of the picture theory can be seen in the idea that because “object”
works as a count noun, the world has to contain a certain number of
self-sufficient, well-individuated objects. I am not saying that any of
these theories are wrong, but we should not infer their truth from the
workings of language.

Yet, the picture theory has a very clear appeal. Contemporary for-
mal semantics is very much based on the picture metaphor: words
mean by referring to things (or functions, or sets, or other kinds of en-
tities), and the meanings of sentences are determined functionally by
the meanings of the words that they are made up from and their mode
of composition. Through first Carnap and later Montague it has been
extended to natural languages as well, and it seems to give some kind
of understanding of how language works. If “Paris is north of Pisa”
means that a certain thing (Paris) stands in a certain relation (being
north of) to another thing (Pisa), then this should be true iff the orig-
inal sentence is true. This in turn means that, since “Paris is north of
Pisa” is true, “the thing Paris stands in the relation being north of to
the thing Pisa” must be true as well. But this second sentence has a
definite air of metaphysics.

Maybe we have moved too fast here. Does “the thing Paris stands
in the relation being north of to the thing Pisa” really say more than
“Paris is north of Pisa”, so that it does not follow from this obvious
truth? That would have to depend on how we interpret the two sen-
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tences: there is definitely a reading of them on which they are equiv-
alent. But the whole point of expanding “Paris is north of Pisa” in
terms of things and relations was to give meanings! How could there
be a question of what the second sentence means then?

The truth is that no sentence ever interprets itself. “the thing Paris
stands in the relation being north of to the thing Pisa” is as much
in need of interpretation as “Paris is north of Pisa”, and admits as
many different types of metaphysics as it. The meaning, conceived as
reference or as a condition on worlds, is inherent neither in the words
themselves, nor in our usage of them.

Carnap, as one of the modern founding fathers of this kind of mean-
ing theory, was well aware of this. In Meaning Postulates, he explicitly
treats questions of how to assign intensions as one that is free for us
to decide on (Carnap, 1956, pp. 222-229). His whole method of lin-
guistic analysis in Meaning and Necessity is presented as motivated by
usefulness, rather than any connections to what meanings “really” are.
Referential as well as intentional semantics is a doubly conventional
matter: not only is the usage of a word or a sentence decided by social
conventions, but how this usage is to relate to the world is conventional
as well.

Similar lessons can be extracted from Putnam’s famous Twin Earth
example, although Putnam himself certainly did not intend to draw
them. The people on Twin Earth behave in exactly the same way
as those on Earth, so use in the narrow sense of behaviour will not
determine reference. But reference concerns what the world is like:
“water is XYZ” is true iff “water” refers to a and “XYZ” refers to b,
and a is identical with b. So linguistic behaviour does not determine
what sentences say about the world.

It is common to suppose that what is missing between use and ref-
erence is causal or ostensive: what is in the mind does not determine
reference, but what the world around the user is like does. But this is
not a link that is permissible for us to use when we are to do meta-
physics, since what the world is like is just what we want to find out.
A causal theory of reference may possibly be useful if we already have
a metaphysics and are trying to design a theory of language, but it can
do no work when we are to go from language to metaphysics. Thus

11
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the relevance (or lack thereof) of causal reference to meaning is quite
beside the point for us.

We do not have to say that meaning in general goes beyond use,
however. As our focus here is on the theory—world connection, we can
allow that this is underdetermined by use, without saying anything
about whether “meaning” is so underdetermined or not. Accordingly,
we will try to avoid using the word “meaning” altogether, instead em-
ploying “use” when it is this aspect that concerns us, and “semantics”
for the connection between words or theories and the world.

Thus we will drive a wedge between linguistic usage, and language’s
possible connections with reality, in order to be able to study the second
on its own terms.%. In this we follow Heil and other critics of “linguis-
tic philosophy”. But that the naive picture theory is false does not
necessarily mean that mean that linguistic or logic analysis can tell us
nothing at all about the world. Our linguistic usage does not float en-
tirely free of what the world is like, even on more plausible accounts of
language. That we should not impose one on the other does not mean
that they are completely separate.

All we have to be careful about is to not confuse linguistic structure
with metaphysical. A fundamental insight of the linguistic turn—that
it is primarily with language that we connect with reality, and that the
analysis of language therefore is necessary for understanding—remains
untouched. That it is not sufficient is of course always worth pointing
out. The structure of language is not the structure of reality, although
there of course has to be some relation holding between the two, for
language use to be possible at all. If nothing else, linguistic behaviour
is as much a part of the world as any other kind of behaviour.

4This somewhat parallels Russell’s important but neglected division between a
word’s logical significance and its meaning in use in The Philosophy of Logical
Atomism (Russell, 1985, p. 142)

12
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1.3  What’s Wrong with Intuition?

Implicitly referring to Quine as “the last great metaphysician”, as I
did in the first section of this chapter, may seem almost perverse to
some contemporary philosophers. Quine’s metaphysical theorising is
very limited in scope, concerning itself mainly with questions of on-
tology, and as we mentioned, he came to take exception to even that
later on. Yet, his programme did supply inspiration for a generation
of metaphysicians. Contemporary metaphysics, however, is generally
much more indebted to the methods of Kripke. Above all, his insis-
tence that we separate epistemology from metaphysics (for instance in
his distinction between the a priori and the necessary (Kripke, 1981,
pp. 34-39)) has inspired philosophers to proclaim the independence of
metaphysical reasoning both from questions of knowledge and of lan-
guage.

This would perhaps be fine if there clearly was such a thing as
metaphysical reasoning. The problem is that when we sever the ties to
language, logic and knowledge, it is hard to know what counts as a valid
argument anymore. Do we really know that reality does not contain
contradictions, for instance? A contradictory position may be epistemo-
logically unacceptable, but how do we determine it to be metaphysically
so?

Kripke, however, also supplies us with an evaluative principle: a
theory is unacceptable insofar as it is counter-intuitive, or has counter-
intuitive consequences, and acceptable insofar as it is intuitive. The
following quote is from Naming and Necessity:

[...] some philosophers think that something’s having intuitive
content is very inconclusive evidence in favor of it. I think it is
very heavy evidence in favor of anything, myself. I really don’t
know, in a way, what more conclusive evidence one can have
about anything, ultimately speaking. (Kripke, 1981, p. 42)

With a little imagination, we can see the beginnings of a new metaphys-
ical research programme here. Metaphysical theorising is to be done on
its own premisses, and theories are to be evaluated in terms of how far

13
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they save our “pretheoretical intuitions”.® In this programme, the no-
tion of metaphysical necessity often takes a central place; Lowe (1998),
for instance, sees the entire role of metaphysics as explicitly dependent
on the existence of metaphysical necessity. Ellis’s “scientific essential-
ism” (Ellis, 2001) depends on metaphysical necessity to separate the
essential properties of things from the contingent. And, for the most
metaphysically influential application of them all, Putnam’s once-held
views on natural kinds (Putnam, 1975a) finds necessary a posteriori
identities to be the glue that holds them together — that water is HoO
is to be something not only true in virtue of the meanings of our words,
but a “logical necessity” in the primitive sense that it couldn’t have
been otherwise.

It is not my aim to argue against the notion of metaphysical neces-
sity here, but neither do I intend to base any philosophy on it. The
“intuitivistic” methodology is present even among metaphysicians who
do not accord prime importance to questions of metaphysical neces-
sity. Armstrong, for instance, advocates use of what he calls the Fu-
typhro dilemma, named after the dialogue of Plato in which Socrates
asks whether that which is good is good because the Gods love it, or
whether the Gods love it because it is good, as a metaphysically use-
ful method. An example of its use is the following argument against
“class nominalism”, i.e. the theory that properties are classes, given by
Armstrong in Truth and Truthmakers:

It is useful to pose the Eutyphro dilemma here. It is in many
ways the most useful dilemma in metaphysics, and the argument
of this essay will rely on it at a number of points. Consider,
first, the class of objects that are just four kilos in mass. Do the
members of the class have the property of being just four kilos in
mass in virtue of membership of this class? Or is it rather that
they are members of this class in virtue of each having the mass-
property? The latter view seems much more attractive. The
class could have had different members, but the mass-property
would be the same, it would seem. (Armstrong, 2004, pp. 40-41)

5This is of course not a principle exclusive to metaphysics; it is also very common
in epistemology and ethics, and it furthermore rears its head in the philosophy of
language now and then. The objections taken up against it below all apply to its
use in these areas as well.

14
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It is hard to imagine that Quine, despite being just such a “class nom-
inalist”, would take an argument like this seriously.® His evaluative
standards are not Armstrong’s, and arguments relying on counterfac-
tual thinking, “in virtue of”’-relations, and imagining the same class
having different members, would simply cut no ice for him.

In order to assess contemporary intuitivistic metaphysics, we have
to separate its two phases: (i) rejection of linguistic analysis as a means
for attaining metaphysical knowledge, and (i) the use of intuitive con-
tent as an evaluative principle. We have already accepted the first of
these, at least partly: linguistic analysis is insufficient for metaphysics.

Thus we come to the second phase of the programme: evaluation of
metaphysical theories with regard to intuitive content. This principle
must be rejected outright. Metaphysical theories are theories about what
the world is like, or may be like, and not only about what our beliefs
about the world are like. They are true or false according to whether
they describe reality as it is. The wultimate evaluative criterion of a
metaphysical theory is therefore its truth—just as for a physical theory.
Now, truth is of course very hard to determine, and when it comes to
metaphysics, almost impossible. We therefore need to use indications of
truth instead (again no difference with physics here). But it is precisely
here that intuitivism fails, for, contrary to what Kripke claims in the
above quote, something’s having intuitive content is no evidence at all
for its truth, at least when it comes to philosophy.

A statement such as this requires some motivation, and we may find
an early defendant of it in it in Kant, as he criticises the use of “common
sense” for metaphysics, in a lengthy passage in the Prolegomena:

It is a common subterfuge of those false friends of common
sense (who occasionally prize it highly, but usually despise it)
to say, that there must surely be at all events some propositions
which are immediately certain, and of which there is no occa-
sion to give any proof, or even any account at all, because we

SQuine himself strenuously objects to being called a “class nominalist”, since
nominalism, for him (as for American philosophers in general, but not for Aus-
tralians like Armstrong) is the view that there are no abstract objects, and Quine
does believe in sets. He prefers to call himself a class realist, and an extensionalist
about universals (Quine, 1981a).
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otherwise could never stop inquiring into the grounds of our judg-
ments. But if we except the principle of contradiction, which is
not sufficient to show the truth of synthetical judgments, they
can never adduce, in proof of this privilege, anything else indu-
bitable, which they can immediately ascribe to common sense,
except mathematical propositions, such as twice two make four,
between two points there is but one straight line, etc. But these
judgments are radically different from those of metaphysics. For
in mathematics I myself can by thinking construct whatever I
represent to myself as possible by a concept: I add to the first
two the other two, one by one, and myself make the number four,
or I draw in thought from one point to another all manner of lines,
equal as well as unequal; yet I can draw one only, which is like
itself in all its parts. But I cannot, by all my power of thinking,
extract from the concept of a thing the concept of something else,
whose existence is necessarily connected with the former, but I
must call in experience. And though my understanding furnishes
me a priori (yet only in reference to possible experience) with the
concept of such a connection (i.e., causation), I cannot exhibit
it, like the concepts of mathematics, by visualizing them, a pri-
ori, and so show its possibility a priori. This concept, together
with the principles of its application, always requires, if it shall
hold a priori as is requisite in metaphysics —a justification and
deduction of its possibility, because we cannot otherwise know
how far it holds good, and whether it can be used in experience
only or beyond it also.

Therefore in metaphysics, as a speculative science of pure
reason, we can never appeal to common sense, but may do so
only when we are forced to surrender it, and to renounce all
purely speculative cognition, which must always be knowledge,
and consequently when we forego metaphysics itself and its in-
struction, for the sake of adopting a rational faith which alone
may be possible for us, and sufficient to our wants, perhaps even
more salutary than knowledge itself. For in this case the attitude
of the question is quite altered. Metaphysics must be science, not
only as a whole, but in all its parts, otherwise it is nothing; be-
cause, as a speculation of pure reason, it finds a hold only on
general opinions. (Kant, 1783, pp. 109-110)
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These paragraphs could just as well have been written in reply to
Kripke, although “common sense” is a strictly narrower concept than
intuitiveness; something may be intuitive, but not be common sense,
but anything that is common sense must therefore also be intuitive. If
common sense is unreliable, intuition must be so as well. Kant’s point
is simply that intuition is not enough for us to draw any conclusions
except the most trivial ones, such as those that follow from the principle
of contradiction.

Contemporary critics of intuition-driven philosophy include Hin-
tikka (1999), Sosa (2007), Weinberg et al. (2001); Machery et al. (2004),
Cummins (1998) and Ladyman and Ross (2007). Largely from empiri-
cist positions, they object to the rationalist methodology inherent in in-
tuitivism. Indeed, the motivating force behind intuition-driven philoso-
phy is Cartesian: “intuitions” are what Descartes’s “clear and distinct
ideas” have become, in contemporary parlance. But we know much
more about the human psyche now than we did in the 17th century.
In particular, the theory of natural selection tells us that those traits
of our psychology that have been propagated primarily are those that
enhance likelihood of survival, or at least of producing fertile offspring.

This means that “common sense” about those things relevant to our
survival is likely to be fairly reliable. It is quite easy to show, decision-
theoretically, that the greatest chance of survival generally belongs to
those who have most of their beliefs about things which affect our sur-
vival ability true. Philosophy, however, is totally irrelevant to survival
from an evolutionary point of view. Natural selection has no way of
weeding out veridical intuitions about the basic constitution of matter,
for instance, from false ones, because humans have not generally been
killed before they can procreate due to having erroneous metaphysical
intuitions. Or bluntly put: having a true metaphysical theory does not
help you getting laid.

Contemporary physics bears this out clearly: we have reason to
believe that the world is an extremely counter-intuitive place, and our
intuitions have been shown to be wrong at least as many times as they
have been shown right. Not even our logical intuitions can be trusted—
ask a logician (or a logically trained person in general) from before
1920 if we from something’s having the both the property F' and one
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of the properties G and H always can draw the conclusion that it must
have either both F' and G, or both F and H, for instance. Before
Birkhoff’s and von Neumann’s work in quantum mechanics, it is unlikely
that anyone would have answered no to this, and yet we know that
there are counterexamples to the “law” of distributivity.” But if not
even these intuitions are reliable, why would intuitions about things
like counterfactual cases, property instantiation, or the dispositions of
electro-finks be?

For Kripke, phase () and phase (ii) were interdependent. Intuition
proves that the proposed linguistic analyses are wrong, and if we cannot
rely on linguistic analysis to produce truth, some other means has to be
employed, and what could that be besides intuition? It should, however,
be clear by now that I hold intuition to be of no use at all here. Even
if we grant (¢), which I do, we will have to find some other ground for
our metaphysical theorising. If this should turn out to be impossible,
the honest reaction will not be to say “well, then we have to settle for
intuitions after all”, but rather “so much the worse for metaphysics”.

1.4 Naturalistic Metaphysics

If you are a metaphysician, chances are you have not included yourself
among the targets of the last section’s critique of intuitivism. Many
metaphysicians nowadays like to think of themselves as naturalists,

"The classical philosophical defense of this position is Putnam’s Is Logic Empir-
ical? (Putnam, 1968). The common way to “reinstate” classical logic would be to
say that quantum mechanics does not give us a particle’s properties, but only the
results of measurements. Apart from being unpalatable to a realistically-minded
metaphysician, this has the further problem that we can regain the failure of dis-
tributivity fairly easily. Consider a tunneling experiment, where we fire an electron
e at a known speed v towards a thin membrane. We can then take F(z) to be
“when measured, x is found to be moving in a line from the electron gun towards
the membrane with speed v”, G(z) to be “when measured, z is found to be in front
of the membrane” and H(xz) to be “when measured, z is found to be behind, or
inside, the membrane”. Then F(e) is true, and (G(e) v H(e)) must be true as well.
But neither (F(e) A G(e)) nor (F(e) A H(e)) can hold, for both would violate the
uncertainty principle.
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though it may sometimes be hard to find out exactly what this means.
For Armstrong, it is the ontological thesis that space-time and its con-
tents are all that exist (Armstrong, 1997, pp. 5-6), and as such a
substantial metaphysical hypothesis. More commonly it is taken to
be more of a guiding principle, loosely inspired by Quine’s slogan that
“philosophy of science is philosophy enough” and the idea that philoso-
phy is to be continuous with science, rather than an attempt to furnish
a foundation for it. Philosophy, to be relevant, must on this conception
be scientifically informed.

There are at least two types of metaphysical naturalism. The first,
which we will refer to as weak naturalism, merely dictates that phi-
losophy should not contradict the sciences, but rather be inspired by
them and work together with them. According to weak naturalism, we
cannot produce a valid philosophical argument that time but not space
is unreal, for instance, for time is just as real as space in relativity
theory. But there is also a stronger reading, which focuses on scientific
method as the sole means for finding things out about the world. Strong
naturalism, as we will call it, seems to be in direct contradiction with
intuitivism.

To evaluate strong naturalism, we need to get a grip on what parts
of scientific method are applicable to metaphysics. A principle popu-
lar among current metaphysicians is Inference to the Best Ezplanation
(IBE): from a set of data, taken as given, we infer the truth of the best
theory that explains this data. This principle is seemingly in use in
the sciences, so why should not metaphysicians avail themselves of it as
well?

We should be careful here. There are several principles in the vicin-
ity of IBE, and not all of them are equally valid. Two processes that
are in use in the sciences are those I will refer to as abduction and Infer-
ence to the Most Probable Ezplanation (IMPE). By abduction, we will
mean the framing of hypotheses, without deciding whether to believe
them or not. It is a crucial part of science. Such hypotheses may have
varying degrees of “goodness” due to fit with other theories, likelihood
conferred to data, testability, simplicity, and other properties. In some
cases, there may be only one known hypothesis worthy of investigation.

IBE goes far beyond this however, and says that we may infer the
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truth of such a hypothesis. But this, I hold, is not something that is
commonly done in the sciences. That a theory gives the best explana-
tion for a phenomenon is not a reason to believe in it, but to test it. It is
not until positive results of such a test are in that we should invest our
credence in it. A scientist qua scientist has no business placing trust in
a theory designed to account for phenomena. It is only when the theory
has been matched against new data that we may infer anything about
its truth.

It is here that IMPE plays a role: we can, for example, use Bayesian
updating, and then pick the theory with the largest posterior probabil-
ity. But such a probability may be fairly low, and thus it is not clear
that even IMPE is a valid principle. Perhaps we should talk about
inference to a sufficiently probable explanation instead.

There are also important disanalogies between purported use of IBE
in the sciences, and its use in philosophy. First of all, what is it we
explain? In the sciences, it is empirical data. In philosophy, however,
we often take the given to include intuitions, and their unreliability has
already been pointed out. What we should try to explain is not why
our intuitions are true, but only why we have them, and that may be
a job better suited for evolutionary biology, developmental psychology,
and sociology, than for philosophy.

Even if we limit ourselves to IBE of purely empirical data, the im-
portant fact remains that IBE, for the sciences, primarily appears as
abduction. It is a stepping stone, and not an endpoint. The primary
tests remain empirical, and a theory with no chance of ever being em-
pirically confirmed or disconfirmed is simply not taken seriously, no
matter how well it explains the data. In philosophy, on the other hand,
we have no way of testing the results of IBE, independently of IBE it-
self. This means that using IBE as the sole test for validity of a theory
involves a gross overestimate of what the principle is able to do: it can
be used to direct our attention to theories that are worth testing, but
it cannot, on its own, give any validity to metaphysical theorising.

A strongly naturalistic metaphysics that does not depend on IBE,
as well as a general programme to naturalise metaphysics, is defended
in Ladyman’s and Ross’s Every Thing Must Go (Ladyman and Ross,
2007). Their guiding principle is what they refer to as the Principle of
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Naturalistic Closure (PNC):

Any new metaphysical claim that is to be taken seriously should
be motivated by, and only by, the service it would perform, if
true, in showing how two or more specific scientific hypotheses
jointly explain more than the sum of what is explained by the
two hypotheses taken separately, where a ‘scientific hypothesis’
is understood as an hypothesis that is taken seriously by institu-
tionally bona fide current science. (Ladyman and Ross, 2007, p.
30)

Ladyman and Ross see the task of metaphysics as one primarily of
unification of scientific theories. They cite Philip Kitcher’s work on
scientific explanation (Kitcher, 1981, 1989) as an inspiration, and one
may indeed say that so long as we accept Kitcher’s view , the goals
of metaphysics — to give scientific explanations of theories — are the
same as the goals of theoretical science. This is why I have classed their
methodology as strongly naturalistic.

In order to substantiate the notion of “explaining more” that La-
dyman and Ross use, let us introduce the notion of explanatory power
e(h) of an hypothesis h. For simplicity, assume that explanatory power
is ordered by a relation >, and that there furthermore is an operation of
addition (+) defined on this structure. A metaphysical hypothesis h,,
must then perform a service in showing that e(hq&ho) > e(h1) +e(ha),
where hy and ho are scientific hypotheses, for it to pass the PNC.

For this, we cannot of course in general have that e(hy & ha) =
e(h1) + e(hz), so it must genuinely be the case that some hypotheses
together explain more than the sum of what they explain individu-
ally. One interpretation that satisfies this is to take e(h) to be the
set of phenomena that can be explained by hypothesis h, take > to
be the superset relation, and the sum operation to be set union. On
this reading, h,, must be necessary as a premiss for us to show that
e(hl & h2) D €(h1) v e(hg).

This is, however, probably not what Ladyman and Ross have in
mind. As followers of Kitcher, they hold explanatory power to be uni-
fying power. For Kitcher, this is a property of a generating set G(D)
for a set D of derivations of the hypotheses we are interested in, where
a generating set is a set of argument-patterns that the elements of D
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instantiate. Unifying power is taken to increase with the number of
conclusions of the derivations in D (i.e. the number of hypotheses we
can derive), increase with increasing stringency among the patterns
in G(D), and decrease with the number of patterns in G(D). That
e(hy1 & h2) > e(h1) + e(hg) can then be interpreted as the claim that
hy & ho & h,, is to have a smaller generating set than hy & ho have
on their own. A metaphysical hypothesis must unify actual scientific
hypotheses in order to be acceptable.

This reading of the PNC does however make it hard to determine
what makes the hypothesis h,, metaphysical, except that we have cho-
sen to call it so. Any theoretical hypothesis in the sciences should be
assumed only in so far as it explains phenomena, and on a unificationist
understanding, this means that it should unify them. PNC does not
only dictate that the goals of metaphysics are the same as those of sci-
ence, but also that the methods of metaphysics are the same as those
of theoretical science. We are therefore justified in asking in what way
PNC is a principle for metaphysics at all.

Ladyman and Ross primarily see the difference between metaphysics
and the sciences as one of scope: the individual sciences are specialised
in a way in which metaphysics is not, and so metaphysics has the task
of unifying hypotheses when these belong to different sciences, while
we may assume that within their areas, unification may be achieved
by the sciences themselves. The divisions between sciences thus deter-
mine which claims are metaphysical, and which are not. The problem
with this is that the sciences are not really this discrete, except when
we identify them with departments at specific universities, and even
then we often have crossover subjects like physical chemistry, chemical
biology, and neuropsychology as well.

The distinguishing marks of metaphysics thus do not necessarily
show themselves as far as we only try to unify hypotheses pairwise.
But what if we consider a large number of hypotheses, all belonging to
what traditionally is seen as different sciences, or even one from each
and every science? Now Ladyman and Ross are very critical of the
notion of reduction of one science to another, but if it would be the
case that all sciences were reducible to physics, then it still would be
physics that ought to effect the unification. A unified theory would in
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that case be a physical, and not a metaphysical theory.

If, on the other hand, reductionism is false, and neither physics nor
any other of the sciences could ever unify such a set of hypotheses, we
should ask ourselves how metaphysics could do better. I will not at-
tempt to answer this question, as I think the only thing that can be said
for it is that it has not been shown that metaphysics has succeeded in
this yet, nor, for that matter, that it is impossible. To some degree, the
idea looks promising. Metaphysics, as dealing with conceptual systems,
could plausibly attempt the task to unify such systems from different
sciences, while leaving their laws and particular statements out.® For
the PNC to be fulfilled, we do however need something stronger. An
example of such metaphysical unification would have to be given in the
form in which Kitcher gives theories of genetics and evolution, so that
one can see clearly whether actual unification has been done. Certainly,
no such unification is given in Fvery Thing Must Go, so we will have to
wait and see.

The prima facie problems of strong naturalism that we have encoun-
tered mainly seem to center on the question of whether there still is any
meaningful work for metaphysics to do after the sciences have staked
out their areas of interest. Strongly naturalistic metaphysics is on the
verge of sliding into the sciences and being swallowed—eliminated—by
them. This does not have to be wrong, and we should of course not
presuppose that there is anything for metaphysics to do. Yet, it is also
worth exploring other directions in which metaphysics could be useful,
as we wait for examples of metaphysical unification to show up.

Although Ladyman and Ross are to be commended on the strength
of their naturalism, the most common form of it is the weak one. Of-
ten, it is taken to mean simply that metaphysics should not concern
itself with particular statements, such as that there is no elephant in
the room I am in now, but only with the general ones, such as what it
is that makes claims of non-existence true. An instance of this is Arm-
strong’s a posteriori realism about universals: while his arguments for
the general structure of the space of universals are a priori, he leaves

8 A discipline where this is attempted is ontology, in the sense a computer scientist
uses the word. In computer science, an ontology is a formal representation of a set
of concepts for reasoning about things in a given domain.
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the identification of which specific universals exist to empirical science
(Armstrong, 1989, p. 87). Likewise, metaphysicians often take them-
selves to be concerned with the general nature of necessity, but hold that
which truths really are necessary or contingent is a scientific matter—it
is, supposedly, science that tells us that water is necessarily HyO, but
only contingently the main ingredient in our lakes and oceans.

Interpreted this way, naturalism is compatible with fairly large doses
of Cartesian rationalism and reliance on intuition, as we have seen from
our discussion of Armstrong’s “Eutyphro dilemma” above. The problem
with this is that intuition is no more a guide here than it is when it
comes to particular questions. Indeed, one could even argue that it is
less of a guide: when we have intuitions, they usually regard specific
things. We (or at least I) do not really have intuitions about universal
generalities.

This illustrates the dangers with weakly naturalistic metaphysics:
since science is silent on so many questions of interest to metaphysi-
cians, it is all too easy to slide back into intuitivism. And although
this may be a problem more with the metaphysicians than with nat-
uralism itself, it also shows that weak naturalism does not give the
metaphysician what she needs. This leaves us searching for some kind
of middle road between weak and strong naturalism—a metaphysics
whose methodology is inspired by that of science, but not necessarily
identical to it. The vagueness of this notion, however, places it in con-
stant danger of collapsing into weak naturalism, and from there into
intuitivism. Our verdict on naturalistic metaphysics must therefore be
that it so far just affords the barest sketches of a research programme,
and that while its general motivation may be sound, its details remain
to be worked out.
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1.5 Metaphysics as Model Theory

Not all scientific progress consists in unification. We also have the very
important process of model building: designing mathematical, mechan-
ical, mental, computational, or even physical models that fulfil the pos-
tulates of a theory. Such models are important not only for concretising
abstract theory, but also as perspectives from which to suggest new the-
ories, or revisions of old ones. A model of a theory T is an answer to
the question “what could the world be like, given that T is true?”

Of the various types of model available, the mathematical ones are
particularly useful. Using a mathematical model lets us prove things
about it. This, in turn, gives us far greater clarity than any other
known method. The importance is not that mathematical proof is more
certain than other forms of argument, but that it gives a much deeper
understanding. Therefore proof is essential to scientific thinking, and
if we are to approach metaphysics scientifically, we should be able to
prove things in metaphysics no less than in physics.

On this view, metaphysics consists in the construction of world-re-
presentations. It is thus not quite an empirical science, but it can still
be well connected to science. Its closest kin is mathematics, rather than
physics. This section will contain some broad outlines of what I take
this “model-theoretic” conception of metaphysics, as I will refer to it,
to consist in, and how it is related to the others, as well as to science
and other parts of philosophy.

Let us start with model theory itself.? As a subject, it is usually said
to have started in the 1950’s, although certain results that were later
seen as model-theoretical had appeared before, such the Léwenheim-
Skolem theorem from 1920, Gédel’s completeness theorem from 1930,
and Tarski’s definition of truth from 1936. Its inception, as Chang
and Keisler explain in their classic book on model theory (Chang and
Keisler, 1973, p. 3), was the realisation that a theory could have more
than one model, due to the development by Bolyai and Lobachevsky
of non-Euclidean geometry, and Riemann’s construction of a model of

91 am aware that the word “model” often is used in very different ways in science
and in logic. I will not try to capture any of these uses perfectly however, but instead
introduce a model concept that can do work both logically and scientifically.
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geometry in which the parallel postulate was false but all the other
axioms were true.

A model as we will understand it is something that, given an inter-
pretation of a theory, can be used to determine the semantic values of
statements in that theory. Such an interpretation is a function A from
entities in the theory (for instance its sentences, terms and predicates)
to entities in the model. By a semantics S for a theory we will mean
an assignment of semantic values to pairs of statements and interpre-
tations of these. For our purposes, the most important semantic values
are truth and falsity. These concepts are illustrated in fig. 1.1 below.

{true, false} =V

Figure 1.1: Theory, model, interpretation and semantics.

In this example, T is a theory whose language contains the predi-
cate P, the individual constant ¢, and the sentence P(c). 9 is a model
containing a cube and a tetrahedron, together with two objects 0 and 1.
The interpretation h interprets c as referring to the cube, P as referring
to the set containing the cube and the tetrahedron, and P(c) as referring
to the object 1. For example, P(x) might be “z is a shape”. The se-
mantics S assigns a semantic value from the set V to the sentence P(c),
given the interpretation h. In the case depicted, we interpret P(c)’s
taking the value 1 under h as P(c) being true under this interpretation.
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We will refer to a set of models with a common type of structure as
a model space. Model theory, as we interpret the term, investigates the
properties of model spaces. This usage deviates from what is the regular
one; Chang and Keisler (Chang and Keisler, 1973), for instance, hold
model theory to be the sum of universal algebra and logic. This would
make their “model theory” more like what we have called semantics,
and it corresponds better with what mainstream, first-order model the-
ory has been working on. Mainstream model theory deals with models
made using set-theoretical algebraic constructions, for use in interpret-
ing theories formulated in first-order logic. I mean something much
wider with the word “model” here; we will talk about models for all
kinds of theories, and not only those formulated in first-order logic. We
will not even assume that they have to be formulated in a language
at all, but accept that they can be beliefs, diagrams, or for that mat-
ter matehematical structures themselves, as it is common to see them
in the structural (Sneed, 1971; Stegmiiller, 1979) and semantic (Giere,
1979; van Fraassen, 1980) conceptions of theories. We will also not
take the structures that can serve as models to necessarily be sets, re-
lational systems or algebras; mathematics, even though much of it can
be formulated in terms of set theory, is a broader subject than that and
studies any kind of abstract structure.

What connects a theory to the actual world, rather than to an arbi-
trary model, is the notion of ¢truth. This is of course a very controversial
concept, philosophically. We will try to avoid most of the controversies
by adopting what I will refer to as a thin conception of truth. First off,
let us start with the notion of a truthbearer. 1 will refer to anything to
which we may ascribe truth or falsity as a possible claim, or more often
just a claim. Examples may include beliefs, sentence tokens, proposi-
tions, speech acts, diagrams, depictions, etc. I do not assert that any
of these actually exist, nor that they are truthbearers, but only that if
you believe in them, and believe that they can be true or false, they are
to be included in what I have called claims. Given this notion, we may
gloss the thin conception of truth as follows:
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TT: A claim p is true iff p says that the world satisfies ¢,
and the world does satisfy ¢, for some condition ¢ on
worlds.

This is of course not proposed as a definition; for one thing, it em-
ploys the notions of satisfaction and condition, which are unlikely to
be less complex than truth itself, and it also talks about such things as
“worlds” and “saying that”. We may instead view it as a sort of con-
dition on truth-definitions: given explications of truth, worlds, “saying
that”, conditions, and satisfaction, this is something that must hold be-
tween them. As such, it gives a partial definition of truth in the sense
that it rules out some theories. The thin theory of truth itself can then
be taken as the meta—theory that says that one of the theories not thus
ruled out is the correct one.

As weak as TT is, it still contradicts some positions. For instance,
it is incompatible with coherentism about truth (that what is true is
what is entailed by our most coherent body of beliefs) coupled to the
belief that the world is independent of our beliefs of it. But it is not
incompatible with coherentism per se — if we hold both that truth is
that which follows from our most coherent body of beliefs, and that
that worlds are bodies of beliefs, for instance, that can satisfy TT (see
section 3.4.3).

The motivation behind the thin theory of truth is the same as that
behind correspondence theories: that what the world is like is what
determines what is true or false. This much is arguably a part of the
very meaning of the word “true”, so that denying it would be something
like denying that bachelors are unmarried. The appropriate entry in
the Compact Ozford English Dictionary for “true”, for example, is “in
accordance with fact or reality”. The interpretation is in agreement
with deflationists such as Horwich:

It is indeed undeniable that whenever a proposition or an ut-
terance is true, it is true because something in the world is a
certain way—something typically external to the proposition or

utterance. (Horwich, 1998, p. 104)

and even anti-realists, such as Dummett:
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If a statement is true, there must be something in virtue of which
it is true. This principle underlies the philosophical attempts
to explain truth as a correspondence between a statement and
some component of reality, and I shall accordingly refer to it as
principle C. The principle C is certainly in part constitutive of
our notion of truth [...] (Dummett, 1976, p. 52).

I will therefore take TT to be trivially true, and denials of it to
be due to conceptual confusion rather than substantial disagreement.
Someone who proposes a theory of truth in which truth is independent
of what the world is like, is better interpreted as proposing a replace-
ment for our regular concept — perhaps because that concept is held to
be useless in practice, or incoherent. This debate will not concern us at
the moment. Truth, for us, is a starting point, from which to set out on
our metaphysical odyssey. We simply assume it to be obtainable, in so
far as it is obtainable at all, by scientific method. As metaphysicians,
we use the truths given to us; it is not our primary task to find out new
ones, or to question those we are given by the sciences.'® Dummett
continues the above quote by claiming just such a task for his principle

C:

[...] but it is not one that can be directly applied. It is, rather,
regulative in character: that is to say, it is not so much that we
first determine what there is in the world, and then decide, on
the basis of that, what is required to make each given statement
true, as that, having first settled on the appropriate notion of
truth for various types of statement, we conclude from that to
the constitution of reality. (Dummett, 1976, p. 52).

It is for this task that TT (our version of Dummett’s principle C) is
enough. We only need some link between our true theories, and what
the world is like, for us to be able to reel in reality (or at least parts
of it) by pulling on it. One question of importance, however, is why it
has to be truth. It is just one of the circle of semantic concepts which
includes truth, reference and satisfaction. Tarski, for instance, took sat-
isfaction as fundamental, disregarded reference entirely (because none

10By this i do not, of course, mean that a philosopher could never challenge claims
of the sciences, but only that when we do so, we do it as theorists of science rather
than as metaphysicians.
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of the languages he wrote about had individual constants), and defined
truth from there. Modern logicians are likely to take both reference and
satisfaction to be the basic concepts, and truth to be derivative.

It is easy to see the advantages of this approach: knowing what
things satisfy P(z) and what the constant c refers to, it is a trivial mat-
ter to find out whether “P(c)” is true. On the other hand, from just
knowing that “P(c)” is true, we can tell next to nothing about what
things satisfy P(x), or what ¢ refers to. We need far more informa-
tion than that, such as in what circumstances (or “worlds”) P(c) would
have been true, what other individual constants can be replaced for ¢
salva veritate, or even knowledge of the inference relations in the entire
language.'! But even given these, we can never be certain that we will
be able to regain determinate referents for our singular terms; it was
just problems like these that drove Quine to his position in Ontological
Relativity (Quine, 1969), and his later appreciation of ontology as mean-
ingless. So it would seem that we basically have to start with taking
reference and satisfaction for granted, if we are to do any metaphysics
at all.

Doing so would, however, be to succumb to wishful thinking. The
sentence is the basic unit of meaning—it is what is asserted in a speech
act—and the meanings of words are derivative. Frege put the point best
by claiming that “Only in the context of a sentence do the words mean
anything” (Frege, 1884, §62).12 We do not have any way of referring to
objects, or of predicating anything of them, that does not presuppose
the referring words’ roles in making assertions. Since meaning must be
determined by use if we are to see it as a social phenomenon at all, the
meaning of such referrals or predications must be determined, as far as
it is determined at all, by their use in assertions. '3

More explicitly spelled out, the argument is the following: sentences’

1 Brandom’s theory of language is an example of one that takes inference relations
to be fundamental, and derives reference for terms, and satisfaction of predicates,
from this network (Brandom, 1994).

12Frege uses the word “bedeuten”, but since this was before his distinction between
Sinn and Bedeutung, I have interpreted him as using it in its customary sense, and
translated it as “mean” instead of the philosophically more common “stand for”.

13The classic work here is Dummett’s, on Frege’s philosophy of language, where
these points are explained far better than I ever could (Dummett, 1981).
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meanings are determined by their uses, i.e. what the effects of uttering
them are. Words (such as names and predicates) receive their meaning
derivatively, from the stable contributions they make to the meanings
of sentences in which they appear. The way in which we assign these
word-meanings does however depend on our underlying intuitive pre-
conceptions of metaphysics: we must assume individual objects to exist
and have certain properties for them to be the meanings (or referents)
of individual constants, for instance. In order to make the whole process
of inferring a metaphysics from a theory explicit, it is therefore safer to
focus on the semantical properties of whole claims, such as truth.

Similar considerations apply to other kinds of claims, such as beliefs.
The view of ideas as depictions of objects, which refer to that which
they are depictions of by being similar to them, which was attributed by
Berkeley to Locke, has long since been given up, if it was ever held by
anyone at all. Beliefs, just as statements, must be determined by their
relations to manifest behaviour. Just as we do not have any fundamental
linguistic act of referring, we do not have such a fundamental mental
act either.

It may seem that questions such as these would be of interest pri-
marily for the philosophy of language and the philosophy of mind. Why
cannot we, as metaphysicians, simply leave the question of priority to
these subjects, assume that it can be sorted out there, and that some
notions of reference and predication will be available for us to use? The
reason is that reference and predication are not metaphysically neutral:
in employing them, we have already taken reality to consist of indi-
vidual, self-subsistent objects, and things that can be said about these.
On some semantics, such as Frege’s (which may be seen as the intended
interpretation of predicate logic—after all, he invented it with that in-
terpretation in mind, and certainly not as a purely formal calculus),
predicates stand for entities as well. Granting ourselves reference and
satisfaction there would therefore commit ourselves to a full Platonic
heaven. As metaphysicians, we want assumptions like these to be the
result of our theorising, and not silent presuppositions.

This is why we focus on truth as the central semantic concept for
use in metaphysics. Reference and satisfaction, if we find that we need
them, will have to come in at a later stage. This means that the seman-
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tics we work with primarily will be the semantics of sentential languages
and similar structures. We will discuss languages of predicate logic as
well, but these will be treated as a special case of our general theory.

We argued, when discussing Quine’s methodology, that metaphysics
should not concern itself with formulating its own theories about what
the world is like, but rather interpret theories formulated by the sci-
ences. Such an interpretation, when expressed mathematically, is a
type of model. This is why I say that metaphysics is model theory: its
subject-matter is the construction of models for theories we have reason
to believe to be true.

What differentiates model-theoretic metaphysics from the more tra-
ditional kind, except for its greater reliance on mathematics, is the extra
level of abstraction involved in treating model spaces, rather than single
models. The metaphysician’s task is limited to the design of a type of
model, and she has no say in what model in a given model space is the
one corresponding to the actual world. That is entirely up to science,
through the mediation of semantics, and if science does not suffice for
making a unique choice, then nothing else will.
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CHAPTER 2

THEORIES

Here we give an explication of the concept theory which is broad
enough to cover empirical theories as well as logics and natural
languages. A theory A is defined as a consequence operator Ca
on a language L4, and we can identify the truths of the theory
with its theorems. We introduce several variations, among which
are algebraic, many-valued and probabilistic theories.

We also discuss the use of theories as frameworks for working
with other theories. Certain sets of claims (the closed sets) in
a theory form theories of their own, called strengthenings. The
strengthenings of a theory form a kind of logic, with lattice-
theoretical properties. More distant connections between theo-
ries can be captured using theory transformations. A theory ho-
momorphism is a consequence-preserving function between the-
ories’ languages, and a translation is a kind of homomorphism
that not only preserves consequence, but reflects it as well.

Finally, we discuss the matter of necessity. This concept will
be of importance for us later on, in a metaphysical setting. Here,
however, we treat it as a modality of claims, and investigate its
relations to the consequence structure of a theory. This type of
necessity is thus inherently theory relative.



THEORIES

2.1 Logic and Theory

Traditionally, the notions of logic and theory have been taken to be
exclusive of one another. Aristotle’s subject matter in the Physics seems
quite different from that in the Organon, to take an early example. Yet,
we are unwilling to deny that statements true in virtue of their logical
properties are true, just as those which are true in virtue of how the
world is. And just as both logic and empirical investigations aim at
truth, both material and formal implications can be used for drawing
inferences.

The first modern philosopher to take these similarities seriously was
Carnap. In The Logical Syntax of Language, he lets his languages con-
tain two types of formal rules: the logical rules, or L-rules, which are
stable under replacement of non-logical symbols, and the physical rules,
or P-rules, which are not (Carnap, 1937, §51). The difference can be in-
terpreted as one concerning the basis of the inferences allowed: L-rules
can give only what follows from a sentence’s logical form, which is a
hypothesised property shared by those sentences that may be obtained
from one another by replacement of non-logical symbols.

This difference naturally depends on our being able to give a clas-
sification of which symbols are logical, and which ones are descriptive.
Carnap never gave one, and the debate is still lively — one of the
currently most popular accounts seems to be Tarski’s, of permutation
invariance of the domain (Tarski, 1986). Symbols commonly accepted
as logical include those for conjunction, disjunction, negation, quantifi-
cation, necessity and identity. Symbols that are not commonly included
are set membership, part-whole relations, and predicates and individual
constants that denote physical properties or objects. Nevertheless, we
are far from any kind of consensus on what a logical symbol is, or even
which symbols are logical.! For Peano, set membership was a paradig-
matically logical relation, while it is not for us. To a large extent, the
difference seems to be purely conventional.

This uncertainty over the line between logical and non-logical con-
stants translates into a vagueness in the notion of logical form, and

1Cf. MacFarlane’s careful discussion in the Stanford Encyclopedia of Philosophy
(MacFarlane, 2005).
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thus also into blurriness in the boundary between logical and physical
(or material) consequence. Quine is the philosopher best known for
exploring this blurriness — most famously as regards analytical conse-
quence in Two Dogmas (Quine, 1951), but also more directly in Carnap
and Logical Truth (Quine, 1960a).

One does not have to go all the way to Quinean pragmatism, and
deny the very distinction between logical and material consequence al-
together, however. Wilfrid Sellars, another prominent philosopher as
deeply influenced by Carnap as Quine was, accepts the distinction,
but holds that material rules of inference are necessary for us to be
able to capture the notion of validity. In Inference and Meaning (Sel-
lars, 1953), he argues that the existence of subjunctive conditionals
requires our language to contain material rules of inference, since the
coarse-grainedness of strict implication (which is the object-language
equivalent of logical consequence) makes it incapable of distinguishing
between different counterfactual conditionals.? In Some Reflections on
Language Games (Sellars, 1954), he shows how material rules of infer-
ence are needed to ground even the logical ones, since we cannot learn
to play a language game (Sellars’s Wittgensteinian word for what seems
to be a “language’ in the Carnapian sense), unless some material rules
of consequence are in place.

No matter where you stand in these questions, it should be obvi-
ous that there is a reading of “consequence” that is wider than formal
or logical consequence. In keeping with the (very) broadly Quinean
methodology I have been inspired by in this book, we will not presup-
pose any kind of absolute difference between this wider (“material”)
notion of consequence, and the narrower “logical” kind. This does not,
of course, mean that no such distinction could be introduced, but only

2In a way, later theorising may be seen as having borne these speculations out:
Lewis, in his seminal work on counterfactuals, refers to them as variably strict con-
ditionals (Lewis, 1973, 13-19). His analysis furthermore contains crucial elements,
such as his ternary similarity relation <;, which we have no reason to believe to be
expressible as a set of “extra premisses” of first-order logic. The reason why he is
able to see himself as dealing with the logic of counterfactuals is of course that he
only discusses very general structural conditions on <;. Nevertheless, in order to
ascertain whether an actual inference is valid or not, we need to have access to the
full similarity relation, and not only a few tidbits of information about it such as
whether it is reflexive or not.
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that it is nothing we will take for granted.

For us, another important advantage of not tying ourselves to a
specific logical consequence relation is that this allows us to avoid the
points of criticism we raised against Quine’s programme in section 1.1.
Much of this centered around Quine’s dogmatic reliance on first-order
logic with identity (henceforward “FOL”), and the problems of arbi-
trariness and limit in scope that this brings. Prima facie, one way
of tackling these problems would be to select some other logic as our
foundation, which does not have the limitations of first-order logic.
But which one? If there is one thing we should have learnt from the
classicism—intuitionism debate in the philosophy of mathematics, it is
that showing that some logic is the “right” one is incredibly difficult.
But it is also the case that some of the questions of sect. 1.1 pull in
different directions: some are about why FOL is too weak, and some
are about why it is too strong.

The only way out of this, if we are to approach metaphysical method-
ology in general, without bias, is to assume no specific logic at all. A
few properties will follow from our theory of theories, such as that en-
tailment is transitive. If this is unpalatable, it is possible to modify the
framework presented here by basing it on non-monotonic consequence
operators instead of monotonic ones, for instance. We will indicate how
to generalise the theory concept in section 2.4.

In 1.1.5, we introduced the notion of a claim: anything that might
be true or false. Claims are typically connected in different kinds of
systems, and it is these that we will refer to as theories. The “glue”
that holds the claims together in such a system is consequence, which
we will represent using the Tarskian notion of a consequence operator:
a function C on the subsets of a set L, such that the following hold, for
any X,Y € A:

(Reflezivity) X < C(X)
(Idempotence) C(X)
(Monotonicity) if X €Y then C(X) < C(Y)

A theory A is a consequence operator C'4 on a set L, of claims,
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called the theory’s language, together with a set S called A’s subject
matter. Expressed set-theoretically, it is an ordered triple (L a,C4,S4).
The role that we have focused on here, for the theory, is as a wvehicle
of inference. It justifies the inferences we make between claims in the
manner that inferring claim ¢ from claims pq,...,p, is justified by the
theory A iff ¢,p1,...,pn € La, and q € Cx(p1,...,pn), which we also
will write as

{P1,.. . Pt Faq

In the limit, where the theory allows us to infer a claim from no
premisses at all, and thus g € C4(9), we say that ¢ is an A-truth. We
denote the set of all A-truths by T 4.

We have called L4 the theory A’s language, even though not all
claims need to be linguistic entities. Taking A’s claims as thoughts,
we may for instance speak about a “language of thought”, though not
necessarily in the substantive sense that Fodor and others use the term.
All we require of a language is that it is a set of claims, of any kind
whatsoever. We may even have heterogenous languages, in which some
claims are thoughts, others are sentences, and yet others are depictions
of states of affairs. Such languages can be useful for studying logical
relations holding between claims of different domains.

The third part of a language is the subject matter. This plays the
same role as the set of “intended applications” in the Sneed-Stegmiiller
tradition of structuralist theory of science (Sneed, 1971; Stegmiiller,
1979). This is necessary since many actual theories contain indexical
elements. For instance, theories in physics often mention “the system”,
and which system is intended may differ from application to application.
In many cases, the applications do not even exist: physics has to be
applicable to thought-experiments as well as actual systems, or much
of the reasoning done by physicists would be invalid.

This means that we should not interpret S extensionally. Some
kind of set of descriptions of what things the theory is about, or may
be applied to, is sufficient. This allows us to have theories about things
that do not exist, or things that we do not know whether they exist
or not. It does not rule out theories whose subject matter just is “the
world”, of course, even if such theories probably are more uncommon
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in practice than what one may get the impression of when reading
contemporary philosophy of science. Nevertheless, whenever we leave
out specification of the subject matter in the description of a theory, we
will assume it to be applicable to the world, no matter how it is. Thus a
theory defined as (L 4,C4) will be assumed to have an implicit subject
matter, and be an abbreviation for a theory (L, C4, “the world”)

Consequence, as a property of a theory A, is a purely theory-relative
concept. X 4 p is to be interpreted as “A allows inferring p from X7,
and does not in itself involve anything external to said theory. That
something is an A-truth thus does not mean that it is true, but only
that it is true according to A.

Often all kinds of models or semantics are attached to theories to
motivate the inferences allowed. The guiding principle here is that if
p is inferable from X, then whenever the claims in X are true, p is
true as well. A semantics is then used to flesh out this “whenever” in
terms of models, situations, possible worlds, interpretations, etc. But
such a semantics remains secondary to the theory and its consequence
operator itself. We generally decide on truth or falsity of claims through
different kinds of testing, such as experiment, observation, proof, or
counterexample. A consequence operator can be motivated through
the “it has always worked so far” methodology, and all motivation has
to include this as a part.

We do not want to downplay the importance of semantics, on the
other hand. This book is to a large extent about the relation between
claims and the things they are about. But to be able to approach
such questions in an unbiased way, it is very useful to “bracket” the
semantical presuppositions of a theory. This is possible because the
theory as consequence operator is self-sufficient: two users of it can
communicate, so long as they treat consequence the same way, even if
one of them motivates the relation through one kind of semantics, and
the other through another.

Bracketing allows us to avoid questions about “intended” interpre-
tations. It also allows us to consider theory first, and the question of
what the world is like given a theory second. It is thus very useful if we
are to do metaphysics as secondary to scientific theory, rather than as
first philosophy.
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A few examples of theories, some of which we will return to in the
last chapter, are the following:

Sentential logics. We will mainly discuss two varieties of sentential
logics: the classical and the intuitionistic kind. Both, moreover, con-
stitute classes of theories, rather than single ones. Assume that S is a
set of sentences. Let the sentential language S be the smallest subset
containing S which is closed under the following conditions:

(i) TeSand Les§.
(ii) If p e S then —p € S.

D) IfggeS'andqu’then(p/\q)eS', (pvq)eS',and (p—9q)
€S.

Given any set of sentences S, we define the intuitionistic logic over S
as the theory I(S) with language L 1(sy = S and consequence operator

Crs)(X) = {p € Ly | p is an intuitionistic consequence of X}

The classical logic on S is defined as the theory C(S), with the
same language as I(S) and the same definition of consequence operator,
except for the replacement of “classical” for “intuitionistic”. The sets
Tr(s)y and T¢(g) are the sets of classical and intuitionistic tautologies,

respectively, in the language S.

Classical predicate logics. Again, this comprises a class of theories.
First of all, for every ordinal number n, we have a different class of
logics: the nth order ones. Then, for every order, we have different
logics depending on what predicates, variables, and function letters we
have. Assuming that (S, C) is an nth order logic, whose set of sentences
is S, we can define C as

C(X) ={p € L | ¢ is true in all models of nth order logic
where all sentences in X are true}.
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This definition defers the problem to defining the notion of truth
in a model of nth order logic. The most common of these are those of
Tarski, for first-order logic (although they can fairly easily be extended
to higher-order logics), and the proof-based ones, where a model can be
taken to be a set of sentences, and truth in a model equated with deriv-
ability from that set. For first-order logics these coincide, but depending
on whether we allow proofs to be infinite, and on how Tarskian mod-
els are defined for higher-order logics, they may come apart for higher
orders.

ZFC set theory. Unlike many logics, ZFC set theory is a specific
theory rather than a class of them. Its language is a variant of predicate
logic: one with no function symbols and the single binary predicate “€”.
Let Az be an axiomatization of ZFC set theory in this language. We
then define the consequence operator as

Czrc(X) = {9 € Lzpc | ¢ is true in all models of FOL
where all sentences in Az U X are true}.

Here, we have the same choice for our interpretation of “truth in
a model” as we had in our last example. For second-order ZF(C, in
contrast to the first-order theory, differing choices give rise to different
theories. Moreover, for proof-theoretic consequence, we have a class
of different systems — all finite subsystems of the model-theoretic ver-
sion, which contain among others the basic second-order logic of Frege’s
Begriffsschrift.

The standard model-theoretic version of second-order logic is the
one that holds the greatest interest for most philosophers: it permits
us to give categorical axiomatisations of Peano arithmetic, and almost-
categorical (that is, categorical up to cardinality) axiomatisations of
ZFC. For this theory (call it ZFC?), we do not have any finite set
of axioms. This does not, in any way, prevent it from being a theory
in our sense: as soon as we have a clearly determined set of claims
(the sentences of ZFC?), and a fact of the matter of which inferences
are valid or invalid (which is given by the model-theoretic consequence
notion for ZFC?), we have a theory.
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Classical mechanics. This is a typical example of an empirical the-
ory, and also a good example since it is so well-known. In its Hamilto-
nian formulation, classical mechanics is used to derive properties about
a physical system. The state of such a system can in general be de-
scribed through a set of generalised coordinates. In the simplest case
of n free particles, the system is determined by 6n coordinates as a
function of time — 3 for each particle i’s position q;(t), and 3 for each
particle’s momentum p;(t).

A theory describing such a system can be defined over a language
Le s generated by of formulae of the form

p = the value of observable A is = at time ¢

where A is a specified real function of the coordinates of the system, x
is a real number, and ¢ is a time. The system itself can be described as a
point in 6n-dimensional space, and its evolution in time as a trajectory
in this space. The observable A takes such a point as argument, and
gives a real value.

The consequence operator Cops can be defined as one of a mathe-
matical framework (e.g. ZFC, together with an appropriate collection
of definitions) combined with Hamilton’s equations

PO =~ (0. a0, 1)
L) = = st(p(t). alt). 1)

dt - 0pi

where # is a function called the Hamiltonian, which gives the total
energy of the system in each of its configurations. This function is
characteristic of the system, and thus of a theory of classical mechanics
for a specific system.

To obtain classical mechanics in full generality, we need to get rid of
the hard-wiring of # to the theory. This means that we also will have
to include sentences for specifying the Hamiltonian in Lcpys. Since we
will not dwell much on classical mechanics in this book, we will not go
into detail of how to do so here.
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2.2 Truths and Theories as Claims

We have this far focused on theories’ roles as vehicles of inference. It
should however be obvious that this is not all they are. If A justifies the
inference from p to ¢, then, according to A, if p is true, ¢ is true as well.
This is, at the very least, a necessary condition for an inference being
justified. In the case where p € T 4, A justifies drawing the conclusion p
from no premisses at all (or equivalently, given monotonicity, from any
premisses). According to A, all claims in T 4 must therefore be true.

This allows us to extend the notion of truth from claims to theories.
Let trues be the set of all claims in A that actually are true under
some interpretation we have settled on (not to be confused with the set
T 4, which contains the claims in A that are true according to A). We
define:

A theory A is true iff for any set X € trueas, Ca(X) C
trueg.

The case where X = @ is not meant to be excluded here, since that
is what makes A’s truth entail the truth of all A-truths. Intuitively, the
definition says that a theory is true when all the inferences it allows are
truth-preserving. This definition is dependent on the notion of truth
for claims. Since we already have said as much as we will about what
this is in section 1.1.5, we will take it for granted here.

Truth, as we have defined it for a theory, is similar but not identical
to soundness. A logic is sound iff it is impossible for any set of premisses
in the logic’s language to be true, without those things the logic says
follows from these premisses also being true. Soundness is thus a modal
concept. Truth, as we have interpreted it here, is its non-modal cousin:
a theory is true iff, for any set of claims in the theory’s subject matter,
if these are in fact true, then everything that is a consequence of them,
according to the theory, is also in fact true. We can therefore say that
a theory is sound iff it is necessarily true.

The possibility for a theory to be true makes it a kind of claim (re-
member, we have taken claims to be any entities to which it is mean-
ingful to ascribe truth or falsity). Theories can thus be elements in
the language other theories. Can they be elements in the language of
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themselves? If our underlying set theory is Cantorian (which we will
assume it to be), the answer is no; the axiom of foundation prohibits
infinite descending chains or cycles in the membership relation. Since
the language of a theory is an element of that theory, a cycle would
ensue if the theory itself were an element of its language. Thus, a the-
ory cannot talk about itself, or, for that matter, about theories that
include itself. This also helps our theory of theories to avoid liar-type
paradoxes.

In a similar way, we can also see that there must be claims that
are not theories. Starting with an arbitrary theory A, and following
the elementhood relation downwards, we must always come in a finite
number of steps to some theory B whose language does not contain
any sets at all, and thus not any theories. We have two ways this may
happen: either B is the empty theory whose language is empty (the
“theory of nothing” in the strictest sense), or its language consists of
claims that are not theories. But it is easy to see that the empty theory
is true, just from the definition of truth of theories. If all elementhood
chains of all theories ended in it, all theories would therefore be true.
Since this is not the case, there must be claims that are not theories as
well.

Due to the well-foundedness of theories, we can always consolidate
them by including the language of the theories in them in their own
subject matter. Call a theory A consolidated iff, for any theory B € L4

(’L) Lp S Ly.
(i) For any X € Lp, Ca({B} u X) n Lp = Cp(X).

Condition (%) is simply that the language of B is to be included in
that of A. (ii) requires A’s consequence operator to coincide with B’s
over B’s language, so long as B is held to be true as well. This may
be held to follow directly from our definition of what the truth of a
theory is. We can also see that C4(B) n Lg = Tp, so B implies that
the B-truths are true, according to A. We do not necessarily have the
reverse implication: the B-truths may all be true without B being true,
since B, as a claim, says more than Tp.

We say that a theory A contains a theory B, or that B is a subtheory
of A, iff L € L4 and A’s and B’s consequence operators coincide on
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Lp. Given any non-consolidated theory A, there are generally many
consolidated theories that contain it. Nevertheless, the existence of
consolidated containing versions of any non-consolidated theory lets us
confine our attention to these hereafter.

Apart from the containment relation, there is one other important
relationship that holds between theories. We say that B is a theory in
A, or that B is a strengthening of A, iff

(i) Ly = La.
(ZZ) CB(X) = CA(TB U X)

The meaning of (i) is that B is obtainable from A by fizing a set of
A’s claims, and regarding them as true. This set then becomes the set
of B-truths. Strengthenings are important because they do not really
add to the expressive power of A: everything we can claim in B, we
could just as well have claimed in A, by citing the elements of Tp as
further premisses (this is proved in a more formal manner in lemma 2.2
below). Thus, claiming X in B is the same thing as claiming X u Tp
in A.

What is the importance of strengthening? Why require that

Cp(X) = Ca(Tp v X)

rather than the more general C'4(X) € Cp(X), for instance? We must
here consider the role of theories not only as subjective entities, but as
tools for communication as well. Suppose that you and I are conversing
using a theory A, and I want you to accept the move from p to p’,
which is not allowed in A. There is no way for me to communicate this
intention except to say that something or other holds, and this done by
making one or more claims in A.

In theories which are compact and have well-behaved implication
and conjunction connectives, the difference disappears. Using the de-
duction theorem, we can express

{pla"'vpn} [ q

as
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F@iA...ADY) = ¢

which allows us to take any strengthening of a consequence operator to
be a strengthening in our sense. But not all strengthenings, as Lewis
Carroll famously pointed out, can be handled like this. We cannot
introduce the properties of “—” this way, for instance.

The most common examples of our kind of strengthening in the
literature occur when A is a logic. Then, any axiomatic extension of A
is a theory in A, and any set X of sentences in A determines a theory
in A, which we will call the theory generated by X. Here, our usage of
the word “theory” touches that of the logician. In logicians’ parlance,
“theory” means “logically closed set of sentences”, and, as the theorem
below shows, when A is a logic, such theories correspond one-to-one
with the theories in A.

Theorem 2.1 : If B is a theory in A, then Tp is closed in A, and
for any closed set X in A, there is a unique theory B in A such that
X =Tg.

Proof. Let B be an arbitrary theory in A, so that X € Lg, Ca(Tp u
X) = Cp(X), for all X € A. Then, in particular, C4(Tp) = Cp(@) =
Tp, so Tg is closed in A. Now assume that X is an arbitrary closed
set in A. We can then define a theory B = (L4, Cp), where Cp(Z) =
(X U Z), for every Z € L. To show that different closed sets X and
Y are the truths of different theories, all we have to do is to note that
no two distinct theories in A can have the same set of truths. O

Theorem 2.1 proves that the set of theories in A has the same
structure as the set of subsets of L4 that are closed under C4. We
call such a set of closed sets the closure system CS(A). Such a sys-
tem, as can be found in any book on lattice theory (see for exam-
ple Davey and Priestley, 2002, p. 46), is a complete lattice: a struc-
ture T = (5,<, A\, V), where S is a set, < is an order on S, and
A p(S)— Sand \ : p(S) — S are functions that give the great-
est lower bound, or meet, and a least upper bound, or join, of arbitrary
subsets of S, in the order <.
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When X is a set of claims in the subject matter of the theory A,
we refer to the weakest theory in A that includes X among its truths
as Tha(X) (the theory generated by the set X). We have shown that
every theory A gives rise to a complete lattice T4 = (T4, <, A, \/)—the
theory space ¥ 4—where

T4 is the set of all theories in A,
XY iff Ty € Tx, in which case we say that X A-

entails Y,
AX =Tha(l Tx), and
Xex
VX =Tha() Tx).
Xex

For pairs of theories {X,Y} € 74, we use the notation X A Y and
X v Y for meets and joins. Strictly, most of these symbols should be
subscripted with what theory space they belong to, but we will rely on
the context to determine this.

We call the set of theories T4 the theory space of A. The meanings
of A and \/ are clarified by the following theorems, and their accom-
panying lemma:

Lemma 2.2 : If A is true then, for any theory B in A, B is true iff all
claims in T g are true.

Proof. First, assume that B is true. Then T C truey, since the truths
of a true theory are all true, from the definition of truth for theories
above. Conversely, assume that Tp C truea, and that X is an arbitrary
subset of true4. For B to be false, there must be some p ¢ true 4, such
that X g p. But this would require that X U Tg 4 p, and we
have already assumed X and Tp to be all true, and C4 to be truth-
preserving, so such a situation cannot arise. Thus, B is true as well. [

Theorem 2.3 : If A is true, then A X is true iff all theories in X are
true.
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Proof. By definition,

/\X = ThA( U Tx)

Xex

is true. From lemma 2.2, Tha( |J Tx) is true iff |J Tx S trues. But
Xex Xex
it follows straightforwardly, by the use of elementary set theory, that

this holds iff (VX € X)(X S truea). O

Theorem 2.4 : If A is true, then \/ X is true if some theory in X is
true, and \/ X is the strongest theory that follows from some theory in
X being true.

Proof. Again, we use lemma 2.2 to work with the theories’ truth-sets
instead of their consequence operators. Assume that there is a theory
B € X such that Tg € trues. Then, since

Tyx=[]Tx

Xex

it follows trivially that if all claims in Tp are true, all claims in T\, x
must be true as well.

For the second part of the theorem, let Y be some theory such that
X <Y for all X € x. We then obviously have that Ty € Tx for

all X € X, and thus that Ty € () Tx. But this is equivalent to
Xex

VX<Y. O

Unfortunately, we cannot strengthen the implication from some the-
ory in X being true to \/ X being true in theorem 2.4 to an equivalence:
it may be that \/ X is true, although none of the theories in X are true
themselves. This happens, for instance, in quantum-mechanical cases
under certain interpretations: here, we can have it true that the spin of
a certain particle in a given direction is either up or down (this follows
from the interpretation), without it being the case that it is up, or that
it is down. For the theories
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U = Thowm(the particle’s spin in direction d is up)
D = Thon(the particle’s spin in direction d is down)

we then always have that U v D is true, even though each of U and D
can fail to be so.

2.3 Theory Transformations

For any kind of mathematical structures, the question of transforma-
tions between instances of this structure is one of central importance.
Call h : A — B a theory homomorphism if h is a function from L4 to
Lp such that

hCa(X)] < Cp(h[X])

for all X € L. A theory homomorphism is a consequence-preserving
mapping in the sense that if X 4 p holds, then A[X] 5 h(p) must
hold as well. There is also a different way to look at it: let as before the
closure system CS(A) be the set of subsets of L4 that are closed under
Cy. A closure system, as we noted in the last section, is a complete
lattice. But it is also almost the set of closed sets of a topology: if Ca
fulfils the conditions that Cx (@) = & and Ca(X 0Y) = Ca(X) U
Ca(Y) as well, it fulfils all the Kuratowski closure axioms. Importing
the concept of a continuous function—one for which the preimage of an
open set always is open—from topologies to closure systems, we can,
through use of the following lemma, prove that homomorphisms are
exactly the continuous functions in this sense (cf. Lewitzka, 2007 for a
similar approach).

Lemma 2.5 : pe C4(X) iff p is in all sets in CS(A) that contain X.
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Proof. Assume for contradiction that p € C4(X), and that there is a
closed set S € ¢S(X) such that X € S but p ¢ S. Then by monotonicity
Ca(X) € C4(S), but by idempotence C4(S) = S, so Ca(X) € S. But
then we must have that p € C4(X), contrary to our assumption. For
the other direction, assume that p is in all closed sets that contain X.
Since C'4(X) is a closed set, it must contain p. O

Theorem 2.6 : A function h : Ly — Lp is a homomorphism iff it is
continuous.

Proof. Let ¢S(A) and ¢S(B) be the closure systems of A and B. Let
h:Las — Lp be a theory homomorphism. We show that if Y € Lp is
closed, then h=1[Y7] is closed as well, since this is equivalent to the same
condition on open sets, and thus expresses continuity. Let X = h1[Y],
and suppose that Y = Cg(Y). Then since h is a homomorphism, we
have that h[C4(X)] € Cp(Y), from which it follows that Cs(X) <
h=1Cp(Y)] = h~'[Y] = X. Thus X = C4(X).

In the other direction, let h : L4 — Lp be a continuous function,
and let p ¢ Cp(h[X]). Then, by the preceding lemma, there is a closed
set S € Lp such that h[X] € S but p ¢ S. Since h is continuous, we
have that h~1[S] must be closed as well. Let ¢ € h~1[{p}]. Then, again
by the last lemma, we must have that ¢ ¢ C4(X). Applying h on the
left gives that p ¢ h[Ca(X)]. O

Among the theory homomorphisms, some are especially useful. Let
a theory isomorphism be a bijective homomorphism h such that h~!
is a homomorphism as well. Let a theory embedding be an injective
homomorphism h : A — B such that

hCa(X)] = Cp(h[X]) N h[L4]

A theory embedding requires the consequence operator of B to cor-
respond exactly to that of A on the image of B in A. It is easy to see that
if there is a theory embedding from A to B, then A is isomorphic with
a subtheory of B. Theory embedding is, however, in general a some-
what too strong criterion to be really interesting. We call h: A —» B
a theory translation when h is a homomorphism, which may or may
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not be injective, for which the embedding condition above holds. A
translation still reflects the consequence structure of its domain, but
may identify claims in L4 that have the same place in this structure.
Every embedding is thus a translation, but not every translation is an
embedding.

An example of a translation is the transformation from a proposi-
tional language to the Lindenbaum algebra of that language. This takes
every sentence p to the set of all sentences equivalent to it, and thus it
is not injective. Nevertheless, the Lindenbaum algebra has, in a very
clear sense, the same consequence structure as the language we started
with, even if its cardinality in can be different.

To be a translation is a purely structural property. But consider the
theories A = (L 4,C4) and B = {(Lg,Cp) such that

L4 = {snow is white, something is white}

Lp = {grass is green, something is green}

whose consequence operators allow p - p for any p (as all consequence
operators do), and for which

snow is white -4 something is white

grass is green p something is green

There is a unique translation from A to B, namely the one that
takes “snow is white” to “grass is green”, and “something is white” to
“something is green”. But this is surely not a valid translation! “Snow
is white” and “grass is green” do not mean the same thing at all.

The reason why we can see this is that we are currently using a
larger theory (most likely some form of English) that contains both A
and B. This theory does not allow inferring either “snow is white” from
“grass is green” or its converse. We can make these ideas precise by
defining an F'-translation from A to B, where A and B are subtheories
of I, as a translation h : L4 — Lp such that

Cr(X uip}) = Cr(X u{h(p)})
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forallpe Ly and X € L. The rightness of a translation thus depends
on which theory we evaluate it in, and F' licenses a certain translation
h iff that translation only takes claims to claims that are equivalent to
them, according to F'.

It is worth mentioning that we have not made any reference to mean-
ing here. If there is such a thing as absolutely analytic consequence,
we can require that F’s consequence operator be analytic. Then F' will
allow only those translations that preserve meaning. But if analytic-
ity, as Carnap held, always is relative to a formal language, all we can
say is that F’s consequence operator is F’-analytic, for some theory
F’ of which F is a subtheory. That, in turn, can only mean that F’s
consequence operator conforms to that of F”.

2.4 Variations on the Theory Theme

The notion of theory that we use is almost absurdly broad. In many
cases, we have more structure available, although in others, we actu-
ally have even less. This chapter indicates some specialisations and
generalisations of the concept used, all of which will be useful further
on.

2.4.1  Formal Theories

We have approached theories as consequence operators defined on un-
structured sets of claims, and this is their most general form. In many
cases, however, we have access to further information. One of these
is where the language L is a formal language, i.e. one which can be
generated recursively. But it is not absolutely necessary that L be a
language for this kind of structure to be applicable; we may also hold
certain thoughts or beliefs to be obtainable from others, by use of pre-
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established mental transformations, for instance. Hume’s ideas were of
this kind, since according to him the complex ideas were constructed
from simple ideas, which are copies of simple expressions (Hume, 1739,
Book I, ch. I, sct. I). Leibniz’s terms also have this structure, since they
(at least in one of his interpretations) correspond to natural numbers,
and the number of a complex term is the product of the numbers of
the terms it is composed of. Simple terms are those whose numbers are
prime (Leibniz, 1679).

Such a structure will be represented as an algebra, which is a math-
ematical structure of a kind we now briefly will describe. An algebra
2 is a set A (the carrier) together with a finite or infinite sequence of
functions {f;}, ¢ € N. Each of these (the operations of the algebra) is
a function from n;-tuples of elements of A, to elements of A, where n;,
for any 4, is a natural number (zero included). We call the sequence
{n;} the signature of 2.

A slight generalisation of this concept is that of an algebra whose
operations admit countable sequences of arguments, rather than merely
finite sequences of them. The most important of these for us are the
o-algebras, which are algebras & = (5,1U,Y), such that S is a set of

subsets of some set S, U X; is the union of the X;’s, and X is the

complement of X in S. Thebe algebras are crucial for probability theory,
and we will encounter them frequently in this context. We will also
consider some slightly more general o-algebras, where the elements of
S do not need to be sets, and |, © can be other operations than union
and set complement.

We say that an algebra 8 = (B, g1, g2, . . .y is a subalgebra of another
algebra A = (A, f1, fo,.. . iff A and B have the same signature, B <
A, and g;(z1,...,2n,) = fi(z1,...,2,,) for all ¢ and all zq,...,2,, €
B. This entails that the carrier of a subalgebra is closed under the
operations of that algebra.

IfA =LA fr1, fa,...) and B = (B,g1,92,...) are algebras of the
same signature, a homomorphism from 20 to 9B is a function ¢ from
A to B, such that g;(¢(z1),...,0(xn,)) = ©(fi(x1,...,2p,)) for all
i and all z1,...,2,, € A. A homomorphism from 2 to 2 is called
an endomorphism on 2. There is a theorem of universal algebra (see
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Gratzer, 1979, p. 36) that says that the image of any endomorphism is
a subalgebra of the algebra on which the endomorphism is defined.

Finally, we need the notion of a free algebra. For a subset X € A,
we say that X generates 2 iff every element in A can be obtained
by applying the operators of 2 on elements of X some finite number
of times. Let an extension of a function ¢ : X — Y be a function
et Xt > Yt where X € XT, Y €Y', and o*(2) = p(x) for every
z € X. 2Ais a free algebra with the generators X iff every function
o from X to the carrier of some algebra % with the same signature
as 2 can be extended uniquely to a homomorphism from 2 to 8. In
a free algebra, every endomorphism is uniquely determined by how
it transforms the elements of that algebra’s generators. We can thus
view the generators as atomic elements, and the elements of A as those
obtainable by applying the operators of 2 (the “connectives”) to these
generators. An endomorphism is then a substitution of some of the
atomic elements elements of A, with arbitrary elements thereof.

We are now ready to define the central concepts of this section. Say
that an algebra 2 = (L4, f1, f2,...y is a formalisation (or an algebrai-
sation) of the theory A iff the following condition holds:

(Structurality)  e[Ca(X)] € Ca(e[X]), for any X < L, and
any endomorphism ¢ on 2.

The structurality condition (which is also called logicality, see WGj-
cicki, 1988, p. 22) essentially says that when we are to determine if
something follows or not, we can disregard the specifics of atomic el-
ements, and only look at the structure imposed by the operators. It
can equivalently be written as the condition that X + p entails that
e[X] F e(p), so that consequence is preserved under substitutions. This
holds in sentential logics, for instance: the atomic sentences are sen-
tence variables, which may take on the meaning of any other sentence
in the language. Whatever follows from a set of sentences in such a
logic, follows from the structure that the connectives (i.e. the opera-
tors) have imposed on it. The bearer of consequence for a sentential
language is logical form — the pattern of connectives in our sentences.
This is why we have called the imposition of an algebra on a theory so
that structurality holds a formalisation of that theory. Further reasons
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for interest in the condition come from the very general type of seman-
tics it allows, based on so-called matrices, which we will encounter in
ch. 5.

Most formal theories are propositional languages. In fact, it is
very difficult to even formalise predicate logic, since complex predicate-
logical sentences are not built using sentences, but using terms, pred-
icates and quantifiers. And even if we limit ourselves to just full sen-
tences, structurality does not hold, since their internal, non-sentential
structure influences whether they can be derived from one another. To
satisfactorily handle predicate logic algebraically, more complex struc-
tures would have to be used.

Another important property that we would like to have in a for-
malisation is self-extensionality. We say that the formalisation 2 is
self-extensional iff

Pr A4 qk
for Kk =1...n entails that

f(pla"'vpn) —=a f(Q177qn)

for all operations f of 2. A self-extensional formalisation allows us
to disregard the specifics of individual claims, and instead concentrate
on equivalence-classes of them, even algebraically. If self-extensionality
does not hold, logically equivalent claims cannot be substituted for one
another. This is the case in certain strongly intensional logics, such as
logics of belief that do not allow inference of “a believes that p” from
“a believes that ¢”, where p and ¢ are logically equivalent.

The following is an example of a non-linguistic formal theory, which
has the structure of classical logic.

Levi’s conceptual frameworks. Isaac Levi, in The Fization of Be-
lief and Its Undoing (Levi, 1991), adopts a system of beliefs as a basis
for his theory of belief revision, as opposed to the more common ap-
proach that involves working with sets of sentences (Gérdenfors, 1988).
This is interesting as an example of a purportedly non-linguistic theory,
which still has a logical structure.
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A Levian conceptual framework is a set B of potential states of full
belief, partially ordered by a relation < called strength, such that if state
a is stronger than state b, then anyone who is in state a believes more
than someone who is in state b. Alternatively (or equivalently, on Levi’s
theory), if a < b, then a entails b. This ordering is furthermore assumed
to have the structure of a bounded complemented lattice, i.e. to be such
that for every pair of belief states a and b, there is a strongest belief
state entailed by them both (their join a v b), a weakest belief state
that entails both of them (their meet a A b), and for any belief state c,
there is a belief state ¢’ such that cv¢' = T and ¢ A ¢/ = 1, where T is
the unique weakest belief state in the conceptual framework, and 1 is
its strongest belief state. It is furthermore required to be distributive,
which means that we must have, for any belief states a,b and ¢, that
avbrc)=(avb)ya(ave)andan(bve)=(anbd)v(anec).

It is well known that a complemented distributive lattice is equiva-
lent to a Boolean algebra, which is the algebra of classic propositional
logic. We will therefore use a Boolean algebra for the algebraisation.
Let (B, <) be a Levian conceptual framework. A filter in such an frame-
work is a subset of B that is closed under entailment and under meet of
any two of its elements. We define the theory T for this framework to
be (B, "), where C(X), for any X €Y, is the intersection of all filters
in (B, C) that contain X. An algebraisation of T is then a Boolean
algebra € = (B, A, v,—, T, L) such that, for any endomorphism & on
T, e[C(X)] € C(e[X]) for all X € B.

2.4.2  Many-valued theories

Consequence, as it is usually conceptualised, is very much concerned
with the preservation of truth and does not say anything about falsity,
or any other semantic property. But we ideally would like to use conse-
quence to find out not only about what is true, but also what is false.
If we have that X I p, and know that p is false, we want to be able to
infer that some claim in X has to be false as well.

It may be thought that this information is already encapsulated in
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a consequence relation. Should not falsity simply be definable as the
absence of truth? But this is not proper for all kinds of theories or
logics. For example, in a theory in which we allow vague concepts, we
may want to admit cases where p is neither true nor false. Defining “p
is false” as “—p is true” is somewhat better, but is possible only if the
right kind of negation is available. Finally, attempting the definition “p

is false” d=f “p L7, where 1 is a known falsity, invites the question of
€

how such a falsity is to be identified.

The proper way to handle these problems seems to me to be to
define a consequence operator not on bare claims, but on assignments
of semantic values to these claims instead. Writing

v:ip

for the assignment of value v to the claim p, we can then define inference
rules like

{tcp—>aq.foaf-f:p

which captures a version of modus tollens.

Consequence for a many-valued theory A is defined as a function
on sets of assignments on the theory’s language L4 instead of directly
on sets of claims. We can still assume such a consequence operator
to satisfy the same axioms as before, i.e. reflexivity, idempotence and
monotonicity. Using bold-face italics for sets of assignments, we thus
write

Y c Ca(X)

when the assignments in the set Y are inferable from those in the set
X.

Defining consequence in this way gives us a significant increase in
expressiveness. As Carnap discovered, traditional consequence is par-
ticularly inept at constraining semantics for propositional languages:
any set of inference rules for classical propositional logic permits se-
mantics with more than two truth values, and furthermore semantics
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where the negation of a false sentence does not have to be true (Carnap,
1943).3

But in another sense, defining consequence on assignments rather
than claims might not seem to incur any essential generalisation. In
the simplest case, saying that p is true is equivalent to saying that p.
That p is false may not be expressible in all theories, but it is definitely
expressible in some. In any case, “p has semantic value v” is often as
much a claim as anything else, since it generally can be true or false.

The difference, of course, lies in interpretation. In the many-valued
case, we regard the assignment as part of the metatheory, but in terms
of traditional consequence, it is part of the object theory. This is similar
to the difference between Hilbertian and Tarskian consequence: we can
very well see consequence as holding between single claims rather than
between sets of claims and single claims, as long as we allow sets of
claims to be claims themselves, and keep in mind to interpret a set of
claims as true iff all the claims in the set are.

The most important type of many-valued theories for us will be
the ones whose assigned set of semantic values is {t, f}, where ¢ stands
for true and f for false. Such a theory will be called bivalent, while
one whose set of semantic values is {t} will be called single-valued.
Traditional logic is single-valued, since it is concerned about nothing
but preservation of truth.

We can give rules for bivalent consequence, just as for single-valued.
The most important one (apart from reflexivity, idempotence and mono-
tonicity), which connects truth and falsity with consequence, is

Xuftiplrt:qif Xu{f:q¢}+f:p

This rule expresses the principle of contraposition for bivalent con-
sequence relations.

3The explanation for this fact is given in Church’s review: no amount of axioms
can distinguish between Boolean algebras of different cardinality. Since truth corre-
sponds to the top of a Boolean algebra, and negation to complement, any element
which is neither top or bottom will be false, and also have a false negation (Church,
1944).
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2.4.3  Probabilistic theories

Probabilistic consequence gives a generalisation of the standard, deter-
ministic kind. The fundamental idea here is that we want to capture
the probability a certain set of premisses give to a claim, rather than
merely whether it follows logically or not. Thus, we want to have a
collection of consequence operators C™, where 7 € [0, 1], such that

peCT(X)if Plp| X)=n

where P(p | X) is conditional probability measure, defined on pairs of
single claims and sets of claims. Thus X 7 p can be read as “the
probability of p given the truth of all claims in X is 7”7. We assume
that C™(X) n C™(X) # @ implies that m; = 79, so that no claim ever
is assigned more than one probability.

How does C™ work, for a specific value of 77 For m = 1, we should
expect it to be a consequence operator in the regular sense. For other
values, we should not. Even if ¢ is true 50% of the time when p is, there
is no reason to believe that the same holds when both p and another
claim p’ are true. This is easiest to see when we take p’ = —¢, in which
case we should get that {p, =q} F° ¢ rather than {p, —¢q} +°% ¢. In
short, probailistic relations are not monotonic.

One way to proceed is to widen the theory concept to admit non-
monotonic consequence operators, and give general axioms for these.
Since this will take us too far afield, we will not do so here, but instead
concentrate on the intended interpretation. Let A be a theory, and let
Ayrir be the maximal strengthening of A, for which Cy,.;, (&) = L4. Let
a probabilistic theory on A be a pair (& 4, Ev), where & 4 is a o-algebra
(T4,1J,9 ), such that 74 € T4 , and Ev: T4 x T4 — [0,1] is a function
from pairs of theories included in 7} to real numbers in the interval
[0,1].

T4 gives us the set of subtheories of A for which probabilistic infer-
ence is defined. We assume that

e if B € 74, then there is a theory B¢ € T} such that B A B® =
Apriv and B v B¢ = A. Furthermore, (B¢)¢ = B and
(B1 A By)¢ = (B v BY).
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e if By, By, ...is asequence of theories in 74, then By v By v...
is in 7}.

It follows, as usual, that since 7} is closed under joins and comple-
ments, and fulfills the criteria of an orthocomplemented lattice (Birkhoff,
1967, p. 52), it is closed under meets as well.* The function Ev is to
be interpreted so that Ev(Bi, By) = m holds iff the truth of theory By
gives evidence of strength 7 as to the truth of theory Bs, where this
strength is taken to be a conditional probability. We therefore assume
FEv to fulfil the conditions

(l) E’U(Bl,BQ) =1iff B; < By

(@) if By, Ba,...is asequence of theories in A such that B; AB; =
Ayriy for all ¢ # 4, then

Ev(By v By v...)=Ev(B;)+ Ev(Bz2) + ...
(ZZ’L) E’U(Bl, Bg AN B3) = EEIU(Bl7 Bg) E’U(Bl AN BQ7 Bg)

The first of these affirms Fv as an essentially logical form of condi-
tional probability (cf. Carnap, 1950). A subtheory Bj gives evidence of
strength 1 to a subtheory Bj iff B; A-entails By. The second guaran-
tees that evidence is additive over theories that cannot be true together,
and the third that conditionalisation works as usual for probabilities.

Using Fv, we can easily obtain a set of probabilistic consequence
operators with the desired properties. For each probabilistic theory
(&4, Ev) on A, define the probabilistic consequence operator to be a
set C7% of functions on p(L4), indexed by real values w € [0, 1], such
that

pe CR(X) iff Bv(Tha(X), Tha({p})) = =

4Requiring complements to exist rules out theories that are built on intuitionistic
logic. This is unfortunate, but since we will apply probabilistic theories primarily to
quantum mechanics, we will not go into how to generalise the notion of probabilistic
theory to theories without complements. For a start, see Roeper and Leblanc, 1999,
pp. 182-185.
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Unless 74 contains all subtheories of A, this will not define C7%(X)
for all values of X. It is, however, the best we can do, since it is
impossible to define a measure on all subtheories of a given theory
in the general case.® It is obvious that C} is a consequence operator
by definition, but in general probabilistic consequence is very different
from regular consequence. For most values of 7, it does not fulfil the
closure axioms. Not only the monotonicity condition has to be replaced,
but also reflexivity: we should not expect p € CY({p}) to hold, for
example. Nevertheless, many of our current best theories of the world
are probabilistic. The following is an example.

Quantum mechanics. For quantum mechanics, we need to be more
careful than for classical mechanics in assigning properties to systems.
Let Lo be a set of sentences of the forms

Preparation: the system is prepared in state p at t.
Measurement: observable A is measured at t.

Observation: the value of observable A at ¢ is in the set V.

where ¢ is a density operator, A is an observable, t is a time, and
V is a Borel set of real numbers.® We use p,pi1,ps,... for prepara-
tion sentences, m,mq,mo,... for measurement sentences, o, 01,09, ...
for observation sentences, and s, s1, So, ... to refer to sentences of any
one of these classes. Let #(s) be the time mentioned in such a sentence,
and where s is a measurement or observation sentence, let O(s) be the
observable involved in it.

5Consider, for example, a theory for describing where in a real interval [0,1] a
certain point is, such that each subset X of the interval corresponds to a claim “the
point is in X”. There is a one-to-one correspondence between claims in this theory
and its strengthenings, but as is well-known, it is impossible to define a suitable
measure on all the subsets of [0, 1] (Fremlin, 2000, §134B).

6A density operator is a positive self-adjoint linear operator with trace 1 on a
Hilbert space. An observable is a self-adjoint linear operator. A Borel set is a set
constructible from intervals of real numbers by using complement and countable
unions and intersections.
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A density operator p expresses a probability measure over all pos-
sible states of a physical system. Preparation of the system consists in
subjecting it to some process such that we can assign probabilities to
its states after that process is complete. Measurement consists in the
performance of an experiment on the system, and an observation is the
result observed through such a measurement.

In quantum mechanics, observables are linear operators on a Hilbert
space, and the possible values of a measurement are the eigenvalues of
these observables. Let Q‘?, where O is an observable and V' a Borel
set, be a projection operator defined to take every point of the Hilbert
space to a point with eigenvalue 1 iff O takes the same point to a point
with an eigenvalue inside V. Q8 can be read as “measuring O gives
a value in V7, and is itself an observable called a question. As shown
by von Neumann (1955, pp. 252-254) and Mackey (1963, ch. 2.2), all
observables can be defined in terms of such questions.

The evidence function for Q M, and thus also the set of probabilistic
consequence functions C7, ), is determined by the quantum theory. One
of the most central properties of these can be formulated as

o€ ngM({p’ m})
where t(p) < t(m) = t(0), O(m) = O(0), and

m=Tr (U*l(At) 0 U(At) QS(’”))

Here, T'r is the trace function, V is the value set of the observation o,
At = t(m)—t(p), and U(t) is a linear operator indexed by real numbers
called the time evolution operator, which governs how the physical sys-
tem changes over time when left undisturbed. If the system is isolated,
we have

U(t) _ eth/h

where H is an observable called the Hamiltonian, whose eigenvalues are
the total energies of different states of the system. It plays the same
role as the Hamiltonian in classical mechanics, but is quite different
mathematically, since the quantum-mechanical Hamiltonian is a linear
operator, and the classical one a real function. These formulae together
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give the probability of making a certain observation, given that the
system was prepared in a state g, that an observable O(m) is measured,
and that the time between the occurrence of these is t(m) — ¢(p).

Since the occurrence of an observation also is a kind of preparation,
we furthermore need principles for deriving what kind of preparation
it is. The quantum mechanical rule for inferring preparations from
observations is

p/ € CéM({p7 m, 0})

where t(p') = t(m) = t(o) > t(p), p is a preparation statement
with density operator g, and p’ is a preparation statement with density
operator

o Q\?(m) 0 Qg(m)
Tr QY™ o)

For more complex sets of premisses, we can define consequence recur-
sively. This is easiest if the set of premisses is finite, so we assume this
to hold. Time-order the premisses X using a function ordy : N — p(X)
such that s € ordx(0) if ¢(s) is the earliest time among the premisses,
and s € ordx(k + 1) if ¢(s) is the next larger time-value in X after
that of the sentences in ordx (k) (such a value exists because we have
assumed X to be finite, although the assumption that it is well-ordered
by t would suffice as well).

Let the consequence operators Cg? w1k], where k is a natural number,
be defined as

s € Coy[k](X) iff s € Oy (ordx (k)

Using a time-ordering such as ordx, we can always calculate the
probabilities of observations by gradually stepping through the sen-
tences of X. A “collected” consequence operator can be defined as the
union of the CF,,[k], for all k. This consequence operator can then
be extended by adding logical connectives, and it can also be made
algebraic, although we do not have space to do so here.
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2.5 Necessity and Possibility

The theory space of a theory A embodies the role of A as a framework,
since it determines what theories about its subject matter are available.
Some of these, such as the A-trivial theory Tha(L 4), are generally false,
given that A is true, but as we have not ruled out theories containing
only true claims in their language, we cannot hold Th s (L 4) to be always
false no matter what A is. In order to find the theories ruled out by
A, we would have to specify not only how it transmits truth, which is
what C'4 tells us, but also how it transmits falsity. This could be done
by using a bivalent consequence operator, as described in section 2.4.2.
However, we will avoid this complication for now and take a short cut.

Where X is a set of claims, write v : X for the set of assignments
{v:p|pe X}. Let R4(X), for a bivalent theory A, be the set of claims
assigned the value false by C'4, when X is a set of claims assigned the
value true, i.e.

Ra(X)={peLal|f:peCa(t:X)}

R4 is what Carnap called a rule of refutation, which tells us what
it takes to prove claims false (Carnap, 1942, p. 157). It is a function on
sets of claims, rather than on sets of assignments. It is generally not a
consequence operator, since we for any consistent claim p should have
p ¢ Ra({p}).

Rules of refutation, when added to a single-valued theory, extend its
power somewhat. They do not give the full power of a bivalent theory,
however, since they do not specify what we may infer from the falsity
of claims, or from combinations of truth and falsity. Nevertheless, they
give a useful intermediary, and they are also easily specifiable from
most common logics. We can often define a refutation operator for a
single-valued theory as

RA(X) ={p€ La | Ca(X v {p}) = La}
and a set of A-falsehoods 1 4 as

J_A = RA(Q)
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This does not work for all theories, but only for those that satisfy
the principle known as Fx Fualso Quodlibet or explosivity. Thus we rule
out some theories whose inference machinery is built on minimal logic
(Johansson, 1936), positive logic (Hilbert and Bernays, 1934) or various
forms of relevant logics (Belnap and Anderson, 1975), for instance. For
true generality, we need a many-valued theory. However, due to the
greater familiarity of single-valued logics, we will primarily concentrate
on these.

The theory, when used as a framework, is the theory used as logic.
Conversely, by viewing a theory B as a theory in A, we focus on B as
variable and regard A as the fixed theoretical framework: that which
is mecessary from our point of view. This notion of necessity is of
course relative to what framework we have used, and since frameworks
are theories, we have here a notion of relative theoretical necessity: a
theory is necessary relative to the theory F'iff F entails it, impossible iff
F refutes it, and possible relative to F' iff it is a theory in F’ which is not
refuted. But, since the only theory in F' entailed by F' is F itself, and
the only theory in F' that entails the F-absurd theory is the F-absurd
theory itself, modality, when seen as a relation between theories, is a
fairly simple matter.

The situation changes somewhat when we go from theories to their
claims. Every claim p in a theory F’s language corresponds to a theory
Thr({p}) called the principal theory generated by p. The extension
of modality to claims can then proceed by defining a claim to be F-
necessary iff its principal theory is F itself, F-impossible iff its principal
theory is the F-absurd theory, and F-possible otherwise. It is a trivial
matter to check that when p € Lp, p is F-necessary iff p € T4, F-
impossible iff p € 1 4, and F-possible otherwise.

How do these concepts tie in with more usual notions of modal-
ity? The literature, generally, mentions several types of necessity. Fine
(2002), for instance, distinguishes the metaphysical, natural and nor-
mative necessities, and takes logical and mathematical necessities to be
subspecies of the metaphysical. Kripke famously held that the only real
necessity is the metaphysical, and that even much of what we take to
be “true by definition”, such as that the standard metre is one metre
in length, is not really necessary at all.
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At a first glance, it might seem that we only can be dealing with
de dicto necessity here, since consequence concerns claims rather than
objects. But this is not clearly so: claims can be indexical, and can
thus be about things. For instance, we can have a theory in which from
“that is red” we can derive “that is coloured”. If a certain thing fulfils
“that is red”, then we can draw the inference that it is coloured as well.
This inference is then necessary in the theory, but it concerns things
outside it as well, and thus shares properties with de re necessity. Still,
it is de dicto necessity that is primary for us, and de re necessity will
have to be determined in terms of it somehow.

When it comes to de dicto necessity, we have all the resources re-
quired to describe it completely. Such necessity is fully determined by
what sentences in a language L are treated as necessary, possible or
impossible. Given any such partition of L, we can define a theory M
whose language is L, and whose consequence operator is such that T,
coincides with the necessary sentences in L and L, coincides with its
impossible sentences. Theories are thus able to represent systems of
modality.

This, again, makes it clear that the theory itself really is nothing
but a structure. It can be used in several ways, some of which are:

(i) To justify an inference by showing that the theory’s conse-
quence operator allows that inference.

(it) To make a truth claim, which is to hold that the theory’s
consequence operator is truth-preserving in its actual subject
matter.

(éii) To frame other theories in, by expressing their consequence
operators in terms of the theory’s, or equivalently by showing
them to be strengthenings of it.

(iv) To make a necessity claim, which is to hold that the theory’s
consequence operator is necessarily truth-preserving, i.e. that
it preserves truth in all situations it is applicable to.

It is (4v) that we have encountered here. To say that A is necessary
is to claim A in a certain mode. Using a many-valued theory, we can
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make this more precise. Let an alethic-modal theory be a theory whose
set of semantic values consists of non-empty strings of N’s, t’s and f’s.
We may read an assignment such as

fNt:p

as it is false that it is necessarily true that p, or more succinctly, p
can be false. Of course, these kinds of modalities do not by themselves
make up a modal logic as such, since they cannot be embedded inside
claims in the same theory. But since many assignments, as we noted,
are claims themselves, we can always define larger theories with such
assignments as claims, and in these, we are free to introduce sentential
connectives. Whether this is reasonable or not depends on whether the
necessity of p is something that can be true or false. We will not take
a stand on this question here.

Given any kind of modality, there is some theory that we can use
to represent that modality. For an example, let L = (L, Cr) be the
theory of a language of first-order logic, and let Nec be the set of meta-
physically necessary sentences in Ly. We can then define the theory of
metaphysical necessity M = (Lps, Car), where Cpr(X) = Cpr(X v Nec),
for all X € Y. M, by itself, says nothing about necessity, however. It
is only when we use it to make a claim of metaphysical necessity that
this notion enters.

Many kinds of modality may be held to flow from the subject matter
of the theories themselves. Thus we may sometimes speak about the
canonical modality of a theory A. A theory of physics, for instance, is
most naturally seen as concerned with physical (or nomological) neces-
sity. A theory in mathematics, insofar as it consists of claims derivable
from the axioms of, for instance, ZFC set theory, deals with the mathe-
matically necessary. And many theories of metaphysics, as Lowe claims,
concern what is metaphysically necessary (Lowe, 1998). So although
there may be no law that metaphysicians can make only metaphysical
necessity claims, we often have reason to interpret them that way, in
the absence of contrary evidence.

However, many metaphysicians hold there to be something special
with metaphysical necessity that makes it more real or more funda-
mental than other kinds. We will not have anything to say about this
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supposed difference, since it will not affect our usage of the concept.
But there is something to the idea that some forms of necessity are
more fundamental than others. If B is a theory in A, then B’s infer-
ences can be expressed in terms of A’s; and taking these to be necessary
means that B-necessity can be reduced to a form of A-necessity. We
should therefore ask ourselves whether there is some most fundamental
theory, which we can use to base any other on. Such a theory would
give a minimal logic in the true sense of the word.

Section 2.2 introduced two types of relationship between theories:
strengthenings and containments. But we can also combine these.
Write A £ B, and say that A frames B, if B is a subtheory of a
strengthening of A. Equivalently, we can say that that

BC Aiff Cp(X) = Ca(X UTH) N L for some set T4 € Ly

A framing theory may be larger than the theories it frames, but its
consequence operator can still capture those of its framed theories. The
set T4 gives the claims in A that we must hold true to arrive at B’s
consequence operator from A’s. It is easy to see that Tp = T‘g NnLpg
whenever B E A.

The following theorem characterises the framing relation.

Theorem 2.7 : E is a partial order.

Proof. The only condition that is not trivial is antisymmetry. Assume
that OB(X) = CA(X V] Tg) N Lp and CA(X) = OB(X V] Tg) N L 4 for
all X. This can hold only if L4 = Lp, so Tg = Tp and T’j = T4, and
we have that C4(X U Tp) = Cp(X U Ta). But Tp € Cp(X) for all
X, and T4 € C4(X), so this means that C4(X) = Cp(X). O

The question we have asked—whether there is a most fundamental
framework—can then be posed as: does E have a top? lLe. is there
some theory F' such that A £ F, for any possible theory A?

There is a simple reason why such a theory cannot exist: it has to
contain all theories as subtheories, and since the class of theories is as
numerous as the class of sets, it cannot be a set itself. But we may
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rephrase the question again. Given a set of theories, can we always
create a theory that frames them all? The answer to this question
turns out to be yes, as long as we allow the introduction of new claims.
Let X be a set of theories. Define F' as a theory whose language is
the union of the languages of the theories in X, and whose consequence
operator is minimal (i.e. is such that C(X) = C(Y) = X =Y). Extend
F to a theory F’ by adding to F’s language, for every theory A € X, a
claim ¢ 4, such that

CF/(X U {tA}) N LA = CA(X)

It is clear that such an extension is possible, since each instance of
consequence X U {ta} Fps p is not an instance of X U {tg} Fr p unless
A = B. The claim t4 can be read as “theory A is true”, and allows us
to import the consequence operator of A into F’. Clearly, A T F’ for
all Ae X, so F’ frames every theory in X.

F’ is not, however, a minimal framing theory, so it is not a meet of
the X’s, in the lattice-theoretic sense. In fact, generally no such meet
exists. It is therefore always possible to adopt a theory that is neutral
among a given set of theories, but we have no reason to believe such a
theory to be neutral with regard to other theories not in the set. The
structure of the class of all theories is thus that of a directed class, i.e.
a partially ordered class in which every set has an upper bound.

This characterisation tells us something about how theories work as
frameworks. There is no universal logical framework, even though any
selection of theories can be placed in a common one. The theory con-
cept is indefinitely extendible, to borrow Dummett’s term (Dummett,
1991a, 316-319). Whenever we have some theories, we have a method
of making a new theory is not among those we had before. In this it is
similar to the concepts of set or ordinal number.

In fact, we can show this indefinite extendibility in a more direct
way. Suppose that we use a theory I’ as framework. Any theory in F
will presuppose the consequence operator of F', and thus none of these
will be able to contradict F', without falling into self-contradiction. But
it is obvious that any theory can be contradicted, as they are really
nothing more than inferential systems. So there must be some weaker
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framework F’ in which F can be false, i.e. such that ' =T F’, but
F' £ F. Any claim can be meaningfully denied.”

How is this related to necessity? The indefinite extendibility of the
theory concept translates to an indefinite extendibility of the concept
possible world. Suppose that we have a class 2 of all worlds that are
possible. Some (but possibly not all) subclasses of these correspond to
possible claims, namely claims that the actual world is an element of
a certain class. Let Fg be the theory that has these as language, and
which has consequence defined so that X  p iff the intersection of the
classes that X correspond to is contained in the class p corresponds to.

Assume that € itself corresponds to a claim pq in this theory. This
will be the case, for instance, if F has a classical or intuitionistic
negation, an orthonegation, or any other way to form claims true in all
worlds. We can, of course, still question whether pg holds. We can say
“Q is a class of ways the world could have been, but it isn’t”. Thus
there must be some world in which pg is false (since non-contradictory
claims correspond to non-empty sets of worlds), but this cannot be a
world in €2, so € could not have contained all possible worlds to start
with.

One could hold, of course, that the worlds we take recourse to in
such an extension are not possible, but impossible. But this seems to be
a mere splitting of hairs. They are certainly impossible from the point
of view of Fg, but not from the point of view of a weaker theory. They
can do the same work, semantically, as possible worlds can, which is to
act as elements in sets that correspond to claims. The only difference
lies in which inferences they can ground.

"Note that I do not say that any theory can be meaningfully doubted here; that
is a psychological question which philosophers probably are poorly equipped to deal
with.
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CHAPTER 3
(GENERAL METAPHYSICS

In this chapter, we will try to say something about what the
world, or things in general, can be like in themselves, i.e. apart
from any pregiven connection to a language or theory. However,
much of our normal thinking about the world is influenced by
classical logic, and thus we begin with trying to find what this
logic presupposes about what the world might be like. This in-
vestigation is then used as an example of the things we want to
be able to say about things: that they are like one another in
certain respects, that they are parts of one another, etc.

A framework based on category theory is sketched, which will
allow us to approach questions like these without presupposing
reality to have a certain structure. Thus, just as the previous
chapter treated theories as sui generis entities without a specific,
given structure, this attempts to do so for metaphysics. We give
examples of different types of metaphysics (or model theories),
in order to indicate the wealth of options available to us.

Finally, we say a few words on the relation between model and
world. Rather than taking this to involve some kind of structural
similarity, we adopt an interpretation according to which the
world is a model. This will allow us to treat semantics as dealing
not only with theory—model relations, but with relations directly
to reality as well.



3.1 CLASSICAL MODELS

3.1 Classical Models

As we have noted, theories are used to make claims about either the
world or some parts or aspects of it (i.e. the theory’s subject matter),
and these claims are true iff the subject matter is as the claim describes
it. This constitutes an intensional way of looking at truth: given that
the theory is true, it is about something (or possibly some things), and
which of the claims in the theory’s language are true is then determined
by what this subject is like. We might say that we hold the subject fixed
and ask for its properties.

The notion of model allows us to turn this picture around, and ap-
proach the matter extensionally. A model, as we will use the term, is
anything usable as a representation of the subject of some theory. Since
the world can be used to represent itself, and the same holds in general
for every existing thing (for example in a so-called “Lagadonian” lan-
guage, where everything stands for itself), everything is a model. But
useful models are in general epistemically accessible, in that we can gain
knowledge about them either empirically or deductively. The attrac-
tiveness of the second method is probably the reason why mathematical
objects are so popular as models: these have exactly the properties that
follow from those we explicitly attribute to them, and no others.

The important point is that when we treat something as a model,
we see it as having its properties essentially, and it is this that allows
us to turn the intensional characterisation of truth into an extensional
one. Informally, we say that the claim p € L 4 is true in the model 97 iff
the supposition that the theory A’s subject-matter is as 91 represents it
entails that p is true. Two models are A-equivalent iff the same claims
in L4 are true in them.

Since anything can be a model, it is permissible to take A’s subject
matter to be a model A (for actual) as well. As 2 does not in general
share the nice epistemic properties of mathematical models, we often
deal with these instead. Any model 9t will be said to be appropriate
for the theory A iff 9 is A-equivalent to 2, i.e. iff the claims in L4
that are true in 90 are those and only those that are actually true, no
matter which these are.

Any true theory’s subject matter 2l is naturally appropriate for
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that theory, but there may be other models that are, as well. An
A-appropriate model 901 is one that, as far as A is concerned, is impos-
sible to tell apart from A’s actual subject. While the next chapter will
deal with how to make talk about truth in models exact, this one will
center on the models themselves. It is titled metaphysics because, as
the models include everything that exists, the study of models includes
the study of everything that exists. This is one sense in which, as I
have argued, metaphysics is model theory.

Things are however not quite as simple as this. Mainstream model
theory (henceforward “MMT”—the term is from Hodges’s entry in the
Stanford Encyclopedia of Philosophy (Hodges, 2005)) is quite a different
thing from the kind of model theory that we have envisaged. The
most important difference is that being a model, in MMT, is a relative
property: a model is always a model for a language. While one may
sometimes want to see models as models of a subject, we do not want
to tie them as strongly to a specific language as MMT does. For us,
models are free-floating citizens “in their own right” as well, and it is
the job of semantics to connect models to languages, or more generally,
to theories.

The discipline of model theory is generally taken to fall under the
field of universal algebra, which is a part of mathematics that we already
have encountered: any formalisation of a theory is an algebra, and it is a
trivial matter to show that any algebra is isomorphic to a formalisation
of some theory. MMT adds to the operations in the algebra an ordered
set of relations defined on the algebra’s carrier set, where a relation
simply is a set of n-tuples of elements of the carrier. For the rest of
this section, we will refer to such a structure as a Tarskian model—its
usual name in MMT is simply “structure”.

The formal definition proceeds as follows: assume that £ is a first-
order language with n function symbols and m predicates, where both n
and m are at most countable. Then the pair {(k; >} and {I;)T* of sequences
of length n and m such that k; is the arity of £’s i:th function symbol
and I; is the arity of £’s i:th predicate is £’s signature.! A Tarskian
model for £ is a sequence M = (D, f1,..., fu, R1,..., Ry, where

1We do not intend to exclude any of the cases where n = 0, n = co, m = 0, or
m = o0 here. When both n and m are 0, the model is essentially just a set.
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D is a non-empty set,
fi is a k;-ary function on D for all 7 from 1 to n, and

R; is an l;-ary relation on D for all ¢ from 1 to m.

We call D the domain of 9, the sequence f; the functions of 9,
and the sequence R; the relations of M. The signature of the model
is the same as the signature for the language it is a model of, and
this is one of the things that makes a Tarskian model so tied to its
language. In the language, however, the signature determines the arities
of predicates and function symbols, while in the model it stands for
arities of functions and relations. These functions and relations are, in
turn, subsets of Cartesian powers of D.

There are two things worth noting here, if we are to take a Tarskian
model to be the subject of a theory, and in the limit, a representation
of the world. First of all, a Tarskian model is Platonistic in that it
employs non-concrete entities (more specifically, functions and relations
created from sets). But it is also in a certain sense non-extensional: the
models (D, Ry, Ry) and (D, Ry, Ry) are different (unless R; = R3), so
the identity of a model is not determined by its domain, which relations
hold in it, and how the functions act on the elements the domain. We
also need to know which predicates correspond to which relations, and
which function symbols to which functions, and this is given by the
relations’ and functions’ positions in the number series. This position,
in turn, is a property of the model as a whole (since it is ordered), but
not of the relations and functions themselves.

It is essentially a trick of Tarski’s to rely on matching index numbers
to find out which predicates correspond to which relations.? A more
explicit approach is to bring in the language £ itself, and see the model
as a function from L’s symbols to relations and functions on D. But
this makes the model-language tie even tighter, and we are trying to
separate the two here. If a model is too dependent on its language it is

2T do not mean to imply that Tarski invented this trick. It is used, among other
places, in defining homomorphisms between algebras. For example, there are in
general no nontrivial homomorphisms between a ring defined as (R, +,-) and one
defined as (R, -, +), even if they have the same signature algebraically.
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a fallacy of the same type involved in the “picture theory” to take it to
correspond to a way the world can be.

We can however also take the model concept in the other direction.
What determines what ezists in a model 9 is usually taken to be the
domain (this is another interpretation of Quine’s criterion of ontological
commitment). The rest of the model has to do with the interpretation
of £ in M. What if we separate these?

Let us call any set M a thin model. This is almost as simple and
structure-less as models can get, but not quite. A set still has some
structure: its cardinality. This, in turn, is the only thing that standard
predicate logic preserves unless we fix the interpretation of some non-
logical constants.> Thus the thin notion of model is also quite natural
for predicate logic, but a predicate logic from which we have stripped
away the interpretative aspects.

So there are at least two notions of model in MMT floating around—
thin and Tarskian. Which one is correct? We do not have to decide,
but can take them to be alternative ways of explicating what the world
can be like according to classical predicate logic. When we discuss
semantics, we will see what differences the choice gives rise to.

As Tarskian models are extensions of universal algebras (for lan-
guages with only functional symbols, models are universal algebras),
structural relationships such as homomorphisms, isomorphisms and em-
beddings hold between them. An important part of MMT concerns how
the existence of such relationships between models corresponds to rela-
tionships between the sets of sentences that are true in those models.
The next section will develop the theory for structural relationships in
general. In this section, we will confine ourselves to those that hold be-
tween Tarskian models, and between the sets that make up thin models.

Since models, for us, are representations of parts or aspects of the
world, this question is equivalent to the one of how such parts or as-
pects are related. We will primarily be interested in three types of
relationship, which informally can be explained as follows:

o My is embeddable in My when My’s structure contains Ny ’s.

3This is what drives the so-called “Newman problem”: since the only officially
logical predicate is identity, the only things we can really say about models in
standard predicate logic is how many things there are in them.
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o Ny is reducible to My when My’s structure is obtained by
identifying structurally indistinguishable parts of 91;’s.

o Ny is isomorphic to My when they have the same structure.

These all concern the models themselves, rather than their rela-
tionships with any language. There are also a couple of interesting
relationships that we need to bring in theories and semantics for, such
as theoretical (and logical) equivalence, but these will be the subject of
chapter 5.

The concepts outlined above are simplest for thin models. Since the
only structure a set has is its cardinality, one set X is embeddable in
another set Y iff there is an injection from the first set to the second.
X is a reduction of Y iff there is a surjection from Y to X (i.e. if every
element in X is the image of some, and generally more than one, element
inY). X and Y are isomorphic iff there is a bijection between them. By
the Schroder-Bernstein theorem, X and Y are also isomorphic if they
are mutually embeddable. Furthermore, if X is embeddable in Y and Y
is a reduction of X, then there is, by the axiom of choice, a one-to-one
function ¢ : Y — X as well, so we again have mutual embeddability,
and thus isomorphism.

Tarskian models admit more interesting structural relationships.
The carriers of these, as in the case of thin models, are still func-
tions between the models’ domains, but because Tarskian models have
functions and relations defined on them, structure-preserving transfor-
mations need to respect these. The fundamental entity here is the
homomorphism, which is an extension of the algebraic concept. For-
mally, a homomorphism h : 9 — My, where My = Dy, f1,..., fn,
Py,....Pyy and My = (Do, g1, ,Gn, Q1,-..,Qm)y, is a function h
from 91, s domain to 9My’s that fulfils the following requirements:

(i) M, and M, have the same signature.

4There is another use of the word “reduction” in MMT, which concerns functions
between models of with different signatures. Unfortunately, there seems to be no
commonly accepted name for the relationship we use here, so since we will have no
use for the other notion of “reduction” in this text, I have appropriated the word.
Our use also complies with how the word is used in constructing a “reduced product”
of models.
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(i) h(fi(z1,...,zk)) = gi(h(x1),...,h(zy)) for all ¢ from 1 to n.

(éi) If {x1,...,21)y € P; then (h(z1),...,h(zk)) € @, for all i

from 1 to m.

A homomorphism does not “lose” any structure, but the image may
have more structure than the preimage. In terms of first-order logic,
a homomorphism is a map between models that preserves the truth of
positive existential sentences, where a positive existential sentence is
one equivalent to some sentence that contains no occurrence of any of
the symbols V, —, — or « (Hodges, 1993, pp.47-49).

The three types of relationship above correspond to different types
of homomorphism. Call a homomorphism strong if it satisfies not only
the left-to-right direction of (iii) above, but also the reverse direction,
i.e. that {z1,...,zky € P; iff (h(x1),...,h(zk)) € Q;. An embedding is
then an injective strong homomorphism, and a reduction is a surjective
strong homomorphism.

For another viewpoint, we can use the standard semantics of first-
order logic to characterise these relationships. An embedding is a ho-
momorphism that preserves the truth of existential sentences: those
built up from quantifier-free formulas using only 3, A and v (Hodges,
1993, pp.47-49). Such a sentence can only assert the existence of things,
and not deny any thing’s existence or say that something holds for ev-
erything in a class. This concurs with the intuitive notion of what an
embedding is supposed to be, since it means that under the standard
semantics, if 91, is embeddable in 915, then everything that exists in
M, exists in My as well.”

Reductions may at first seem somewhat less natural, but they have
significant uses as well, since they are generalisations of the algebraically
important technique of taking the quotient of an algebra under a con-
gruence relation on it. Semantically, a reduction is a homomorphism
that preserves the truth of sentences equivalent to some sentence that
contains no occurrence of “=" in a negated context:

5We are using a certain structural interpretation of what it means for something
to “exist” here. An embedding does not guarantee that the elements of 9t;’s domain
themselves are elements of 93, but only that the same existential sentences are true.
Thus, the existence used is relativeised to a first-order language.
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Theorem 3.1 : Let h : 9; — MMy be a surjective homomorphism
between Tarskian models. Then h is a reduction iff h preserves the
truth of sentences that contain no essential occurrence of “=" in a
negated context.

Proof. Due to a theorem of Lyndon (1959, p. 148), a set of sentences
is preserved under so-called QQ-maps iff it is equivalent to a set of Q-
positive sentences. A @Q-map, for some set @) of relations, is a homomor-
phism A in which R(h(x1),...,h(z,)) = R(z1,...,z,) for any relation
R that is not in Q). A Q-positive set of sentences is one in which no es-
sential occurrence of any relation in ) occurs in a negated context. As
Lyndon treats identity as a relation among others, it suffices to apply
this theorem to @ = {“="}. O

Reductions thus mirror the predicate and functional structure of a
model, but may identify elements of the domain that have the same
place in this structure. For any Tarskian model 91, and any a, b in 9N’s
domain, let @ ~ b iff ¢ and b stand in exactly the same relations in
I with everything, and the results of all functions in 9t are invariant
under the exchange of a with b. Then, a reduction is a function that
may identify only those elements a, b for which a ~ b. It only disregards
“differences without a difference”, so to say.

The sufficiency of mutual embeddability for isomorphism does not
hold for Tarskian models. The model M; = {({—o0} U R, <), where
< is the regular ordering of the extended reals, is embeddable in the
model My = (R U {+w0}, <), and My is furthermore embeddable in
M. But My and My are not isomorphic, since M, contains a least
element while My does not, and M, has a largest element, which 9,
lacks. However, we still have that if 9t; both is embeddable in and
reducible to MMy, then My and My are isomorphic, although it is more
convenient to wait until the next section for the proof.

This concludes our brief overview of first-order models. How do
they stand as representations of reality? There is really no way to tell
yet, since we have to know how they represent first, and that is given
by semantics. The picture they provide of the world (a set with set-
theoretically defined relations and functions on) might not be a familiar
one, since we are used to thinking of the world as “concrete”, and sets
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as “abstract”. That does not mean that the world could not be a
Tarskian model after all, just as the fact that quantum fields may be
quite unfamiliar or even impossible to imagine except as mathematical
objects does not exclude the possibility that the world is made up by
them. The world, in its more fundamental aspects, cares little for our
intuitions.

This also means that we cannot assume that the world is a Tarskian
model, however. After all, it might be a quantum field instead, or
something else entirely. Thus, what we really need is a notion of model
that is broad enough to cover these cases, and just about any other as
well. The next section contains an attempt at achieving this.

3.2 Abstract Nonsense

At first, the idea of a general theory of models might seem impossi-
ble. The appropriate OFED entry on “model” reads “A representation
of structure, and related senses”, but how are we to interpret this un-
less we settle on what to mean by “structure”? Indeed, the difference
between different kinds of models may be taken as differences in how
“structure” is interpreted. Seen this way, Tarskian models furnish us
with an explication of what structure is, although like any explication,
others may be better for other purposes.

But there are ways to employ structures without settling on specif-
ically what they are. One important tool here is group theory, which
can be used for describing symmetries (i.e. invariants), even if we do not
know the structure of the thing they are symmetries of® This cannot

6Philosophers who argue that group theory should be used for describing mod-
els in this manner include van Fraassen (1989) and French and Ladyman (2003).
Furthermore, this approach is very much a paradigm of the theory of measurement,
where we usually say that a relation between two measured values corresponds to
something in reality iff it is invariant under automorphisms of the scale type (see
Suppes, 1959), and the automorphisms of any algebra form a group. But there are
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be the whole story when it comes to structure, however: in a group,
every transformation has an inverse, i.e. a transformation that cancels
the effect of the first one, and it is this that limits them to describing
ezxact identity of structure. But there are many structural relationships
apart from isomorphism, such as the existence of embeddings and more
general homomorphisms

Category theory is a part of mathematics well suited for treatment
of all kinds of transformations, and not only those having inverses.
Analogously to a group, where the fundamental entities are the iso-
morphisms, the fundamental entities of category theory are structure-
preserving transformations called morphisms (or sometimes arrows, due
to the fact that they often are drawn as arrows in diagrams). Almost
all mathematical structures form categories, i.e. classes of objects with
such morphisms defined on or between them, and much of mathemat-
ics can be reformulated in terms only of the properties of these. In
short, categories are ideal for representing structure without having to
prejudge the question of what structure is.

Formally, a category C is a collection of the following:

(i) A class obj, called the objects of ¢. When no possibility of
confusion seems likely, we will also use the category’s name
to refer to the class obj of its objects, and rely on the context
to disambiguate whether we mean the entire category or only
its object class.

(it) A class hom, called the morphisms of C. These are the
structure-preserving transformations.

(4ii) Two mappings dom : hom — obj and cod : hom — obj. Given
f € hom such that dom(f) = a and cod(f) = b, we write this

calls for allowing other structure-preserving mappings here as well: Luce, Krantz,
Suppes and Tversky argue in the third volume of their classic treatise Foundations
of Measurement that we should allow as meaningful relations that are invariant un-
der non-automorphic endomorphisms as well, if there are any (Luce et al., 1990, ch.
22). The endomorphisms of an algebra do not, however, in general form a group,
but only a monoid: an associative algebraic structure with identity, but without
inverses. A different proposal is given by Guay and Hepburn (2009), according to
which the appropriate mathematical structure to use for symmetry is the groupoid.
A groupoid is a group where the binary operation is only partially defined.
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as f : a — b, and say that a is f’s domain (or source) and b is
f’s codomain (or target). We use the notation hom(a,b) for
the class of morphisms of ¢ that have the object a as domain
and the object b as codomain.

(iv) A partial mapping o : hom x hom — hom called composition,
such that for any f,g,h € hom, if f:a —>b,g:b— ¢, and
h :c— d, then fo(goh) = (fog)oh. This is usually
expressed as the condition that composition is associative.
We assume f o g to be defined iff cod(g) = dom(f).

(v) A mapping id : obj — hom such that for any morphism f :
a — b we have that id(b) o f = foid(a) = f. The morphism
id(a) is called a’s identity morphism, and is also written as
1,.

The most well-known example of a category is %, whose object class
is the class V' of all sets, and for which morphisms are set-theoretic
functions, dom and cod give these functions’ domains and codomains,
14 is the identity function on the set a, and o is function composition.
This is, incidentally, also the category that describes the structural
relationships of thin models, since these just are sets.

The category we will focus on in this section is that of Tarskian mod-
els. The class of all Tarskian models of a given signature ¥ forms the
object-class of a category Ty; whose morphisms are the homomorphisms
between the models of signature 3.

Let 7 be the category that is the union of all Tx,, for any signature X.
Categories of models such as T or 7 will be referred to by us as model
spaces. Since a model, as we have used the term, is the representation
of how the subject of a theory can be, a model space is intended to
represent all possible ways a potential subject for a theory can be. The
semi-formal definition is as follows.

Definition 3.1 : A model space is a category M where

e obj is a class of models — for our purposes, some kind of
entities assumed to have some kind of structure.
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e hom is the class of all structure-preserving mappings between
elements of obj.

e dom, cod,o,id are the domain, codomain, composition and
identity mappings for obj and hom.

As advertised, we take the notion of structure as unanalysed: there
is simply no formalism general enough to describe the interior of ev-
ery possible kind of structure. The usual representations, such as a set
with a set of relations on it, all depend on prior ontological assump-
tions, such as that structures have atomic parts, and are constituted
by relations-in-extension over these parts. We will of course use several
representations of structures in this book, but none of these are to be
taken as explications of the notion of structure in general. Category
theory, on the other hand, allows us to work with structures “from the
outside”—in terms of what they do rather than what they are—and so
the rest of this section will be devoted to the purely category theoretical
aspects of model spaces.

The morphisms themselves may sometimes be quite hard to inter-
pret: one standard textbook on category theory (McLarty, 1992, p.5)
describes them, abstractly, as a “kind of picture” of the domain in the
codomain, but hastens to add that this does not really tell us much so
long as we do not know what the domain is like. We have said that
they are “structure-preserving”, but even this is fairly vague. What we
do not mean is that the codomain has to contain the same structure as
the domain. It must contain at least the structure of the domain, but
may be more structured as well.

In 7, where morphisms are the homomorphisms of the preceding
section, we noted that these are the maps between models that pre-
serve the truth of existential-positive sentences. The “preservation of
structure” involved here is the preservation of fundamental (atomic)
relations, in the sense that if h : 9, — My is a homomorphism, then
all the fundamental relations that hold in 9t; also hold in the image of
91, under h. But there can also be other fundamental relations that
hold in A’s image, and non-fundamental relations (i.e. those that hold
because of the recursive specification of the satisfaction relation) may
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Figure 3.1: Two factorisations of the morphism f: 9 — ;.

cease to hold when £/ is applied. Parts of 915 that are outside h’s image
may also be entirely different.

As a general principle, we can often envisage a transformation f :
My — My as composed of two factors: some kind of internal change e;
in 9ty that turns it into a model M}, and then an insertion my of MY
inside MMy. Alternatively, we can view f as first taking 9, to a part
of M, by a transformation e, and then embedding this part into s
by an identity transformation ms. The alternatives are illustrated in
figure 3.1, for a model space whose models consist of simple patterns.

Here, the pattern in 9; is included in 95 by the morphism f, and
we have envisaged f as being composed of first a rotation and scaling
e1, and then an insertion, or “pasting” of 9} into 9My. The other
possibility is to factor f as mgoes, where es’s codomain DM, is a part of
M. Using this second path, M,’s pattern is not only pasted onto My’s
but actually appears exactly as it is inside 9. Another way to express
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this is that knowing about the part of 915 that 9%, is mapped onto tells
us everything about what 9, is like, but not everything about 9,
even though 9] is mapped onto the very same part by m;.

In the category of sets ¥, every function f : X — Y can be split
into a surjection s and an injection . This splitting is not unique, of
course: we can let the surjection s take X to a subset of Y, or to a
subset of X, or to some other set entirely. What we have is that if
f =11 0581, and f = i5 0 s9, where 47 and iy are injections and s; and
s are surjections, the codomain of s; (and thus also the domain of i)
must have the same cardinality as the codomain of s5. In 9/, this means
that they are isomorphic:

X =7

Zy —=Y
ia

Some general taxonomy would be useful in order to be able to dif-
ferentiate between these kinds of transformations for arbitrary model
spaces, and it turns out that category theory supplies us with just the
concepts that we need.

An isomorphism is a morphism f : a — b for which there is some
morphism f~':b — a such that fof~' =1, and f~ o f = 1,. If there
is an isomorphism between the elements a and b, we say that they are
isomorphic and write this as a ~ b. This notion captures, in a wholly
abstract way, what it is for two elements of obj,, to have exactly the
same structure. If we have that ¢« ~ b = a = b for all a,b € C, the
category C is called skeletal.

A monic (or monomorphism) is a morphism f : b — ¢ such that,
for any morphisms g1, g2 : @ — b, we have that

fogi=foge =91 =92

or as it is put mathematically, that any application of f is left cancellable
— whenever we apply f to some object, we can find out what object it
was that we applied it to from just knowing the result. In the category
of sets ¥, the monics are exactly the injective functions, and intuitively
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we can see a monic as one that is ontology-preserving. It does not in
general have to preserve structure, however, as we will see shortly.

An epic (or epimorphism) is the opposite of a monic: a morphism
f :a — b for which it holds, for any morphisms g1, gs : b — ¢, that

giof=gof=g=g

or in mathematicians’ parlance, that f is right cancellable. In the cat-
egory of sets, the epics are the surjective functions, but all that can
be said in general is that the image of an epic covers so much of its
codomain that any two different morphisms from it must differ at some
point in that image. As far as the morphisms are concerned, an epic
therefore is surjective, but for it to be surjective in some more substan-
tial sense, we need to have enough morphisms available in the category.

An example of where an epic fails to be surjective is the category of
algebras of a given signature. Any homomorphism A into a free algebra
§ whose image contains §’s generating set is monic, since the image of
any function from this set must fix the values of any homomorphisms
from §. But h does not need to have an image that contains all of
§ — it is sufficient that it covers enough of it, so that the algebraic
operations themselves can be used to determine the other values.

It is a standard exercise in category theory to check that any isomor-
phism is both monic and epic. The opposite does not hold in general:
a morphism may be both monic and epic, in which case we call it a
bimorphism, and yet fail to be an isomorphism. A category for which
monicity and epicity together imply isomorphism is called balanced;
these include the category of sets, and more generally, any so-called
topos, which is the categorical form of most logics.

Since these concepts are defined without reference to any internal
structure of the category’s objects, we can use them to characterise
model spaces without going into what models are. Thus we hold that,
for example, the morphisms in a model space M are to be defined so that
My ~ My iff My and My have the same structure. The isomorphisms
form a group under composition as we expect them to, and thus this
part of our theory coincides with earlier group theoretic accounts.

The existence of an isomorphism always expresses identity of struc-
ture. But monics and epics do not always correspond to the informal
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notions of “embedding” and “reduction” that we introduced in the last
section. Take, for instance, the model space 7. While a monic homo-
morphism m : 0y — My in T does have to take every element in 91;’s
domain to a unique element in 95’s, it can be shown that this does not
preclude relations holding between elements in m’s image that did not
hold in 9.

Theorem 3.2 : In 7, the monics are the injective homomorphisms,
and the epics are the surjective homomorphisms.

Proof. The result about monics follows from the fact that 7 is a con-
struct (see the next section) and that it has a free object over a singleton
set through a standard result of category theory (Addmek et al., 2004,
§8.29). Proving that surjective homomorphisms are epic is trivial. For
the other direction, assume that e : 9MM; — My is an epimorphism,
and construct a model M3, of which 91 is a submodel, such that
Do, = Don, U {#}, R(*,...,*) holds for all relations R in 93, and
o(...,#,...) = = for any operation o in My. Let f,g : My — M3 be
homomorphisms such that f(z) = = if z € ¢[Doy, ] and f(z) = x other-
wise, and g(z) = # for all z. We must have that foe = goe, but since
e is an epic, this means that f = g. But this can only hold if the image
of e is the whole of Dy, O

What we need to properly capture embeddings and reductions are
strengthenings of the notions of epic and monic. While the problem
of finding a purely category-theoretic notion of embedding is far from
solved (see Addmek et al., 2004, chs. 7, 8), there are several such
strengthenings available. One that seems especially congenial for us is
the notion of strong monic (or epic). It can be characterised as follows.

A preorder is usually defined as a transitive and reflexive binary
relation, and an order as a preorder which is antisymmetric. Set inclu-
sion, as well as parthood, are both examples of orders. We can form a
preordered set from a category by letting a < b iff there is some mor-
phism f : a — b, and we call the category C an order iff there is at
most one morphism f : a — b for each pair of objects a and b.
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Let an inclusion system for the model space M be a pair Eg, Iy
such that

(i) Ear and I, are categories that contain the same models as
M, and no morphisms other than those in M.

(i) Every morphism in £y, is an epimorphism in 9.

(ii1) Ia is an order, whose morphisms are monic in M. The mor-
phisms in I, are called the canonical embeddings with respect
to this inclusion system.

If every morphism f in M can be factored as f = m o e, where
m € hom,, and e € homg,,, we say that Ey, Ins is a complete inclusion
system for M. The category I, in such an inclusion system shares
many of the important properties of inclusion or parthood, and this
means that we can take it as an explication thereof. The morphisms
in E4, can then be interpreted as surjective, i.e. as taking their domain
to the whole of their codomain, even if we do not necessarily have this
for epics in general. The completeness condition guarantees that all
transformations in M can be seen this way.

In a complete inclusion system, the categories I, and Z4 have a
very useful property called diagonalisation. Given any e : 0y — My
in homg,, and any m : M3 — My in hom,,,, and any two morphisms
f 9 — M3 and g : My — My in homy, such that the diagram

My —— My
|k
Mz —— Ny
commutes, there is a unique morphism h € homy,, such that
L6 — My
|
rd

) g
93?3 ?m@;

86



3.2 ABSTRACT NONSENSE

commutes. This is thus a necessary condition for the morphisms in I,
to be interpretable as inclusions: if Mg is a part of My, then f takes
My to a part of My, and thus there has to be a morphism h such that
f=hoeand g =moh, namely g itself. It is not a sufficient condition,
however, and we cannot give a purely structural condition sufficient for
a morphism to be an inclusion. This is due to the fact that an inclusion
by its nature preserves identity, and identity is not a structural property
— there is no way to ensure a = b by only giving structural properties
of a and b.

If the diagonalisation property holds for the classes E, M of mor-
phisms, we say that the morphisms in E are orthogonal to those in M.
It is worth noting that orthogonality in this sense is non-symmetric,
since the morphisms f and g in the above diagram do not have to be
reversible. A monomorphism that is orthogonal to the class of all epi-
morphisms is called strong, and strong monomorphisms are very well
suited to be taken as explications for what we in the preceding section
called embeddings of models. Indeed, this property follows from the
preformal understanding of an embedding m : 2, — 9y as being an
isomorphism from 9%, to a part of 9y, since the inclusion morphisms
in any complete inclusion system satisfy it, and isomorphisms preserve
all structural properties.

Inclusion is one type of embedding, but usually not the only one.
Strong monomorphisms also have the following properties that make
them suitable for this task.

(i) The composition of two strong monomorphisms is again a
strong monomorphism. This means that embeddability is
transitive.

(it) A monomorphism that is both strong and epic is an isomor-
phism, unlike monomorphisms in general.

(4ii) Strong monomorphisms are extremal, which means that if
m : My — My is a strong monomorphism, and we can factor
m asm = foe where e is epic, then e must be an isomorphism:
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Since, as is quickly proved, the first factor in any factoriza-
tion of a monomorphism must also be a monomorphism, e
above is a monomorphism as well. The extremalness condi-
tion guarantees that there is no way to change the structure
of M essentially, and place it inside 91y, which is equivalent
to how it is placed there by m. Or, in other words, 91, is
placed “as is” in 91,.

While the canonical monomorphisms are relative to an inclusion sys-
tem, strongness depends only on the category. In 7/, every monomor-
phism is strong, and in 7, strong monomorphisms coincide with embed-
dings, which is another reason for us to adopt them as an explication
of this concept.

Theorem 3.3 : In 7, a homomorphism is a strong monomorphism iff
it is a model embedding.

Proof. Let m : 9y — My be a strong monomorphism. From the
monomorphism condition, it follows that m is an injection. Let m/'
be the same function as m, but defined on the model 9t3** which is the
submodel of My generated by m[Day, ]. Now, this morphism m’ has to
be an epimorphism, and thus, by the strongness condition, there must
be a unique morphism A : M5 — M, such that m’ o h = 1m§ub and
hom' = lgg,. But this means that m must be an isomorphism onto a
submodel of M5y, and thus an embedding.

!
My —> M3

// l

My — =My

lgml
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For the other direction, let m : 9y — My be an embedding, let
e : M) — M, be an epic, and let [ : M) — My and g : D, — My
be homomorphisms such that m o f = goe. We need to show that
there is a unique homomorphism A such that f = hoe and g = moh.
Since m is an embedding, it is an isomorphism i onto a submodel 954
of M. We can define h such that h(z) = i 1(g(x)), for all € Dy, .
This is well defined since the image of g must coincide with that of m
because e is an epic and the original diagram commutes, and it is a
homomorphism because it is the composition of a homomorphism and
an isomorphism. O

There is also a form of epimorphism that will be of metaphysical
interest. Returning to fig. 3.1, we have noted that there are two ways
to factor the transformation f. The first is as an epimorphism followed
by a strong monomorphism, but we can also see f as something stronger
than an epimorphism, followed by a monomorphism that may be non-
strong, which is illustrated in the factorisation f = m; oe;y.

The general epimorphism concept can often be interpreted as a gen-
eralisation of the method of identifying parts of a structure by means
of an equivalence relation. This does not guarantee that the parts iden-
tified have the same structural relationships, and thus it is only com-
patible with a model’s structure in very simple cases, such as when the
model is a set. Intuitively, an epimorphism can identify any parts, and
not only ones that are congruent. For a more appropriate conception,
we shall again make use of the property of being strong, although in
this case, being a strong epic rather than a monic.

Analogously to the case with monics, we call an epic strong when it
is orthogonal to all monics. For 7, the following holds.

Theorem 3.4 : In 7, a homomorphism is a strong epimorphism iff it
is a reduction.

Proof. Let e : M1 — Mo be a strong epimorphism, and write e as
e =moe, where ¢ : My — MU i : Mub — My, and M{* is a
submodel of My, such that m is an injection:
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My *e>gm2

Lom,

My ——> My

Since injections are monomorphisms, we can apply the strongness
condition to form a homomorphism h : 9y — My such that the diagram
commutes, and eo h = lgyn,. Since h has to preserve relations, we have
that the reduction condition holds.

To prove the other direction, assume that e : 91; is a reduction. We
need to show that whenever there is a monomorphism (i.e. an injective
function, in our case) m : M) — M), and homomorphisms f : M; —
M) and g : Mo — MY, such that these all commute, there is a unique
h : My — M such that f = hoe and g = moh. Let ™’ be a function
from My to My, such that eoe™ = 1o, (such a homomorphism exists
because e is a reduction). We can then let h = f o e™?. O

In 7, just as all monomorphisms are strong, all epimorphisms are
strong. In general, we take the notion of strong epimorphism as an
explication of the preceding section’s concept of reduction.

To summarise, the types of morphism we have introduced can be
ordered as follows, where the arrows represent entailment.
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Isomorphism

e .

Strong Monic Strong Epic

Bimorphism

— | T

Monic Epic

\/

Morphism

3.3 Model Space Mappings

In the last section, we characterised relationships between models in
terms of their categorical properties, and more specifically with respect
to ways to factor transformations between different models. But that
this is possible is a substantial assumption. In particular, for a model
space M, we can have that there is no way to split its morphisms into
subcategories Ey and I, that make up a complete inclusion system.
For example, it may be that the part of 91, that f takes 9, to is
unable to “stand on its own” in that it presupposes other parts of My
which are not included in the image of f.

A related problem appears when we consider combinations of mod-
els. In 7, we can always embed two models 91, and 95 inside a third
model M3, and we can even do this canonically: we just let the do-
main of M3 be the union of the domains of M; and My, and define
the relations and functions accordingly. But in general, it may be that

91



GENERAL METAPHYSICS

some possibilities are exclusive in the sense that only one of them can
be actual.

What are we to do then? To begin with, we may note that these
problems appear because of a lack of objects in . The usual way
to handle such a lack in a mathematical structure is to embed that
structure in a larger one. In our case, we may embed M inside a larger
model space M’ which has the missing objects. From the point of view
of M, such models are impossible, i.e. they do not correspond to ways
things can be. The process can thus be compared to the practice of
introducing impossible worlds to deal with semantics for nonnormal
modal logics. From the perspective of M’, however, there is nothing
impossible about the added models. Our interpretation of possibility
for models is as relativistic as the one we have used for theories. Just as
in that case, we do not want to exclude the coherence of some absolute
notion, but we do not want to presuppose it either.

Since a model space is a category, embeddings of model spaces are
embeddings of categories. These are most succinctly characterised as
a type of transformation between the categories themselves, or as it is
called in category theory, a functor. Formally, a functor F : ¢ — &
is a function from obj. to obj,, together with a function from hom,
to homg,, such that F(f og) = F(f) o F(g) and F(1,) = 1p(q) for all
morphisms f, g and any object a in ¢;. This is usually expressed as the
requirement that F' has to preserve composition and identities.

A functor is called faithful iff it takes no two morphisms between
the same objects to the same morphism. It is a category embedding
iff it is injective on the objects, and a full category embedding iff it
also is surjective on the morphisms. The notion of a faithful functor
is strictly weaker than that of embedding, since a faithful functor still
can identify objects, so long as no morphisms are identified in the same
set of morphisms between objects a and b. A full embedding can be
seen as a selection of some of the objects of a category, together with
all the morphisms between these, and a subcategory as an embedding
that takes every object and morphism to itself.

In an inclusion system, both £, and I, are subcategories of M,
though in general neither is full. As we mentioned, it can be that not
every morphism in M can be written in terms of the elements of such

92



3.3 MODEL SPACE MAPPINGS

sets. We can still always fully embed # in a model space in which such
factorisations are possible, for instance by using the so-called Yoneda
embedding (Awodey, 2006, pp. 160-167), which reinterprets a category
in terms of functors from that category to the category of sets.

How should such an embedding, and the additional models it in-
troduces, be interpreted? Continuing the analogy with mathematical
structures, we can see them as ideal models, i.e. idealisations of the
models in M. In the extended model space M’, we are free to combine
models as we wish, and also to speak about intersections of arbitrary
sets of models. In this sense, M’ can be seen as a kind of completion of
M.

But, if 4 is a collection of ways something can be, what is M’? An
hypothesis is that the ideal models added by going from M to M’ can
be taken to be aspects of things. Since they, from the point of view of
M cannot exist on their own, they are not fit to be seen as objects or
things in the standard metaphysical sense. Yet, they represent things
that can be in common among models, even if these things are not
self-subsistent. T is complete in itself, so all aspects are models in this
space. In the next chapter, we shall encounter the model space A for
which this does not hold.

Embedding one category in another is an example of a reinterpreta-
tion of a model space. Another such example is given by the existence
of a faithful functor F' from M to another category C, in which case M
is called a concrete category over C, and F' is called a forgetful functor
(since it “forgets” the possible extra structure that may be encoded in
M’s morphisms). If F' takes M to the category ¥, the pair M, F is
called a construct.®

Many model spaces can be seen as constructs, since their models are
built up from sets in some sense. T, F', where F' is a functor that takes
each model to its domain, and each homomorphism to its underlying

"Not least in the sense that #’, if we use the Yoneda embedding, is a so-called
complete category.

8Since interpreting structures in terms of sets is so common in mathematics, it
is usual in category theory to use the notion “concrete category” to denote what we
have called a construct. Since we will be interested not only in concretising model
spaces over vV, but over other categories as well, we have retained the more general
interpretation.
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function, is a construct. Another example is the model space A of the
next chapter. The advantage of a construct, as will be explored in ch.
6, is that the ontologies of models become very transparent, since we
can take F'(9M) to be the set of things existing in a model. This in turn
means that there is a straightforward way to define inclusion systems
on such models. Given any model space M, let the inclusion system
Ear, Ins be induced by the faithful functor F': M — ¥/ iff the morphisms
i € hom,,, are exactly those for which F'(i) S leoq(r(s))- This means that
any inclusion ¢ must be mapped to a function f such that f(z) = z,
although in general these functions need not be defined on the entirety
of cod(F'(4)).

Constructs furthermore have useful formal properties. For one thing,
all morphisms in a construct M, F' whose underlying functions are in-
jective (i.e. the morphisms f such that F(f) is injective) are monomor-
phisms. The converse does not hold, unless M has a so-called free
object for some singleton set of models (Addmek et al., 2004, p. 144).
Roughly, such a free object is a model that contains a single entity, and
is included in any other model which contains that entity. In 7, the
free models for singleton sets are those with singleton domains, where
no fundamental relations hold.

In one sense, though, constructs may be too structured for certain
applications. Consider models that are physical objects. Which sets
are these to be identified with? Sets of space-time points? Sets of
elementary particles? Sets of their properties? In each of these cases,
controversial metaphysical assumptions have been made. In particular,
identifying objects with sets means that numbers will be applicable
directly to things in the world, since they are applicable to sets. This
goes against the Fregean observation that numbers require not only an
object, but a concept to place objects under (Frege, 1884, §§21-25).

A somewhat less demanding concretisation of a model space can
be acquired by letting the functor F' take M not to ¥, but to some
similar structure, such as a mereology — for example one of spacetime
regions. A mereology can be defined as a model space M where obj,,
is a collection of possible (presumably concrete) things with an order
relation < that determines which things are part of which. Since, as is
well-known from order theory, any ordered set can be embedded in the
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set of all subsets of some set in such a way that the order corresponds
to set inclusion, one can see this as a part-way stop between the poten-
tial ontological vagueness of the bare model space, and the sometimes
excessive ontological precision of a functor to V.

Category embeddings, when viewed as morphisms in a higher-order
category whose objects are categories themselves, fulfil the diagonali-
sation requirement that we imposed on embeddings in the last section.
But the reduction concept also has interesting applications to entire
model spaces. By the characterisation we have given, a reduction of a
model space M to a model space M’ would be a functor R : M — M’
which is orthogonal to all monomorphic functors. Since, for the cate-
gory of categories, monomorphisms are category embeddings (Addmek
et al., 2004, p. 252), this means that if R is a reduction functor, any
commutative diagram

at, —> a1,
Fl la
M3 7>5M4

where M a category embedding, must have a diagonal functor H such
that

My i>M2

T

Mz — > My

commutes. What does this mean? A congruence on a category C is an
equivalence relation on the objects together with a partial equivalence
relation on morphisms, both of which are compatible with the categor-
ical structure. The following theorem characterises reductions in terms
of congruences.

Theorem 3.5 : R : M; — My is a reduction iff M5 is isomorphic
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to some category M; obtained by identifying congruent models in M
under some congruence relation, i.e. iff ker R is a congruence on M.

Proof. As we noted, extremalness follows from strongness. The result
follows from a theorem of Bednarczyk et al. (2007), where one also
can find the exact definition of what a congruence on the category of
categories must be like. O

So a reduction of one model space to another is a functor that iden-
tifies models, but does not introduce any new ones. It is easily shown
that the isomorphism relation =~ is a congruence on any category, and
we may therefore speak of some model space which is the image a reduc-
tion R with ker R =~ as a reduct of the domain of R. Such a reduction
identifies isomorphic models, and no others, and thus only disregards
“differences without a difference”, as we required for reductions. All
reducts of the same model space are isomorphic.

Model spaces (and categories in general) that have a common reduct
are called equivalent. There is a significant sense in which model spaces
which are equivalent have the same structure, even though they may
have different numbers of models. Another way to define such equiv-
alence of categories is with two functors F : ¢ —» ¢’ and G : ¢' — C,
such that applying G o F' or F o G to any object of (; or ¢ returns us
to an object isomorphic to the one we started with:

F
M<TE M’

><\
></

Because of this property, category equlvalence is often described
as isomorphism up to isomorphism. It is usually more important than

180M.
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category isomorphism, which takes into account the cardinalities of cat-
egories’ object classes as well.

3.4 The Diversity of Model Spaces

Using the sketch of a general categorical theory of models of this chap-
ter, we can characterise model spaces in a systematic manner. The next
chapter will do so for the model space A of necessitarian models, which
is the one that will be our primary focus in this book, but there are of
course others as well, of varying use. This section will be devoted to
these, in order to get a taste of how different kinds of model spaces can
be described.

3.4.1  Theory Space Models

One of the most general forms of model space will be termed 7T#, or
the space of theory space models. Let the objects of this space be all
theories, in the sense of the last chapter in which a theory A is a closure
operator C'y on a set L4 of claims called the theory’s language. Let
the morphisms be the theory homomorphisms between these theories,
by which we as before mean those functions f : L4 — Lp for which

pe Ca(X) = f(p) € Ca(f[X])

holds, for all p € Ly and X € Ly. It is quickly checked that the
monomorphisms are exactly the injective homomorphisms. The follow-
ing theorems characterise embeddings and reductions.

Lemma 3.6 : The epimorphisms in 74 are the surjective homomor-
phisms.
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Proof. Assume that e : A — B is an epimorphism, and let B’ be a
theory such that L = Lp u {x}, Cp/(X) = Cp(X) for all X € Lp
and Cp/(X) = Lp whenever * € X. Let f,¢g : B — B’ be morphisms
such that f(p) = # if p € e[La] and f(p) = p otherwise, and g(p) = *.
We must then have that foe = goe, and since e is epic, it follows that
f = g. But this requires the image of e to be all of Lg. O

Theorem 3.7 : The embeddings in T# are the injective functions m :
A — B such that pe Ca(X) iff f(p) € C(f[X]).

Proof. Let m be a strong monic from A to B. Since it is a monomor-
phism, it is injective. Let B*“* be the subtheory of B onto which m
maps A, let m’ : A — B*"’ be the function such that m/(p) = m(p)
for all p € L4, and let 5 : B5“®* — B be the inclusion of B**® into B.
Then there is a morphism h : B5** — A such that hom’ = 14 and
m' oh = 1SB“b, and thus m is an isomorphism onto a subtheory of B.
For the converse, assume that m : A — B fulfils the condition
that p € Ca(X) iff f(p) € Cp(f[X]), that f : A > A, g: B - B
are morphisms, and that e : A’ — B’ is an epimorphism such that
mo f = goe. Factor m as m = ¢ om’, where 7 is an inclusion and m’
is epic. Then h can be defined as h = m'~! o g, and this is well defined
since the image of g must be the same as that of m. O

Theorem 3.8 : The reductions in 7# are the surjective functions e :
A — B such that p e C4(X) iff e(p) € Cp(e[X]).

Proof. Since a reduction is an epic, it is, by the preceding lemma, a
surjection. To show that e(p) € Cr(e[X]) if p € Ca(X), write e as
e=moce, where ¢/ : A — A%b j: A0 B and A** is a subtheory
of A, such that m is an injection. Then we can use the strongness
condition to prove the existence of h : B — A such that eoh = 1.
Since h, as a homomorphism, has to preserve consequence, we have that
the reduction condition holds.

For the other direction, assume that e : A — B is a reduction. We
need to show that whenever there is an injective morphism m : A’ — B/,
and morphisms f : A - A’ and g : B — B’ such that these all commute,
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there is a unique h : B — A’ such that f = hoe and g = moh. Let '™’
be a function from B to A, such that e o e’ = lgy, (such a morphism
exists because e is a reduction). We can then let h = f o e, O

This means that embeddings and reductions among theories work
as we expect them to: an embedding places a theory exactly as it is
inside another, and a reduction maps only A-equivalent claims to the
same claims. Given any theory A, we let Th4 be the subcategory of T#
that contains the theories in A (i.e. the strengthenings of A).

Theory space models are cheap: whenever we have a theory A, we
have that theory’s theory space, and thus also the model space Th 4 of
its theory space models. We can then use these models to give semantics
for arbitrary theories, as we will show in the next chapter. The downside
to them is that they do not provide a very useful notion of “possible
world”: traditionally, so-called ersatz possible worlds are assumed to
be mazimal consistent sets of sentences. This, however, works only for
theories that have a logical structure close enough to a Boolean lattice,
such as classical logic. For intuitionistic theories, a “possible world”
(i.e. a possible state of mathematics) does not have to contain either
a sentence or its negation, since it could be the case that proofs exist
neither for p nor for —p.

3.4.2  Matrix Models

Slightly more structure than that needed by 7# is required by the so-
called matriz models, first investigated by Lukasiewicz, but made pop-
ular primarily through the works of Lindenbaum and Tarski. Let a
matriz model be a pair M = (A, D), where A is an algebra with a car-
rier set A of claims (see section 2.4) and D is a subset of A called the
designated values. We refer to the space of all such models as Mt. D is
commonly called the truth predicate, since it is interpreted as the set of
claims in A that are true in 9.

It is fairly easy to define morphisms on the space Mt: given two such
models My = (A, D1y and My = Ao, Do), a morphism h from N to
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My is a homomorphism from 2A; to Ay, such that h[D;] € Ds. The
second condition guarantees that morphisms preserve which claims in
A are taken to be true.

Whenever we can formalise a theory, in the sense of section 2.4, we
can interpret the theory’s consequence operator as having been specified
through selecting a specified subset of Mt as a set of possible worlds or
states of affairs. How to do this is discussed in the chapter on semantics.

3.4.3 Coherence Models

Both theoretical and matrix models are built from the same stuff the
theories themselves are built from. Another way to build a model space
from claims is employed in constructing a space of coherence models —
henceforward ¢h. Let us define such a model as a pair 9 = (B, K),
where B is a set of potential beliefs (whatever we take these to be), and
K is a function from subsets of B to an ordered set D — the degrees of
coherence. Such coherence measures have been much discussed lately
in epistemology, beginning with the introduction of a simple probabilis-
tic real-valued measure of coherence by Tomogi Shogenji (1999). Since
then, most epistemologists seem to have taken D to be the real line (cf.
Olsson, 2005), but there are also those who assume only the structure
of a partial order (Bovens and Hartmann, 2003). Since the latter in-
terpretation is compatible with the reasonable possibility that degree
of coherence is vague, possessing only something like a stable core, and
also invites interesting philosophical problems, that is the one we have
used here.

An interpretation h of a theory A in a coherence model M = (B, K)
can be taken to be a function from L4 to B. For any claim p in L 4, we
say that p is true iff h(p) € X, for some X € B such that K(X) > K(Y)
for all subsets Y of B not logically equivalent to X. In other words, p
is true iff p expresses a belief that is a member of the uniquely most
coherent set of beliefs in B (where this uniqueness is assumed to hold up
to logical equivalence). Without further assumptions on K, there is no
guarantee that there are any beliefs that correspond to true sentences.
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This situation can arise in two different ways:

(i) B lacks a set of beliefs that is at least as coherent as the
others, or, in the order theorist’s terms, K[B] lacks a top. In
such a case, there are several sets of beliefs for which no set
having a higher coherence can be found, but there is still no
fact of the matter as to which of these is more coherent than
the other. This can happen if D is only partially ordered,
but it can also happen if B contains an infinite chain of sets
of beliefs of greater and greater coherence. Thus assuming
D to be the real line is not sufficient in order to exclude this
possibility, and we also need conditions on B and C.

(i) K[B] has a top, but there are several nonequivalent sets of
beliefs that are mapped to this value by C, i.e. that are max-
imally coherent.

One way to exclude (i) is to take D to be the real line (or at least
some linearly ordered set), and B to be finite, presumably since infinite
sets of beliefs are not potential sets of beliefs one could have. (i7) is
harder to avoid: it seems that we need substantial, perhaps empirical
assumptions to impose on B, such as one that lets the empirical data
we have (i.e. a subset of B) uniquely determine C. But in such a case,
one might ask what role coherence plays, since the empirical data after
all determines what is true or false.

Another possibility seems to be to drop the requirement that the
set of true beliefs has to be determined up to logical equivalence. The
problem with this is that it can allow both a claim and its negation to
be true at the same time, so long as they belong to different maximally
coherent sets. This, in turn, could be held to conflict with the meaning
of “true”, or “negation” but how such an argument should proceed is
not completely clear. It is still something that a subjective idealist, or
perhaps a dialethist, might want to argue for. Coherence models are
idealistic in spirit, since they interpret the world as something made up
from our own beliefs.

Finally, we can just accept that whether truths exist is dependent
on what the world (i.e. the set of potential beliefs) is like. This way, we

101



GENERAL METAPHYSICS

treat the question of whether there is any uniquely maximally coherent
set of beliefs as an empirical matter. Truth or non-truth can be regained
for a subset of our claims by redefining p to be true iff h(p) is equivalent
to some member of all sets of maximally coherent beliefs. Using this
definition, we still have the empirical possibility of truth-value gaps, but
we have at least excluded the possibility of gluts (i.e. claims that are
both true and false), so long as we make sure that sets of contradictory
beliefs can never have maximal coherence.

What should we take as the morphisms of ¢? A reasonable inter-
pretation of the concept is to let a morphism from 9, = (B, K;)
to M, = (By,Ks) be a function f : By — By such that K;(X) <
K1(Y) = Ko(f[X]) < Ko(f[Y]), for all X, Y € B;. This choice makes
isomorphisms come out as expected, although we could, of course, also
have made other choices.

3.4.4 Concrete Models

So far, the model spaces we have discussed have all been abstract math-
ematical structures. For a much more concrete example, and to show
that model theory does not have to be a purely mathematical game,
we may define a model space £ of Lego models, such that obj, is the
class of everything that can be built with nothing but an endless sup-
ply of a given type of brick; for simplicity we can take these to be the
“standard” 2 x 4 bricks (fig. 3.2), in various colours.

Figure 3.2: Building block of L.

Models of £ are as concrete as one could possibly wish for: you can
actually touch them!? But they can still be taken to form a category,

9A perhaps amusing observation is that they, by the category theorists’ terms
p P g Yy, by gory 5
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if we decide on an interpretation for the morphism notion. It might
be easiest to start from the isomorphisms here, which means that we
must decide what is to count as a model’s own structure, and what is
to count as circumstantial. It is natural to include rigid translations
of unattached parts among the structure-preserving operations, which
means that a model 91, is isomorphic to a model M, if M, can be
obtained from 91, by moving around the parts of 9, without attaching
or detaching any blocks.

But there is a second class of transformations that we should include
as well. Let a replacement be the act (or operation, in the concrete sense
of the word) of replacing one or more blocks by other blocks of the
same colour, oriented the same way. Letting the isomorphisms include
replacements means that we do not take the specific identity of a block
as part of the structure, and this seems very reasonable. Combining the
two forms of transformation we have mentioned, we therefore require
the isomorphisms in £ to be those operations that can be performed
by composition of rigid translations and replacements. We can see that
this definition also satisfies the category-theoretic definition of isomor-
phisms: for every isomorphism, there is an inverse transformation (also
an isomorphism), such that composing these gets us back to the same
model we started with.

Moving on to the embeddings, there is one natural way to define
these, given the notion of isomorphism: we require an embedding f :
M, — M, be an isomorphism of M, to a part of M, (i.e. to a model
that is a subcollection of the blocks of 91,). Fig. 3.3 below demonstrates
two embeddings f and g of one £-model in another. It also illustrates
the importance of distinguishing between specific embeddings, and not
collapsing them into a mere parthood relation: f and g are different
ways that P, can be a part of M, .

The step to characterisation of arbitrary morphisms can be taken
through the observation that for any embedding f, the block f(a) is

make up an abstract category. A concrete category, as we explained in the last
section, is a category that has a faithful functor to some “underlying” category, or
usually just a category whose objects are sets. So according to the category theory,
sets are concrete, and physical things are abstract. I think this is an excellent
example of the sense in which, as Russell put it, “logic is so very backwards as a
science” (Russell, 1985, p. 59).
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Figure 3.3: Two embeddings of 9, in IN,.

attached in way « to block f(b) iff a is attached in way « to block b.1°
This is similar to embeddings for MMT models: relations must hold in
the image of an MMT embedding iff they hold in the preimage. But
just as a homomorphism in that model space is “half” of an embedding
(i.e. it guarantees that relations that hold in the preimage must hold
in the image, but lacks the “only if” part), we can define a morphism
in £ as half a monic. The result can be summarised as follows:

f M, — M, is a morphism in L iff f is a combination of
(4) rigid translations of parts, (i) replacements, and (%)
attachment of unattached parts, that results in some part
of M,, given M, .

According to this definition, the operation of assembling a Lego model
is therefore a morphism, but the morphisms are a wider class than this,
since they include the replacements as well.

3.4.5 Physical Models

Another class of models, seemingly straddling the divide between the
concrete and the abstract, are the physical models, by which we really
mean the typical models of physical theories. Currently the most well-
accepted of these theories is QFT (quantum field theory), for which a

10We leave it as an exercise for the reader to prove that there are exactly 46
exclusive ways to connect two 2 x 4 blocks — 25 with the blocks parallel, and 21
with them perpendicular.
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model (a “Qf model”) is a collection of operator-valued fields—one for
each fundamental particle in the Standard Model. If QFT was true,
and not only our best theory, then that would be what the actual world
is. 11

Now, operator-valued fields come with their own notions of mor-
phism (or continuous maps, as they are called there), embedding and
isomorphism, and we could of course just adopt these. This would how-
ever go against the sense in which the models in Qf are physical, and
not only mathematical. It is common in a physical model to separate
the variables that have a physical interpretation (the measurables) from
those that do not (the “artifacts” of the model). This separation cor-
responds directly to a separation of mappings of physical models into
those that the physical theory must be invariant under, and those that
it need not be invariant under. For theories obeying special relativity
(such as QFT), we find the Lorentz transformations in the first group,
and for theories that include quantum mechanics (again, like QFT), it
includes phase-shifts of the wave function.

For models intended for a physical theory, it is therefore reasonable
to take the isomorphisms to be the mappings that the theory is invariant
under. The metaphysical claim that only the invariant parts of the
theory are real (for instance, that only spatiotemporal relations are
real, and not absolute positions or times), then translates to the claim
that the model space in question is skeletal.

Assuming isomorphisms in physical model spaces to express iden-
tity of all observables, we come to the question of embeddings. Here
our previous method of interpreting these as isomorphisms to parts of
models fails us. All fields fill out the whole of space-time, so they do
not have fields as parts, in the geometrical sense of the term.

This does not have to be a disaster. Perhaps there just is no useful
notion of embedding between Qf models that differs from the isomor-
phism. More likely, however, we just have to look at the field from
another angle. A quantised field can also be seen as a superposition
of states {f;}, each a function of the space-time coordinates x,y, 2, t,
together with an assignment of non-negative integers to each state: the

110Of course, the world may be a collection of fields even if QFT is wrong, or at
least incomplete, as seems to be the case.
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number of particles of the type the field describes that are in that state.
This construction is what is commonly referred to as “Fock space” after
its inventor (Dirac, 1958, p. 139).

Using Fock space, we could potentially define an embedding as a
function that may add particles in each such state, but may not remove
any. By fiddling a little, we could get this to reduce to the case of
isomorphism when it neither removes nor adds a particle in any state.
The question of how general morphisms are to be determined is however
still open. As the complexities of QFT are too great for us to be able
to say anything well-motivated about its models in this book, we will
not attempt to answer it here.

3.5 Models and Theories

From the examples of model spaces in the last section, we may draw
some general conclusions. In all the spaces discussed to far, it is obvious
that we had to make choices when we defined what was to count as
a structure-preserving mapping: for £, for instance, we chose to let
the colour of the bricks count as part of a model’s structure, but not
their specific identities. For Qf, we chose to regard models that differ
only in their non-physical quantities as isomorphic. Both these cases
should make it obvious that the structure, at least partly, is something
we lay down on the models, in order to be able to grasp and categorise
them more efficiently. Pragmatism enters in creating model spaces from
collections of concrete objects, since they do not really come with a
predefined structure.

The case is somewhat different for more abstract model spaces such
as Mt, whose objects already are mathematical structures.'?> Pragma-

121 use the words “abstract” and “concrete” here without attempting to give any
kind of definition. My intention is not to capture anything like their “common
meaning”, if there is such a thing — I just need a pair of words for distinguishing
between objects whose structure are given with them, and objects where this is not
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tism enters at an earlier stage here: when we choose what model space
to represent some phenomena with. This problem could be seen as a
metaphysical analogue to Carnap’s principle of free choice of language
for theories (Carnap, 1937). Just as, for Carnap, the selection of a lan-
guage is a pragmatic affair, the selection of what model space to use
must be guided by what kind of understanding we are after.

But Carnap’s view was that language choice is not subject to ques-
tions about truth at all. In contrast to this, there is no significant
difference between a theory and a language for us, since the adoption
of a language involves a commitment to the inferences allowed in that
language being truth-preserving. To see that this is applicable to model
spaces as well, we may note that in a certain sense, a model space is
a language, or more generally, a theory. Just as 7h correlates every
theory with a model space, every model space can be correlated with a
theory. Where 4 is a model space, let M’s canonical theory Th(M) be
the pair (L (ar); Crn(ar)), Where

Lnary = 9(0bjar)

and
Crinan(X) = {p € Lrn(an ‘ ﬂX < p}

for all X € Ly an

The motivation is this: in the canonical theory, each claim is a set p
of models, which can be interpreted as the claim that the actual model
2 is one of these. By holding all claims in a set X to be true, we say
that the actual model is in all of the sets in X, or equivalently, that is
lies in their intersection. The consequences of a set X of such claims
are then the sets of models that contain that intersection.

Canonical theories are complete in the sense that every theory in
them corresponds to a unique claim: if A is a canonical theory and B is
a theory in A, then the intersection p of all claims in T g is also a claim
in A, and Ca({p}) = Ca(Tg), so p and B are equivalent according to
A.

The canonical theories are however only some of those that can
be constructed from a model space M. Let us call A = (L4,Cys) a

the case.
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subcanonical theory of M iff L4 is a subset of p(obj(M)) and Cy =
{peLa | (X S p}, just as in the canonical theory. It is easy to see
that a subcanonical theory of M is always a subtheory of Th(M). The
difference is that all sets of models no longer correspond to claims ex-
pressible using the theory.

The subcanonical theories comprise a fairly large class. So large,
indeed, that any theory is equivalent to a subcanonical theory of some
model space.

Theorem 3.9 : For every theory A, there is a model space M and a
subcanonical theory B of M such that A is isomorphic to B.

Proof. Assume that A is a theory, and let M be the space of theory space
models of A. Let B be a theory (Lg,Cp) such that Lp = p(obj,,) and
a € Cp(l) iff \T € a.'® Then B is the canonical theory of M, as
defined above.

Now define a function ¢ : L4 — Lp such that

op)={TeTs | peTr}

As in ch. 2, T4 is the theory space of the theory A. Let the theory
B’ be the subtheory of B whose language is the image of L4 under ¢.
If we then show that X 4 p iff o[X] 5 ¢(p), for any X € L4 and
p € L4, this means that B’ is isomorphic to A, since it is easy to show
that ( is injective, and it is by definition surjective. Furthermore, B’ is
a subcanonical theory of 9.

First we show that X 4 p implies p[X] Fp ©(p). Assume that
X € Ly, and pe Ca(X). What we need to show is that

(VT e Ta)(T € [ ¢[X] = T € o(p))

which is equivalent to

(VT'e 74)((Vg € X)(T € v(q)) — T € p(p))

13We use small Greek letters for the claims in B here, and capital Greek letters
for sets of such claims, in order to better separate the claims of theory B from those
of theory A.
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Assume an arbitrary theory T € T4 such that X € T,. Then it
follows by our assumption that p € Tr. But since p(p) contains all
theories in A that contain p, we must have that T' € ¢(p) as well.

For the other direction, assume that

(VTI'e T4)((Vg € X)T € ¢(q)) — T € ¢(p))

Let T be the theory in A such that Ty = C(X). Then X € T, and
so by our assumption T € ¢(p). This, however, holds iff p € Tr. O

Since the adoption of a model space is equivalent to the use of a
theory, it is, unlike the Carnapian languages, not entirely immune to
questions of truth or falsity. As we mentioned in the preceding chapter,
every theory when seen from its own viewpoint is of course true, but
when we embed theories or model spaces into others, it may very well
be that the embedded theory A sees as true claims that are not true
according to the theory B it is embedded in. In such a case, A may be
false according to B.

Is there some model space in which all of the world’s structure is
representable, and which thus contains all others and can be used to
settle questions such as these once and for all? Lacking a universal
definition of “structure”, it is unfortunately hard to see what this could
mean. If there is such a thing as a well-defined category of all worlds,
whose morphisms are the “true” structure-preserving mappings, then
this category is such a model space, but this is just a reframing of
the initial problem, rather than an actual answer. Furthermore, the
considerations in sct. 2.5 tell strongly against the coherence of such a
concept.

The general relationship between model and reality can be described
as follows: the world is a thing, possibly with some kind of structure.
Parts of this structure can be described by subsuming the world under
a model space, i.e. by taking it to be an object in such a space. But
these spaces, to be informative, must have the structures of their mod-
els independently specifiable — a model space such as the one of the
preceding paragraph is impossible to work with for us. Therefore, we
have no guarantee that we can have useful model spaces that are rich
enough to capture all of the world’s structure, and so it is pertinent for
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us to be able to work with different spaces, for different interests. A
summary of some of the more important of the model spaces employed
in this book is given in table 3.1.

Model Described
space Type of models in section
T Tarskian models 3.1
v Thin models 3.1
Th Theory Space models 3.3
Mt Matrix models 3.3
Ch Coherence models 3.3
Qf Quantum Field theoretical models 3.3
AN Necessitarian models 4.1
PN Probabilistically Necessitarian models 4.4

Table 3.1: Model spaces of this book.

The model space that we will concern ourselves with the most is
the space A, described in the next chapter. I believe that this space is
especially useful for metaphysics since, as we shall see in chapters 6 and
7, it allows very strong relations between a theory and the structure of
its metaphysics to be derived. It also holds some interest as a space in
which many traditional metaphysical concepts can be represented, and
so may function as a bridge between traditional metaphysics and the
model-theoretic version of it that I advocate.
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CHAPTER 4
NECESSITARIAN
METAPHYSICS

Here we introduce necessitarian metaphysics, which will take a
center stage in the later parts of this book. A necessitarian meta-
physic is a kind of model space in which models are sets of entities
with relations of necessitation defined among them. The struc-
ture of this necessitation is roughly that of a multiple-conclusion
consequence relation, so it is by nature nondeterministic. We
discuss axioms for these relations, and prove a characterisation
theorem that shows that we also can view a necessitarian meta-
physic as a selection of possible worlds.

Section 2 deals with the category-theoretic aspects of neces-
sitarian metaphysics. We show that embeddings and reductions
work as we expect them to, and we also discuss the question
of identity vis-a-vis necessary coexistence. Section 3 attempts
to tie this discussion to more traditional metaphysical concerns.
In particular, we show how to express several metaphysical con-
cepts such as parthood and causality in terms of necessitation
relations, and also how to work with objects that have more
structure than the primitive entities that we have based necessi-
tarian metaphysics on.

In the final section, we introduce a modification of the ne-
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cessitation relation which is crucial for capturing probabilistic
necessitation. Axioms are given, and we prove that probabilis-
tic necessitation relations are interpretable in terms of standard
Kolmogorovian probability theory.

4.1 Necessitation Relations and Possible Worlds

The idea of “necessary connection” may be as old as philosophy itself,
and although one could fairly say that not very much progress has been
made in clarifying what is means for one thing to necessitate another,
both scientists and philosophers often have use for a distinction between
those relations that we say hold necessarily, and those that we say
hold only contingently. For example, many sciences make a difference
between laws and accidental generalisations, or causal relationships and
relationships of mere statistical correlation.

We do not have to stipulate anything transcendental or non-empiri-
cal about this concept: purported causal laws can be shown to be spu-
rious correlations, for instance, by exhibiting circumstances in which
the causal effect is screened off (Pearl, 2009, ch. 2). Claimed universal
generalisations can be shown false by finding counterexamples. We do
not mean to exclude any of these concepts of necessitation, although
we do not want to limit ourselves to them at the outset either. Neces-
sitation may involve something as simple as a statistical relationship,
or something as “deep” as a higher-order relation between universals,
depending on which metaphysics we have.

The simplest form of necessitation is the singular, deterministic one,
which lets us say that an entity a necessitates another entity b when it
is impossible that a should exist without b, or, in Leibnizian terms, that
b exists in all possible worlds where a exists. We write this relationship
as

ao—=b

Some properties of o— follow easily from the Leibnizian characteri-
sation. For one thing, it must be a preorder, i.e. a reflexive, transitive
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binary relation. Unfortunately, there are some cases of necessitation
that we may want to be able to model that cannot be expressed using
only o—. An example is joint causality, where ¢; and co are sufficient
for the effect e together, but not individually.

It could seem, at first, that these limitations can be avoided by
accepting a sufficiently strong mereology, and saying that o— holds be-
tween the mereological sum or fusion ¢; + ¢ of ¢; and ¢, and e. But
this only pushes the problem further back. What is it that makes the
existence of ¢; and co entail that of ¢; + c2? What we want to say is
that if ¢; and co both exist, then e exists, and to do this involves several
things jointly necessitating another at some point.

There is thus another relation, which we will term joint deterministic
necessitation, and write as

X>b

where X is a set of entities and b is a single entity.! Taking the necessi-
tation of b by X to be the condition that b exists in all worlds in which
all entities in X exist, >> can be seen to satisfy the following axioms,
analogous to those that a logical consequence relation satisfies:

(Reflexivity) if be X then X > b
(Monotonicity) if X>>band X €Y, thenY >
(Cut) if X>>aand X U {a}>>b, then X >

All of these follow directly from the definition. But we still cannot
quite capture all the things we might want to call cases of necessi-
tation. Many kinds of causation, for example, are often taken to be
non-deterministic. For this kind of generality, we need a relation of
joint nondeterministic mecessitation, or as we frequently will call it,
just necessitation. We write

1Using set-theoretic terminology here is a notational convenience: the relation
holds between the entities in X and b, and not between the set X itself and b — that
would reinstate the same problems that occur with defining joint necessitation to
hold between sums of entities, which we discussed in the preceding paragraph.
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X>Y

if every possible world in which all the entities that are in the set X
exist also contains some entity that is in the set Y, and we read this as
the statement that the X ’s necessitate some Y.

With this relation we can also express what it means for a collection
of entities to make up a possible world. The intuitive idea is that
what is required for a set X of entities to be the contents of a possible
world is for these entities to require nothing except themselves for their
existence, so that it is possible for the elements of X to exist, and
nothing else. This property can be expressed as the condition that X
makes up a possible world iff, for any subset Y € X, and any set Z of
entities whatsoever, Y >& Z implies that Z n X # @. A more succinct
characterisation is given by the equivalent condition X >& X, where
XC is the set of all possible entities not in X.

It is clear that everything that can be expressed using a singular or
deterministic necessitation relation can be expressed using an indeter-
ministic one as well, so indeterministic necessitation relations are well
suited to play the part of primitives for us. Let a necessitarian meta-
physic be a pair M = (E,>&), where E is a set that we call the set of
possible entities, and >€ is a nondeterministic necessitation relation on
E. Just as with the deterministic necessitation relation, we can give
axioms for >&.

(Overlap) i X nY # @ then X > Y
(Dilution) if X > Y, X € X' and Y € Y/, then
X > Y
(Set cut) if XY > Y9y Zforall Y € E, then
X>eZ
(Non-triviality) @ > &

These all follow from the intended interpretation: Overlap is moti-
vated by noting that the overlap of two sets is sufficient for the existence
of everything in one of them to guarantee the existence of something
in the other, and Dilution holds because if all of X’ exists, then ev-
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erything in every subset of X’ exists as well, and if something in Y
exists, then it must exist in every set containing Y. Set cut can be
motivated as follows: assume that not every world that contains all of
X also contains something in Z. Then, there must be some world w
for which this is true, and since w is a world, we have w >& w®. But
because X € w, and Z nw = &, we must also have that X v w = w,
and Z u w® = wC. Tt follows that there is some set Y (namely, w) for
which X UY >& Y¢ U Z. Non-triviality simply ensures that we do not
have X > Y for all XY € FE, and is an assumption made to make
our proofs easier.

Let a partition of a set Z be a pair of sets (71, Zsy such that Z; n
Zy =@ and Z1 U Zy = Z. As before, let a world be a set w of entities
such that w >& w®. Set cut can then also be written in the forms

(Set cut*) if XY > YouZ, for all partitions (Y7, Y2)
of Y, then X > 7

(World cut) if X vw > w® U Z, for all worlds w, then
X>sZ

(World cut*) if w>e w® U Z, for all worlds w that contain
X, then X >& Z

Theorem 4.1 : Given Dilution, Set cut is equivalent to Set cut* and
World Cut. Given Dilution and Overlap, it is equivalent to World cut*.

Proof. For the left-to-right direction of Set cut*, assume that Set cut
holds, and that X >& Z. Then, by Set cut, there is a set Y such that
XUY>EYYUZ Let Y be any set, and Y], Yy the partition of Y’
such that Y] = Y’ nY and YJ = Y’ n Y© By dilution, we must have
that X 0 Yy >& Y] U Z as well. The other direction follows trivially by
taking Y = F.

For world cut, it is only the left-to-right direction that needs proof,
since if X uY >& Y U Z for all Y, it naturally holds for those Y
that are worlds as well. But assume that Y is not a world, i.e. that
Y > Y. Then, by dilution, the same must hold for X UY and Y¢ u Z
as well, for any X, Z.
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Just as the left-hand side of World cut follows from that of Set cut,
the left-hand side of World cut* follows from that of World cut. Thus
we only need to prove that if w is a world, and X ¢ w, X vw>e w®uZ.
But if X ¢ w, X must overlap w®, so the necessitation follows by the
Overlap axiom. O

These rules are sometimes easier to apply than the standard version
of Set cut. When the necessitation relation is compact (i.e. when X >€
Y iff X/ > Y’ for some finite subsets X’ € X and Y/ € Y, Set cut is
also equivalent to the much simpler axiom?

(Entity cut) if X u{e}>e Z and X > {e} u Z for some
entity e, then X > 7

Theorem 4.2 : Given Overlap and Dilution, Entity cut is equivalent
to Set cut for compact necessitation relations.

Proof. Assume Set cut to hold, and that X >& Z. Then there is a set
Y such that X Y >& Y U Z. Because of Dilution, it follows that for
all sets Y{ € YV and Yy € Y9, X U Y/ >& Y] U Z as well, and Entity
cut follows by taking {e} = Y{ u YJ.

In the other direction, assume Entity cut, and again assume X >& Z.
From Overlap, we have that X nY = @. For any two partitions (Y7, Y3)
and (Y5, Y5> of the sets Y and Y/, let Y < Y'iff Y1 € Y/ and Y5 € V5.
Call a partition (Y7,Y3) such that X € Y7, Z € Y5 and Y7 >& Y, an
extension of X, Z. For an arbitrary increasing sequence o = (Y{, Y4>*
of extensions of X, Z, let the limit of such a sequence be the partition

limo = <U Yliv U Y;>
i i
By compactness, if Y7 >& Y5, then there are finite sets Ylf n Y,

and Y{™ < Yy such that Y™ >& V™. Letting o be a finite series of
increasing extensions of X, Z, it is obvious that lim ¢ must be such an

2A compact nondeterministic necessitation relation is also known as a Scott con-
sequence relation, see Scott, 1971.
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extension as well, and compactness allows us to extend this to infinite
series. Thus every series of extensions has an upper bound, and it
follows by Zorn’s lemma that the set of all extensions of X, Z must
have a maximal element. Let (W7, W5) be such an element.

Now let W = W; uWy. We show that W = E. Assume that e is an
entity that is not in W. Then we must have that W3 u {e} >& W5 and
W1 >& {e} U Wa, since otherwise e would be in either W7 or Ws. But
then it follows, by Entity cut, that W7 >& Wy, contrary to assumption,
so W =FE. O

Entity cut is easy to motivate: if some Y exists in every world in
which both the X’s and e exist, and either e or some Y exist in every
world in which the X’s exist, some Y must be in every world where the
X’s are, for either the X’s necessitate some Y, or they necessitate e,
which together with X necessitate some Y. It would thus be nice if we
could limit ourselves to compact necessitation relations. Unfortunately,
this is not possible. Take mereological necessitation as an example.
Given a set of entities, a metaphysics may postulate the existence of
a whole that has these as parts. But consider space-time, as made up
from points: no finite set of space-time points makes up a volume of
space-time, but we may very well want to allow that any such volume
consists of points nevertheless.

The real interest in the three axioms Overlap, Dilution and Set cut
lies not only in the fact that they hold in our intended interpretation,
but that they are complete with regard to it: given a set E, any choice
of sets of possible entities as the possible worlds corresponds to a unique
necessitation relation. Let a possible world system ) on a set of entities
FE be a selection of subsets of E, to be taken as a specification of which
combinations of entities can make up a world. We can then show:

Theorem 4.3 (Representation of necessitation relations) : Let
FE be a set of possible entities. Then every possible world system 2 on E
determines a unique necessitation relation >&, and every necessitation
relation > on E determines a unique possible world system through
the correspondence that W e Q iff W >& W for every W C E.
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Proof. Let Q be a set of subsets of E. Let the necessitation relation
>&q characterised by ) be the relation

X>qYV iff VweQ)( X Cw—->Y nw # Q)

We need to show that a binary relation on p(F) is a nondeterministic
necessitation relation (i.e. that it fulfils the axioms Overlap, Dilution,
and Set cut) iff it is characterised by a set of possible worlds Q. The
right-to-left direction is mostly a matter of verification, and we have
given the outlines of a proof in the discussion above. For the left-to-
right direction, let >& be a necessitation relation, and let Q(>€) be
those subsets W € E such that W >& WC. We show that Q(><) is
one-to-one and onto.

For injectivity, assume that >&; and >€, are different necessitation
relations. We then wish to find some W such that W >&, W¢ but
W >a, WY, or vice versa. Assume, without loss of generality, that
there are X,Y C E such that X >€; Y but X >&, Y. We must have
that X nY = @, or we would have X >, Y. By Set cut, it follows
that there must be some W such that X u W >&, WY U Z. But we
must have that X € W and Y € W, for otherwise W would overlap
Y, or W€ would overlap X, so W >E, WC. On the other hand, by
Dilution, we must also have that W >&; WY, so Q(-) is one-to-one.

To prove surjectivity of Q(-), assume that ' is any possible world
system. Then >€q is a necessitation relation, and Q(>€q/) is the set
of possible worlds

V' ={WCE|Fwed)(WcwaW’nw=02)}

Some quick set-theoretical rearrangement shows that Q" = ', so
Q' must be in the image of Q(-). It follows that (-) is a one-to-one
correspondence with inverse >& ). O

The theorem, as well as the axioms Overlap, Dilution and Set cut,
are taken from Shoesmith & Smiley’s book on multiple-conclusion log-
ics (Shoesmith and Smiley, 1978), and the structure of a necessita-
tion relation is equivalent to that of such a logic. Multiple-conclusion
logic originated with Gentzen’s introduction of Sequenzen in his thesis
(Gentzen, 1934) and Carnap’s of involutions in The Formalization of
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Logic (Carnap, 1943). Gentzen’s work was purely proof-theoretical, and
he therefore viewed the disjunctive conclusions as nothing but a use-
ful notational apparatus, while Carnap’s point of view was semantic,
which made him arrive at multiple-conclusion consequence relations,
or something equivalent to them, as absolutely necessary for captur-
ing the semantics of propositional logics. Our reason for adopting the
structure of a multiple-conclusion consequence relation is however not
Carnap’s, since our relation of necessitation transmits existence, and
Carnap’s transmits truth. It is also not Gentzen’s: we really need the
multiple conclusions for the extra representative power they give, as we
will show later in this section.

Say that the necessitation relation >& extends the binary relation R
on p(F) if R ©>&. As the following theorem shows, any binary relation
on p(FE) can be uniquely extended to a minimal necessitation relation.

Theorem 4.4 : If N is a set of necessitation relations that extend a
binary relation R, then >&= (1| N is a necessitation relation that extends
R.

Proof. As usual, Dilution and Overlap are easy to prove. For Set cut,
assume that X >& Y. Then there must be some W such that X <
W, Y € W, and W >& W, because this has to hold for all members
of N, and the intersection of these relations cannot have necessitations
that hold but do not hold in any of them individually. If N is empty,
> is the intersection of all necessitation relations on . That there is
such a relation is proved in the next theorem. O

We refer to the least necessitation relation containing R as the clo-
sure CI(R) of R or the necessitation relation generated by R. We
can use this operator to define a minimal necessitation relation Cl(&)
on any set of possible entities. This relation, which captures the ne-
cessitations common to all nondeterministic necessitation relations, is
uniquely determined by the following property.

Theorem 4.5 : If > is the minimal necessitation relation on F, then
X>x<Yif XnY #0.

119



NECESSITARIAN METAPHYSICS

Proof. The right-to-left direction is simply the axiom Overlap. In the
other direction, we need to prove that X >& Y as defined is a neces-
sitation relation. Overlap and Dilution are trivial, and Set cut follows
because if X >& Z, then X n Z = @, and we can take Y = Z¢
or Y¢ = X¢. Because of how > has been defined, it follows that
XuY>kY©U_Z O

Any necessitation relation >& gives rise to a number of related con-
cepts. First of all, we can allow ourselves to extend it to single elements
by declaring X > b to be X >& {b}, and a o b to be {a} >& {b}. We
can also introduce the following derived relation:

The X’s distributively necessitate some Y (in symbols X >< Y)
iff, for every z € X, {x} > Y. In the intended interpreta-
tion, this means that X >< Y iff some element of Y exists

in every possible world where some element of X exists.

Distributive necessitation has a preorder structure, but not gener-
ally that of an order, since two sets of entities may necessitate one
another without being identical. The reason why we have chosen >& as
our primitive relation here and defined others in terms of it is that the
opposite would have been impossible. For every deterministic neces-
sitation relation, there are several nondeterministic ones extending it.
That necessitation cannot be written in terms of the distributive vari-
ant can be shown by noting that no distributive necessitation relation
can exclude the empty set as a possible world, but any relation @ >& X
where X # @ does.

Extending the terms “deterministic” and “singular”, we say that
> is deterministic iff it is the closure of a deterministic necessitation
relation >, and singular iff it is the closure of a singular necessitation
relation o—.These properties correspond to intuitive ones on the set of
possible worlds.

Lemma 4.6 : If >€ is deterministic, X >& Y iff X >& {y} for some
yeyY.
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Proof. Assume that X >& {y}. Then by Dilution X >& Y for all Y that
contain y. In the other direction, assuming that >€ is deterministic, we
have that there is a deterministic relation > such that X > Y iff
X >& Y holds in all extensions of >>. But these extensions all satisfy
X >y for some ye Y. O

Lemma 4.7 : If >€ is singular, X > Y iff {z} > {y} for some z € X
andyeY.

Proof. Parallel to the preceding lemma. O

Theorem 4.8 : >< is deterministic iff 2 is closed under arbitrary non-
empty intersections. It is singular iff € is closed under arbitrary non-
empty intersections and unions.

Proof. Let us start with the deterministic case, left-to-right. Assume
that 9/ is a set of subsets of entities such that W >& W¢ for all W € w.
Since (N W)Y = |J WC, we have that if [ (W) >& (| W)Y, there must
be some element y in [ J WS such that (| (W) >& {y}. But if this
holds, there must have been some W € %W such that W >& WY as well,
contrary to assumption.

In the other direction, assume that X > Y. Hence all worlds w
that contain X contain some Y as well. So let w’ be the intersection of
all worlds that contain X. Since w’ by assumption is a world as well,
we have that X >& ' as long as w’ # @, and thus X >& {y} for every
y € w’. On the other hand, if we were to have w’ = &, then we would
have X = @ as well, and thus @ >& @, contradicting the non-triviality
axiom.

For singular necessitation, closure under intersections follows in the
same way as for deterministic. Let W be a set of subsets of entities
such that W >& WY for all W € W. Then we must have that if
Uw > (UW)C, then W > (WY, so by assumption there are
r e JW and y € (WY such that {z} > {y}. But then we could
not have had that W >& W¢ for all W € W, for z has to be in some
We W, and y in all W¢ where W € W.
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Conversely, let X > Y. That X > {y} for some y € Y follows in
the same way that it did for deterministic necessitation. Now assume,
for contradiction, that {z} >& {y} for all x € X. Then, for every z € X,
there is some world w, such that z € w,, but y ¢ w,. But if the worlds
are closed under unions, there must be a world that contain all the z’s
as well, which is the union of the w,. But this world cannot contain y
either, so we cannot have {z} >& {y} for all z € X. O

Thus, if we were to limit ourselves to necessitation relations whose
right-hand side is determined, we would be unable to treat systems of
possible worlds where overlap between worlds does not mean that the
overlapping parts make up worlds themselves. An example which re-
quires this is the traditional notion of a substance: if s is a substance,
we may have that it must have some property in every possible world,
since there can be no such thing as a bare substance, but we may also
have that there is no single property that it has in all worlds. Such a
substance would be impossible to represent if we were to limit ourselves
to deterministic necessitations. If we were to accept only singular ne-
cessitations, on the other hand, we would be unable to represent joint
necessitation: the case where a and b together necessitate ¢, but neither
a nor b can do this on their own.

The versatility of nondeterministic necessitation relations allows us
to express several important concepts using them. Let us call a world
system essentially possibilistic if E ¢ €, i.e. if the set of all possible
objects do not make up a world. Another way to write the same condi-
tion is £ > &. This is the case if there are any incompatible possible
objects. An inessentially possibilistic world system contains only things
that could be actual together, or, in other worlds, things which together
make up a possible world. Thus the difference between essentially and
inessentially possibilistic world systems corresponds to a difference be-
tween the concept of metaphysic, and that of possible world. Only in
some specific kinds of metaphysics do they coincide.

For any essentially possibilistic world system, the following hold, for
all X)Y € E:
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o> X iff some X exists in every possible world. In
the singular case @ > a, a is a necessary
existent.

X >¢ @ iff no possible world contains all the X’s, i.e if
the X’s are incompatible. In the singular case
where {a} >& @, a is an impossible object.

Y¢>e X iff some Y exists in any world containing none
of the X's, i.e. if the lack of X’s means that
some Y must exist.

X u{y}>e o iff y exists in no world all the X’s exist in,
i.e. if the existence of the X’s excludes the
existence of y.

The proofs of these are in general fairly straightforward, and we have
omitted them. In the following, we will generally assume the necessi-
tation relations under investigation to be essentially possibilistic, since
this allows us larger freedom of expression. For reasons of simplicity,
we will also assume metaphysics to contain no impossible objects, i.e.
no object a for which {a} > @.

4.2 The Model Space N\

Necessitarian metaphysics can be taken to be model spaces in the fol-
lowing sense. For each necessitarian metaphysic M = (F,>&) we define
a model to be a possible world w € 2, together with the parts of >&
that lie in w. More specifically, a model 9t € A is a set W € FE for
which W >& WY, together with a relation >€y, such that X >&y YV
iff X>eVY, foral XY € W.

A necessitarian model is a thus set of entities, together with a neces-
sitation relation on the subsets of this set. It is a type of necessitarian
metaphysic structurally, although one in which the set of all entities
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does make up a possible world. Thus, the necessitation relation of a
model in Al is always inessentially possibilistic. The interpretation is
different as well: the entities in the set E of a necessitarian metaphysic
are taken to be merely possible, while the elements in a model’s set of
entities are assumed to exist, if that model is the actual one.

Let a submodel of a necessitarian model My = (E1,>€;) be a ne-
cessitarian model My = (Fa,>&5) such that

(1) Ea € By,
(i) >e=>€; np(F1)?, and
(idi) E2>&, (Er\E2)

The last condition guarantees that, at least as far as 2 is con-
cerned, the entities of My may exist on their own.

Any necessitarian metaphysics determines a set of necessitarian mod-
els — one for each possible world. For the other direction, say that a
two necessitarian models are compatible iff their necessitation relations
agree on the subsets that contain entities in their intersection, and that
a set X of necessitarian models is closed if it contains all submodels
of each of the models it contains. Then any closed set X of pairwise
compatible necessitarian models determines a necessitarian metaphysic,
namely the one where the possible worlds are exactly those that are the
sets of existent entities of the models in X. A necessitarian metaphysic
thus defined always has a necessitation relation that is an extension
of those of its models, although in general this extension will not be
minimal.

Since >€ constitutes a structure on a set of possible entities, it is
natural to use this structure to characterise the elements of homy,. Thus
we define a morphism f : My — My, where My = (Fy,><1) and
My = (Ee,>€5) as a function f : E; — Es such that

X>e, Y = f[X]>e f[Y]

for all X,Y € F;.
A is clearly a construct, just like the Tarskian model space 7. The
natural forgetful functor F' that takes it to 9 is the one that takes every
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model to its set of entities, and every morphism to its underlying func-
tion. Because of this, every morphism that has an injective underlying
function is a monic. That the converse also holds, and that the epics
are the surjective morphisms, are proven in the following theorems.

Theorem 4.9 : The monics of A are exactly the morphisms with
injective underlying functions.

Proof. Only the left-to-right direction needs proving. But this follows
from the existence of a free singleton model ({#},>&), where {} >& {«}
but no other necessitations hold (Addmek et al., 2004, §8.29). O

Theorem 4.10 : The epics of A’ are exactly the morphisms with sur-
jective underlying functions.

Proof. Completely parallel to the corresponding theorem for Tarskian
models. O

This also means that monics are not embeddings, and epics are not
reductions in Al. Although injective or surjective, they may introduce
all kinds of new necessitations that did not hold in their domain. As
expected, strong monics and epics are what we are after.

Theorem 4.11 : A monic or epic f in A is strong iff f[X] > f[Y]=
X>eY.

Proof. Let m be a strong monic m : 9M; — My, Define m’ : My —
Msub. where M358 is the submodel of My whose set of entities consist
of the image of My under m. Then m’ has to be an epimorphism,
and since m is strong, there is a morphism h : 9 — 91y such that
m' oh = Lopgws and hom' = 1lgy,. Thus m is an isomorphism onto a
submodel of 95, and this means that their necessitation relations must
coincide here.

Let m : 9y — 95 be an embedding (i.e. an injective function such
that m[X] > m[Y] & X >€Y), let e : M| — M), be an epic, and let
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f 9 — My and g : M, — Mo be morphisms such that mo f =goe.
We need to show that there is a unique morphism A such that f = hoe
and g = m o h. Since m is an embedding, it is an isomorphism ¢ onto
a submodel MM5"Y of M. We can define h such that h(z) = i~ !(g(x)),
for all z € Egy,. This is well defined since the image of g must coincide
with that of m because e is an epic and the original diagram commutes,
and it is a morphism because it is the composition of a morphism and
an isomorphism.

For the epic case, let e : My — Ny be a strong epimorphism, and
write e as e = m o€/, where ¢/ : My — M, i : Mub — My, and
M3l is a submodel of My, such that m is an injection. Since injections
are monomorphisms, we can apply the strongness condition to form a
morphism h : MMy — Iy such that the whole diagram commutes, and
eoh = lgy,. Since h as well as e have to preserve the necessitation
relation, we have that X > Y < e[X] > e[Y].

Finally, assume that e : 91, — 91, is a reduction. We need to show
that whenever there is a monomorphism m : 9} — 9, and morphisms
£ — M and g : My — MY, such that these all commute, there is
a unique h : My — M, such that f = hoe and g = mo h. Let ™ be
a function from My to M, such that e oe™ = 1oy, (such a morphism
exists because e is a reduction). We can then let h = f o e'"?, O

The fact that A is a construct, with forgetful functor F', allows us to
define a notion of identity preservation. Let a morphism f be identity
preserving if (F(f))(x) = z, for all z € F(dom(f)). This means that the
morphism’s underlying set-theoretical function is an identity function.
It follows that all identity preserving morphisms are monics, but they do
not in general have to be strong. This is due to the fact that entities in
A only have their properties in relation to a model, just as the elements
of a domain in a model in 7. Not every identity function between two
Tarskian models is an embedding, and the same holds for 2.

The notion of identity preservation allows us to say that two models
My and My are compatible iff any identity preserving monic between
them is strong. It is quickly checked that this definition is equivalent
to the one we gave at the start of this section, and this means that we
can see a necessitarian metaphysics as a subcategory of A wherein any
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two models are compatible. The entire hierarchy of A, necessitarian
metaphysics, and necessitarian models is depicted in fig. 4.1.

The model space N’

contains as
subcategories

@ necessitarian metaphysics

which contain
as objects

m, M, 2))13 f)ﬁ4 9)?5 Mg necessitarian models.

Figure 4.1: Hierarchy of N\ and its parts

Within a specific necessitarian metaphysics A, we can define canon-
ical monics to be those morphisms that are identity preserving. In gen-
eral, these will not be part of a complete inclusion system, though we
can as before always extend A to a model space in which factorisation
of any morphism into an epic and a canonical monic is possible.

The strongest structural relationship between models—that of iso-
morphism—holds between models when they are of equal cardinality,
and the same structure of necessitation relations hold in them. Re-
ductions (i.e. strong epics) express a slight weakening of this concept.
Say that two objects a,b in a model space are equivalent iff a o b
and b o— a, and write this condition as a ~ b. Then a reduction is a
surjective function that maps only equivalent objects to the same value.

Another way to express the relation a ~ b is to note that if a ~ b,
then a and b exist in exactly the same possible worlds. But this notion
is clearly relative to which specific metaphysics we are envisaging; in
the whole of A there are necessitarian metaphysics both where a are b
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equivalent, and also metaphysics where there are not.

This is relevant to the question of whether necessary coexistence
is interpretable as identity. On the abstract level of A(, there is no
unambiguous notion of necessity, so holding necessary coexistence to
imply identity does not make sense unless we specify a metaphysic.
This, in turn, fixes the network of necessitations, and thus also the set
of possible worlds.

On what interpretation of necessity would necessary coexistence im-
ply identity? One example is first-order logical necessity—at least for
the interpretation of identity used in that language. Another may be
metaphysical necessity, although this naturally depends on the meta-
physics. If there is such a thing as a true model space, then the question
has a unique truth value. Otherwise, the only thing we can say is “that
depends on what you mean by necessary”. From the point of view
of A, a specific necessitarian metaphysics supplies an answer to that
question.

As we noted in the last chapter, the choice of model space is indeed
to a large part one of which conventions to adopt, and this naturally
holds for necessitarian metaphysics as well. If a ~ b in the metaphysic
we have settled on, we are allowed to treat a and b as identical. Are
they identical? If we say so. Identity is just as convention-laden as
metaphysics; for any terms “a” and “b”, there are contexts where they
are replaceable salva veritate, and contexts where they are not. Of
course, we can say that identity needs substitutability in all transparent
contexts, but this gives us nothing so long as we do not specify exactly
which contexts are transparent or opaque in a non-circular way. In
fact, such specifications are conventional as well: by deciding to treat a
context as opaque, we are saying nothing more than that ¢(a) < ¢(b)
should not be inferable from a = b, where (- ) is the context in question.

The relativity of identity has been noted several times before, most
famously by Peter Geach (1967). According to Geach, all claims of
identity involve a sortal, so that “a is the same as b” always will invite
the question: the same what? This is not quite what I am saying
here. Identity as we see it s relative, but to a convention rather than a
sortal. In this, we are really more close to Quine in his post-ontological
relativity writings. Is this gavagai the same as that one? That depends
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on whether “gavagai” refers to rabbits or undetached rabbit parts, and
as Quine held, this is for the interpreter to decide.

4.3 Metaphysical Interpretations

The preceding sections introduced necessitarian models in an abstract
setting, and we should now say something about how to interpret their
features in terms of a more easily recognisable concepts. While such
interpretations will be studied more formally in the next chapter, some
largely informal remarks may help in making them more concrete.

As defined, a necessitarian metaphysics is a model space M S N
whose models are subsets of a possible entity set E, with necessitation
relations that are subrelations of the same necessitation relation. It is
thus a sort of specification of the ways the subject matter of a theory,
and in the limit, the entire world, could be. By holding the necessitation
relation fixed, we focus on only the necessary features of our world,
and by requiring the actual world to be variable, we factor out the
contingent.

Many metaphysical theories can be interpreted as necessitarian meta-
physics, in the sense that we can express them in terms of necessita-
tion, possible entities and possible worlds. Another way to say the same
thing is that a necessitarian metaphysics is a kind of representation of
a metaphysical theory. As such, we do not have to interpret it literally.
Although we have let a world be a set of possible entities, for example,
the set itself should not be taken to be that world. It would actually be
better to say that the world is represented by a set, and if that world
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is the actual one, then the things that exist are those that are in the
set, and no others. When interpreting A’s fundamental concepts, we
should allow ourselves some latitude.

Section 2.5 stated that we will neither assume nor rule out any
absolute notion of necessity, and our usage of necessitation relations is
not intended as such an assumption (or ruling out, of course). For now,
all we need to know is the intended interpretation: the X’s necessitate
some Y iff any possible world that contains all the X’s also contains at
least one Y. These possible worlds are representable as models in Al.

Whenever X >& Y, this may hold for several reasons, or, as we
shall put it, it may have different bases. Let us call an instance of
a necessitation relation > (i.e. a pair X,Y such that X > Y) a
necessitation. Some examples of bases for necessitations are:

Semantic necessitation. The weakest necessitation relation that
can hold in any A model is the minimal one according to which X > Y
iff X nY # @, which corresponds to the possible-world system where
any set of possible entities makes up a unique possible world. This kind
of necessitation follows simply from our semantics of the necessitation
relation, so it does not have any metaphysical “punch”, in that it cannot
be used to distinguish A’ models from each other. If all necessitations in
our metaphysic are semantic, then there is really no necessitation going
on at all, and it is a “Tractarian” metaphysic, where we can never infer
the existence or non-existence of one entity (in Wittgenstein's case a
Sachverhalt) from the existence of another.

Mereological necessitation. The classical theory of mereology is
that created by Ledniewski (1916) and Leonard and Goodman (1940)
as a theory of the relation of parthood. At least on a certain reading (an
extensional one), it is obvious that if an entity exists, then all its parts
must exist as well. It is also a principle of classical mereology that if
any entities exist, their mereological sum—the entity that overlaps all of
those entities, and none others—must exist. Both these principles are
easily captured by imposing the following condition on the metaphysic
M ={E, >
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~

For every non-empty X S FE, there is a unique entity X
such that

X > X

Xoszforallze X

We can define x to be a part of y iff y = {z,y}, and we will also
generally write  + y for the sum {/z,—y\} It quickly proved that this
theory is equivalent to that of atomistic classical mereology: it defines a
Boolean algebra of subsets of the set E with the empty set removed, and
any such algebra is isomorphic to an atomistic mereology, as was proved
by Tarski (1956, ch. IT). We will call any necessitarian metaphysic for
which this axiom holds unrestrictedly mereological.

Necessitation relations also allow us to define weaker forms of mere-
ology. The simplest ones are those that do not fulfil what is com-
mounly referred to as unrestricted composition (that any non-empty set
of entities has a sum). We do this by changing “for every non-empty
X € E” to “for every X € §”, where S is some set of subsets of E.
One such limitation, which is quite reasonable, is to limit composition
to entities that are compatible in the sense that there is some possible
world that contains all of them. When M fulfils the axiom for the class
S ={X € F| X >& g}, we say that M is restrictedly mereological, or
simply just mereological, since this will be the case most useful for us
in later chapters. Adding a restricted mereological structure to a meta-
physics does not introduce impossible objects, unlike the imposition of
an unrestricted mereology.

The generality of necessitation relations also makes it possible to re-
lax the extensional aspects of classical mereology. What if, for instance,
I must have some heart to exist, but there is no specific heart that I
must have, since I do not go out of existence by a heart transplant? In
such a case, we would have a mereological necessitation relation that ful-
filled {me} >& {hearty, hearts, . ..} without fulfilling any of me o— heart;,
me o— hearty, etc.

In fact, we can be even more general. Mereological structure is very
useful to have in a metaphysic, but it is common for the ezistence of
sums to be more important than their uniqueness. We can thus call X
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a sum of X if it fulfills the criteria for being a mereological sum, but
may be non-unique in doing so. It is simple to prove that if @ and b
are sums of X, then a ~ b, so such sums are necessarily coexistent. If
sums are non-unique, - is not really a function, but since all sums must
be equivalent, we can treat it as one nevertheless: it does not matter
which of the sums of X we choose to represent it, since they all have
the same place in the necessitation structure.

Causality. Unlike what is the case in mereology, there is no formal
“classical” theory of causality. This does not stop many such theo-
ries from being interpretable in terms of necessitation, however. Those
easiest to represent are the deterministic ones, which always are sin-
gular. Mackie’s version, from The Cement of the Universe (Mackie,
1974), in which the natural language word “cause” is interpreted as
“INUS condition”, is a theory of this type. According to Mackie, ¢; is
an INUS condition of e iff ¢;, together with some other (unspecified)
conditions cg, ¢3, . . ., are sufficient (but usually not necessary) for e, and
the cs, c3, ... are insufficient for e on their own. We can write this simply
as {c1, ca,c3,...} >> e, together with {ca,c3,...} >~ e.

An historically important class of theories is the regularist one,
where causality is a relation holding between events (or possibly facts,
tropes, or something else), such that if e; causes eq, then e; precedes
e2, events of ey’s type generally follow events of e;’s type, and e; and
eo are continuous in space and time. Strengthening the second clause
to “events of ey’s type invariably follow events of e1’s type”, we arrive
at the deterministic, regularist notion of causation described by Hume.

One advantage of our necessitation framework is that it readily al-
lows indeterministic causation as well. If e; can have either of the effects
eo or ez, but must have at least one one of them, we have the necessi-
tation e >& {eq, eg}, but neither e; >& ey nor e; >& e3. If e precludes
eq, then causality is a basis for the necessitation {e1,es} >€ @, i.e. the
incompatibility of e; and es.

More specific types of nondeterministic causality are allowed by let-
ting the necessitation relation be probabilistic, as will be described in
the next section. Using such relations, we can capture not only general
facts such as “e; causes e; or e3”, but also those of the form “e; gives
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an 2% chance of ey”.

Ontological dependence. Some metaphysical entities are thought to
depend on others. A non-transferable trope, for instance, depends for
its existence on a specific thing, of which it is a property (cf. Martin,
1980). For Kripke, person a’s existence presupposes person a’s origin,
since he takes someone’s specific origin to be essential to that person
(Kripke, 1981, pp. 110-115).

A more complex notion is that of generic dependence. A substance,
as we mentioned earlier in this chapter, may require the instantiation
of some property in order to exist (to avoid the problem of “bare sub-
stances” ), but it may not need the instantiation of any specific property.
Object a’s redness may require a to have some exact shade of red, but
not necessarily any specific shade. It is clear that these cases are also
representable as ones of necessitation, although ones which are non-
singular.

Later on, we will also encounter dichotomous metaphysics, in which
the set of possible entities is partitionable into pairs, and every world
must contain exactly one entity from each such pair. An example is
where we require every truth to have something that makes it true (a
truthmaker), and use a language which conforms to the laws of classi-
cal logic. Since either p or —p must hold in every world, every world
must contain a truthmaker for either p or for —p. It is hard to say
what grounds this “must”, except perhaps ontological dependence: the
wholeness implicit in being a world requires some truthmaker for every
statement to exist, but different worlds can still have different truth-
makers in them.

Necessitation relations used in scientific or commonsense models
usually have instances based on several of these phenomena, since ne-
cessitations combine: as we noted, for any set of necessitations, there is
a smallest necessitation relation that includes all of these. Differently
put, if we have that R(X,Y), for some sets X,Y € E and some binary
relation R on p(FE), we can extend this relation in a unique way to a
necessitation relation >&€g that fulfils the axioms Overlap, Dilution and
Set Cut. Such an extension does not add any “real” necessitations to
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the model, but only semantic ones.

Necessitation relations and possibility of worlds are two ways to view
the structure of a necessitarian metaphysic. But just as we started with
the inference structure of a theory, and laid an algebraic structure on
it in section 2.4, we can also start with a necessitation relation, or a
part of one, and impose an algebra (total, as in chapter 2, or possibly
partial) on that. One example is a formalisation of mereology as an
algebra, with the operations of mereological sum, product (the overlap,
if any, between two things) and complement (the sum of everything
that does not overlap what we take the complement of). This would
be an example of a partial algebraisation: the product of a and b is
only defined when a and b overlap, and if we do not have unrestricted
composition, neither do they always have a sum.

Formally, such an algebraisation works much like the algebraisations
of the preceding chapter. First, we need a notion of structurality: let A
be an algebra whose carrier set A is a subset of the possible entity set
FE of a necessitarian metaphysic M. We then say that 2 is structural in
M, or an algebraisation of M, iff

If X > Y, then ¢[X] > ¢[Y], for any X,Y € A and any
endomorphism ¢ on 2.

Just as with an algebraic theory, the algebraisation of a necessita-
tion relation allows us to view necessitation as based on the structure of
the model, rather than on individual objects’ intrinsic properties. This
distinction could be useful for the separation of natural law and singular
causality. A suggestion would be that the laws are those necessitation
relations that are invariant under certain endomorphisms, although this
naturally requires the world to have an algebraic structure. Different
theories of natural law would then correspond to different algebraisa-
tions.

So much for the necessitation relations. We come now to the other
part of an A’ model: the entities. These could be said to differ some-
what from some of the things that are commonly called objects, in that
we have taken what entities exist to fully determine the identity of a
possible world. But some (see Dodd, 2001; Lewis, 2001) would say that
more is required: we need to know not only what things there are, but
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also what these things are like, and how they are related. Being told
that the rose r exists in world w does not suffice to settle the question
of whether w contains a red rose or not, since we also need to deter-
mine whether 7 is red or white, for instance. According to this line
of thought, r by itself does not determine its colour, since it might
have had a different colour (for instance, by having been dyed) and still
existed.

Yet, there is also a sense in which existence must be enough: if I
am told exactly what things exist in a world, and what things do not
exist, I am told everything that is possible to know about that world.
This is clearest when we approach the problem in terms of predicate
logic. Classically, any sentence can be rewritten as either an existential
sentence (i.e. a sentence that begins with an existential quantifier), or a
negative existential sentence (one that begins with a negated existential
quantifier), and this holds for several extensions of classical predicate
logic as well, such as some modal logics. If what sentences are true in
a world determine what world it is, then what things exist in it must
determine it as well.

The solution to this problem consists in the recognition that we have
used words like “object”, “thing” and “entity” interchangably here, and
the notion of entity that is embodied in necessitarian model theory can-
not do the work of all these as it stands, since it is purely extensional.
For a notion of object that can have different properties in different
possible worlds, we may take some inspiration from trope theory. Ac-
cording to trope theory, a property is a particular, unique to the thing
that has it, so that my humanness and my friend’s humanness are dis-
tinct entities. What makes both into humanness is an equivalence re-
lation of exact similarity that holds between them. Furthermore, what
makes my humanness and my two-leggedness into properties of the same
object is the equivalence relation compresence (sometimes called con-
currence) that holds between any two tropes that are properties of the
same object. 3

We can use these ideas to let an ordinary object o, with all its
properties, correspond to a maximal compresent set c(o) of entities,

3The word “trope” (or this usage of it, at least) comes from D.C. Williams’s
article On the Elements of Being (Williams, 2004).
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spread out over several possible worlds. The interpretation of this is
that if ¢(0) is an object-set, and w a possible world, then the tropes
that are in ¢(0) N w determine what properties o has in world w, and if
¢(0) Nw = &, then o does not exist in w at all. Given a property P, we
let ¢(P) be a maximal set of similar tropes. The predication P(0) can
then be taken to be true iff ¢(0) n ¢(P) n o # &, i.e. if the entities of
o that are in the actual world overlap those that are the tropes of the
property P. We can also say that o is P essentially iff ¢(o) overlaps
¢(P) in every possible world in which o exists.

This can be extended to m-place relations as well. The instantia-
tion of a relation is, however, a more complicated thing than that of
a property, since there is only one way for an object to instantiate a
property, but there are two ways for a pair of objects to instantiate a
binary relation (R(01,02) and R(02, 01)), six ways for a triple of objects
to instantiate a ternary relation, etc.

Just as we did in the case of properties (or 1-place relations), we
associate each relation R with a maximal set ¢(R) of similar tropes.
Each trope in such a relation is then taken to be the instantiation in
a certain place by the object that trope belongs to. Thus, for any
natural number ¢, we say that the trope ¢ is an ith-place trope iff ¢
is the instantiation of some object o in the place ¢ of R. Call these
sets of tropes N1, Na,.... These are clearly disjoint, and if there are no
infinite-arity relations, they exhaust the class of possible tropes. The
sets N1, No, ... then partition the set ¢(R) into the n non-overlapping
subsets ¢1(R), . .., c,(R). Using these sets, we can define what it means
for a relation to hold in w by taking R(o1,...,0,) to be true iff

c(R)nojnw #@

for all 7 from 1 to m. It is easily checked that this way of defining
relations in terms of tropes lets the holding of R(01,02) be something
else than that of R(02,01).%

Now, both similarity and compresence can be taken to be superve-
nient on their relata, i.e. we have that if ¢; is similar to %o, this holds in
any possible world in which ¢; and t; exist, and if ¢; and ¢y are prop-
erties of the same object, they are so in any world in which they exist.

4For another way to handle relations as tropes, see Bacon, 1995, ch. 2.
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Both of these actually follow from similarity and compresence having
been defined directly on the set of possible entities, rather than relative
to some world.

How should we then interpret sets such as ¢(o0), for an object o, or
¢(P), for a property P? Are these among the possible entities? They do
not have to be: ¢(0) is used in our definition of truth for P(o), but the
tropes themselves are doing all the actual work by being bases for the
similarity and compresence relations. From these, all the objects and
the properties follow, and what ¢ does is the purely semantic function
of associating a singular term or a predicate with some possible entities.
Instead of taking ¢ to be a function to sets of entities, we could just
as well have taken it to be a relation to the entities themselves, and
thereby have avoided mentioning sets at all.

Another way to represent objects with contingent properties is use
intensional semantics in the vein of Carnap (1956) and Montague (1970,
1973). We can let an object o be a partial function o : @ — FE such
that o(w) € w, whenever o is defined at w. Intuitively, o(w) says what
entity, if any, o is in the world w. A necessary existent would be an
object which is a total function. A relation R can be defined simply as
its extension, i.e. a set of the n-tuples of possible entities that satisfy
the relation.

Given these notions, we can define the predication P(o1,...,0,) to
be true in world w iff all of o1, ..., 0, are defined at w and

{01(w),...,on(w)yE P

We say that o has property P necessarily iff {o(w)) € P for all worlds
w € Q where o is defined, and that o has P contingently iff {o(«)) € P,
but {o(w)) ¢ P for some other world w where o is defined, where « is
the actual world.

A function o is a version of what Carnap calls an individual concept
(Carnap, 1956, p. 40). It allows us to identify the bearer of the name
“0” in different worlds, and may be seen as a meaning specification
of that name. Since a predicate P is defined directly on the possible
entities, and not relativised to a world (unlike an individual concept),
everything true about an entity e remains true in all worlds. However,
different entities correspond to the same object in different worlds, and
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this is how we may have that the same object has different properties
in different worlds.

In neither the trope-based solution, nor in the intensional one, do we
need to have something in our set of possible entities that corresponds
one-to-one with the “ordinary” object o. Despite this, talk about or-
dinary objects can be paraphrased into talk about possible entities.
Thus we hold that even objects of a more Aristotelian flavour are rep-
resentable in necessitarian metaphysics, and that requiring worlds to
be determined by what entities exist in them imposes no significant
limitation. As a model space, A is a way to speak and think about the
world, and it seems to be a way that has enough structure for it to be
useful for the purposes at hand.

4.4 Probabilistic Necessitation

While necessitation in its various forms definitely has uses in science,
probabilistic relationships are even more common. It is therefore im-
portant to indicate how the above metaphysics can be extended in that
direction, and this is the aim of the current section. Unfortunately, we
will not be able to delve into any depths regarding these metaphysics,
but since they are useful for quantum mechanics, which we want to be
able to say something about later, we will at least give an outline of
what they could be like.

Let a probabilistically necessitarian metaphysic be a pair (E, N),
where E is set of possible entities, and N is a function from p(E)? to
the real interval [0, 1] called probabilistic necessitation. The intended
interpretation of N is that N(X,Y) = « iff any world that contains all
the X’s has a chance 7 to contain some Y. If N(X,Y) = 7 holds, we
also write X >& Y to highlight the connection with nonprobabilistic
necessitation.

It is clear that N must have other properties than >, and we would
like it to be a generalisation of such a relation in the sense that
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XskYif X>eY

for some nonprobabilistic necessitation relation >&. Thus, when the
necessitation is certain (or at least almost certain), it should conform
to the laws of nondeterministic necessitation. This allows us to define
a possible world in the same way as before. We let the possible worlds
induced by a probabilistic necessitation relation be the set

Qz{WgE‘W»]éWC}

as before. Thus a possible world is a set of entities, such that when
these exist, we cannot be certain that something else exists as well.
There is one thing that is worth noting here: probability 1 is not usu-
ally taken to be the same as certainty (the traditional word for it is
almost certainty). However, for the applications we will have for our
probabilistic necessitation relations, the difference will be negligible. It
does, however, have a few interesting consequences, such as the fact
that no world can contain an infinity of non-necessary, probabilistically
independent objects.

When uncertain, probabilistic necessitation should conform to the
laws of probability theory. Here we make life considerably simpler for
us if we assume the metaphysic in question to be mereological. In this
case, it means that for every non-empty set of entities X such that
X >;£E &, there is an entity X such that

X > X
{)A(}>1€E{x} forall ze X

Thus, a sum X of some set of compatible entities X is an entity
that we can be sure exist/s_iﬁ all the entities in X exist. As before, we
write x 4+ y for the sum {x,y}. With sums, we can define the following
important concept. Let the cross-sum ®X, where X is a set of sets of
entities, be a set of entities that contains a sum X for each consistent
set X containing at least one entity from each set in X:

®Xd=f{ff‘YgEandeX;é@forallXeX}
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A cross-sum is thus a set of sums of entities that contains something
from each set in a set of sets. We write the cross-sum of the sets X and
Yas X ®Y.

We also have use for the following relations on p(FE), which we will
call weak orthogonality, V-equivalence and 3-equivalence:

X LY = (Yre X)(VyeY)({z,y) & &)

xly = (e y)(X >& {y}) and (Vo € X)(Y >& {z})

Xy =, (Vo e X)({z} >&Y) and (Vy € Y)({y} >& X)

In our intended interpretation, X 1 Y means that no X can coexist
together with any Y. X LY holds iff any world that contains all X’s
also contains all Y’s, and vice versa, and X Y means that the worlds
that contain some X coincide with those that contain some Y. The
last of these could also be expressed as the condition that X and Y
distributively necessitate one another.

Using this array of concepts, we can give axioms for N:

(Necessitation) > is a nondeterministic necessitation
relation

(Equivalence) if X L X' and Y R Y’, then
N(X,)Y)=N(X"Y"
(Additivity) ifY L Z and Y and Z are non-empty,
NX,YuZ)=N(X,Y)+ N(X,2)
(Conditionalisation) NX, {Y1®2) =

N(X {Y}) N(X vY,2)

The first of these follows from our intention to have the relation >&
conform to the rules of nondeterministic necessitation. Equivalence is
required for us to be able to assign probabilities to sets of worlds, rather
than to just pairs of sets of entities. Additivity gives us the additivity
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of probability across non-overlapping sets of worlds, and conditionali-
sation makes possible the interpretation of N in terms of conditional
probability.

The main advantage of the axioms is that they allow us to interpret
the probabilistic necessitation relation N as we intended. For this pur-
pose, it is useful to, whenever 2 is the set of possible worlds, define the
two functions

Q'(X)={weQ|(Vre X)rew}
P (X)={weQ|(FreX)recw
i.e. QY(X) is the set of those worlds that contain all entities in X,

and Q7(X) is the set of worlds that contains some of the entities in X.

Using these, we may check that the relations 1, < and 2 behave as we
would expect them to.

Theorem 4.12 : If (£, N) is a necessitarian metaphysic, the following
hold.

(i) X LY iff Q*(X) n Q3(Y) = 2.
(i) X LY iff Q¥(X) = QY(Y).
(i) X 2 Y iff Q3(X) = Q3(Y).
Proof.

(i) Assume that X 1Y, and for contradiction that there is some
world w such that X nw # @ and ¥ nw # &. Then there
are x € X and y € Y such that {z,y} € w. But for all z € X,
y € Y, we have that {z,y} & @, and so, by Dilution, we
must have that w >& wC as well, contrary to assumption.
Conversely, let 93 (X)nQ3(Y) =@, andlet r€ X andye Y
be arbitrary. Since {x,y} are in no world, we must have that
{z,y} UW >& WY U @ for any set W D {z,y}, but then it
follows by Set Cut that {z,y} >& @.
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(i) Let X XV, and assume that w € Q¥(X). Then X C w, and
since X >& {y} for all y € Y, we must have that w >& {y} for
all y e Y as well. But w is a world, and thus contains all the
things it necessitates, so we must have Y € w as well, and
thus also w € QY(Y). In the other direction, let Q(X) <
QY(Y). It is only those y that are outside X that we have to
be concerned about here. For all worlds w containing X, we
have that X U w >& {y}, for all y € Y, since y has to be in w.
But from Dilution, it then follows that X U w & w® U {y},
and by World cut* that X >& {y}.

(#i) Let X 1Y and w € Q¥(X). Since z € w, for some z € X,
and {2} >& Y, we must have that there is some y € w as well.
Conversely, suppose that 23(X) € Q3(Y), and let x € X. We
then have, for all worlds w that contain {z}, that w >& Y,
and by Dilution that w >& w® UY. The theorem follows by
World cut*.

O

The following theorem gives some useful properties of Q¥ and Q7.
Since the proofs consist in straightforward verifications using set theory,
we have omitted them.

Theorem 4.13 : Q7 and Q7 fulfil the following, for all X,< E, and
any set X of such subsets:

(1) Q"(Ux) = N Q7(X).

Xex

(it) (Jx) = U &(X).

Xex
(iii) QI({X}) = Q¥(X).

(i) B(@x)= N Q*(X).

Xex
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Q" and 7 are useful for giving succinct definitions of the nondeter-
ministic necessitation relations >& and ><:
X>a Y iff Q"(X) < Q3 (Y)
X <Y iff Q3(X) c Q¥ (Y)
Generalising this, we want to be able to interpret probabilistic ne-
cessitation so as to fulfil
XS&Yiff POA(Y)| QX)) =7

whenever P(Q7(X)) > 0, where P is a probability function on the set
of possible worlds, i.e. a function on a o-algebra of sets that fulfils the
three Kolmogorov axioms

(i) P(A) =0 for all A € Q.
(i) P(Q) =1

(éii) If Ay, Ag, ... is a countable sequence of non-overlapping sub-

sets of {2, then
P(JAi) =) P(A)

As usual, we define the conditional probability function

P(ANnT)
PA) = ————=
(A1) def  P(T)
whenever P(I") > 0, and leave it undefined otherwise. We can use the
Kolmogorov axioms to explicate the connection between probabilistic
necessitation and regular probability. The following theorem shows that
the intended interpretation of IV is possible.

Theorem 4.14 (Representation of probabilistic necessitation)
: Given a probabilistic metaphysics (E, N), with set of worlds Q, we
can define a probability space (2, P) on Q where 2 is a o-algebra over
subsets of 2 and P a probability measure on 2, such that 2 is uniquely
generated by the sets of the form Q7(X) and Q°(X), for X € E, and
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P(Q°(Y) | 2V(X)) = N(X,Y)
whenever P(Q7(X)) > 0.

Proof. We start by showing that the sets of type Q3(X) and QY(X)
generate a o-algebra uniquely. For this, it is sufficient that they are
closed under pairwise intersection, and thus make up what is called a
w-system; we can then use Dynkin’s lemma to show that the o-algebra
generated by these sets is uniquely determined (Fremlin, 2000, §136).
But closure under pairwise intersection follows from theorem 4.13, since
P(X)n(Y) =0 (X®Y),and Q"(X) n QYY) =Q"(X UY), and
it is also easily checked that Q3(X) A QV(Y) = Q3 (X @ {V'}).

Now, Q7(X) can be written as Qa({j{\'}) whenever X # @ and X >&
@. But if X & @, we have that QV(X) = @ = Q3(@), so the only set
that is not of the form Q7 (X) is Q7(2) = Q. Use the generated algebra
to define a probability measure as

P(2°(X)) = N(2, X)
P(Q%(@)) =1

These are well-defined because of the Equivalence axiom. The first
Kolmogorov axiom holds trivially since N always takes values in [0, 1].
The second holds by definition, since we have taken P(Q¥(@)) = 1.
Pairwise additivity follows easily from the additivity axiom for prob-
abilistic necessitation, since, as we proved in theorem 4.13, X | Y iff
Q7 (X) and Q3(Y) are disjoint. But since P is bounded, its values for
unions of countable sequences of disjoint sets are determined by the
values of the unions of their finite subsequences.

Finally, we wish to show that whenever P(Q"(X)) > 0,

PP(Y) 0 Q7(X))
P(QY(X))

N(X,Y) =

Assuming first that X # &, we rewrite the right-hand numerator in
terms of °:
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P(OP(Y) n Q(X)) _ P(Q(Y) n D3({X}))
P(QY(X)) POI({X)))
P (Y ® {X}))
P({X})
N(2,Y ®{X})
N(2.{X})
N(@ U X,Y) N(@,{X})
N(2.{X})
= N(X,Y)

where the next-to-last equality follows from the Conditionalisation ax-
iom. In the case where X = &, we have

PQHY ﬁQv PQHY{\Q
: zg(fg\f(@»(@)): : P(’(Q)) )=P(93(Y))=N(®,Y)

which proves that the definitions we have adopted make everything
come out as expected. O

A probabilistic necessitation relation thus determines a probability
distribution on the set of possible worlds. Whether the converse holds
as well (i.e. whether any probability distribution on a set of possible
worlds can be written as a probabilistic necessitation relation on the
entities) is an open question. In any case, we do not have the elegant
one-to-one correspondence between necessitation relations and sets of
possible worlds that we have with nonprobabilistic necessitation, since
two different probabilistic necessitation relations can give rise to the
same probability distribution on worlds. The reason for this is that
the result of conditioning on a null set in standard, Kolmogorovian
probability theory is undefined, while it is not so for a probabilistic
necessitation relation. To fully capture the richness of this relation’s
structure, we would have to use a representation in terms of primitive
conditional probability instead, such as that of Rényi (1955).
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A model in a probabilistically necessitarian metaphysics is a world,
just as in regular necessitarian metaphysics. More precisely, let the
model space PA have as objects the class of models (F, N) where N
is a probabilistic necessitation relation such that N(F,@) < 1. This
condition works as a consistency requirement, since it guarantees that
the entities in a model have a non-zero chance of occurring together.

A necessitarian metaphysic will in general have N(FE, ) = 1, since
some of its possible entities are incompatible. Take, for example, a
typical quantum-mechanical experiment in which we measure the spin
of a particle. However we measure it, we will get one of the answers
“up” or “down”, but we will never get both of them. Thus any world
in which the experiment occurs has a certain chance to also contain an
“up” observation, but if it does, we can be sure that it does not also
contain a “down” observation in the same experiment.

As morphisms between probabilistically necessitarian models we
may take those functions h : (E1, N1) — (Ea, No) for which

Nl(va) < N2(h[X]7h[Y])

for all X,Y < FE;. However, since only a fairly small part of this book
will deal with probabilistic necessitation, we will not go into what this
choice will mean for embeddings and reductions.
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CHAPTER 5
SEMANTICS

This chapter is devoted to the relationship between a theory and
its models, which we have called semantics. A semantics consists
of an assignment of semantic values to interpretations of a the-
ory’s claims, where an interpretation is a kind of function from
a theory to a model. Semantics generally involves both reinter-
pretation and modality, and we call those semantics that consist
in just reinterpretation Bolzanian, and those that consist in just
modality Leibnizian. The most important terms in this section
are soundness and completeness. These concepts are broadened
slightly to accommodate many-valued and probabilistic theories
as well.

Section 3 discusses historically important kinds of semantics,
among which are matrix and Tarskian semantics. We also give a
kind of universal semantics, by using a theory’s own theory space
to make models for it, and show that this is sound and complete.

The rest of the chapter concerns semantics for necessitarian
metaphysics. A central class of these is made up by so-called
truthmaker semantics, which can be seen as a generalisation of
the traditional correspondence theory of truth. We give a num-
ber of theorems on these, which clarify how truthmaker theory
is connected to the more general concept of a claim’s truth con-
ditions.
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5.1 Tying Theory to Reality

Semantics, as we mentioned in section 1.5, is for us the study of re-
lationships between theories and model spaces, rather than the study
of meaning in general. Not just any such relationship is, however, of
interest for us. What we concentrate on are those relationships relevant
to the truth and falsity of claims.

The basic entity in our version of semantics is the interpretation,
roughly conceived as a method of assigning entities in or parts or fea-
tures of a model to claims in a theory.! Formally, we take it to be
associated with every interpretation h a theory dom(h) called its do-
main and a model cod(h) called its codomain. It thus has the structure
of a morphism in a category, although it naturally does not make up
any category on its own.

By a semantics S(A A M) for a theory A in the model space M,
we shall understand a binary function from a set H of interpretations
and the language L4 of A to a set V of semantic values, such that
dom(h) = A and cod(h) € M, for every h € H. For us, the most
important semantic values will be truth and falsity, and we will call
a semantics bivalent if it assigns either ¢ or f to all combinations of
interpretations and claims.

The idea is that while an interpretation says how claims are mapped
onto a model, the semantics interprets the results of these mappings in
terms of semantic values such as truth or falsity. For this purpose, it is
imperative that when we know an interpretation h, and the model that
h interprets the theory in, the assignments of semantic values to claims
should follow more or less directly. Unfortunately, I do not quite know
how to make this condition entirely precise. An illustration may help.

In the next section, we will discuss Tarskian semantics. Accord-
ing to Tarski’s theory of truth, open formulae can be assigned sets of
sequences of elements of a domain, and the sets of such sequences as-

n general, if we do not limit ourselves only to claims, but consider parts of
claims as well (such as individual words in a language), an interpretation will also
associate these with parts of the model. A well-known example here is reference,
through which singular terms in a language are assigned objects in a model. But as
we have disregarded sub-sentence structure here, we will bypass these complications.
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signed to complex open and closed formulae can obtained recursively
from the assignments to their parts. Where D is a domain (i.e. a thin
Tarskian model, as we also called it in chapter 3), it is natural to take
an assignment of sets of sequences of objects in D to the open formulae
of a language £ to be an interpretation of £ in D. As Tarski proved,
all closed formulae will be assigned either the class of all sequences of
objects in D, or the empty class.

Now, which of these cases should we take to correspond to truth,
and which should correspond to falsity? This is exactly the problem of
determining the semantics, given the interpretations and the models.
Its solution is partly dependent on convention. The one Tarski makes
is that the sequence S should be in the set assigned to the formula
P(z1,...,x,) precisely when the n first elements of S, in the order
they appear there, satisfy this formula. The meaning of his term “sat-
isfaction”, together with his material criterion of adequacy on truth
definitions, then forces us to say that a sentence is true iff it is satisfied
by all sequences, and false iff it is satisfied by none.

We could, on the other hand, just as well have made the opposite
convention, and said that an open formula is to be interpreted as the set
of sequences that do not satisfy it (we may say that these sequences are
the “falsifiers” of the formula). We must then say that a sentence is true
iff it is assigned the empty set, since truth, on this picture, corresponds
to absence of falsifiers rather than the presence of satisfiers. In any
case, however, a description (or in some cases a stipulation) of the
meanings of the terms involved will settle how semantic values are to
be assigned as well. This is roughly what we mean by the condition
that knowledge of the semantics should be inferable from knowledge of
the interpretations, together with knowledge of the models.

Given a bivalent semantics S(A B ), we write h E p when
S(h,p) = t, and if X is a set of claims, we write h & X iff h & p
for all p e X. For a theory A, we have that A is true iff its consequence
operator preserves truth. This means that we should interpret h = A
as the claim that for all X € L4, h = X = h = C(X). These are our
versions of the notion of truth-in-a-model.

Each semantics S(A S ) gives rise to a semantic consequence
relation =5 on p(La) x La through the definition

149



SEMANTICS

Xt=5pd=f(\1heH)(hl=X—>ht=p)
We say that a semantics S(A 2 M) is sound iff it satisfies the
condition

if X4 pthen X =5p
and complete iff it satisfies the converse implication
if X Egpthen X 4 p

for all sets of claims X € L4 and all claims p € L4. A sound and com-
plete semantics is thus, as usual, one in whose theory p is a consequence
of the set X of claims iff all interpretations that make the claims in X
come out true are such that p comes out true according to them as well.
If § is a sound and complete semantics for a theory A, we say that A’s
consequence operator is given by S, or that A is characterised by .2
Related to the concept of soundness is that of validity. Let F' be
a theory (for instance, a logic) that we use as a framework. A claim

p € L is walid according to S(F & M) iff h = p for all interpretations
h, and since this property only depends on the semantics (and the model
space, but the semantics determines the model space), we write this as
Es p. We count a set X of claims as valid iff =5 p for all pe X, and a
theory A in F' as valid iff A’s consequence operator is truth-preserving
in all interpretations. We write these as =5 X and kg A, respectively.
In the limiting case, F' itself is valid iff S is sound.

Semantics come in different forms, and there seems to be two funda-
mentally different ways to interpret what it means to be logically valid.

Let us call a semantics S(A B oo ) with a set H of interpretations
Bolzanian if cod(h) = cod(h’) for all h, h' € H. In such a semantics, all

2A note of caution: what we have called completeness is sometimes referred to as
strong completeness. We have omitted the word “strong”, since the other, “weak”
form of completeness is of little use unless one takes logic to be concerned primarily
with logical truth, rather than consequence.
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the variation is done through quantifying over interpretations while the
model is kept constant. The other extreme is where choosing a model
also determines the interpretation, i.e. no reinterpretation of terms
is allowed.® Here, consequence corresponds directly to preservation of
truth in all models. Since our models are representations of parts or
aspects of possible worlds, we call such a semantics Leibnizian, although
Leibniz himself tended to see logical consequence as dealing with con-
cepts first, and only secondarily with possible worlds (cf. Ishiguro, 1990,
p. 48).

If a semantics is both Leibnizian and Bolzanian, it determines the
semantic values of all claims in its theory on its own, and truth will
coincide with validity. Interesting examples are hard to come by. Even
if Peano arithmetic, for example, should have an intended semantics in
terms of the natural numbers, such a semantics cannot be complete,
by Go6del’s theorem. Tarskian semantics in general may perhaps best
be taken as neither Bolzanian nor Leibnizian, since they work by rein-
terpreting terms, but also allows the domain of quantification to vary
freely. Semantics whose theories’ consequence operators are analytic
or stronger are all Leibnizian, since the notion of following in virtue of
meaning naturally requires the meanings of terms to stay constant.

Why be interested in non-Leibnizian semantics? The Tarskian expli-
cation of logical consequence points to one reason: we may be interested
in what follows from the meanings of some words, but not all, such as
when we keep the meanings of the logical constants fixed, but allow the
nonlogical terms to vary. One could also envisage classing some terms
of a theory’s language as physical, for instance, and then defining the
physical consequences of X to be those which follow from X in virtue
of the meanings of the physical words.

Another reason for interest in non-Leibnizian semantics could be
semantic vagueness. Perhaps the meanings of some claims in a theory

30mne could hold that we need to do more than to require an interpretation to be
uniquely determined by the model if we are to rule out reinterpretation of terms.
However, in the absence of a theory of meaning, there seems to be no principled
way to do this. Consider, for example, the claim “the largest person in this room is
over two metres tall”. It does not seem to be reasonable to maintain that it must
be the same thing that makes this claim true in all the models of the room where
it is true.
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A are not determinate enough for us to be able to assign semantic
values to them unequivocally, given a certain model space. We can
still use that model space to define consequence for A by letting the
set of interpretations in the semantics be the allowed sharpenings of
A’s claims (this is a type of supervaluationist treatment of vagueness).
Each sharpening will then correspond to a theory stronger than A.

Still, the semantics of primary interest for us are the Leibnizian ones:
Etchemen dy (1990) even makes the case that all logical consequence is
purely modal, and has nothing to do with reinterpretation. Even Tarski
himself slips into using modal language when giving his famous theory
of what it means for a sentence X to be a consequence of the class K
of sentences:

(F) If, in the sentences of the class K and in the sentence X, the
constants—apart from purely logical constants—are replaced by
any other constants (like signs being everywhere replaced by like
signs), and if we denote the class of sentences thus obtained from
K by ‘K", and the sentence obtained from X by ‘X”’, then the
sentence X' must be true provided only that all the sentences of
the class K’ are true. (Tarski, 1936, emphasis added).

I believe that we despite this should take Tarski’s theory of logical
consequence to at least be very much in the Bolzanian vein. Two para-
graphs later, he states that if (F) were to be sufficient and necessary
for consequence, we would have solved all problems pertaining to this
concept, since the only possible difficulty would be with the usage of
“true”, and that had been answered by his own theory of truth. If
he really had wanted to attach some modal force to his must, he would
surely not have said this, since modal terms were seen as no less fraught
with difficulty then than they are now.

It is telling that not even Tarski managed to stay clear of using a
modality-laden term such as “must be”, and it is doubtful that a purely
Bolzanian notion of consequence can be materially adequate. Their pri-
mary problem is that they tend to make the validity of logics dependent
on what exists: Bolzano’s original version, for instance (Bolzano, 1837),
did not allow the domain of quantification to vary, so sentences such
as “there are at least n things” became truths of logic for all n such
that n is less than or equal to the actual number of objects there are.
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As we shall see in the next section, it is not obvious that Tarski’s own
semantics is entirely free from this problem either.

Leibnizian semantics will thus be taken as our primary field of inter-
est. For these, there are several useful ways to describe soundness and
completeness in terms of relations between theories and models. Since
models and interpretations are correlated one-to-one in such a seman-
tics, we will write 9t = p when h = p and h is the unique interpretation
whose codomain is 9. We will also drop the reference to a set of inter-
pretations when giving the semantics itself, and write S(A — M) rather
than S(A & ar).

Within a theory space, the truth of a theory in a model is the same
thing as the truth in that model of all its theoretical truths:

Lemma 5.1 : If M = F and A is any theory in F, then 9 = A iff
ME=Ta.

Proof. What we need to show is that

(VX C L) (M E X — M= Ca(X))

iff M = T 4. For the left-to-right direction, assume that the 1.h.s. holds,
and take X to be the empty set. Then we have that 9t = Cx (&), but
since C4(@) = Ta, M E Ta. For the other direction, we assume that
M = T4 and try to show that (VX € La)(M = X - M = Cu(X)).
So take any X, and assume that 9t = X. Then M = X u T4, and
as we have assumed F' to be true in 91, we furthermore have that
M = Cp(X U Ta). But this is the same as M £ C4(X), which we
sought. O

Now, assuming that we have a Leibnizian semantics S(F — M), let
[p] be the set of models in M in which p is true, let [X], where X is
a set of claims, be the set of models where every claim in X is true,
and when A is a theory in F, let [A] be the set of models where A’s
consequence operator is truth-preserving. Borrowing some terminology
from mainstream model theory, we call a subclass X of M such that
X = [B] for some theory B in A elementary.
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The theory space T is ordered by F-entailment and p(M) is ordered
by the subset relation. This entails that the following theorem holds.

Theorem 5.2 : If S(F — M) is sound then [ - ] is monotone and if it
furthermore is complete, [ - ] is an embedding.

Proof. Assume that A and B are arbitrary theories in F' and that A
B. Let M be an arbitrary model. By the preceding lemma, 9 = A
T MET4 and M E B iff M = Tp. But since A < B, we have that
Tp € Ta, and thus we must have that [T 4] € [T5g].

For the completeness part, we need to prove that [A] € [B] <
A < B implies that (Yt e M)(ME= X - M E p) - X g p, for
all X € Ly and p e L. Take X and p to be arbitrary. Assume that
(VO e )M = X — M = p). Since we have assumed soundness,
we have that the models in which Cp(X) is true are exactly those
in which X is true. This means that the condition is equivalent to
M= Cp(X) - M = Cr({p}). But any closed set of claims in F
is the set of truths of a theory in F, so we set Cp(X) = T4 and
Cr({p}) = Tp, and arrive at (YD e M)(ME Ta — M E Tp). By the
preceding lemma, this is equivalent to the condition that [A] < [B],
which by the embedding requirement in turn is equivalent to A < B.
But To = Cr(X) and T = Cr({p}), which means that Cr({p}) <
Cr(X), and this is equivalent to X g p. O

It is also enlightening to view the matter from the perspective of
a model space’s canonical theory. Remember that M = Th(M) is the
theory {Ls, Cpr) such that Ly = p(M), and

Car(X) = {peLMngp}

The following holds:

Theorem 5.3 : S(A +— M) is sound and complete iff [ - ] is a trans-
lation of A into Th(M).
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Proof. A translation is a theory homomorphism h : A — Th(M) such
that h[Ca(X)] = Crpary(h[X]) N h[L4] for all X € La. By the last
theorem, soundness and completeness are equivalent to the condition
that X 4 p iff [X] € [p]- But in Th(M), consequence coincides with
set inclusion, and any set of such sets is equivalent to the intersection
of them. This means that [X] S [p] iff p € Crpar), for all X S Ly
and p € L4, and thus A’s consequence relation coincides with that of
Th(M), on the image of [ - ]. O

Thus, a sound and complete semantics can also be seen as a set of
translations of one theory into another. This is an interpretation of
semantics according to which the subject concerns relations between
theories, rather than relations between theories and the world. The
realisation that all of semantics can be interpreted this way is mostly
due to Sellars (1963), who makes the point in discussing Carnap’s In-
troduction to Semantics.

The lesson we should draw here, I believe, is that semantics, and in
extension metaphysics, rather than being about some occult connection
between language and world, furnishes us with a specific way of looking
at theories—of interpreting them. It allows us to take a metaphysical
stance, to borrow (and slightly mutilate) one of van Fraassen’s phrases
(van Fraassen, 2002). In taking such a stance, we are able to ask ques-
tions like: what makes these claims true? How come this inference is
truth-preserving? And most importantly of all: given that this theory
is true, what could the world be like?

5.2 Probabilistic and Many-valued Semantics

Section 2.4 introduced two generalisations of the theory concept, viz.
many-valued and probabilistic theories. Both of these require further
comments on which kinds of semantics are required to capture their
consequence operators. Starting out with many-valued theories, it is
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evident that semantics as we have characterised it (and as it is usually
characterised) is concerned solely about truth. Since a claim is equiv-
alent to the assignment of truth to it, we could write that p is true in
M under the semantics S as

MeEest:p

This invites us to use a similar way of assigning other semantic

values. In general, whenever S(A B oar ) assigns p the value v in the
model 9N, we write

ME=sv:p

We also write 9 =5 v : X, where X is a set of claims, for the
assignment of v to each and every one of these in 9. Let a many-

valued semantics be a semantics S(A s M) where A is a many-valued
theory, and the set of semantic values V' that § assigns combinations of
interpretations and claims is the same as set of semantic values of A. If
S is Leibnizian and 91 =; v : p, we say that 91 satisfies the assignment
v : p. The important concepts of soundness and completeness generalise
automatically to the many-valued case. Soundness means that if X
v : p, then any model that satisfies all assignments in X will satisfy
v : p as well, and completeness that if all models that satisfy X also
satisfy v : p, then X + v : p.

Not only are many-valued semantics necessary for a proper under-
standing of traditional many-valued logic, but regular truth-centered
single-valued semantics is also unable to fully capture even two-valued
theories. Say that a model space M is appropriate for A iff the subject
matter of A is a model 2 in M, and call /A the actual model of A’s
subject. Furthermore, if M is a model space appropriate for A, and
S(A +— 20) is a Leibnizian semantics for A in M, we call § appropriate
iff A =5 p iff p is actually true, for all pe L4.

An appropriate semantics is one that “gets actual truth right”. But
this property is not very accessible. How can we identify the model 2,
apart from the characterisation of it as the model in which all the claims
in A that actually are true, are true, and no others? How can we tell if
A =5 p for all actual truths p, except by asking whether there is some
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model 9 for which this holds? It is not as if we have any independent
access to models, apart from through our theories.*

This means that the notions of soundness and completeness are more
practically useful than appropriateness. A sound and complete seman-
tics for A gets both the theoretical truths of A and the inference con-
nections postulated by A right, and it does this without us having to
identify which specific model 9t is the actual one. In many-valued se-
mantics, completeness furthermore allows us to derive something that
is very close to appropriateness. As we said, one of the problems with
this concept is that there seems to be no independent way to decide if
the actual model is in a model space or not. The most we really can
ask for is that there should be some model 91, such that 9 = p iff p
is actually true, for all p € L4. Such a model is one that could be the
actual model for all we can know, since there is no semantic way to dis-
criminate between it and the actual one. The following theorem shows
that this property follows from completeness, so long as the semantics
in question is two-valued, and the theory is consistent with actual truth.

Theorem 5.4 : Let S(A — M) is a complete Leibnizian bivalent se-
mantics and A a bivalent theory. Let truea be the set of claims in L4
that are actually true, let falses be La\trues, and assume that

t: falsega " Cu(t:trueq v f: falses) = &

so that A does not allow us to infer the truth of any false claim from
the assignment of ¢ to all actual truths, and f to all actual non-truths.
Then there is some M € M such that M =5 t : p iff p is true, for all
pE Ly.

Proof. Because of the assumed consistency with actual truth, we have
an assignment f : p such that t : truesq U f : falsesq a4 t : p, for
any p € falses. By completeness, there must then be some model 9
that satisfies the set t : trueq U f : falses of assignments such that

4A different way of expressing this point is as the slogan theory precedes meta-
physics. This is a principle that I believe no philosopher who calls herself a naturalist
should deny.
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M t: falsey. Any such model makes true all actual truths, and no
others. ]

The many-valuedness of the semantics is necessary here. To see why,
assume that A = (La,C4) is a theory in which

L4 = {p1 = snow is white,
p1 = grass is red,

ps = violets are black}

and C(X) = X for all X € L4, since neither of py, ps or ps follow from
any of the others. Let M consist of all triples {v1,v2,v3) of truth-values
except {t, f, ), and let S(A — M) assign the claim p; the value v; any
model. This means that, for any model 9t = {v1, v, v3), we have that
M = Pi iff v; =t.

S is sound (trivially) and also complete. Whenever Mt = X = 9 =
pi, we have that X 4 p;, since the only cases in which 9 = X are
those in which 91 k= p; for all p; € X. But truea = {p1}, and thus there
is no model in which only the actually true claims in L, are true: in
both {t,t, f> and {t, f,t), something else is true as well.

The reason for this is the lopsidedness of regular consequence. If
A is a true theory, so that its consequence operator preserves actual
truth, then a complete semantics must have some model in which all the
actual truths are true. But single-valued semantics cannot guarantee
the existence of a model where all actual falsehoods are untrue.

The way this is usually handled it through conventional stipulation.
If the theory A contains at least one actually true and one actually false
claim in its language, satisfies Fx Fualso Quodlibet, and we furthermore
require that the set of actual truths has to be maximal in A, so that no
claim could be added to it without formal inconsistency ensuing, we can
avoid speaking about assignments for sound and complete semantics. If
the theory is standard, then not every claim in its language can be true.
Thus, there is no model 9t such that 9 = La, but by completeness,
there is a model M = trues. But nothing outside trues can be true
in this model either, since we then could draw the conclusion that all
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claims would be true in 91, and we have already assumed that there is
no such model.

However, the requirement that trues should be maximal in any the-
ory A is naturally not possible unless we limit the range of sets of claims
that can constitute A’s language severely. Furthermore, maximalness
is not the natural choice for many theories. Consider a theory M of
intuitionistic mathematics, for instance. Here, a statement p is true iff
we have an effective way of obtaining a proof of p. Interpreting false,
again, as not-true, p is false if we do not have such a way. But here,
there is no reason that truep; should be maximal: that holds only in
the very special case where all questions in M have been settled.®

Thus many-valued semantics provide a genuine generalisation of the
single-valued kind. Another generalisation is connected with probabilis-
tic consequence. Our intention here is to be able to read

X+"p

as “whenever the claims in X are true, there is a chance 7w of p being
true”. For this purpose, let a probabilistic semantics S(A — X), where
A = {64,Evy4) is a probabilistic theory and ¥ is a probability space
{(Hy,, 85, Ps), be a function from L 4 x Hy, to a set V of semantic values.
In ¥, Hy is a set of interpretations of A in models of a model space
My, Gy is a g-algebra of subsets of H, and Py, is a probability measure
on OGs.

The intended interpretation of these concepts is that Ps(X), where
X is in H, is the probability that the correct interpretation of A is
one of those in H. In the Leibnizian case, we can also use the concept
of a probabilistic model space 2 = (Ms;, Sy, Ps), where Gy is defined
directly on the model space My, and Ps(X) is interpretable as the
proportion of all models of Mx, that are in X.

As before, we concentrate on Leibnizian semantics. Call a such
a semantics S(A — %) structurally sufficient if [B] is in &y, for all
B € & 4. A probabilistic semantics which is not structurally sufficient

5The proper condition on the set of truths in an intuitionistic logic seems to
be that it should be a prime filter, i.e. a set closed under consequence, such that
P Vv q € true entails that p € true or q € true. For classical, Boolean logic, prime
filters coincide with maximal filters. However, they come apart for weaker logics.
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will be unable to attach probabilities to some closed sets of claims in its
theory, and thus be unfit for use. We say that a structurally sufficient
Leibnizian semantics S(A — X) is sound iff

pe CA(X) = P(pl[X]) =~

and complete iff

P([pl1[X]) =7 = pe CR(X)

for all X € L4 such that P([X]) > 0. Interestingly, for Leibnizian
probabilistic semantics, completeness implies soundness. Since P is
assumed to be defined on all subsets of My that are in the image of
[-],and X -7 p and X I—Z p implies that m = 7, the probabilistic
structure of ¥ must determine that of A. This, in turn, guarantees that
this structure must conform to that of the probabilistic metaphysics.

Leibnizian probabilistic semantics give us a kind of interpretation
of probability which is neither strictly frequentistic nor subjective. In
a way, it could be described as a modal frequency interpretation, since
it gives us that P([p]|[X]) is the frequency of p-models among the
X-models. It is, however, not an actualist frequency interpretation,
since it involves more models than the actual one. In this, it is similar
to an hypothetical frequency interpretation, on which P(Y|X) is the
proportion of X’s that would be Y’s, given that the X’s go on forever.
An example of an interpretation of this type is von Mises’s, according to
which P(X) is the limiting relative frequency of X’s in a given collective
(von Mises, 1981).
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5.3 Varieties of Semantics

As we described it in section 3.4, the space 7k 4 has as models the the-
ories in A. For each such theory B, let hg be a unique interpretation.®
Let the theory space semantics for A be the function that maps any
interpretation h and claim p to truth iff p € Teoq(n). A theory space
semantics is always Leibnizian. It is also sound and complete, as the
following theorem shows.

Theorem 5.5 : For any theory A, A’s theory space semantics is sound
and complete.

Proof. What we need to show is that

peCA(X) Mt (VMeTha)( X STy —peTu)

But the set of truths of the theories in A are exactly the sets of
claims that are closed under C4, since theories correspond one-to-one
with closed sets in L4. Thus we only need to show that p € Ca(X)
iff (VY € ¢S(A))(X € Ty — pe TyT7), where CS(A), as before, is the
set of subsets of L closed under C'4. This, in turn, follows from the
fact that C4 is a closure operator, and that every closure operator is
interdefinable with its set of closed subsets this way. O

Theory space semantics are thus ubiquitous, but they also afford
little enlightenment beyond what is given by the theory itself. Since we
have imposed no restrictions on the structure of the theory, dependence
on meaning can never be ruled out, and this is why theory space seman-
tics must be Leibnizian. Adding one such restriction—that A must be
formalisable—allows us to employ matrix models instead, and matrix
semantics for connecting A with these.

61t does not really matter what the interpretation is here, but to make the
discussion more intuitive, we can take it to be an identity function from L4 to Lpg,
to highlight the fact that we do not allow reinterpretation of claims. Although this
makes the interpretations identical as set-theoretical functions (since all theories in
A have the same language), they are still not identical as interpretations, since their
codomains differ.
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Recall that the space Mt of matrix models contains as objects pairs
M = Ao, Do), where 2oy is an algebra, and Dgy is a subset of the
carrier of Aoy called the designated value set. Let an interpretation h
of A in a matrix 91 be a homomorphism from 2 to RAgy, where 2 is
the algebra that A is formalised by. Let the matriz models of A be the
subcategory Mt of Mt containing those matrices which have algebras
of the same signature as 2, and for which h=![Dgy] is closed under Cs
for all interpretations h : A — 9.

The matriz semantics S(A — Mty) for A is the function that assigns
h,p the value truth iff h(p) € Deoq(ny, i-e. iff h takes p to a value that is
designated in the model it interprets A in. Since the semantics postu-
lates several interpretations for each model, and also several models, it
is neither Bolzanian nor Leibnizian. The soundness and completeness
of such semantics are well-known from the algebraic logic literature; a
simple proof is given below.

Theorem 5.6 : If A is formalisable, then A’s matrix semantics is sound
and complete.

Proof. The formalisability of A means that there is an algebra 2l on L 4
such that C4 commutes with all endomorphisms on this algebra. Let
X £ 4 p. Then there is a closed set of claims D, such that X € D, but
p ¢ D. (A, D) is then a matrix model of X which is not a model of p,
under the identity interpretation. For the other direction, assume that
X € D but p ¢ D for some matrix model I = Aoy, D) of A, and let h
be any interpretation of A in 9. Then h~![D] is a closed set of claims
in L4 which, by assumption, contains h~[D] but not h~*[{p}]. But
this means that we must have X (£ 4 p. O

The requirement that A must be formalisable, and in particular the
structurality condition, is necessary for the proof to go through. This is
what allows atomic claims to take on the meanings of any others, and
thus also what makes it possible to allow the reinterpretation of terms
in a non-Leibnizian semantics.

Both theory space semantics and matrix semantics can be seen as
generalisations of the truth-table semantics for classical logic. More
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generality is afforded by Tarskian semantics, which usually are asso-
ciated with first-order predicate logic. Let us first discuss semantics
whose domain is the full Tarskian model space T, for a first-order lan-
guage L ={L, f1,..., fn, P1,..., Pyn). The models of 7, are first-order
structures 91 of the same signature as L.

Now, L is not the language of any theory, since most elements of
L are open formulae, and thus incapable of being true or false. But
it is only the sentence-part L™ of L that is of interest for questions
of soundness and completeness, although we need the open formulae
to define truth recursively. Let an assignment s in the model 91 be a
function from the variables of £ into 91’s domain D. Extend each such
assignment to an assignment s’ from the terms of £ to the elements of
M, such that s'(§) = s(€) for each variable £ and §'(fi(71,...,7,)) =
9i(s'(11),...,8 (mn)) for all terms 74, . .., 7,, where f; is the i:th function
symbol of £, g; is the i:th function of 9, and n is the arity of f; (and
9i)-

Where s is such an extended assignment, write s’[a/¢] where £ is a
variable and a is an element of D for the extended assignment that is
exactly like s’ except for assigning a to £. For each extended assignment
s’, define satisfaction under s’ to be a relation 4 on My, x L that fulfils
the following conditions for all formulae ¢, € L:

My Pi(r,...,m) S (11),...,8(m)) € Qi, where P; is
the i:th predicate of £, Q; is the i:th
relation in 9, and n is the arity of P;

and Q;.
MEy 71 =T iff s'(my) = s'(72).
M=y —p it M s o
MEy @ AP ifft M =g p and M =y Y.
MEy (V) iff M =yr[qe) ¢ for all a € D.

For each 9t € 7, we define an interpretation h to be a function from
sentences in S to the set of assignments in 9t that satisfy them, and we
define the Tarskian semantics for £ to be the function that maps each
such interpretation—sentence pair h,p to true iff h(p) is the set of all
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assignments on 1.

Since we have only one interpretation per model, this Tarskian se-
mantics is Leibnizian. This may seem surprising, since Tarskian seman-
tics regularly is taken to involve reinterpretation of terms. But we have
already noted that the full notion of Tarskian model has some unex-
pected features, such as nonextensionality. Let us, for comparison, see
what semantics on the space % of thin Tarskian models may be like.

Since a model in ¥ is just a set, we do not have to relativise thin
Tarskian models to language signatures, unlike what we have to with
their full versions. The semantics naturally still needs to be relativised,
though. Let an extension specification for a first-order language £ in
a thin model M be a function ext from the predicates and function
symbols of £ to sets of tuples of elements of M such that every n-
place predicate P; is taken to a set of n-tuples ext(P;) and every n-ary
function symbol f; is taken to an m-ary function on M.

For any extension specification ext in the model M, let an assign-
ment on ext be a function s.,; from the terms of £ to the elements of M
such that s(fi(m1,...,7)) = ext(f;)(71,...,7,) for all terms 7,...,7,.
Let the assignment s.,; satisfy the atomic formula P;(ry,...,7,) iff
(Seat(T1)y -+ s Sext(Tn)y € ext(P;), and define the recursive clauses for
—, A and V as before.

Now, for each extension specification ext, define a unique interpre-
tation h from the formulae in L to the sets of assignments on ext that
satisfy them. Let the thin semantics for £ be the function from the
set of all these interpretations, and the sentences in the subset L*¢"! of
L, that takes the value true iff h(p) is the set of all assignments on its
extension specification ext.

This version of Tarskian semantics is neither Bolzanian nor Leib-
nizian, and it may probably be held to lie fairly close to Tarski’s in-
tentions. Predicates are interpreted as relations on M, and function
symbols as functions on M. Both this and the full version of Tarskian
semantics are sound and complete as semantics for first-order logic.

There is one further modification we can make, however, which may
take us even closer to what Tarski could have meant. Let the universal
model be the class U of everything that actually exists.” Define an ex-

7"We need to assume here, of course, that the concept of a “class of everything
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tension specification for £ to be a function from the predicates, function
symbols and the universal quantifier in L to subsets of U, such that the
universal quantifier is taken to a set D € *U called the extension specifi-
cation’s domain, and the predicates and function symbols are taken to
relations and functions on D.

We define assignments and satisfaction as before and associate each
extension specification with an interpretation in terms of assignments
on that extension specification. The minimal semantics is the function
that takes the value true for the interpretation h and the sentence p iff
h(p) is the set of all assignments on h’s extension specification. Minimal
semantics is fully Bolzanian: the model is always the same (viz. the
universal class) and only the interpretation of the nonlogical constants
and the universal quantifier varies.

An advantage of minimal semantics is that it seemingly does not
require us to talk about non-existent entities, since everything that is
in a model actually must exist. On the other hand, it does require us to
have a class of everything, and since this class, on pain of contradiction,
cannot itself exist, it is not obvious that we have got rid of all reference
to non-existents. At the very least, we need a theory for how we are
to avoid reference to U, and given such a theory, we may ask why we
cannot use it to handle other non-existents as well.

The avoidance of talk about non-actual (i.e. nonexistent) things also
comes at a steep price. We have already mentioned the problems that
Bolzano’s own definition of logical consequence runs into, which make
logical validity become dependent on what actually exists. How does
minimal Tarskian semantics avoid that problem? How does Tarski him-
self avoid it, if his own intention was that his semantics should be min-
imal in this way?

The truth is that minimal semantics works because of a combination
of the strength of classical Platonistic set theory and the weakness of
first-order logic. To begin with, the only logical predicate in FOL is
identity, so the reason that (3x) Unicorn(x) does not come out as logi-
cally false is that there is an interpretation of the predicate Unicorn(x)
that takes it to makes it mean the same thing as our word “porcupine”,
for example. In short, the only thing that we can talk about in FOL is

that exists” is consistent. U thus cannot itself be something that exists.
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set-theoretic structure. But here the strength of mathematical Platon-
ism comes into play: any possible set-theoretic structure actually exists!
So anything that FOL has the resources to say anything about has its
existence guaranteed by the existence of sets. Allowing the domain to
vary among subsets of this class then stops (3™z)(x = z) from being
logically false for any n € N.8

It seems clear that if we are to investigate questions such as the
ontological commitments of set theory, we cannot avail ourselves of a
semantics such as the minimal one, which presupposes the existence of
sets if it is to work. It is also the case that if we want to study the
metaphysics of other theories, with material or physical consequence
operators, the decision to treat identity alone as having a fixed meaning
cannot be maintained. One way or another, we will have to talk about
things that do not exist but might have. Whether this involves us in
any commitments to possibilia is itself a question of semantics. In fact,
it is only in a certain semantics in which descriptions or names work
by referring that it does so. But we do not have to interpret them this
way, as Quine showed by shaving off Plato’s beard in On what there
is.9. Another type of semantics in which talking about X’s does not
automatically incur any commitment to them is the one described in
the remainder of this chapter.

81t is interesting to note that Tarski criticises Carnap’s definition of logical con-
sequence in The Logical Syntazx of Language as too dependent on peculiarities and
limitations of one’s formal language (Tarski, 1936). But if minimal semantics cap-
tures his own intentions, he is himself vulnerable to the criticism that for him, logical
consequence becomes hostage to questions of ontology, and in particular to the ex-
istence of sets. Since Tarski himself most certainly was never a Platonist (Feferman
and Feferman, 2004, p. 52), it is not clear to me that one should attribute the
minimal interpretation to him either.

91t is unfortunately a common belief among philosophers that Kripke showed this
approach to names to be untenable. This is far from the case, however. Kripke’s
arguments are fallacious, as was ably explained by Dummett in the second edition
of Frege: Philosophy of Language (Dummett, 1981, pp. 112-146)
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5.4 Necessitarian Semantics

As we have mentioned, necessitarian metaphysics allow us to study the
connection between theory and reality in detail. Let S(A — M) be
a bivalent Leibnizian semantics from the theory A to a necessitarian
metaphysics M. We showed in section 5.1 that if § is sound, then
X Fap=[X] < [p], and if S is complete, then [X] € [p] = X a4 p.

Since models, in a necessitarian metaphysics, correspond one-to-one
to worlds (which are sets of entities), we will simplify the discussion
slightly by using [p] to refer to not only the set of models but also the
set of worlds in which p is true. We will also use the double turnstile
notation for worlds, and so we write w = p if M, = p, where M, is the
model in M whose set of existent entities is w.

For now, let us wait with discussing what interpretations in a neces-
sitarian model might be. It will turn out that the details of these are
fairly unimportant for us to be able to study the structure of necessi-
tarian semantics. On the other hand, assumptions on the behaviour of
the [ - ] operator do allow us to derive more about this structure.

For any claim p in A, we say that p is positive monotonous (or
just positive) under the necessitarian semantics § iff w € [[p] and w € W’
imply that o’ € [p]. We say that p is negative monotonous (or negative)
under S iff w € [p] and W’ € w imply w’ € [p]. We call the semantics
S itself positive iff every claim in its theory is positive, and negative iff
every claim in its theory is negative.

A positive claim is one that, if true in a world, remains true in any
world containing that world. An example is a claim of existence: if p
holds the entity a to exist, and p is true in a world w, that must be
because a exists in w. But then a must remain true in any world larger
than w, since these also must contain a. A negative claim true in w
remains true in any world smaller than w, and examples of such claims
are claims of non-existence.

Given that most theories allow us to say both that certain things
exist, and that certain things do not exist, why would a semantics hold
all claims to be positive, or to be negative? For the positivity case,
the main motivation flows from the idea that truth is grounded in the
world. Or, in the words of Dummett, which we already have quoted:
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If a statement is true, there must be something in virtue of which
it is true. (Dummett, 1976, p. 52).

Ultimately, the principle can be traced back to Leibniz’s principle
of sufficient reason,

[...] by virtue of which we observe that there can be found no
fact that is true or existent, or any true proposition, without
there being a sufficient reason for its being so and not otherwise,
although we cannot know these reasons in most cases. (Leibniz,
1714, §32)

Positivity of the semantics follows from interpreting the being in any
of these as the being of existence: it requires, for any claim to be true,
that there exists something that makes it true. The criterion itself is
however somewhat weaker. Call p a claim of singular existence iff [p] is
the set of all worlds containing a given entity a. It is then evident, by
the truth-conditions for necessitarian semantics given above, that w = p
is true iff @ € w. Likewise, we call p a claim of singular nonexistence iff
[p] is the set of all worlds not containing a given entity a.

As we mentioned, claims of singular existence are positive, and
claims of singular nonexistence are negative, and as we also mentioned,
not all positive claims are singular existence claims. The exact condi-
tions that a positive or a negative claim lays on what exists are captured
by the following theorems.

Theorem 5.7 : A claim p is positive iff there is a set VP (p) of sets of
sets of entities, such that p is true in w iff S € w, for some S € VP (p).1°

Proof. For the right-to-left direction, assume VP (p) to be such a set
of possible entities. Assume p to be true in w. Then there is a set
S €VP (p) of entities such that all of these are in w. But any other
world w’ such that w € w’ must then also contain all of S, and thus p
is true in w’ as well. Thus p is positive.

Now, assume that p is positive. We are then free to take VP (p) =
[p]. By the truth-conditions for claims under necessitarian semantics,

10The reason for the notation “VP (p)” as well as the notation “FP (p)” of the
next theorem will become clear in the next section.
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w k= p iff w e VP (p). Again, assume p to be true in w and assume that
w € . Then w €VP (p), and since w S w, there is some S € VP (p)
such that S € w. Conversely, take there to be some set S € VP (p) such
that S € w. Because VP (p) = [p], S must be a world, and because of
p’s positivity, if S € [p], then w € [p], so p is true in w. O

Theorem 5.8 : A claim p is negative iff there is a set FP (p) of sets
of sets of entities, such that p is true in w iff S nw = &, for some
S eFP (p).

Proof. For the right-to-left direction, assume FP (p) to be such a set
of possible entities. Assume p to be true in w. Then there is a set
S eFP (p) of entities that do not overlap w. But any other world w’,
such that w’' € w, cannot overlap S either, and thus p is true in &’ as
well. Thus p is negative.

Assume that p is negative. We can then take FP (p) to be the set of
complements (relative to E) of the sets (i.e. the worlds) in [p]. By the
truth-conditions for claims under necessitarian semantics, p is true in
w iff w € [p]. Assume that w = p. Then w® €FP (p), and since w C w,
there is some S €FP (p) such that S nw = &. Conversely, take there
to be some set S €FP (p) such that S nw = @. Then S¢ is a world in
which p is true, and because w € S¢ and p is negative, p is true in w
as well. O

Thus, a positive claim is one that can be written as a (possibly infi-
nite) disjunction of (possibly infinite) conjunctions of singular existence-
claims, and a negative claim is one that can be written as a (possibly
infinite) disjunction of (possibly infinite) conjunctions of singular claims
of non-existence. The statement of positivity thus allows that there does
not have to be any unique thing that makes p true, and it also allows
that although no single thing may make p true, there can be several
things that jointly do. A case in point would be the claim “there are
at least three apples on that tree”. Even if the tree contains, say, one
hundred apples, any three of these suffice to make the claim true.

Negative semantics may seem harder to motivate than the positive
kind, and indeed few of the semantics we shall investigate will be neg-
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ative. One reason for adopting one could be obtained if we view claims
as true by default. This means that if p is true, there does not have to
be anything to make it true, but if p is false, that is because a coun-
terexample or falsifier of p exists.

There is also the case of semantics that are both positive and nega-
tive. If the set E of all possible entities is a world (i.e. if the necessaritan
metaphysics is only inessentially possibilist), such a semantics will give
all claims the same truth-conditions through the inference

we[p] = Fe[p] = €p]

for any worlds w, w’, and this results in triviality. If not, there can
still be useful semantics: a case in point is what we will refer to as
dichotomous semantics later on.

Dummett’s principle may be seen as central to all correspondence
theories of truth, and these come in many varieties. Some (like Russell’s
version) depend on entities such as facts, while some (like Tarski’s) do
not. The following are some of the treatments of the concept that may
be found in the literature:

Discrete world semantics. Assume that the operator [ - ] is sur-
jective on the set Q of worlds (i.e. that there are no worlds in which no
claim in the theory’s language isn’t true). We say that S is a discrete
world semantics iff for any distinct worlds w1 and ws in Q, wy Nwe = .
A special case is where all worlds in Q) are singletons; we may then call
S an atomic world semantics.

Traditional possible world semantics, as it is used for modal logic,
is atomic. We do not generally talk about what the worlds are in a
relational model; sometimes they are just called nodes or points. This
does not, however, mean that they do not have any internal structure,
but just that any internal structure they may have is immaterial to
relational semantics. Since the demise of monism at the beginning of
the 20th century, few have denied that the actual world contains more
than one thing.

Why would one want one’s semantics to treat worlds as discrete?
One reason, due to David Lewis (1986, ch. 4), seems to boil down to
a wish for extensionality. If something, a, is in both worlds w; and wo,

170



5.4 NECESSITARIAN SEMANTICS

any intrinsic property possessed by a in w; must be possessed in wo as
well, since it is the same a, with all its intrinsic properties, that is in
both worlds. This, however, means that a must have the same intrinsic
properties in every world.

We have already bit that bullet: since what entities exist deter-
mines what world is actual, all of an entity’s intrinsic properties are
necessary. Indeed, Lewis bites it too, since on his counterpart theory,
a itself cannot have different properties in different worlds. Both the
present theory and Lewis’s give versions of how we can talk about things
whose intrinsics are non-essential: on our theory, by the use of a Car-
napian individual concept or a trope reduction, and on Lewis’s by use
of the counterpart relation.

When we recognise that if we want to approach the matter fully
extensionally, we must work with entities whose intrinsic properties
are essential, we are returned to the question of why the very same
(intrinsically-essential) entity cannot be in several possible worlds. Un-
fortunately, Lewis provides no answer to this specific question. It may
be that he feels that since his counterpart theory can explain how some-
thing can be ¢ and also possibly not ¢ for non-essential properties, he
may as well use that for the essential ones as well. But this is a rea-
son to hold worlds never to overlap only when what we are after is the
simplest solution to the problem of trans-world identity. It may also be
that allowing worlds to overlap would wreak havoc with Lewis’s modal
realism, since he assumes worlds to be distinct just when they do not
share the same space-time. But our aims here are different, and the
notion of a possible entity that can be in several possible worlds is, as
we will see, a very useful one.

Discrete world semantics are trivially both positive and negative,
since both the antecedent in the clause that w € [p] and w S W’ im-
plies that w’ € [p], and the antecedent in its negative variant with the
inclusions reversed, are true only when w = w’'.

Straight correspondence. S is a straight correspondence semantics
iff it makes every claim p a claim of singular existence of a unique entity
c(p) (the correspondent of p). In such a case, we commonly refer to the
elements of E as facts or states of affairs. It follows that a claim is true
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iff its unique corresponding fact exists.

Straight correspondence mirrors the theory directly onto the world:
every claim has its unique corresponding fact. This feature makes it
instructive as an example, but very susceptible to criticism applicable
to all versions of the so-called “picture theory” of language. Its largest
problem may be its lack of independent motivation: why would the
world, if it is not our free creation, have exactly the same structure
as our theory, which is? Even if a theory happens to be true, such
one-to-one correspondence seems too much to ask for.

Relaxing the uniqueness condition allows us some more interesting
semantics. Generally, S is a correspondence semantics iff its truth-
conditional function [ - ] makes every claim p a claim of singular exis-
tence, although the entity c¢(p) that p claims the existence of does not
have to be unique to p . If § is complete, we must have that ¢(p) = ¢(q)
implies that p and ¢ are equivalent in their theory, since if ¢(p) = c(q),
p and ¢ by necessity must be true in exactly the same worlds. It may
seem reasonable to take the converse of this to hold as well, i.e. that
if p and ¢ are equivalent in their theory, then ¢(p) = ¢(g). In such a
case, we individuate facts by theoretical (or if the theory in question is
a logic, logical) equivalence.

Since correspondence semantics (both the strict and the non-unique
kind) interpret every claim as a singular existence claim, and since
singular existence claims are positive, all correspondence semantics are
positive as well.

Logical atomism. This is defended in Wittgenstein’s Tractatus, and
in Russell’s lectures on logical atomism from 1917-1918 (Russell, 1985).
According to logical atomism, there is a subset of all claims called the
atomic ones, such that the truth-values of all other claims is a func-
tion of the truth-values of these. The atomic claims are true iff their
corresponding facts obtain, just as in correspondence semantics, but
non-atomic claims do not have corresponding facts. Their truth-values
are calculated purely logically.

For a theory of classical propositional logic, classes of logically equiv-
alent sentences make up a free Boolean algebra, and a set of generators
of this algebra can be taken to be the classes for atomic sentences, since
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the truth-functionality of the classical connectives allows us to infer the
truth-value of any complex sentence from the truth-values of its atomic
parts. Thus the sentences {p, q,r} generate a countably large language
with p, ¢ and r as atomic.

Since the algebra used to generate a theory is specific to that theory,
which claims are atomic is relative to a given algebraisation. When
the theory’s language has syntactic structure, that language’s rules of
syntax determines what is atomic and what is not. But this gives rise
to a problem: if the things that truly exist are the facts corresponding
to true atomic sentences, and what sentences are atomic is relative to
the syntax that governs them, what exists becomes syntax-relative. A
claim which is complex in one language may be atomic in another.

The solution to this problem may at first seem to be to go nonlinguis-
tic, and use propositions or some other abstract entities, individuated
by meaning or truth condition, instead of sentences. This only displaces
the problem, however. Let 2 be the 22" = 256-element propositional
Boolean algebra freely generated by the propositions {p,q,r}.'! Un-
like what is the case in word algebras, such as those that make up a
sentential language, this set of generators is not unique given 2. The
same algebra is equally well generated by the propositions {p, —¢q, —r},
{—p, —q,7}, {—p,—q,—r} or any other such combination. The funda-
mental problem here is that given a free algebra, generally no unique
set of generators of that algebra is determined.

An instance of this phenomenon is that, to logic, it does not matter
what we call atomic, and what we call negated atomic. The inference-
structure of the language, as well as the algebra, is fully symmetric.
But how do we determine it? Russell held there to be no syntactic
test we could use to find the sentences corresponding to negative facts.
Given the question “does putting the ‘not’ into [the proposition] give it
a formal character of negative and vice versa?” his terse reply was “no,
I think you must go into the meaning of words” (Russell, 1985, p.78).
But that is not much aid either, since we are not told what to look for
in these meanings.

It is true that I have proposed a way to define positivity and neg-

11 As usual, we have assumed that propositions are identical iff they are logically
equivalent.
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ativity of a claim in the preceding section, but that is of course just a
convention: since we have taken the existence claim to be fundamental
(which we do since our aim is ontology), existence claims are positive
and claims of nonexistence are negative. We could just as well have
reversed this, and regarded universal claims to be positive, and negated
universal claims to be negative instead.

The same holds for suggestions to, for instance, take singular pred-
ications to be positive, and their negations to be negative. Which of
the sentences “John is at least 40 years old” and “John is less than
40 years old” should we take to be positive, given that they are nega-
tions of each other? That a sentence is true is in a classical language
the same as it being not false, and vice versa, but which of the sen-
tences “p is true” and “p is false” is the negative one? To say that both
are positive, since both are written as singular predications, is to take
the grammatical form of our specific first-order language to determine
reality directly.

The conventionality and language-relativity of what is atomic goes
farther than being just about negation, however. The sentence “light-
ray a is red” is equivalent to “light-ray a is scarlet or light-ray a is
crimson or ...” for a disjunction of reddish colours, and each of these
is in turn equivalent to disjunctions of sentences of the form “the wave-
length of light-ray a is in the interval A1 — A\2”, where A\; and Ay are
numbers. “Jim is a bachelor” becomes syntactically atomic simply be-
cause English has a predicate that allows us to combine “Jim is male”
and “Jim is unmarried”.

It was Russell’s belief that logical analysis would provide us with
answers to the question of what the true logical forms of sentences
were. About a hundred years later, that belief seems less and less well
grounded. Even Russell acknowledged the theoretical possibility that
there might not be any “fundamental” level in logic at all, so that we, at
least not in a finite number of steps, ever would reach the truly atomic
facts by means of analysis. But he should also have noted how, at each
step in the analysis, we are making choices in how to proceed. We
choose how to represent the logical features of a sentence by choosing
a logical system (in our case a theory) to express that sentence in,
and also a way of translating the sentence to our system. All these
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choices determine what gets counted as atomic and what gets counted
as complex.

It is thus my belief that there are problems with the theory of logical
atomism, since it seems that atomicity is a product of language alone,
and not of any deeper features of reality or thought. Still, its promise
of reducing the number of facts needed for correspondence theories and
also its potential applicability to truthmaker theories, which we will
study in the next section, make it an important theory to study in case
one finds a way to solve these problems.'?

Whether logical atomism is positive or not depends on whether
we consider Wittgenstein’s or Russell’s version. In the Tractatus, all
facts are positive. This means that negated atomic sentences are non-
positive: —p may be true in a world with the facts f; and fo and false
in a world with the facts fi, fo and f3. Russell, however, argues for
the existence of negative facts, and this makes his version of Logical
atomism positive. We also, naturally, have that any theory of logical
atomism is positive over the class of atomic sentences, since these are
true or false by direct correspondence to fact.

5.5 Truthmaker Theories

Truthmaker theory was popularised through articles by Mulligan et al.
(1984) and Fox (1987). The fundamental idea is the same as in Dum-
mett’s principle: whenever p is true, there is something that makes
p true. As argued by Rodriguez-Pereyra, truth requires grounding in
reality, grounding is a relation, and relations relate entities. So truth
must be grounded in entities (Rodriguez-Pereyra, 2005). The very idea
that truth could be ungrounded in the world seems to violate the re-

12The reductive potential should perhaps not be overestimated: logical atomism
allows us to dispense with facts for sentences that depend truth-functionally on the
sentences in the atomic class. It does nothing to help with other kinds of sentences
that may follow logically from the atomic ones.
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quirement that what is true is determined by what the world is like.

All contemporary kinds of truthmaker theory posit weaker corre-
spondence principles than correspondence semantics does. Not only
does a truthmaker not have to be unique to its truth, but truths may
have more than one truthmaker as well, and a claim is true in all worlds
where at least one such truthmaker exists. Thus all human beings are
truthmakers for “there are humans”. But apart from this characteri-
sation, there seems to be little agreement on how truthmaking works.
We will introduce the notion through a related one: that of verifier.

We say that a is a verifier of p (in symbols a IE p) iff w = p for any
world w that contains a, and we denote the set of all verifiers of p by
V (p) (this set is, of course, relative to a semantics). The existence of a
verifier for p is thus a sufficient but possibly unnecessary condition for
the truth of p. As before, [p] is the set of worlds in which p is true, but
we also use the notation [[p]]c for the set Q\ [p], i.e. the set of worlds
where p is false. The following theorem gives a method of finding the
verifiers of a claim:

Theorem 5.9 : V(p) = E\|J [p]]c

Proof. From the definition of V (p), it follows that a is a verifier for p iff
{weQlaew)c[p],s0 V(p)={aeF|{weQ]|aew}<[p]}. This
means that the non-verifiers of p are

E\V(p)={aeF|{weQ|acw} < [p]}
={aeE|(QweQ)(acwnat[p])}

= {a €k ‘ Qwep]“)(ae W)}
-UI°

Thus, V (p) = E\U [p]“. =

Now, if p has a verifier in w, p is true in w, but nothing guarantees
that the converse holds. Let us call a claim substantial if it has a verifier
in every world in which it is true. Substantial claims are thus those
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that are true iff they have an actual verifier. Another characterisation
is given by the following theorem:

Theorem 5.10 : p is substantial iff, for any world w, w € [p] iff w &

Ulpl®.

Proof. Obtained by placing the characterisation of V (p) of theorem 5.9
into the condition [p] = {we Q| V(p) nw # }. O

The substantial claims of a theory, under a necessitarian semantics
S, are thus those that are true in all worlds that contain things over and
above those things that make up the worlds where they are false. Now,
say that a claim r is a conjunction of p and ¢ iff [r] = [p] n [¢], and
a disjunction of p and ¢ iff [r] = [p] U [¢].**> Then, we can prove that
the substantial claims of a theory are closed under disjunctions, and if
the metaphysics is mereological, they are closed under conjunctions as
well.

Theorem 5.11 : If p and ¢ are substantial, their disjunction is sub-
stantial as well.

Proof. We use theorem 5.10. Assume that r is a disjunction of p and
g, and that w € [r]. Then w € [p] or w € [¢]. Assume that w € [p]
(the other case is symmetrical). Then, since p is substantial, there is
an entity a € w such that a ¢ [[p]]c. But since, as is easily checked,
UIr1€ € Ulp]®, we must have that a ¢ |J[r]¢ as well. Thus w &
U [[r]c, and so one of the directions of the biconditional in theorem
5.10 is satisfied. The other direction follows directly from our definition
of disjunction. O

13This is a model-theoretic characterisation of the connectives, and, as such, is
relative to our semantics. Not all theories need to have conjunctions and disjunctions
for arbitrary claims. In fact, only those that have the structure of a distributive
lattice have them.
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Theorem 5.12 : If p and ¢ are substantial, and the necessitarian meta-
physics is mereological, their conjunction is substantial as well.

Proof. Again, we use theorem 5.10. Assume that r is a conjunction
of p and ¢, and that w € [r]. Then w € [p] and w € [¢]. Since p
is substantial, there is an entity a € w such that a ¢ | J[p]” and an
entity b € w such that b ¢ | [[q]]c. By the assumption that the model
space is mereological, there is then a further entity a + b € w, and since
a+b is in exactly those worlds where both a and b are, a +b ¢ | [[r]]c.
Again, the other direction of the biconditional follows by the definition
of conjunction we have used. O

The requirement that the model space has to be mereological is
necessary here. Let [p] = {w1,w2} and [¢] = {w2,ws}. Furthermore,
let wy = {a},ws = {a,b} and w3 = {b}, and assume that these are the
only possible worlds there are. Both p and ¢ are then substantial: p has
a as verifier, and ¢ has b. There is however no verifier for a A b, since
both a and b need to exist for that.

It is clear that any substantial claim also is positive. Under the
assumption that the model space is mereological, the reverse holds as
well: a substantial claim is then true iff at least one of the mereological
sums in a certain set exists, and these sums in turn exist iff all their
atomic parts do. This means that the substantial claim is true iff all
the entities in some set of a certain set exist, which is the condition of
positivity of theorem 5.7.

Parallel to the verifier notion, there is that of a falsifier of p: an
entity a such that in every world where a exists, p is false. We call
a claim p which is true iff it lacks an actual falsifier antisubstantial.
Reasoning symmetric to that regarding substantiality shows that anti-
substantiality entails negativity, and that it is equivalent to negativity
if the model space is mereological.

Now, how is the werifier notion connected to that of truthmaker?
The weakest form of truthmaker principle is one summarised by Bigelow
in the slogan “truth is supervenient on being” or, as he also frames it,
“If something is true, then it would not be possible for it to be false
unless either certain things were to exist which don’t, or else certain
things had not existed which do.” (Bigelow, 1988, p. 133)
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Seen in terms of possible worlds, this means that if w; and we are
worlds and wy E p but wy ¥ p, then there must be some entity in wy
which is not in ws, or some entity in we which is not in w;. But this
is already implicit in A’s characterisation of worlds as determined by
what exists in them, so Bigelow’s weak truhmaker principle is satisfied
by all necessitarian semantics.

While on this weak truthmaker principle the lack of something may
make a claim true, most truthmaker theoreticians take truthmaking to
require the existence of a thing — that in virtue of which the claim is
true. Bigelow’s characterisation of this position is

Whenever something is true, there must be something whose
existence entails in an appropriate way that it is true. (Bige-
low, 1988, p. 126, emphasis in original).

The simplest way to interpret this is to let any way be appropriate.
Thus we arrive at John Fox’s interpretation of the truthmaker principle:
“[...] by a truthmaker for A, I mean something whose very existence
entails A” (Fox, 1987, p. 189). But, as p entails ¢ iff ¢ is true in all
models p are true in, and models correspond to worlds, this is exactly
our concept of a verifier.

The principle that a truthmaker is a verifier remains valid even when
we do not take every way in which the verifier’s existence entails the
truth to be appropriate, although not every verifier is a truthmaker
then. So the truthmakers of p are some (in the reading where “some”
does not exclude “all”) of the verifiers of p.

Why would some verifiers fail to be truthmakers? The reason lies
in the connotations (or perhaps even meaning) of “making”: to make
p true seems to involve taking active part in bringing about its truth.
By contrast, a verifier is just something whose existence guarantees the
truth of p. This means that for verifiers, the entailment principle holds:

If a Ik p and p entails ¢, then a I q.

The alleged problem with this principle comes out clearest with
necessary statements (i.e. those that are in T 4, where A is the theory
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we are working with). Since these claims are true in all worlds, any
possible entity is sufficient for their truth. Yet, it feels strange to say
that a purportedly necessary truth such as @ € @ is made true by, say,
my pencil. Similar counter-intuitive consequences also follow from the
related (but distinct) containment principle, imposed by Mulligan et al.
(1984, p. 315):

If a IE p and b contains a as a part, then b [E q.

If worlds have mereological sums, so that the actual world as a whole
makes up a possible entity, then the containment principle entails that
this world-sum is a truthmaker for all actual truths. Yet it is hardly
an interesting truthmaker, since it gives no information about which
specific things in the world make which sentences true.

The difference between the problems stemming from the entailment
principle, and those stemming from the containment principle, is that
it seems like in the former class, the thing made true is unnecessarily
weak, while in the latter, the truthmaker itself is unnecessarily strong.
One perspective from which the two principles could seem questionable
is if one takes the truthmakers of p to explain why p is true. On a certain
reading, something’s explaining why p is the case does not explain why
q is, even if ¢ follows from p.

To borrow an example of Kyburg’s, all salt which has had a dissolv-
ing spell cast on it dissolves in water, but it still feels wrong to say that
the sentence “substance s is salt which has had a dissolving spell cast on
it” explains the truth of the sentence “substance s dissolves in water”
(Kyburg, 1965). But “substance s is salt which has had a dissolving
spell cast on it” entails “substance s is salt”, so if the latter explains the
fact that s dissolves in water, then so should the former. However, as
an explanans, it seems to be too strong and include irrelevancies, and
this makes us doubt whether an explanation is given.

For an example of an explanation where the explanandum seems too
weak, consider the explanation “the window broke because I threw a
stone at it”. From “the window broke”, it follows that either the window
broke or turned into a platypus. But again, it is counter-intuitive to
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say that my throwing a stone at the window explains why it broke or
turned into a platypus.

We will call the property supposedly lacking in those verifiers of p
that fail to be truthmakers effectiveness. There are several ways to try
to substantiate this notion. One, which involves a prima face fairly
small change, accepts the entailment principle but locates the problem
in the specific entailment relation. Thus both Mulligan et al. (1984) and
Restall (1996, 2003) advocate using some kind of relevant entailment
relation instead of the classical variant. This may at first seem like
nothing which is excluded by our method, since the principles of relevant
entailment very well can be expressed in a consequence operator, and
systems of relevant entailment framed as theories. But the point that
these philosophers make is that even if we otherwise accept classical
logic, truthmaking is not preserved across entailment. Thus, what they
count as truthmakers will generally only be some of the things that
we count as verifiers here. However, this attempt runs into serious
difficulties, as we will see in chapter 7.1.

Another attempt to capture the effectiveness of a truthmaker might
proceed via the notion of a minimal verifier: an entity a that verifies
p, such that no proper part of a verifies p.'* This takes care of the
perceived problem that the world verifies every truth: most truths will
have some smaller part of the world that verifies them as well. But
it is hard to use as a universal solution, since we have no guarantee
that every truth has a minimal verifier. Take, for instance, a sentence
such at “this pole is over one metre long”, and assume that the pole
in question is, say, one and a half metres long. Any part of the pole
longer than one metre is then a verifier for the sentence, but because
of the continuousness of space, there is no least length over one metre
that such a part can be.

Now, there may of course be no contradiction inherent in accepting
entities such as the fact that the pole is over one metre long, which
would make the sentence true. The problem is that they are quite

14There another notion of minimality floating around, according to which a min-
imal truthmaker for p is a truthmaker for p that is part of any truthmaker for p (cf.
Restall, 1996). This does however have very few applications: any truth made true
by more than one thing may fail to have a minimal truthmaker in this sense.
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strange entities — we can see them as a kind of infinitely disjunctive
facts of the form the pole is x1 metres long or the pole is x5 metres
long or ... where x1, x5 etc. are all real numbers larger than one, and
we may have reasons not to accept disjunctive facts in our ontology.
But even if we do, requiring truthmakers to be minimal verifiers does
not solve all the perceived problems: assuming that the world contains
mereological atoms, any such atom will still be a minimal verifier for
every necessary truth, since the atoms do not have any parts at all.

For a third way to characterise effectiveness, we may look more to
the logical side than the mereological. Say that a verifier a of p is a
weakest verifier of p iff for any claim ¢ such that ¢ entails p, a I ¢
implies that p and ¢ are equivalent. Thus, while a I p A ¢ implies
that both a |E p and a [F ¢, a can be a weakest verifier neither for
p nor for g, unless one of these follows from the other. This accords
with an argument of Rodriguez-Pereyra’s (Rodriguez-Pereyra, 2006)
that the truthmaker of a conjunction generally is not what makes true
its conjuncts. But, prima facie, not all truths need to have weakest
verifiers either. If a verifies p and b verifies ¢, both a and b thereby
verify p v q. Neither a nor b can however be a weakest verifier for p v ¢,
unless one of p or ¢ entails the other. To obtain a weakest verifier for
p Vv q, we need to assume that this claim has its own truthmaker, and
this will again be a kind of “disjunctive” entity. Another problem with
this characterisation of effectiveness is that it does not allow individual
X’s to be truthmakers for the claim “there are X’s”, and this is one of
the possibilities motivating many philosophers’ adoption of truthmaker
theories, rather than more traditional correspondence semantics.

It might also naturally be the case that there is no systematic way
to characterise what verifiers are the effective ones, and that we will be
forced to rely on intuitions about which entity is the “active agent” in
bringing about the truth of a claim. The reason for this may be that
effectiveness simply is not a structural property. Again we could make
analogies with the theory of explanation. All explanation is critically
context-sensitive, and which deductions are explanations depends on
what we know, and this is one of the lessons Kyburg draws from his
example. Salmon’s famous example of the length of a flagpole’s shadow
not explaining the length of a flagpole (Salmon, 1989, p. 47) does not
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apply in a case where the flagpole has been raised just high enough so
that its shadow at noon will reach a certain point, and we ask why it
has just this height.

But invoking knowledge, context or pragmatics in truthmaking is
clearly inappropriate; truthmaking should not be relative in that way.
So if effectiveness is to be applicable to truthmaking, we need some cri-
terion to decide whether it holds or not, and we need this criterion to be
context- and knowledge-independent. Unfortunately, no such criterion
seems to be available.

In any case, even for a philosopher who holds all real truthmakers
to be effective, the notion of a verifier is interesting as a way to delimit
the range of potential truthmakers for a claim. For an effectivist, the
“real” truthmakers will be a proper subset of these, but as the way to
pick out this subset is far from clear, all we will take a truthmaker for p
to be is some kind of verifier. Letting TM (p) be the set of truthmakers
of p, we write this condition as TM (p) SV (p). Consequently, we will
also take a falsemaker (i.e. that in virtue of which a claim is not true)
to be some kind of falsifier.!®

The fundamental rule of truthmaking, which we accept, is that if a
makes p true and a exists, then p is true. Apart from this, however,
opinions on how to substantiate the theory diverge. Truthmaker maxi-
malism (Armstrong, 2004) holds that truthmaking is required for truth,
so that for any claim p, if p is true in a world, then there exists some
truthmaker for p in that world.

15 An interesting analogue may be made with a theory that has roughly the same
structure as truthmaker theory: the intuitionistic characterisation of mathematical
truth. According to such an interpretation of truth, what we mean by “p is true”
is that we are in possession of (or have means of obtaining) a proof with certain
characteristics (i.e. those that make it a proof of p, rather than of something else).
Not every such proof can however be constitutive of the meaning of “p is true”, so a
special class of canonical proofs is often identified (see Dummett, 2000, pp 68-98).

The similarity should be clear. Intuitionistic mathematics rests on the truthmaker
principle, and takes proofs to be the truthmakers. The canonical proofs correspond
to our effective truthmakers. There are some differences, however: truthmaker
theorists generally believe that several truths may have the same truthmaker, but
if the identity of a proof determines the identity of what it is a proof of, then no
proof can make true more than one statement. We will return to the relationship
between truthmaker theory and intuitionism in ch. 7.1.
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Given the assumption that truth requires truthmakers, why would
a truthmaker theorist not want to be a maximalist? One reason is if
you believe that some truths are fundamental, and others are deriva-
tive. Thus, truthmaker theory is combinable with logical atomism, or
variants of it. We may hold that conjunctions have their own truth-
makers (for instance, the mereological sum of the truthmakers of the
conjuncts), but that disjunctions are true only because one of the dis-
juncts is made true by something. A more common standpoint is to
hold that some claims have truthmakers, but that their negations are
true simply in virtue of their lack of falsemakers.

The same problems with identifying the fundamental claims that
we found when discussing logical atomism apply to logically atomistic
truthmaker theory as well. How do we determine which claims in a
theory are the ones that have truthmakers? We will not attempt to do
that here, as we can still apply truthmaker theory to the fragment of a
theory consisting of claims that do have truthmakers. For every theory
A and truthmaker semantics § from A, there must be some theory A’
which is part of A, and whose language consists of all claims in L 4 that
are true iff they have actual truthmakers according to S.

Another way of weakening the maximal truthmaker principle is to
allow that although some truths may have no single truthmaker, several
things jointly can make them true. This is the version advocated by
Mulligan, Simons and Smith, and it has the advantage that we do
not have to postulate the existence of a single thing such as the three
apples in the bowl. Such an entity’s existence does follow from accepting
a mereological metaphysics, so if we have assumed that anyway, the
singular truthmaker for “there are three apples in the bowl” will be
no further commitment. We may still want the plurality of the three
apples as well, however, since it allows us to hold on to the principle
that sentences of the form “there are n x’s” always are made true by
n things jointly. Unlike the mereological sum of the three apples, their
plurality retains its threeness.

If 5 allows truthmaking by pluralities, and we interpret truthmaking
in the way that the truthmakers of p are the verifiers of p, then p is
true iff all the things in at least one of the pluralities that make p true
exist (we can see here that it is not the pluralities themselves that need
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to exist, but only the things in them). But this is exactly the same
condition that theorem 5.7 shows charactersises positivity. Thus, p is
made true by some plurality iff p is positive. Likewise, if we accept
plural falsemakers, p is made false by a plurality iff p is negative.

While a plurality should not be taken to be an entity in its own
right, but rather as a vehicle for plural reference, nothing hinders us
from representing a plurality as a set. Plural truthmaking semantics
then involves the condition that for any claim p, there is a set VP (p)
(the verifying plurality) of sets of entities such that p is true in the
world w iff X € w, for some X €VP (p). Since a positive semantics
fulfils the same condition, positive semantics also allows us to identify
the truthmaking pluralities for any claim p. We can also define falsifying
pluralities the same way, so that a negative semantics gives rise to a set
of falsifying pluralities FP (p) for every claim p.

One thing worth noting about plural truthmaker semantics is that
it also automatically gives us pluralities for making true sets of claims:
it is quickly proved that if the sets X7, ... X,, of entities make true the
claims p1, ..., p,, respectively, then the union of Xy, ... X,, makes true
all of p; to p,. While this holds for non-effectivist regular truthmaker
semantics with the assumption that the metaphysics is mereological as
well, we may need further assumptions to prove the same thing without
a mereological metaphysics or with an effectivist notion of truthmaking.

5.6 Necessitarian Interpretations

The preceding sections have discussed necessitarian semantics from a
top-down, structural perspective, and we have thus not said anything
about what the interpretations in these semantics are. As we have
stressed, the role of an interpretation of A is to provide information
that together with knowledge of the interpretation’s model will allow
the semantics to assign a semantic value to the claims in A’s language
L 4. This principle makes it fairly easy for us to find reasonable inter-
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pretation functions for different kinds of necessitarian semantics.

The most direct forms of necessitarian semantics that we have en-
countered are the correspondence semantics. Here, we have that the
truth-value of p in the model 91 is determined by whether p’s corre-
spondent exists in 21 or not. It is therefore natural to take an interpre-
tation of A in 9 to be a partial function hgy from L4 to 9, such that
hon(p) = c(p) iff ¢(p) € Eon. We then let S(hon,p) = true iff hop(p) is
defined.

One property of this semantics is that when a correspondent of p
exists, it is always the same correspondent. This is attractive because it
means that what A corresponds to does not depend on what the world
is like. If A is a language, it can be taken as an indication that we can
learn that language’s reference rules separately from learning about the
rest of the world.

As we mentioned, correspondence semantics are not very plausible.
Far more popular these days are be their generalisations in various forms
of truthmaker semantics. Here, the lack of a unique correspondent
means that an interpretation cannot in general associate a single entity
with each claim, or even with each true claim. Instead, let us take
hon(p), for any model M, to be the intersection of the set TM (p) of
truthmakers of p with the set Eoy of entities in 9. This way, a claim
gets interpreted as the set of its existent truthmakers. Naturally, p is
then true iff this set is not empty.

Moving upwards in generality, we come to the case of positive se-
mantics. But we have already seen that this is equivalent to truth-
making via pluralities, so the natural generalisation is to let hon(p)
be the set of those pluralities that verify (or make true, depending on
whether we consider the effectivist version or not) p, and that wholly
exist in A. Formally, since we represent pluralities using sets, we let
hom(p) = {X €VP (p) | X € Eon}. As in the case of non-plural truth-
making, the semantics must then take p to be true in 9 iff hoy (p) # 2.

Finally, how should we characterise interpretations in the fully gen-
eral case, where we have made no further assumptions on the function
[- 1?7 One idea is that we could let hon(p) be the whole of 90, since
it appears that all of 97 is relevant to whether certain entities do not
exist. But we can also reformulate the metaphysics slightly, in order to
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accommodate this case, and it will turn out in the next chapter that
this gives the semantics nicer properties.

Given a necessitarian metaphysics M = (E,>), let a circumstance
(X]Y) be a pair in which X and Y are disjoint subsets of E, and let
CRC(E) be the set of all circumstances constructible from the set E.
Where 9t any model in %, we say that (X|Y) holds in M iff X C w
and Y nw = @ (le. iff M contains all of X and nothing from Y),
and we write the set of all circumstances that hold in 9t as CRC().
Intuitively, a circumstance can thus be interpreted as an occurrence of
certain entities, together with an ezclusion of certain others.

The circumstances can do work analogous to that done by truth-
makers in a truthmaker semantics. Let the set of verifying circum-
stances VC (p) be defined as

Ve (p) ={(X]Y)|(Vwe (X CwAY nw=0) >wEDp)}

i.e. the set of all circumstances such that if any of them holds in the
world w, then p is true in w. These sets, for various claims p, can be
used to define values of the interpretation function for a model 91, by
letting hon(p) =VC (p) n CRC(M). The resulting semantics is, as with
other truthmaker theories, defined to give the value true for the claim
p in the model 9 iff hon(p) # @.

Do circumstances exist? In one sense they can be held to do: we are
free to say that the circumstance (X|Y) exists when the elements in X
exist, and none of those in Y do. However, no entities are involved other
than those of the model space we are working with, which follows from
the fact that we can translate talk of circumstances into talk of possible
entities without loss. Circumstances avail us of another vantage point
from which to view necessitarian metaphysics, and thus a translation
into circumstance-talk functions as a sort of transformation of our area
of discourse, after which certain problems may be easier to solve. In this
it works much as the Fourier transform or the Taylor series expansion
do in mathematics, and just as an analytic function’s being an infinite
sum of sines does not rule out its being an infinite sum of polynomials
as well, we can hold that a possible world is both a collection of possible
entities, and a collection of circumstances, depending on how we see it.
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This means that, at least with a little ingenuity, all forms of ne-
cessitarian semantics can be modelled on the truthmaker paradigm.'®
As a summary, table 5.1 collects the four classes of semantics for ne-
cessitarian metaphysics that we have discussed, in increasing order of
generality. For the three last, there are furthermore two varieties: the
non-effective one, and the effective. According to the effective versions,
the truthmakers (or truthmaking pluralities, or truthmaking circum-
stances) of p are taken to be only a subset of those that are sufficient
for the truth of p. Since correspondence semantics matches claims to
unique features of models, these are trivially effective, or the claims in
question could not have been true at all.

Semantics | Effective hox (p)
- c(p) if c(p) € Eom
Correspondence undefined otherwise.
No VC (p) n Eon
Truthmaking
Yes TM (p) N Eon
No VP (p) N p(Esm)
Positive
Yes TMP (p) N p(Eam)
No VC (p) n CRC(9M)
General
Yes TMC (p) n CRC(9N)

Table 5.1: Types of necessitarian semantics

For the first of these semantics, we have that p is true iff hop(p) is
defined. For the others, the truth condition for an arbitrary claim p is

16This might not be that surprising, since necessitarian semantics already has
been noted to coincide with the weak “truth supervenes on being” interpretation of
truthmaking.
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M = p iff han(p) # @

Common to all of the semantics described here is the fact that hoy (p)
is constant wherever it is defined, or at least constant on the overlapping
parts of models. This is typical of a Leibnizian semantics, and allows us
to “paste together” the interpretations in each model in order to define a
global interpretation function h, common to the whole semantics. Such
an interpretation function is given by ¢ for correspondence semantics,
by TM (or V) for truthmaker semantics, by TMP (or VP) for plural
truthmaker semantics, and by TMC (or VC) for circumstance semantics.

The seven semantics we have defined here are, of course, only a few
of those that could be defined, and necessitarian metaphysics only make
up a small part of the conceivable model spaces. We are thus faced with
an infinite multitude of choices whenever we are to interpret a theory
A.

Seen from a certain viewpoint, this freedom may appear almost
contradictory. Does not our use of the claims in a theory determine their
meaning, and should not that meaning determine which is the correct
semantics to use? This can look even more perplexing when we consider
the fact that our theories are not just sets of uninterpreted sentences,
but sets of truth-bearers together with consequence operators. The
possibility of meaningfully assigning truth or falsity to a claim seems
to require us to have some interpretation in mind of that claim, or we
wouldn’t know what it was that we called true or false. Likewise, the
existence of consequence relations among claims may seem to require
these to be interpreted, or we would not have any reason to believe
these consequence relations to hold. According to this line of thought,
a semantics is necessary as a precondition both for judging claims true
or false, and for being justified in believing one claim to follow from
another.

There is of course no reason to deny that when a scientist deems
it true that gold melts at a temperature of 1064°C, she has some kind
of interpretation of her words in mind, and does not treat them as
meaningless symbols. But this interpretation does not have to involve
any kind of full referential semantics. The scientist’s acceptance of “gold
melts at 1064°C” is generally based on observations and experiments
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carried out, and knowing which observations are relevant to the truth
or falsity of the sentence is all she needs to know about its meaning.
In short, she does not need the truth conditions, but only verification
conditions.'” For more deeply theoretical claims, such as “the neutrino
is an uncharged particle”, the verification conditions may take a back
seat to the more general idea of conceptual role (Harman, 1974; Field,
1977). Still, no knowledge of a semantics in the sense we have been
using the word is necessary for the working scientist.

Likewise, the consequence relation (or operator) does not have to
arisen from a referential semantics, but can very well be the product of
trial and error: if we have observed that occurrences of p are correlated
with occurrences of ¢, we can try allowing inferences from p to ¢. So
long as these do not lead from a claim we have good reason to believe
to be true, to one that we have good reason to believe to be false, such
an inference rule can be seen as empirically justified.

Of course, it is not my intention to argue against referential seman-
tics for natural language in general here. In fact, considering different
semantics makes sense even if the speaker already should have a definite
semantics in mind, at least as long as the model spaces that the seman-
tics take claims into differ. Consider, for instance, different Tarskian
model spaces, and a claim such as “there is a hand”, translated into
predicate logic as (3z)Hand(x). In a “common sense” model space M;
whose domains include hands and other body parts, the extension of
“Hand” naturally must include the hands in the domain, and nothing
else. But what of another model space, whose models have different
domains?

Let 95 be a model space whose domains only include elementary
particles, spacetime points and mereological sums of these. Now, in
some of these models, it may still be true that there is a hand. Let a
mereological sum of particles satisfy Hand(x) iff their spacetime posi-
tioning makes them sufficiently hand-like. Then some models contain
hands, and some do not. But how is “sufficiently hand-like” to be inter-
preted? While the meaning of the everyday word “hand” excludes some

7By “verification conditions” we do not only mean those conditions under which
the sentence would be conclusively verified, but also the ways in which observations
count as evidence for or against that sentence.
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shapes (for instance a completely spherical one), it is simply not exact
enough to determine a unique semantics into M. Several semantics
may thus be equally right.

Van Fraassen, borrowing a term from Eco, characterises science as
an open text—one that does not come with a full, detailed interpre-
tation (van Fraassen, 1991, 8-12). But the same, in varying degrees,
holds for every area of discourse. There can be no such thing as a com-
pletely closed text, since whenever we are to specify how to interpret
a certain statement, the statements that we use in such a specification
need interpretation as well.

Similar considerations apply to the role of truth conditions. To a
certain brand of philosopher of language, it may seem like a truism
that understanding a sentence requires knowing its truth conditions,
and there is indeed a sense in which it is. If one understands “snow is
white”, and understands what it is for a sentence to be true, one knows
that “snow is white” is true iff snow is white. This, however, has more
to do with knowing about truth than about “snow is white”, since the
concepts used on the right-hand side of the biconditional are the same
as those on the left-hand side. In the simplest cases, the metalanguage
contains the object language, so the translation of p into this language
will always be homonymous, yielding no further information.

Taking understanding p to involve knowing p’s truth conditions in
some language thus imposes close to no limitation at all. But requiring
an understander to know the truth conditions expressed in all languages
she knows seems too strong. I may be able to understand the language
of quantum mechanics quite well, and also to understand English well
enough, but still have no idea of what the truth conditions of “there are
three apples in the bowl on my table” are, expressed in the language
of quantum mechanics. I simply do not know enough about the consti-
tution of apples to do that.'® It is also worth pointing out that much

18 A very similar observation is made by Feynman in his Lectures on Physics:
“In order for physics to be useful to other sciences in a theoretical way, other than
the invention of instruments, the science in question must supply to the physicist a
description of the object in a physicist’s language. They can say ‘why does a frog
jump?,” and the physicist cannot answer. If they tell him what a frog is, that there
are so many molecules, there is a nerve here, etc., that is different.” (Feynman, 1963,
p. 3-9).
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of the information lacking seems to be of an empirical rather than a
linguistic kind.

A model space, as we have explained, is a kind of language, since it
through its canonical theory provides the means to say that the actual
world is in some subset of the models in the space. We have just made
the point that knowing a model space M and knowing a theory A is
not sufficient for us to be able to infer how A is to be mapped to M.
But how do we then choose our semantics? How do we determine if
truthmaker maximalism is correct or not, for instance?

There are some conditions that exclude certain semantics. An un-
sound semantics, for example, cannot do the work we need it to do, and
ideally the semantics should be complete as well. There are trade-offs
to take into account here, however: many logicians prefer to use the
intended semantics for second-order logic, despite this semantics being
incomplete, rather than the Henkin semantics, which is complete. In
some way these logicians may be said to hold that the intended seman-
tics better captures what they mean by claims such as (3P)P(c) than
the Henkin semantics does. So questions of meaning may deliver some
guidance in the choice of semantics.

We can also focus on the theoretical side of the question. As theorem
5.3 shows, we can regard a semantics from A into M as a translation of A
into Th(M). But a translation between two theories is itself a theory:
one that says what claims of the two theories are equivalent. Since
the notion of equivalence we are interested in here is truth-conditional
equivalence, adopting a translation involves possibly substantial claims
of the type “p € L4 is true iff ¢ € Ly is true”, where A and B are the
theories in question. If we hold all theories to be true or false, these
conditions may also place further restrictions on which semantics are
appropriate.
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CHAPTER 6

THE THEORY—WORLD
CONNECTION

Here we show how to use the concepts introduced in chapters
2 to 5 to draw conclusions about metaphysics from the truth of
theories. We call a semantics Hertzian if it induces a specific type
of connection between the logical structure of its theory, and the
necessitation-structure of its metaphysics. It is shown that all
the kinds of necessitarian semantics we have discussed fulfil this
condition, and it is this that make them useful for metaphysical
investigation.

The second half of the chapter concerns questions about onto-
logical commitment. First, we give a general theory of ontological
commitment, applicable to all types of model space. We distin-
guish between specific commitments, which are those things that
are in all models a claim is true in, and general commitments,
which are the types of things that a claim commits one to. Of
these, the second is in general the more useful.

In the final section, these concepts are applied to necessitar-
ian metaphysics. The most important result here is that from the
point of view of ontology, it does not matter if we take truthmak-
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ing to require effectiveness or not—the ontological commitments
of all claims are the same anyway. Since non-effective truthmak-
ing is a much clearer concept than effective, we are therefore
justified in concentrating primarily on this type of semantics.

6.1 Hertz’s Principle

We have highlighted the amount of choice and conventionality involved
both in choosing what model space to represent a theory in, and what
semantics to use for mapping the theory to that space. But this choice
is certainly not arbitrary: many requirements on theories can be turned
around and viewed as requirements on model spaces or their semantics
instead. We have treated soundness and completeness as properties
of semantics, but this works only because we have taken a semantics
to determine the theory and the model space that it involves. Thus
we can envisage holding the semantics and the model space fixed, and
see which inferences preserve truth in all interpretations, as is what is
done when we try to axiomatise a theory for which we already have
a semantics. Alternatively, we can hold the theory and the semantics
fixed, and see how different types of model space fit in. This is the task
of metaphysics: to design and study model spaces for a given theory.
But model spaces can not be studied on their own, when we are look-
ing to use them for a given theory. We have to look at model spaces
together with their semantics. Thus, we should look at ways of evaluat-
ing combinations of semantics and model spaces, given a theory A. At
first, it may seem like consistency ought to be one of the requirements
we can place on a model space or a semantics. But since we have de-
fined both model spaces and semantics set- and category-theoretically,
and not in terms of descriptions of these sets (or functions) and cate-
gories, consistency is not applicable. If the description we have given of
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what a model in M is happens to be inconsistent, then M is the empty
category, and thus unusable for any semantics (since we cannot define
interpretations to it). But this depends on the relation between model
space and theory, rather than on the model space itself.

Some properties on this level that are relevant to us are Leibnizian-
ness and Bolzanianness. Since we are interested in drawing metaphysi-
cal conclusions from theories, we should concentrate on the use of Leib-
nizian semantics. A non-Leibnizian semantics mixes the metaphysical
with the linguistic, and this makes it much harder for us to find out
what the theory says about reality, rather than about the language the
theory is expressed in. So, unless we specify otherwise, we will take the
semantics we work with to be Leibnizian.

Ideally, we should also want the semantics to be appropriate in the
sense that the actual model 2 (i.e. the theory’s subject matter) is an
element of the model space. As we explained in section 5.2, this is un-
fortunately not a rule that can be enforced: we cannot decide whether a
model is in a model space except through the use of theories and seman-
tics. This moves the proper focus from appropriateness to soundness
and completeness.

Soundness gives us some kind of safety against the theory contra-
dicting the semantics. That A is true means that if X 4 p and X is
true, then p is true as well. But if § is unsound, then it may be that
the actual model 2 is such that A =5 X but 2 ¥ p, and if § then
is appropriate, this would mean that X is true, but p is not, so this
contradicts what the theory says. Using a non-sound semantics for a
theory runs the risk of being incompatible with the theory itself.

Completeness may at first be thought to be slightly less crucial.
A theory usually does not come with any guarantee that the infer-
ences it licenses are all the inferences in its language that happen to
be truth-preserving. While there are exceptions, such as second-order
Peano Arithmetic, most theories purport to tell us only part of the truth
about the things they concern. But complete semantics still hold spe-
cial interest for our purposes: if we want to investigate the metaphysics
involved in a specific theory A, then using a complete semantics makes
sense. Since an incomplete semantics leaves out some things about the
ways the world can be according to A, it does not give us full informa-
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tion about A’s metaphysics. Furthermore, if the semantics in question
is bivalent, completeness also guarantees that there is some model in
which the same claims are true and false as in the actual one.

Soundness and completeness thus give us a more objective way of
evaluating semantics than appropriateness. But they do not take us
very far into metaphysics: as the following theorem shows, given any
model space M of sufficient cardinality and any theory A, we can design
a semantics S(A — M) which is sound and complete.

Theorem 6.1 : Let A be a theory, and M a model space of cardinality
at least 21741, Then there is a Leibnizian semantics S(A — M) from A
to M which is sound and complete.

Proof. One way to construct such a semantics is as follows. Let ¢ be a
surjective function from the models in M to the theories in A (such a
function exists by the axiom of choice, and it can be surjective because
of the cardinality requirement). For each model 9 € M, define an
interpretation to be a partial function hoy : L4 — M such that hgy is
defined and hop(p) = M iff p € p(IM). Let the semantics S map hop,p
to truth iff hey is defined at p.

The function ¢ effects a translation for M to the model space 7h 4 of
theoretical models of A. The resulting semantics is sound and complete
because this semantics is. O

To be useful for metaphysics, we need the semantics we have used
to incorporate deeper connections. We still, however, want to stay on a
structural level: purported conditions such as the semantics having to
capture “what the theory truly means” are not what we are after here.
Instead, our main idea will be a principle that we attribute to Hertz, on
basis of his position in the philosophical introduction to The Principles
of Mechanics Presented in a New Form (a book that, incidentally, is
said to have had a great effect on Wittgenstein). Hertz defends the
so-called picture theory of science (not to be confused with what Heil
called the “picture theory” of language; cf. sct. 1.2) according to which
the creation of a scientific theory is much like the painting of a picture.
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How to properly paint such a picture is, however, constrained by certain
principles. The most important of these is described by him as follows.

We form for ourselves images or symbols of external objects; and
the form which we give them is such that the mecessary con-
sequents of the images in thought are always the images of the
necessary consequents in nature of the things pictured. In order
that this requirement may be satisfied, there must be a certain
conformity between nature and our thought. Experience teaches
us that the requirement can be satisfied, and hence that such
a conformity does in fact exist. (Hertz, 1899, p. 1, emphasis
added)

We will refer to the principle empasised in the quotation as Hertz’s
principle. It requires the consequences we can draw from the theory
to match the those that follow by necessity in nature. Graphically,
expressed in our terminology, Hertz’s principle says that the following
diagram must commute, for any set X of claims (i.e. “images”):

inference

X —C(X)

necessitation

Here, ® = {¢1,...,¢n} = h[X] contains the features of reality that
the claims in X are images of (to use Hertz’s terminology), and likewise
for ®’. The interpretation h maps each claim into the feature of reality
that it is an image of, and Hertz’s principle says that the claims we can
infer from X must be those that are images of the features of reality that
are necessitated by those imaged by X. Although Hertz was interested
in motivating the inferences of a theory (the “necessary consequents of
the images in thought”) from observed necessities, nothing hinders us
from reversing this process when we are given a theory, and using the
principle to evaluate semantics and metaphysics as well.
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Looking closer, we can see that Hertz’s principle is the conjunction
of two subprinciples. Where $(A — M) is a semantics, we define the
following properties:

S(A — o) is Hertz-sound iff, for all X € Ly and p€ Ly
such that X 4 p, and any model 90t € M, any features of
M in virtue of which X is true necessitate some feature in
virtue of which p is true.

S(A — M) is Hertz-complete iff, for all X € L4 and p € L,
the necessitation of some feature of any model 9 in virtue
of which p is true by any features of 9 in virtue of which
X is true, entails that X 4 p.

A semantics that is both Hertz-sound and Hertz-complete will be
called Hertzian. We have used the word “necessitate” in a general,
vague sense here, to enable us to specify what this means more closely
depending on which semantics or metaphysics we use. The “features”
of a model 9 are what an interpretation hgy : L4 — 99 maps claims
to, and that p is true in virtue of such a feature ¢ simply means that
p’s truth in 91 can be inferred from knowing that 9t has the feature ¢,
and that p expresses possession of this feature (i.e. that hon(p) = ¢).

The specific features of models involved are thus determined by the
interpretation functions available in a semantics. We should remark
right away, though, that they do not have to be taken as ontologically
primitive, in the sense that we do not have to say that this or that
feature of reality exists. It is a convenient language in which to express
connections between theories and metaphysics, and it can be translated
on a case-by-case basis to language that does not use these concepts.
We will show how to do so for varieties of necessitarian semantics in
the next section.

Hertzianness gives us a way to evaluate semantics and metaphysics
which is slightly stronger than using only soundness or completeness.
For one thing, theorem 6.1 does not give us Hertzianness of the induced
semantics, since the procedure outlined in the proof makes the inter-
pretation function hgy map all true claims to the same feature (viz. the
model M itself). If we then say that 9t necessitates itself, Hertzianness
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would require the theory to allow all true statements to be interderiv-
able, and if we deny that 9t necessitates 9, the condition entails that
no inferences among true statements are allowed at all.

The important difference between Hertz-soundness and regular sound-
ness, and Hertz-completeness and regular completeness, is that the for-
mer in each pair relates a theory to properties of single models. By
contrast, regular soundness and completeness concern only which mod-
els are taken to satisfy which claims. This is why we can say that
Hertz-soundness and Hertz-completeness go deeper: they can provide
reasons for soundness and completeness to hold.

These properties thus guarantee intimate o
connections between the structure of a true the- theor /pg\
ory and the structure of the metaphysics (i.e.
the model space). Take, for instance, the the- o o
ory A depicted on the right, with a language /pf\ /94
consisting of the claims p;, ..., pg, and an infer-

ence relation for which p; -4 p; iff there is a D2
way to go from p; to p; by following the arrows. /
Inferences from sets of claims can be defined by

letting X 4 p; iff the greatest lower bound

(i.e. the meet) of all claims in X has p; as a

consequence.

Interpreting this theory through a Hertzian semantics gives rise to
the kind of correlation shown in fig. 6.1. Here, we have A with its
inference structure on the left, and we have a fragment of the meta-
physics, with its necessitation structure, on the right. The dashed lines
represent the true in virtue of relation.

o1, - .., ¢4 are features 9 in virtue of which claims in A can be true.
It is quickly checked that the interpretation function in fig. 6.1 gives a
Hertzian semantics: whenever ¢ is inferrable from p in A, the feature
of reality in virtue of which p is true necessitates the one in virtue of
which ¢ is true, and vice versa.

If a semantics is Hertzian, this means that the structure of the theory
and the structure of the part of the metaphysics described by the theory
are equivalent (in the category-theoretic sense which we described in
ch. 3), although they do not in general have to be isomorphic, since
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Figure 6.1: Hertzian semantics for A.

neither Hertz-soundness nor Hertz-completeness is sufficient to make
hon invertible or surjective.

6.2 Necessitarian Semantics are Hertzian

The last section of the previous chapter introduced four types of necessi-
tarian interpretation (seven if you count effectivist versions as separate),
and we will now show that these all give rise to Hertzian semantics, so
long as they are sound and complete. The structural relationship be-
tween theory and reality that Hertz required, and which he held we
had empirical support for, thus falls out of our methodology without
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us having to assume it explicitly. What we obtain is a mathematical
method for reading off the necessity-structure of the world from the
logical (inferential) structure of our best theories.

The easiest variant of necessitarian semantics for which we can prove
Hertzianness is correspondence semantics. As its interpretations take
every claim p to a uniquely determined single entity ¢(p), the type
of necessitation involved can be taken to be the deterministic kind,
according to which Z > e iff every world in which all entities in the
set Z exist also contains the entity e. The theorem is as follows.

Theorem 6.2 : Let S(A — M) be a correspondence semantics, and
interpret the necessitation of the entity e by the entities in Z as Z >
b. Then § is Hertz-sound iff it is sound, and Hertz-complete iff it is
complete.

Proof. We show that X = p iff ¢[X]>> ¢(p), from which the theorem
follows directly, since semantic consequence then coincides with neces-
sitation. But, by definition, w = X iff ¢[X] € w, and w k& p iff ¢(p) € w,
so what we need to show is that all worlds that contain all of ¢[X] also
contain ¢(p) iff ¢[X] > ¢(p). This, in turn, follows directly from the
representation theorem for necessitation relations. O

Corollary 6.3 : If a correspondence semantics is sound and complete,
we have that

pE g c(p)o—clq)

We have already remarked that correspondence semantics tends to
mirror the theoretical structure directly on the metaphysical, and theo-
rem 6.2 shows how: in a sound and complete correspondence semantics,
X F p holds iff the entities that X correspond to together necessitate
the occurence of the entity p corresponds to. This means that we can go
freely between the logical relation of consequence, and the metaphysical
relation of necessitation, since they are equivalent.

These kinds of correspondence semantics are, as we remarked, not
that popular anymore, and have in many cases been replaced by ver-
sions based on truthmaking. These also display a connection between
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theory and metaphysics, although on a slightly different structural level
than the correspondence semantics. The feature in virtue of which p is
true in the world (i.e. model) w is naturally the existence in w of any of
its truthmakers TM (p), and the type of necessitation involved is that
which is captured by the distributive necessitation relation ><, accord-
ing to which Z >< Z’ iff the existence of any entity in Z guarantees the
existence of some entity in Z’.

Hertzianness, however, is about collective necessitation. It is easier
for us to represent this if we take the metaphysics to be mereological,
in which case we can use the cross-sum operator ® for this purpose.

Theorem 6.4 : Let S(A — M) be a truthmaker semantics, let M be
mereological, and interpret necessitation of what p is true in virtue of
by what X is true in virtue of as ® TM [X] >¢TM (p). Then S is
Hertz-sound iff it is sound, and Hertz-complete iff it is complete.

Proof. Tt is sufficient to show that X =, p iff ® TM [X] >€TM (p). But
every world in which every claim in X is true must contain a truthmaker
for each of these, and because M is mereological, furthermore a sum of
all these truthmakers. Such a sum is always a member of the cross-sum
® TM [X]. Conversely, every world that contains some element of the
cross-sum ® TM [X] must be one in which all claims in X are true,
since the cross-sum necessitates a truthmaker for each X. Thus w = X
iff ® TM [X] nw # &, and since w E p iff TM (p) nw # & as well,
X Espit @ TM [X] > TM (p) O

Corollary 6.5 (Fundamental theorem of truthmaking) : If a
truthmaker semantics is sound and complete, we have that
pFq<TM(p)><TM (q)
We have called this corollary the fundamental theorem of truthmak-
ing since it is extremely useful for metaphysical investigation whenever

we have a truthmaking semantics. Since it only concerns single claims,
it does not require the metaphysics to be mereological. It is also worth

202



6.2 NECESSITARIAN SEMANTICS ARE HERTZIAN

pointing out that all these theorems hold whether the semantics in ques-
tion is effectivist or not, i.e. whether we take the truthmakers of p to be
all those entities whose existence entail p, or only some of them. Since
any useful semantics needs to be sound, a truthmaker semantics thus
at the very least always allows us to read off some of the necessitarian
structure of reality from the structure of our true theories. To allow
the reading off of all such structure, we need completeness as well.

Attempting to weaken our conditions even further, we may use the
observation that a mereological truthmaker semantics is equivalent to
a plural truthmaker semantics. Let & be a relation between sets of
sets of entities such that X & 7 iff any world w that contains all of
some set in X also contains all of some set in . If X Z& 9, the plural-
ities in X distributively necessitate those in 9. Because we have plural
truthmaking, we do not need to assume the existence of mereological
sums. We still, however, need an operation to combine truthmaker sets
for different claims, analogous to the cross-sum. We define

MX;f{Uy‘(VXeX)(me;é@)}

Since a plural truthmaker semantics is equivalent to a positive se-
mantics, we get the following generalisation of the Hertzianness theo-
rem:

Theorem 6.6 : Let S(A — M) be a positive semantics, and interpret
necessitation of what p is true in virtue of by what X is true in virtue
of as ) TMP [X] Z# TMP (p). Then S is Hertz-sound iff it is sound,
and Hertz-complete iff it is complete.

Proof. Tt is sufficient to show that X =g p iff |x) TMP [X] Z& TMP (p).
The only non-trivial part is to prove that w =g X iff there is a plurality
Z € ¥ TMP [X] such that Z < 9, since the theorem then follows
from the assumed truth-conditions of plural truthmaker semantics. So
assume that w =5 X. w must then contain some pluralities Z1,...,Z,
(strictly, there may be uncountably many of these) such that all of
Z1,...Zy are included in w, and such that Z; e TMP (q1), ..., Z, € TMP
(gn) for all ¢; € X. The second of these conditions entails that Z; u. ..U
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Zy, € ¥ TMP [X], and the first that Z; v ... U Z,, € w, so w contains
some plurality in [} TMP [X]. Conversely, any plurality in |x) TMP [X]
contains the whole of some plurality in each set TMP (g;), for ¢; € X.
This means that any such plurality is sufficient for the truth of X in
any model it is included in. O

Corollary 6.7 : If a positive semantics is sound and complete, we have
that

p = q<TMP (p) 38 TMP (q)

Thus, as soon as we have a sound and complete positive semantics
S(A — M), we can interpret S as a plural truthmaker semantics, and
A’s consequence relation as a type of necessitation relation. While we
have written this relation in terms of possible worlds, the representation
theorem of necessitarian metaphysics guarantees that it can be defined
in terms of the relation > as well.

So long as the semantics is positive, we can thus always find entities
to base the truth of claims on, and it then follows that consequence
is based on some form of necessitation. It might seem at first that
this cannot be done with nonpositive semantics, since the necessitation
relations we have used hold between entities, and not between non-
entities (whatever that may be). However, using the trick of section 5.6
of transforming our talk of entities into talk about circumstances allows
us to go all the way, and show in what way all necessitarian semantics
can be said to paint the structure of their theories onto the world.

We said that a circumstance (X|Y) holds in a world w iff X € w
and Y nw = @. Where I and A are sets of circumstances, we write
I' 2= A iff, for every world in which some circumstance in I" holds, some
circumstance in A holds. Since this is a condition on possible worlds,
it can theoretically, through the representation theorem for necessita-
tion relations, be written entirely in terms of the regular necessitation
relation ><.

A feature in virtue of which p is true is, on this reading, a circum-
stance that makes p true. For features that make a set of claims true,
we introduce the notation
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\/r {(X]Y)| ([ eD)3 (X'|Y)eD)(X' S X AY'CY)}

This means that \>7F, where I is a set of circumstances, is the set of
circumstances that hold when some circumstance in each set in I" holds.
Taking the necessitation involved in Hertzianness to be our relation =<,
we finally arrive at

Theorem 6.8 : Let S(A — M) be any necessitarian semantics, and
interpret necessitation of what p is true in virtue of by what X is true
in virtue of as \Y TMC [X] 22TMC (p). Then S is Hertz-sound iff it is
sound, and Hertz-complete iff it is complete.

Proof. As before, we show that X =, p iff \7 TMC [X] 28TMC (p),
and we show this by proving that w ¢ X iff there is a circumstance
(Y|Z)e \y TMC [X] such that Y C w and Z nw = @ . So assume that
there is such a circumstance (Y|Z). By the definition of X/, Y’ € Y
and Z' € Z for some circumstance (Y'|Z’) in TMC (q), for all ¢ € X.
SinceYYcYandY Cwentail Y Ccw,and Z/ c Zand Z nw =g
entail Z' nw = @, X is true in any model in which (Y|Z) holds.

In the other direction, assume that w =5 X. Then there are cir-
cumstances (Y1|21), ..., (Yn|Z,) that make g1, ..., g, true, where X =
{q1,--.,qn}, such that (Y1|Z1),...,(Yn|Z,) hold in w. Suppose, for
contradiction, that there is no circumstance (Y'|Z) which holds in w,
such that (Y|Z)e \y TMC [X]. Then there has to be some ¢; in X
such that no circumstance in TMC (q) holds in w. But then all of X
couldn’t have been true, by the truth-condition of general necessitarian
semantics. O

Corollary 6.9 : If a necessitarian semantics is sound and complete,
we have that

Pt qeTMC (p) 2ETMC (q)
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The theorem builds on the fact that truthmaking by circumstances
is equivalent to the “truth supervenes on being” formulation of truth-
making, which is another corollary of this theorem. Any necessitarian
semantics which is sound thus allows us to determine the necessity-
structure of metaphysics from the structure of a true theory, in a cer-
tain sense. The general theme here—that the structure of theory (or
language) matches reality—may seem Tractarian. This should perhaps
not come as a surprise, considering the common inspiration taken from
Hertz’s Principles of Mechanics. But in the Tractarian form, the princi-
ple works on the level of individual thoughts, propositions, and pictures:

2.14 That the elements of the picture are combined with
one another in a definite way, represents that the
things are so combined with one another.  This
connexion of the elements of the picture is called
its structure, and the possibility of this structure is
called the form of representation of the picture.

2.16 In order to be a picture a fact must have something
in common with what it pictures.

2.161 In the picture and the pictured there must be some-
thing identical in order that the one can picture the
other at all.

2.17 What the picture must have in common with re-
ality in order to be able to represent it after its
manner—rightly or falsely—is its form of represen-
tation.

4.04 In the proposition there must be exactly as many
things distinguishable as there are in the state of
affairs, which it represents.

They must both possess the same logical (math-
ematical) multiplicity (cf. Hertz’s Mechanics, on
Dynamic Models).

(Wittgenstein, 1922)

Hertz, in the section Wittgenstein refers to here, gives a theory of
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what it takes for one system to be a model of another, and the condition
mentioned by Wittgenstein is that both the modelling and the modelled
system have to have the same number of coordinates. Hertz furthermore
requires that the equations for the systems should be identical, and
that the magnitude of displacements agree in them (Hertz, 1899, §418).
These are clearly conditions necessary for one system to be able to give
information about the other. In particular, a system with less degrees
of freedom can never be used to describe one with more. This is the
basis for Wittgenstein’s idea that the proposition, if it is to be able to
describe the world, must have some structural similarity with reality,
even if this similarity does not have to be immediately visible.

But reality itself is not determined very strongly by such similar-
ities, especially if we allow that it may have non-empirical aspects.
Hertz puts it as follows, in a passage that seems very close to our own
characterisation of models as constrained, but also underdetermined,
by theory:

We can then, in fact, have no knowledge as to whether the
systems which we consider in mechanics agree in any other aspect
with the actual systems of nature which we intend to consider,
than in this alone,—that the one set of systems are models of
the other. [...]

The relation of a dynamical model to the system of which it is
regarded as the model, is precisely the same as the relation of the
images which our mind forms of things to the things themselves.
For if we regard the condition of the model as the representa-
tion of the condition of the system, then the consequents of this
representation, which according to the laws of this representa-
tion must appear, are also the representation of the consequents
which must proceed from the original object according to the
laws of this original object. The agreement between mind and
nature may therefore be likened to the agreement between two
systems which are models of one another, and we can even ac-
count for this agreement by assuming that the mind is capable
of making actual dynamical models of things, and working with
them. (Hertz, 1899, §§427-428).

Wittgenstein interpreted this to mean that the proposition has to
be a picture of the fact, and since the picture is structural, both the
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proposition and the fact have to be complex. But this is not the only
level on which we can impose the requirement. We have not assumed
claims to have a structure at all. If they have an algebraic structure,
we can infer that the metaphysics has such a structure as well, as we
will see in the next section. But even without an internal structure in
the claim, the inferential structure of the entire theory mirrors itself
onto the metaphysics. As we have shown, it has to, if it is to have the
ability to describe reality truthfully.

6.3 Algebraic and Probabilistic Theories

In the last section, we proved that the inferential structure of a the-
ory matches the necessitation-structure of its metaphysics. But this
also extends to structure that does not explicitly concern consequence
relations or necessity. Algebraic structure is preserved by necessitar-
ian semantics as well. First we prove a general result, from which we
then can find the exact algebraic operations in the metaphysics that
operations in a theory correspond to.

Theorem 6.10 : Assume that the theory A is formalised self-exten-
sionally by the algebra A = (La, f1,...,fn). Let S(A — M) be a
sound and complete necessitarian semantics with global interpretation
function h. Then there is an algebra B = (h[La],91,...,9ny on the
image of L4 under h, of the same signature as 2, such that h is a
homomorphism onto B.

Proof. That h is a function onto *B is trivial from its definition. Define
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the operations g1, ..., g, through the identities

9i(Y1, -, Ym) ;fh(fi(xla cey Ty))

where 3, € h™!(yx). For this to work, we must have that ker h (the
equivalence relation that holds between z and y iff h(z) = h(y)) is a
congruence on 2. So assume that f is an operation on 2, and that there
are elements p1,...px,...,pn and pj, such that h(pg) = h(p},). Since S
is Hertzian, we have that h(py) = h(p},) entails that p;, 4 pj.. But the
self-extensionality condition then gives us that py is congruent with p/,,
so the homomorphism is well-defined. O

Thus, even the algebraic structure of a true theory is interpretable
as the algebraic structure of the metaphysics, if we use necessitarian
semantics. For example, we can use this fact to prove that in any
truthmaker semantics for a theory based on classical logic, there must
be a one-to-one correspondence between sets of truthmakers that cor-
responds to megation in the theory. Which specific correspondence this
is, is given in the following theorem.

Theorem 6.11 : Let A be a theory that contains classical logic, and
S(A — M) a sound and complete truthmaker semantics for A. Let 1L
be a binary relation on p(FEq,) such that, for every X, Y € Ey, X 1Y
iff

(i) {z,y} > @ for every z € X and y € Y, and
(i) > X VY.

Assuming that not every sentence in L is true, it then follows that
™ (p)L TM (q) iff ¢ 44 —p.

Proof. An operation — on a distributive lattice (L4, A, v) is a classical
negation iff it satisfies C4({p A —p}) = La and pv —p € T4. By
Hertzianness, every world must then contain something in TM (p) or
TM (—p), so (1) follows. Furthermore, since not every sentence is true,
there is no world in which both p and —p is true, so (i) is fulfilled as
well. The converse is trivial. O
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The relation L is called strong orthogonality, in contrast to the weak
orthogonality of section 4.4. While weak orthogonality captures a rela-
tion that holds between the truthmakers of incompatible claims, strong
orthogonality captures that which holds when they are complements of
one another.!

The presence of a metaphysical correlate of classical negation such
as the relation I has interesting consequences. Let a dichotomy of a
necessitarian metaphysic (E,>€) be a pair of functions S, S from an
index set I to subsets of F, such that

S(i) 1L S(4)

for all i € I. A dichotomy splits the possible entities E into 2/l non-
overlapping sets, and no world can contain entities from more than one

of each pair S(¢), S(i). Thus the dichotomy gives rise to an equivalence
relation = on worlds such that w; = wo iff

wiNSE)=FSwnS(l)=0g

holds, for all ¢ € I. Call a necessitarian semantics S(A — M) dichoto-
mous iff there is a dichotomy on M such that wy = wy and w1 E p
together entail that ws = p, for all p € L4. In a dichotomous semantics,
the dichotomy can thus be used to specify the identity of any world up
to elementary equivalence.

Classical logic with truthmaker semantics is dichotomous: let L,
be the sublanguage of L4 that contains the sentences with an even
number of negations first. Then the functions S : L'y — p(FE) and
S: Ly — p(E) defined as

S(p) =TM (p)

S(p) =TM (—p)

form a dichotomy of 9.

1A complement of an element c in an arbitrary lattice with top 1 and bottom
0 is some element ¢’ such that c A ¢ = 0 and ¢ v ¢/ = 1. In a Boolean lattice,
complements are unique, and correspond exactly to the logical notion of negation.
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Theorem 6.12 : A dichotomous semantics is both positive and nega-
tive.

Proof. Let S : I — p(E),S : I - p(FE) be a dichotomy of M such that
w1 = wy and wy E p entail that wy = p. We show that if w; € wsy, then
wy E piff wo = p, for any claim p in the language. But for any ¢ € I, we
have that if w; N S(i) # @ then wy N S(i) # &, and if w1 N S(i) = T,
then wy N S(i) # @, so wy N S(i) # @. Thus w; = ws, and since the
semantics is assumed to be dichotomous, the same claims are true in
w1 and wa. O

For probabilistic theories, we need to make a slight generalisation
of our concepts of Hertz-soundness and Hertz-completeness if these are
to be applicable. A probabilistic semantics interprets X +™ p as “the
proportion of p-models among the X-models is 7. But just as with
regular consequence, this is something that concerns all models, and not
only the actual one. Probabilistically necessitarian metaphysics allow
us to descend from the inter-model perspective to an intra-model one.

Since generalisation to positive and general necessitarian semantics
proceeds much as in the non-probabilistic case, we focus on truthmaker
semantics. The proper characterisation of Hertzianness in this case
would be that

X" pe® T™[X]Z=TM (p)

i.e. that any truthmaker of the whole of X necessitates to a degree 7
that some truthmaker for p exists. By using the representation theorem
for probabilistic necessitation, we can prove that this indeed holds iff
the semantics is sound and complete: probabilistic necessitation is in-
tertranslatable with a probability measure on the set of possible worlds,
and since possible worlds are models, this is equivalent to a probability
measure on the model space.

An interesting point is that this gives us two different viewpoints
from which to look at the same facts. As we mentioned in chapter
5, probabilistic semantics gives us a kind of frequency interpretation
of the probability concept, according to which P(Y|X) is the relative
frequency of Y-models among the X-models. It is not a purely frequen-
tistic account, however, since necessitarian metaphysics generally do
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not come with an order. This means that a limiting frequency cannot
be defined, unless we impose such an order explicitly.

A probabilistic necessitation relation, however, is rather a kind of
propensity, to use Popper’s term (Popper, 1959). Or, at least, it can
be interpreted that way: if X >& Y, then the X’s collectively have the
propensity m to produce some Y. This can be seen as a property of the
X’s, even if a relational one. Unless it is actually manifested, it does
not depend on anything outside the X’s themselves.

But probabilistic necessitation does not fit all forms of propensity
theory. Since a probabilistic necessitation relation is intertranslatable
with a probability measure, it is tied to the standard probability cal-
culus. But there are arguments that propensity should not conform to
these axioms if it is to describe a chancy disposition. As Humpreys
writes,

Consider first a traditional deterministic disposition, such as the
disposition for a glass window to shatter when struck by a heavy
object. Given slightly idealized circumstances, the window is
certain to break when hit by a rock, and this manifestation of
the disposition is displayed whenever the appropriate conditions
are present. Such deterministic dispositions are, however, often
asymmetric. The window has no disposition to be hit by a rock
when broken, and similarly, whatever disposition there is for the
air temperature to go above 80°F is unaffected by whether my
neighbor loses his temper, even though the converse influence is
certainly there. (Humphreys, 1985, p. 558).

Unless they involve events with zero probability, probabilistic rela-
tionships are always “invertible” using Bayes’s theorem, but perhaps
we should not expect to be able to invert propensities in the same way.
However, it is easy to see that if X & Y, then generally Y’ >7«Tslz X for
some value 7/. Thus, at least not all instances of probabilistic necessi-
tation are manifestations of a chancy disposition.

This problem can be solved by using the notion of basis introduced
in section 4.3. The probabilistic necessitation relation, just as the non-
probabilistic variant, mixes together all forms of necessity relationships.
It may be very difficult to separate out the causal aspect alone. Unlike
in the nonprobabilistic case, we cannot always take part of a probabilis-
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tic necessitation relation and extend it in a unique “minimal” way to
satisfy the axioms.

This can be illustrated by ordering the possible entities in a time
series. Let t : E — p(R) be a function from the entities to the set of
points in time when they exist. Taking >& to be probabilistic causality,
we assume that X >& Y is defined for non-empty pairs of intervals X,
Y such that

sup t(z) = inf t(y)
zeX yey

This may indeed be the most that one could ask for in a probabilistic
theory: given how the world has been so far, what are the probabilities
that it will be a certain way hereafter? But the so-called initial condi-
tions are not included here, which mirrors itself in the fact that we have
not defined @ & Y. This concept does not, in itself, require that there
has to be a “first moment” in time, as Hume pointed out in Dialogues
concerning natural religion (Hume, 1779, part IX). As Demea put it
in the dialogue, even if time went infinitely far back so that any event
had a sufficient cause, we would still want to know why the entire series
occurred, rather than some other series. Translated to our case, we
note that even if every entity’s probability is determined by the entities
before it, we cannot assign these probabilities without knowing how to
do so to various initial segments of the world.

In fact, the very concept of time is something of a red herring here.
We can envisage things happening later in the time series as well, for
which we cannot give a probability. An example of this, which we
will discuss in the next chapter, appears in quantum mechanics. In
its classical form, QM does not allow one to calculate the probabilities
that certain measurements are made, but only probabilities of various
results of these measurements. The sequence of measurements can thus
itself be seen as part of the “initial conditions”, even if they may occur
now and then during the entire lifetime of the universe.

Due to the strength of probabilistic necessitarian semantics, com-
pleteness (and thus also Hertz-completeness) may be too much to ask
for in general. Most probabilistic theories do not specify probabilities
for every inference in their language. Therefore it would be interest-
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ing to find some weaker form of completeness, which still captures the
fundamental idea that what follows semantically should follow syntac-
tically (or theoretically) as well. We will not attempt to do so here,
however.

6.4 Ontological Commitments

So far, we have mainly studied the relationship between a theory and
a metaphysics M, which can be taken as a selection of ways the world
could be. But it should be obvious that if the world actually is one of
the ways it could be (which is guaranteed if the theory we have used is
true, and the semantics is appropriate), then one of the models of the
metaphysics will not only be possible, but actual. This means that a
true theory’s structure not only imposes itself on its metaphysics, but
also on the actual world.

One of the most fundamental questions we can ask about the world’s
structure concerns what exists, given a certain theory’s truth, and the
cluster of issues around this is known as the problem of ontological
commitment. There are numerous aspects of it, and we will try to
separate them somewhat in order to be able to give a more systematic
treatment.

First of all, we have the question of what ontological commitment
is a property of. It is usual to take it to pertain to some sort of claims
(i.e. theories, sentences, beliefs etc.), but these do not, on their own,
determine what the world is like. Only when they are given a seman-
tics do they have metaphysical import, and this import is captured by
the models that they are true in. The more fundamental ontological
properties thus pertain to models, and only derivatively to claims.

We have already stressed the choices involved in selecting a seman-
tics, as well as those we make when we decide on a model space to use —
no claim ever interprets itself, and no theory determines its own seman-
tics. This means that ontological commitments always are relative to a
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semantics, and thus also a model space. But a model space is a kind of
theory, so ontology is theory-relative. This is, of course, nothing other
than Quine’s position in Ontological Relativity, which we mentioned in
chapter 1:

What makes sense is to say not what the objects of a theory
are, absolutely speaking, but how one theory of objects is inter-
pretable or reinterpretable in another. (Quine, 1969, p. 50)

For us, however, this is not the end of ontology, but rather the start
of it. Ontological relativity may be true, but it does not make ontology
any less interesting or important, just as the relativity of most geomet-
rical concepts does not make geometry any less profound or powerful.

We have already noted that a semantics can be taken to be a kind of
translation between a theory’s logical and metaphysical points of view.
The metaphysical point of view, in turn, corresponds to Quine’s “theory
of objects”. Since the purpose of determining a theory’s ontological
commitments is to obtain an inventory of what objects exists according
to that theory, one way to see the problem of ontological commitment
is as being about the translation of model spaces into V.

The advantage of 7/ is that each of its models has an explicit ontology
of well-behaved, well-individuated objects. This, however, means that
not all model spaces may be usefully interpretable in such a way. Since
a category which is concrete over 7 is called a construct, we say that
M is constructible if there is a faithful functor F': M — 7.

An example of a model space (or rather, a category) that is not con-
structible is A7op, whose objects are topological spaces, and whose mor-
phisms are homotopy classes of continuous functions between these.?
But the largest problem with using constructibility in order to decide
questions of ontological commitment is not the existence of the occa-
sional inconstructible model space, but the arbitrariness involved in
imposing a forgetful functor F'. Usually, several such functors are iden-
tifiable, and the question of which one gives the “true” ontology of the
space’s models therefore becomes acute.

2Two functions are homotopic if they can be continuously deformed into one
another. The space f7op thus consists of topologies, but disregards certain differences
between transformations between these.
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One may, of course, hold with Quine that “...the question of the
ontological commitment of a theory does not properly arise except as
that theory is expressed in classical quantificational form, or insofar as
one has in mind how to translate it to that form” (Quine, 1969, p. 106),
but we have already, at the outset, made clear our intention to break
free of his reliance on classical first-order logic as the “one true logic”.
One way to do this is to resist the temptation to reinterpret the model
space we started with, and instead use the category-theoretic concepts
developed in chapter 3 to approach the problem.

Even when we limit ourselves to models in the same model space,
there are absolute and relative notions of ontological commitment. In
the absolute sense, we can ask “does 91 contain X’s”? Alternatively,
we may wish to know if one model contains anything more than what is
contained in another. For instance, we may be interested in the question
of whether acceptance of mereological sums inflates our ontology, or
whether a reduction of one theory to another also reduces its ontological
commitments. In this case, we are using a relative interpretation of the
concept, in the sense that it is based on a relation between models.?

The relative concept, in turn, splits into several, depending on what
we mean by one model containing “more than” another. In chapter 3
we identified three relevant relationships here. The first, and strongest,
is that which holds iff everything that is in 9t; is also in 9. In this
case, we say that 9, is contained in M. This is also, roughly, the
same as saying that 91y is part of 95. It is expressed by the condition
that there is a canonical strong monic from 9y to M. Since which
strong monics are canonical is dependent on which inclusion system we
have placed on M, containment of models is relative to such a system.

Luckily, metaphysics usually concerns itself not with the existence of
specific entities, but of types of entity. Thus it may be more interesting
to ask whether all the structure which is in 9, is also in 99t;. Mathe-
matically, this means that there is an embedding of 9t; in M5, and seen
this way, 915 contains as least as much as My iff MMy can be embedded

30ne might also say doubly relative, since we are relative to a model space as
well. But since all forms of ontological commitment are relative in that way, we
use “relative” for the concept of ontological commitment that takes the form of a
relation between models.
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in 9M,. Categorically, we have decided to explicate this as the condition
that there is a strong monic m : 91 — 9. Because this notion is
completely category-theoretic, embeddings are fully structural.

Finally, we can also ask a purely numerical question: does 915 con-
tain a larger number of things than 9t;7 When models are just sets,
such as in %, this relationship coincides with the embedding concept,
but they come apart in most other spaces. When we interpret the “con-
taining more” clause as simply being about numerosity (it would be a
bit misleading to say “cardinality” here, since cardinality is so tied up
with the concept of set), we can express it through the existence of a
(possibly non-strong) monomorphism from 9t; to M.

Which of the absolute or relative concepts of ontological commit-
ment is the fundamental one? In certain simple model spaces such as
v, it does not matter which one we begin with. Since, in 7/, models
are sets, we can say that 90U contains X'’s iff M N X # @, and that
Mo contains at least the things in 91 iff for any set X, M n X # &
implies that 9 N X # @. But this is just the condition Mt; < M.

Already in 7, matters are not quite so easy. Does Dop, S Dan,
imply that 95 contains everything that 9t; contains, for instance? Not
necessarily, since different relations may hold in 9%; and 915, and we
may be reluctant to say that 91; contains everything that 91, contains
if the things in their domains are radically different in the two models.
This is just an instance of the intensionality of Tarskian models that
we remarked on in ch. 3: how things are in the model is affected by
how they are described.

How do we then determine whether a model contains objects of a
given type, or when a model contains another? Part of our difficulty
stems trying to use the model-space relative notion of object for some-
thing it is not fit for. From the viewpoint of M, the models in its object
class are the only things that can have self-subsistent existence, and
in a certain sense therefore the only things worthy of being called ob-
jects. When we relativise ontological commitment to a model space, we
should therefore relativise the object concept as well.

The easiest way to do this seems to be to express “MI contains X’s”
as “O contains some model in X”, where X is a set of objects of 2.
This containment, in turn, is to be explicated in terms of the existence
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of a canonical strong monic m : X — 9N, where X € X. Thus the only
things we can really be committed to are models.ins some model in
X7, where X is a set of objects of . This containment, in turn, is
to be explicated in terms of the existence of a canonical strong monic
m : X — 9, where X € X. Thus the only things we can really be
committed to are models.

This gives rise to a few interesting corollaries. Suppose, as a mathe-
matical structuralist might claim, that the natural numbers make sense
only in the context of a natural number system (or a “simply finite
system”, as Dedekind would have expressed it). Then there is no such
thing as being committed to, say, the even numbers, and not the odd
numbers. This seems reasonable enough. But suppose we have an Aris-
totelian metaphysics, in which properties cannot exist on their own,
and we have a theory that says that property P exists. In this meta-
physics, there is no model that contains just P, so the commitment
cannot be to {P}. Instead, we must conceive of it as a commitment to
some member of the set {{P,a}, {P,b},{P,c},...} wherea,b,c,...areall
possible particulars, or even {{P,a, P(a)},{P,b, P(b)},{P,c, P(c)},...}
where P(a), P(b), P(c) etc. are the facts that a is P, b is P, etc., or
some “non-relational tie” of instantiation between P and a particular.
The only way to work around this appears to be to embed the model
space into a completion of it, thereby introducing the “ideal models”,
or aspects, which we mentioned in section 3.3. How to do this in detail
is far from trivial, however.

Since the only things we can be committed to are models, the rel-
ative notion of commitment is more fundamental than the absolute on
the single-model level: we need to know when one model contains an-
other in order to be able to say which things are in which models. But
on the level of claims, relative commitment turns out to be much more
complicated than absolute.

Starting with the absolute commitments of a claim, this concept can
be split into a specific one, and a general one. The specific commitments
of p are those things that are in every model in p. Formally, holding p
to be true specifically commits one to the X’s iff the models in X are
embeddable in every model in which p is true. This means that p’s
truth guarantees the existence of all the X’s, and we write the specific
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commitments of p as SC(p).

Many claims do not come with specific commitments. “There are
gnus” commits one to some gnu, but not any specific one. “Socrates
exists” may be an example of a claim with non-empty specific commit-
ments, but even this could be questioned if one has doubts about the
identity of Socrates across models or possible worlds.

General commitment is often a much more useful concept, although
it turns out to be harder to formalise. Consider, for instance, the claim
g =“there are gnus”. This does not commit us to any specific gnu, and
although it may be held to commit us to gnuhood, this is not necessarily
so either. If there is something G in every possible model in which there
is a gnu, and in no others, then G is a candidate for playing the role of
gnuhood. But any given gnu can play the role of being a gnu, and it is
not really necessary that there be something that “collects” them.

The general commitments of p can be seen as the set of roles p re-
quires to be fulfilled. To formulate this properly, it is useful to formalise
the role concept. For any two models 9, 9, write I — M’ if there
is some strong monic from 9 to YM’. Let a role R be a binary relation
on M such that if MRM, then M — IM'. The intended interpretation
is that DRI iff M can play the role R in the model M’. The strong
monic condition ensures that 9 can be a part of 9, even if it does not
guarantee that it actually s a part.

Let R(M) be the set of all roles on the model space M. We give
the formal definition of the general ontological commitment GC(p) of
a claim p as follows.

GC(p) = {ReR(a0) | (¥ & [p]) (301 )00 R}

The motivation behind this definition is the idea that p’s truth re-
quires all roles that are fulfilled in the models of p to be played by some-
thing. It is in this sense we ask whether p commits one to the existence
of numbers (rather than the numbers), physical objects, propositions,
etc. For instance, holding p to be true commits one to numbers iff
Ry € GC(p), where

MR iff M plays the role of the natural numbers in N
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This role-playing can then be explicated in terms of satisfaction
of the Peano-Dedekind axioms. Alternatively, we can give a purely
category-theoretic definition, and state that DRy iff some natu-
ral number object (Lawvere, 1964) is embeddable in 9. Category-
theoretically, commitment to numbers is a purely structural property —
it does not involve any “internal” attributes of objects.

We may distinguish between external and internal roles, where we
call a role R internal iff MR and MM’ — M’ imply that MRM”, and
external otherwise. Internal roles are stable under embeddings. One
simple example is 9 playing the role of 91 itself, which it does when
it fulfils the specific commitments of a claim such as “O exists”. Here,
M can play the same role in all models in which it is included.

For a possibly external ontological commitment, consider “there is
a largest number”. One could argue that this commits one to not only
some number which is the largest, but also to a lack of numbers larger
than it. But it is not certain that this should count as an ontological
commitment, since it does not strictly say that something exists, but
also that some things do not exist.

Using GC, the relative questions become easy to answer. Say that
the role R is filled in O iff there is some M’ such that M RIM. ¢ commits
one to at least as much as p ifft GC(p) € GC(q), and they have the same
ontological commitments iff GC(p) = GC(q). This entails the useful
theorem that if p entails ¢, then p’s general ontological commitments
are at least as large as ¢’s.

Theorem 6.13 : If [p] < [¢], then p is committed to as least as much
as q.

Proof. Let R be any role that ¢ is committed to. Then R is filled in all
models in which ¢ are true. But since [p] is included in these, R must
be filled in these as well. O

Unfortunately, if we do not impose any further conditions on what
roles can be, we also have the converse theorem: if GC(p) € GC(q),
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then g entails p.* Usually we are not interested in all roles, however. We
may, for example, have a certain set of concepts in mind, in which case
these delimit which models can play which roles. In a Fregean spirit,
we could hold that Julius Caesar cannot play the role of the number
2, since he is a Roman emperor and not a number. We are then only
considering a subset of R (M) to be relevant, and the roles that a claim
can be committed to become different.

One important limitation of ® (M) is to consider only internal roles.
This is motivated by the thought that ontological commitment is about
what exists, and not what does not exist. Even if “there are no wart-
hogs” is true only in models that lack warthogs, this does not commit
us to a lack of warthogs in any ontologically significant sense. In the
following, we will therefore assume that all roles under consideration
are internal.

A further possibility for strengthening our definition is to require the
embeddings used in defining a role to be canonical. Let us call a role R
canonical iff MRI' entails that at least one of the strong monics from
M to M’ is canonical. A canonical role specifies the exact identity of the
things that can play it, and not only their structure. The disadvantage
of using such roles, however, is that they require us to have access to a
specification of which strong monics are canonical.

For internal roles, we can simplify the structure of general ontologi-
cal commitment somewhat. Since a model can play the internal role R
in any model it is part of, the role itself can be seen as a set of models,
rather than a relation. Thus, we will also say that a claim p commits
one to X'’s iff X is a set of models, and any model in which p is true
contains some X. This is equivalent to there being a role R such that
MBRM' iff M e X and M — . We can therefore also see general
commitment as a function GCS(p), whose values are sets of sets of
models, with the interpretation that X € GCS(p) iff p commits one to
X’s. Symbolically, we have as the definition

GOS(p) = {x S 9 | (¥ e [p)EN e x)(@ — )}

4This can be shown by considering the role R defined by the condition that IR
iff M € [q].
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Theorem 6.14 : For all X € GCS(p), if M € X and M — N, then
M e GCS(p). If x e GCS(p) and X € X/, then X' € GCS(p).

Proof. Trivial using set theory and the fact that the composition of
strong monics is a strong monic, which entails that embeddability is
transitive. O

Theorem 6.15 : p I ¢ entails GCS(q) € GCS(p), but p t£ ¢ does not
entail GCS(q) € GCS(p).

Proof. The first part follows directly from thm 6.13 by the correspon-
dence that R € GC(p) iff dom(R) € GCS(p) for internal roles. For the
second part, let M be a model space whose models are non-empty sub-
sets of {a, b}, and whose only non-trivial embeddings are {a} — {a,b}
and {b} — {a,b}. Let ¢ =“a or b exist” and let p =“a or b, but not
both, exist”. Under the usual semantics p + ¢ holds, and therefore
GCS(q) € GCS(p). On the other hand, ¢ I p, since ¢ is true in the
model {a, b} but p is not.

There are three models v = {a},v = {b} and w = {a, b}, and under
the usual semantics [p] = {u,v} and [¢q] = {u,v,w}. Applying the
definition of GC'S, we find that

GCS(q) = {{u,v}, {u,v,w}}

But both of these sets are in GC'S(p) as well, since both of them
contain some model embeddable in © and some model embeddable in
v. Thus GCS(p) = GCS(q). O

Thus each set (i.e. role) in GC'S(p) is closed upwards under embed-
dings, and the whole set of roles is closed upwards under the subset
relation. This is due to the facts that any model that contains a model
playing the internal role R can itself play that role, and that the filling
of all roles in a set ipso facto is the filling of the roles in all its sub-
sets. Furthermore, we do no longer have the trivialising entailment that
GCS(p) € GCS(q) = p + q, since not all increases in strength of a
claim incur corresponding increases in ontological commitment.
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Although they unfortunately are quite opaque, our definitions do
seem to capture what we are after. Consider the case where g = “there
are gnus” and gw = “there are gnus and warthogs”. This is a classic
case of one claim intuitively having larger ontological commitments than
another, even though both claims’ specific commitments are empty.
Since gw + g, we have that GC(g) € GC(gw). To show that the
converse does not hold, we need to find a role R which is filled in every
model in which gw is true, but is unfilled in some model g is true in.
Assuming that gnus and warthogs can exist on their own, and also that
no gnu ever can be a warthog, we can take each possible gnu and each
possible warthog to make up a model of their own. Let ORI iff 9N
is a warthog model and 9 is embeddable in 9. By definition, R is
internal, and since there are models that contain gnus but not warthogs,
R is unfilled in these. Therefore GC(gw) & GC(g).

The framework we have outlined here allows us to approach ques-
tions regarding ontological commitments systematically, without pre-
supposing what the model space we are investigating is like. When we
do know this, there may be a few more things we can say, as we shall
see in the next section.

6.5 Commitment in a Necessitarian Semantics

In one sense, questions of ontological commitment are easy when we
are using necessitarian semantics. A is a construct, and it thus comes
with a built-in translation F' to 9. Thus we can say that a claim p
is committed to X’s iff the set of all possible X’s intersects F'(90t), for
every model 9 in which p is true. We can say that p has as least as large
ontological commitments as g iff p being committed to X’s implies that
q is committed to X’s, for any set X of possible entities. As always,
though, the devil is in the details.

First of all, we should ensure that speaking of commitment to enti-
ties in a necessitarian semantics, as opposed to speaking of commitment
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to models, actually makes sense. But we can, if desired, translate be-
tween the two ways of speaking as soon as we have the forgetful functor
F. Let Mp(X), where X is a set of possible entities, be the set of all
models M such that F(M) n X # &. Then we can say that p commits
one to X’s generally iff it commits one to the set Mp(X) generally, and
this allows us to define versions of GC'S and SC' expressed in terms of
commitment to entities. Letting M be a necessitarian metaphysics with
set E of possible entities, we define GCE and SCFE through

SCE(p) = My '[SC(p)]
= (M [[p1]

GCE(p) = Mz ' [GCS(p)]
={XCc E|(VMe[p])(Em n X # 2)}

SCE(p) may be read as “the entities that p commits one to”, and
GCE(p) as “the types of entity that p commits one to”, where these
“types” are represented by the sets of their instances. It is important
to remember that Mg, and thus also SCFE and GCE, depend crucially
on the forgetful functor F'. This functor determines which embeddings
are canonical, and thus also what it means for one model to be part of
another, rather than merely embeddable therein.

For 2 there is a very natural forgetful functor, and thus a natural
choice of which monics are canonical. On the other hand, we should al-
ways be watchful of “naturalness”. Sometimes, focusing on what seems
natural hinders one from seeing what is essential or inessential. Thus it
is safest to keep in mind that even in A, we have settled on a specific
way to interpret these models in ¥, and this way is external to the
model space itself.

Starting with the correspondence variant of necessitarian semantics,
we have that p is true iff ¢(p) exists. This entails that under a corre-
spondence semantics, all claims have specific ontological commitments:
their correspondents. The general ontological commitments are deter-
mined by this condition through the relationship that p commits one
to X'’s iff ¢(p) € X.
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Already for truthmaking semantics, we have more interesting struc-
tures. One of the guiding motivations of truthmaker theory was to allow
the possibility that p has a non-specific connection to reality, such as in
the paradigmatic case “there are X’s”. Thus we often do not have spe-
cific ontological commitments in a truthmaker semantics. On the other
hand, there is an intimate relationship between a claim’s truthmakers
and that claim’s general commitments. As we defined it in section 5.6,
truthmaker semantics is characterised by the principle

[p] = {M| TM (p) N Ean # @}

Plugging this into our definitions of specific and general ontological
commitment, we find that

SCE(p) ={x e E | TM (p) >> =}
GCE(p)={X S FE| TM (p)>< X}

i.e. p commits one to X'’s generally iff the truthmakers of p necessitate
some X distributively.

If the necessitarian semantics used furthermore is sound and com-
plete, this means that if X is the set of truthmakers of a claim ¢ (we
could call such a claim “existential”, since it is true in exactly the mod-
els where there is some X), then we have that p commits one to X'’s
generally iff p - ¢. Of course, there is in general no such claim ¢, since
not every set of models needs to be in the image of some claim under the
semantics used, but when one exists, it captures nicely what is involved
in ontological commitment for truthmaking.

Now, because X >< X, we have that TM (p) € GCE(p). This means
that holding p to be true commits one to truthmakers for p. Conversely,
since the existence of any truthmaker for p is sufficient for its truth, the
existence of some element in each set in GCE(p) is both sufficient and
necessary for the truth of p.

The case is very similar for plural truthmaking semantics. Here, we
get the result that

SCE(p) ={x € E| Z>> x for all ZeTMP (p)}
GCE(p) ={X C F| Z>e X for all Z eTMP (p)}
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which also lets us derive the equivalence that p is true iff p’s general
ontological commitments are fulfilled. In a sense, the question of onto-
logical commitment therefore exhausts the connection between theory
and world in a truthmaker semantics. Alternatively, we can say that
truthmaker semantics allows us to reduce the question of what the world
is like to the question of ontological commitment, i.e. of what exists.

Plural truthmaker semantics (or, equivalently, positive semantics)
may fairly be held to be more useful for discussing the ontological com-
mitments of theories than singular truthmaker semantics are. Since a
theory A in a framework F' is determined by its set T 4 of truths, it is
natural to see the theory as being made true by the truthmakers for
each of the claims in T,4. While A might have a single truthmaker
as well (for instance, if the metaphysics used is mereological), we may
very well be more interested in which things make true which parts of
A, rather than the question of what makes true the whole.

Using ontological commitment to derive what the world is like from
which theories are true thus involves going from the truth of claims to
the existence of entities. But, interestingly, it does not matter whether
the truthmaking semantics used is effectivist or not. Recall that the
effective truthmakers of p are those truthmakers (or verifiers) most
“intimately” related to, or actively involved in the truth of p, where
these notions seem impossible to define formally. At first, it may seem
that requiring all truths to have effective truthmakers would be more
demanding than just requiring them to have verifiers. But, as the fol-
lowing theorem shows, this is not so.

Theorem 6.16 : Let SCE(p) and GCE(p) be the specific and general
ontological commitments of p under a non-effective truthmaking se-
mantics S(A — M), and let SCE*(p) and GCE*(p) be the specific and
general ontological commitments of p under an effective truthmaking
semantics $¢(A — M) such that the truthmakers under $¢ of any claim
p are a subset of those they are under §. Assume that both semantics
are sound and complete. Then

SCE(p) = SCE“(p)
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GCE(p) = GCE*“(p)

for any claim p € Ly.

Proof. First, SCE. The specific commitments of a claim are those
entities that are in all worlds where the claim is true. But which sets of
entities are possible worlds is determined by M, and since both § and
S¢ are sound and complete, they must assign the same truth-value to
p in all worlds. Therefore the intersection of all these worlds does not
depend on whether § or 5¢ is adopted.

For the general commitments, we have that p commits one to X’s
under S iff V (p) >¢ X, and under $° iff TM (p) >¢ X. But since TM
(p) €V (p), TM (p) >V (p), and conversely, if e €V (p), then p is true in
any world in which e exists, and since p requires an effective truthmaker
under $*, e must necessitate such a truthmaker, so V (p) ><TM (p) as
well. Since >< is transitive, we find that V (p) > X iff TM (p) >< X,
so GCE(p) = GCE4(p). O

What drives this theorem are really the soundness and complete-
ness assumptions: using these, the structure of the theory we used
determines the structure of the metaphysics, up to category-theoretic
equivalence. There is simply no room for effectiveness to make any
difference in what we are committed to in making claims.

But soundness and completeness of the semantics are very impor-
tant properties when we are to use theories for the purpose of finding
out what the world is like. Thus, we find that the question of whether
truthmakers have to be effective or not is irrelevant to questions of on-
tology. Since ontology furthermore determines metaphysics in a truth-
maker semantics, we find that there is no metaphysical reason to prefer
either the effective or the non-effective version of truthmaker seman-
tics to the other. But as there are definite practical reasons not to
impose an effectivist requirement, this can be seen as an argument for
the non-effectivist version.

If effectiveness does not influence metaphysics, where does it play a
part? One possibility is that it matters for the philosophy of language.
For instance, if we take the meaning of a claim to be its set of truthmak-
ers, we can have a theory in which (logically) equivalent claims may be
non-synonymous. This is, however, strictly a difference in expression:
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when it comes to what a claim says about the world, effectiveness does
not matter.

When it comes to general necessitarian semantics, the principle that
the ontological commitments determine claims up to equivalence no
longer holds. Since claims can be true because of the lack of entities,
we have that all claims that deny the existence of something have the
same empty commitments, for example. Therefore, knowing that cer-
tain things exist is not sufficient for deriving the truth of some claims.
In contrast to truthmaker theories, general necessitarian semantics does
not allow one to reduce metaphysical questions to questions of ontolog-
ical commitment.

What does effective truthmaking mean in a general necessitarian
semantics, then? Supposedly, the circumstance (X|Y) makes p true
effectively if the existence of the X’s and the non-existence of the Y’s
are effective in bringing p’s truth about. But the important properties
for us is that p is true in 9 iff some truth-making circumstance of it
holds, and that the effective truthmaking circumstances are a subset
of the truthmaking circumstances. Using these, we can again derive
that SCE(p) = SCE*¢(p) and GCE(p) = GCE*(p), so even when we
are using necessitarian semantics in its most general form, effectiveness
remains unimportant to ontology.
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CHAPTER 7
APPLICATIONS

So far, we have been exploring the connection between the struc-
ture of theory and metaphysics imposed by adopting a semantics.
In particular, we have been interested in the class of necessitarian
semantics, since these allow us to derive the structural relation-
ships formally. But we have also been moving on a very abstract
level: nothing has been presupposed about the theories in ques-
tion, except that they are representable as consequence operators
of some kind. It is time to look at some more concrete cases.

In this chapter, we will move gradually from the general to
the specific, beginning with propositional logics before giving two
versions of first-order logic. The next step is set theory, and after
this we show how to approach a physical theory such as quantum
mechanics. Finally, we discuss the application of truthmaker
theory to two purely philosophical problems: that of qualia, and
that of the metaphysical status of moral facts.

7.1 Sentential Logics

The contemporary recognition of how much one’s choice of logic influ-
ences and is influenced by one’s metaphysics is mostly due to Dummett
(1978, 1991b). Starting out from the debate between intuitionists and
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Platonists in the philosophy of mathematics, Dummett shows us how
the intimate connection is between the intuitionists’ characterisation of
mathematical objects as ones of our own construction, and their rejec-
tion of the law of excluded middle.

It is important to be clear that the conflict is not over the nature of
truth. Both intuitionists and Platonists presuppose that claims are true
iff they describe mathematical reality as it is, and we have noted that
this simply follows from the meaning of the word “true”. However, they
disagree on what this reality is like: for the Platonist, it is independent
of human activity and thought, and for the intuitionist it is not. The
traditional questions of realism vs. idealism or phenomenalism when it
comes to external objects can be seen in a similar light. Both the realist
and the idealist are entitled to the same notion of truth, and may hold
that P(a) is true iff a has the property P. But a, for the idealist, is
a collection or construction of sense-impressions, while it commonly is
something quite different for the realist.

Interestingly, anti-realists therefore generally do not have to deny
that everyday things exist. They may hold, with Moore, that their
hands exist. The difference instead turns up in how such a claim is
to be interpreted. In our terms, they apply different semantics. More
differences may also come into view when theories are placed inside
larger theories, such as ones that include metaphysical notions. For an
antirealist, the inference from “I have hands” to “there exist at least
two things independently of my mind” is questionable.

To illustrate, let us consider two theories C' and I over a common
language L, freely generated from a set of atomic sentences using the
connectives 1, —, A and v. Let —p be an abbreviation for p — 1, and
let

Co(X) = {pe L|p follows from X in classical logic}

and

C1(X) ={pe L|p follows from X in intuitionistic logic}

We have that C'is a theory in I, obtainable by adding all sentences of
form p v —p to T;. Now suppose that we adopt a truthmaker semantics
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for the claims in L. This means that we get two model spaces M and
My, and by the fundamental theorem of truthmaking, we have that
ptc qiff TM (p) ><€cTM (q) and p b1 ¢ iff TM (p) ><;TM (q).

It might be thought that the most salient difference between M
and M; would have to do with truthmakers for sentences of the form
p v —p. But in Mo we do not need truthmakers specifically for p v —p
at all, but only ones for p and for —p. On the other hand, we have that
g >&cTM (p)u TM (—p), so every model contains some truthmaker for
p, or some truthmaker for —p.

Of course, p v —p has truthmakers as well, since every possible
entity guarantees its truth, but these are not unique to p v —p. This
is important to recognize in order to explain a purported oddity about
truthmaker theories brought up by Restall (1996, 2003). Restall asks
us to consider two principles of truthmaking, here expressed in our
terminology:

Entailment Principle: If p+ g and = IE p then x I q.
Disjunction Principle: If x |[Epv g then x |Ep or x I q.

It can be shown that these together lead to a trivialisation of truth-
maker theory. Since everything classically entails p v —p, everything
needs to be a truthmaker for p v —p. But since only one of p or —p can
be true, the disjunction principle then implies that everything either is
a truthmaker for p, or for —p, and thus every truthmaker makes every
truth true.

As we have characterised non-effective truthmaking, the entailment
principle is a theorem. The reason why we do not get triviality is that
the disjunction principle is false, and furthermore quite unreasonable
for classical logic. There is nothing special about “p” in pv —p, since all
sentences of that form are equivalent. If we require logically equivalent
sentences to have the same truthmakers, p v —p should therefore have
the same truthmakers as ¢ v —¢, and why should we take the truth of
that sentence to entail the truth of p or of —=p? The attraction felt for
the disjunction principle comes from being misled by the surface form
of a sentence.

Things are quite different when we leave the safe confines of classical
logic, however. Restall suggests modelling the truthmaking relation on
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the notion of relevant entailment, rather than the classical kind, and
proposes the following principle.

Relevant Entailment Principle: TM (p) STM (q) iff p relevantly
entails q.

But this really makes sense only when the theory we are applying
the semantics to is based on relevance logic as well. Assume that the
classical-logical equivalence of p and ¢ entails that TM (p) =TM (q).
We have that p ¢ q v —¢q, but we would like to avoid the conclusion
that TM (p) €TM (q v —q). However, since ¢ v —q¢ ¢ p v —p,
the Hertzianness of our semantics together with the assumption that
truthmaker sets are closed under classical equivalence forces us to accept
that conclusion, if we hold p to relevantly entail p v —p, as is usually
done.

On the other hand, if we accept that classically equivalent claims
can have different sets of truthmakers, we may well ask ourselves why.
Logically equivalent claims are merely grammatical variations of one
another, and essentially “say the same thing”. Should this purely syn-
tactical feature correspond to anything as metaphysical as differences
in truthmaking?

For another perspective, consider the theory I above, which is intu-
itionistic logic. This logic is compatible with the disjunction principle,
even if it does not entail it on its own. Intuitionistic logic does not,
by itself, require all disjunctions to entail one of their disjuncts. This
holds only for a special class of formulae called Harrop formulae (Har-
rop, 1959). However, the disjunction principle is fairly natural from an
intuitionistic perspective, and this may be one reason why it is seen as
natural for truthmaking as well: truthmaking is, at bottom, an intuis-
tionistic principle.

This can even be made into an argument for adopting intuitionistic
logic rather than classical. Let us call two claims p and ¢ metaphysically
independent iff there is some x € V (p) such that « ¢ V (¢) and = ¢ V (—q),
and some y €V (q) such that y ¢V (p) and y ¢V (—p). This means
that metaphysically independent claims have at least some truthmakers
whose existence do not settle whether the other claim is true. Take the
following premisses:
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(i) Truthmaker semantics.

(i) Logically independent sentences are metaphysically indepen-
dent.

(é17) The only necessitation is deterministic necessitation.
(iv) Logic is at least intuitionistic.

From (iv), it follows that it is sufficient to prove that — p v —p
entails that - p or - —p in order to show that  is the consequence
relation of intuitionistic logic. Assuming, for contradiction, that £ p
and (£ —p, there must be some sentence ¢ which is logically independent
of p and —p. By (¢) and (i%), there is then a verifier = for ¢ such that
x ¢V (p) and x ¢V (—p). But since p v —p is true in every world, it
follows that z >&V (p v —p), and since intuitionistic and stronger logics
are distributive, V (p v —p) =V (p)u V (¢), so x >&V (p)u V (—p).
By (ii3), we must then have that z > y, for some y €V (p)u V (—p).
But any such y must be a verifier for either p or —p (or both), which
contradicts (i¢). Therefore, such a sentence ¢ cannot exist, and since
the only sentences that have no logically independent sentences are the
theorems and their negations, we must have that either - p or - —p. It
follows that the logic in question cannot be stronger than intuitionistic.

Of course, all the assumptions used could be challenged. Beginning
last, (iv) does not hold if one thinks that the true logic is a relevant one,
although it is possible that one could patch up the proof anyway to show
something similar. It definitely holds for those who espouse classical
logic, though. (#i¢) has some plausibility: in a way, indeterministic
necessitation seems even more mysterious than the deterministic kind.
It may also be appropriate for a deterministic theory, such as classical
mechanics.

To motivate (i7), suppose that there were logically independent sen-
tences p and ¢ which are metaphysically dependent, i.e. such that every
verifier of p is a verifier either of ¢ or —¢, or vice versa. But, this means
that knowing what makes p true always allows one to infer whether p
or g is true. While there are some truthmakers for p for which this
is reasonable (such as whole worlds), it is also very reasonable to hold
that not all of p’s truthmakers are like this.

233



APPLICATIONS

Finally, the assumption of truthmaker semantics can be challenged.
While the argument goes through for plural truthmaker semantics as
well, in both its effective and non-effective versions, it does not hold for
general necessitarian semantics (or equivalently, when we allow truth-
making by circumstances). In that case, a lack of entities can make
either p or not-p true. It follows that p v —p can be true in every world
even if not every world contains something making p true, or something
making —p true.

There is also another advantage with using general necessitarian
semantics rather than truthmaker semantics. In classical logic, truth-
maker semantics is incapable of distinguishing between worlds of differ-
ent cardinalities. Since every world must contain a truthmaker either
for p or for —p, for every assignment of {true, false} to the language, and
every world contains at least one truthmaker and one falsemaker, every
formally complete theory in classical logic admits models of every car-
dinality from 2 upwards. This is like the Léwenheim-Skolem theorem,
extended to finite cardinalities as well as infinite ones.

But while the implications of this fact are counterintuitive, their
importance should not be overestimated. Almost no theory is formally
complete, and the number of entities a specific theory commits one to
can vary from theory to theory. The question of how the world is, given
a formally complete theory, is not one that we have to face in practice.

There are downsides to general necessitarian semantics as well, as
compared to singular or plural truthmaking. For one thing, we can
no longer see the truthmaking relation as a form of “grounding” that
ties sentences to entities, since the lack of entities is enough to make
sentences true, and lacks are not themselves entities in necessitarian
metaphysics. More significantly, there is a serious asymmetry inherent
in such a scheme. If p’s truth requires a truthmaker, but —p’s does not,
one could well ask oneself why. Which sentences we see as “negated”
is a matter of convention, so why should that reflect some deep un-
derlying difference in nature? If we see truthmakers as involved in the
explanation of why p is the case, we would like to know why only one
of p or —p calls for such explanation.

To sum up: if we want to hold on to both truthmaker theory and
classical logic, we have to accept nondeterministic necessitation. If we
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are suspicious about that, we should begin thinking about which of
the others to give up. This is interesting because truthmaker theory
is often associated with realism (cf. Bigelow, 1988; Armstrong, 1997),
and nonclassical logic with antirealism. But as Chris Daly points out in
an article, truthmaker theory itself is quite silent on whether there is a
world independent of our thoughts and theories (Daly, 2005). However,
it may still be that, contrary to common belief, it fits more naturally
with an antirealistic metaphysics than a realistic one.

7.2 Classical First-order Logic, from Above

The last section discussed propositional logic using truthmaker seman-
tics. It may at first glance seem like the step to first-order predicate
logic ought to be fairly easy: just interpret existential and universal
quantification as infinite disjunction and conjunction, as Wittgenstein
proposed. Since necessitation—unlike derivability—does not have any
inherent problems with infinite sets of antecedents, the metaphysical
nature of the necessitation relation might be thought to allow such an
interpretation. But this would give us another logic, in which we would
be allowed to infer from the truth of all instances of a generalisation to
the truth of the generalisation itself. It would not be FOL.

In fact, quantification would be nothing like conjunction or disjunc-
tion even if it actually was the case that only finitely many things
existed. From a universal quantification (Vz)P(x), we can draw the
conclusion that nothing that satisfies —P(x) exists. This means that
there is no model in which (Vz)P(z) is true, but in which some thing ¢
exists such that —=P(c). On the other hand, from the truth of P(cq1) A
P(eg) AP(e3) A. .. we can draw only the conclusion that in any model in
which these things exist, none of them satisfy —P. We can say nothing

about whether things that are not in the sequence c1,co,c3,... are P
or not, and neither can we say that ¢y, ¢, c3, ... are all the things there
are.
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In this section, we will approach the problem of how to give a truth-
maker semantics for first-order logic from a very general perspective.
The next section will be devoted to a more concrete approach. Let
L* be the extension of L that contains not only sentences, but also the
open formulae used in generating these recursively, and has consequence
defined as usual on these so that I' -« ¢ iff every sequence of objects
that satisfies the formulae in I' also satisfies @, in all models. Where T’
is a set of sets of formulae, let

AT dzech*(Ur)

It follows that A T is the smallest closed set of sentences in L* that
contains all sets in I'. Let a partition IT of L* be a set of subsets of
L+ such that

(i) Each set I' € II is a deductive filter, i.e. is closed under logical
consequence.

(i) For each consistent subset IT' < TI, A TI’ € TI.
(#3) (UII = Lp«\1l, where L is the set of logical falsehoods.

Each element of such a partition can be taken to determine a kind
of property or condition uniquely. The first condition assures us that
if something satisfies a condition, its possession is sufficient to make
true everything that follows logically therefrom. The second, which
is necessary since the truthmaking theory we use is singular rather
than plural, means that conditions are closed under (possibly infinite)
conjunctions. The final condition guarantees that the set of conditions
is large enough to express everything we need.

We call each element of a partition a cell. One example of a partition
on a classical propositional logic is the set that contains all principal
filters of the form C({p}) and C({—p}), where p is any atomic sentence.
Another is the partition whose cells are the closures of the sets contain-
ing each atomic sentence or its negation, which corresponds to Carnap’s
so-called state-descriptions. In this case, the filters in question are all
ultrafilters, i.e. those proper filters that are maximal in the language.
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Partitions of predicate logics take somewhat more effort to describe,
and we will give examples below.

Given any partition IT of L*, we let a direct truthmaking function
for TI be a one-to-one correspondence dtm : II — E, where (E,>€) is
a necessitarian metaphysic, such that

dtm[I'] > dtm(D) if T < A\ I

for every logically consistent IT' € IT and every I' € II. This condi-
tion ensures that direct truthmakers are related correctly to be able to
capture the logical relationships between the sentences they make true.
It is clear that a necessitarian metaphysics that fulfils it exists, since
we can take the elements of IT themselves to be the entities, and the
deterministic part of the necessitation relations to be governed by the
above condition. The nondeterministic necessitation relation itself is
then determined as the closure of this relation, using theorem 4.4.

The partition determines which sentences have unique (direct) truth-
makers, and which do not. These direct truthmakers have a mereolog-
ical structure.

Theorem 7.1 : The direct truthmakers for a partition form a mere-
ology, i.e. a metaphysic in which every non-empty set X gfgmpatible
entities have a sum X. Furthermore, dtm(AII') = dtm[II’] for all
compatible sets of cells IT’ < II.

Proof. We need to show that every non-empty compatible set of direct
truthmakers has a sum, i.e. an entity that exists in exactly those worlds
where the truthmakers in question exist. Let X be an arbitrary such
set. Then dtm![X] is a set of logically compatible members of IT (or
otherwise, we would have had that X > @, and X wouldn’t have been
compatible). Let ¥ = Adtm '[X], and let X = dtm(%). Since %
contains dtm~1(x), for all x € X, X o> x for every z € X.

Assume now that some world contains all entities in X. It is enough
to show that if dtm=1[X] is a subset of I' € II, then ¥ < T. But
this is follows from the existence of /A dtm~1[X] for sets of compatible
cells. O
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Using direct truthmaking, we can define the truthmaking function
based on IT as the function TM : L — p(F) such that

™ () = | J{dtm(TT) | TT € T and ¢ € T}

This means that the truthmakers of a sentence ¢ are the direct
truthmakers of the cells that ¢ are in, or as we also may say, the ways
in which ¢ can be made true. Let NC(X) be the set of entities {y}
such that {y} >& X i.e. the maximal set of entities that necessitate
X distributively. The definition we have given satisfies the condition
that TM (¢) = NC(TM (y)), so the truthmakers are all such ways. A
different way of expressing the same thing is to say simply that on this
interpretation, truthmaking is non-effective.

Since the partition determines the necessitation relation, it also de-
termines which sets of entities make up possible worlds. Here, however,
we encounter a surprise: it turns out that all sets of direct truthmakers
that are closed under deterministic necessitation are possible worlds.
Since W is a possible world iff W >& WY, and >€ is determined purely
from its deterministic part, we have that W is a world iff W > e im-
plies e € W. This, in turn, means that in general neither ¢ or —¢ need
to be true in a possible world, even if ¢ v = is.

The proper way to handle this is to use a bivalent semantics, which
means that the version of first-order logic we use must be bivalent as
well. The easiest way to define such a version is to use the regular one-
valued consequence relation for truth (i.e. assume that ¢ : ¢ - ¢ : ¢ iff
¢ Frx v), and add the inferences

trp—kfrioyp

fro—=t:—p

It then follows that worlds are maximal sets of entities, as expected.

Theorem 7.2 : For bivalent predicate logic, a set of entities W is a
possible world iff it is consistent and maximal, i.e. iff W >& @ and
W'>e @ for all W o W.
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Proof. Since the metaphysics is necessitarian, possible worlds are mod-
els. For any possible world w, S assigns all sentences values in {t, f}.
Because w is a world, it includes its sum @, and this sum is the direct
truthmaker for some cell II. Suppose that w is no? maximal, i.e. that
there is some other world w’ that includes it. Then the sum «’ is the
direct truthmaker for some cell II’, and we must have that IT < II'. This
means that there must be some assignment v : ¢ that holds in II’ but
not in II, but because either t : ¢ or f : ¢ have to be in II (or w would
not have been a model), II' must include both the assignments ¢ : ¢
and f : ¢, for some sentence . Using the inferences we introduced, we
derive that {t : ¢,t : ¢} S II', so such a cell cannot exist, since we
have assumed all cells to be consistent. This in turn entails that the
direct truthmaker w’ cannot exist either, and because the metaphysics
is mereological, then neither can w’. O

Now, as we have defined these concepts, every partition gives rise
to a sound and complete truthmaker semantics. This is proved in the
following theorem.

Theorem 7.3 : Let S(L — M) be a truthmaking semantics based on
the partition II. Then S is sound and complete.

Proof. By the fundamental theorem of truthmaking, a truthmaker se-
mantics is sound and complete iff it is Hertzian, so what we need to
prove is that TM, as defined, fulfils the condition

' oiff @ TM [I'] ><TM ()

for all T € L and ¢ € L.' Assume first that ' is consistent, and that
' ¢. Then TM (v), for ¢ € T', is the set of direct truthmakers for
cells that contain . Since X , where X is a set of direct truthmakers,
is the direct truthmaker for A dtm~='[X], we have that ® TM [I'] is
the set of direct truthmakers for all cells that contain the whole of T'.
But any such cell must also contain ¢, because I' -1, ¢ is equivalent to
CL({¢}) € Cr(T'). Therefore, any world that contains truthmakers for

IThe cross-sum is well-defined since the metaphysics is mereological.
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all sentences in I' must contain a truthmaker for ¢ as well, so ® TM
[F]><TM (p).

Conversely, let ®TM [I'] >¢TM (¢). Then any world in which a
truthmaker for the whole of I' exists contains a truthmaker for ¢. But
truthmakers for I" are direct truthmakers for cells that contain all sen-
tences in I', and truthmakers for ¢ are the direct truthmakers of those
cells that contain ¢. We want to show that ¢ € C(I"). But any con-
sistent closed set of formulae in a classical logic can be written as the
intersection of the maximal consistent closed sets that contain it, and
all maximal closed sets are cells in IT. Therefore it is sufficient to show
that any maximal cell that contains I' must contain ¢ as well. But these
cells are, as we have seen, exactly the possible worlds, and if there was a
possible world that contained truthmakers for I' but not for ¢, then we
would not have had @ TM [I'] >€TM () by the representation theorem
for necessitation relations.

Finally, the case where I' is inconsistent. Then Cp(T') = L, and
since there is no cell that contains I', it has no truthmaker. Therefore
® T™ [I'] = @, and ®TM [I'] >TM (p) holds trivially, since for no
world w, wN @ # @. O

How are we to interpret a semantics such as this? The sets in II
represent the sets of sentences that have primitive truthmakers, i.e.
truthmaking relations that hold because of direct world-language ties,
rather than because of logical relations in the language. These direct
ties are all one-to-one, and the selection of a partition can be seen as
the imposition of a type of logical atomism, where the cells are the
“atoms”.

Which such partitions are correct, then? This problem is analogous
to that of finding the truly “effective” truthmakers. Take first the ex-
ample where we let each element of IT be an ultrafilter on L*. In such a
case, the elements of F are interpretable as possible worlds, and we get
a discrete world semantics, as we called it in section 5.4. Alternatively,
we can take IT to consist of all consistent filters in L*. This gives us a
correspondence semantics, since every logically closed set of sentences
then corresponds to a unique entity.

Discrete world semantics and correspondence semantics represent
two limiting cases in the continuum of truthmaker semantics for first-
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order logic. In between these, we have all the cases where truthmakers
are not maximally specific, but also not the weakest possible. Since we
are considering L* rather than the more limited language L, a semantics
where literals and their universal generalisations are taken to be made
true directly can be constructed quite simply as follows:

(i) For each n-place predicate P and each n-tuple of terms 71, . . .,
Tn, let the logical closures of P(r1,...,7,), =P(71,...,7n),
71 =T and 7| # T be in IL.

(i) For each cell II € I1, let the cell VE(IT) containing all formulae
of form (V&) such that ¢ € II be in II.

(#4) For each consistent set IT" of cells in IT , let A I’ be in II.

Theorem 7.4 : These rules make IT partition of L*.

Proof. The only criterion that is not evident is [ JII = L*\L. The
language can be defined recursively from the atomic formulae by the
application of —, A, v, (V€), and (3€), so we prove this by induction
on the complexity of formulae. All atomic formulae and their negations
are in | JII by definition. Where ¢, ¢ € |JII, we have

e ¢ At e [JII because C(I' U A), for any I', A € II, is in IL
Therefore any cell that contains both ¢ and 1 also contains
@ A1), so long as ¢ and 1 are consistent.

e ¢ v 1 e |JII because it follows from ¢ (and 7).
e (V&)p € [JII because of rule ().
e (3&)¢ € | JII because it follows from ¢.

e —p e |JII, because all literals and combinations of them with
quantification, conjunction and disjunction are in [JII, and
all formulae are equivalent to ones in negation normal form,
i.e. where negations occur only in front of atomic formulae.

241



APPLICATIONS

Because IT is a partition of L*, it gives rise to a sound and complete
truthmaker semantics for first-order logic. We may call the members
of dtm[A], where A is the set of cells generated using the rules (i)
and (i7), the atoms. These are the direct truthmakers of literals and
their universal generalisations. The metaphysics as such contains these
atoms, sums of them, and nothing else. Specifically, we need to include
the universal generalisations, since first-order logic does not allow one
to derive any general formula from particular instances, except when
these instances happen to be theorems.

The truthmakers for non-general facts are all direct truthmakers of
open formulae. But how can an open formula have a truthmaker, since
it cannot be true? The reason is that we have not defined truth for
anything but claims, so a claim is true iff it has a truthmaker, but we
are free to say something else about non-claims such as open formulae.
This property is shared with Tarski’s definition of truth as satisfaction
by all sequences, since this will assign truth to some non-sentences as
well. The only reasonable thing, in our case, seems to be to say that
if P(x1) has a truthmaker, then the thing x; refers to satisfies P, so
that these entities work more like satisfaction-makers than truthmakers.
What 21 refers to will then have to be taken as ambiguous, and possibly
to be settled by the context.

7.3 Classical First-order Logic, from Below

There is no question that there are truthmaker semantics for first-order
logic: the last section gave a method to make such a semantics for any
chosen partition of the language. However, the methodology required
us to assign truthmakers to open formulae, and it furthermore did not
give us a recursive way to define truth, unlike Tarski’s definition. Nat-
urally, it is the quantifiers that cause the problems. In the last section,
we handled them as primitive, and universal quantification as strictly
stronger than any combination of non-quantified sentences. But there
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is another way to approach the problem as well, which lends itself to a
slightly different characterisation.

Instead of treating universal quantification as primitive, we can ex-
ploit the compactness of first-order logic. However, this requires us to
limit the space of possible objects. For instance, we could assume that
only the natural numbers, and nothing else, are possible. In such a
case, a so-called w-rule, according to which we may draw the conclu-
sion that (Vx)P(x) from the set of premisses P(0), P(1), P(2),... may
be reasonable. But such a rule only makes sense if we have assumed
that nothing but natural numbers can exist.

We will handle FOL in a similar fashion here, but instead of limiting
ourselves to natural numbers or any other specific set of things, we will
start with an arbitrary set. Let I, be any infinite set, which we will call
the set of basic individual concepts. Define a set I such that it satisfies

e For any ce I, ce I.

e For any n-ary function symbol f™ in L, and any n-tuple
c1,...,c, of elements of I, there is a unique object

a'ppl(fn7cl7 .. 7Cn)
in I called the result of applying f™ to c1,...,cy.

We call I the set of individual concepts (cf. Carnap, 1956, pp.
41-42) and the elements of I that are not in I, the functional con-
cepts. These are the concepts created from the concepts in I, by com-
bining them with function symbols. Let M be a necessitarian meta-
physic (E,>&). Let E, for each n-place predicate P™ of L and each
n-tuple ¢i,...,¢, of elements of I, contain entities at(P", cy,...,cy)
and at(P",cy,...,cy,), such that

{at(P™,c1,...,cn)),at(P" ¢, ... cn)} >€ O

g>€ {at(Pn>Cl7‘"7cn)7a(Pn7cl7'“7cn)}

The entities at(P",cy,...,c,) and at(P", c1,...,c,) are called the
positive and negative atomic facts about whether P"(cy, ..., ¢,) holds.
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We also need variants of these for equality, so for each pair ¢, ¢’ of
elements of I, we assume E to contain two atomic facts eq(c, ') and
eq(c, ') that fulfil the condition that

@ > eq(c, ¢)
{eq(c,c)} >>eq(c,c)
{eq(c, ), eq(c, ")} >> eq(c, )
{at(P",c1,...,¢,...,cn),eq(c, )} > at(P™,cqy....c 5. .. cn)

These conditions on the necessitation relation ensure that these facts
can do the work of truthmakers and falsemakers for identity statements
in FOL. Finally, unless we reduce functions to predicates, we also need
atomic facts for the results of function application. For each n-place

function symbol f™ and each n-tuple cq,...,c, of elements of I, we
therefore assume the existence of atomic facts at(f™,c,c1,...,¢n,) and
at(f™,c,c1,. .., cpn,) for which

{at(f™ c,c1,y ... cn),at(f,ccr, . o en)} > eq(e, )
{at(f",c,c1y o yCnny0n) eq(e, )} > at(P™ e ey ..,y .. cn)

hold. All these kinds of atomic facts will also be referred to as atoms.
Since our truthmaking is singular rather than plural, we also need sums
of compatible atomic facts to make true complex sentences. We take E
to include all such sums, and to make life simpler for us, we furthermore
assume these sums to be unique so that no set of atoms has more than
one sum.

Let At be the set of atomic facts. Because of our atomic basis, all
facts are uniquely determined by the elements of At that enter into
them.

Theorem 7.5 : There is a one-to-one function at : E — p(At), which
is surjective on the non-empty compatible subsets of At¢, such that

—

at(f) = f.
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Proof. What we need to do is to show that if X = )’}, where X and
Y are sets of atoms, then X =Y. But any world that contains all of
X will contain X, and the same world will then also contain all of Y,
since X =Y. Symmetry shows that we must have that any world that
contains all Y contains all X as well. It is then trivial to show that At,
defined as the inverse of the sum operator ~, is surjective on the values

it is defined on, and that CE(\f) = f. O

This metaphysics contains not only sums, but also logical comple-
ments. As in the last chapter, let X Y, where X and Y are subsets of
FE, mean that no world contains something both from X and from Y,
but any world contains something from one of them. We can prove the
following.

Theorem 7.6 : For every X € E, there is a set Y € E such that
X1Y.

Proof. Every element of E is a sum of compatible atomic facts. But
for every atomic fact a, it is easily seen that its negation (i.e. posi-
tive/negative variant) @ is such that {a}l{a}. For any set of atoms
Z, let Z be the set of all negations of the elements in Z, and where
z = {Zy,...Z,} is a set of such sets, let Z be the set {Z1,...,Z,}.2
Let Y = ®at[X]. We want to show that Q3(Y) = Q\Q?(X). Let
X ={f1,..., fn}. We have that

I
C:

*(X) Q({fD)

-
Il
—

Q'({f:})

Il
C:

-
Il
—

Q(at(f:))

Il

-
Il
—

and that

2We do not intend to rule out n = oo here.
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We now show that for any fact f, Q¥ (at(f)) = Q\Q3(at(f)), from
which the theorem follows directly. Let w be any world in QY (at(f)).
Then at(f) S w, so at(f) nw = &, and thus w ¢ Q¥ (at(f)) Conversely,
let w € Q°(at(f)) Then there is some @ € at(f) such that @ € w. But
then we must have that a ¢ w, so we cannot have that at(f) S w. O

Since sums are unique in our metaphysics, logical complements are
unique as well, and we write the logical complement of the set X as X1
This concept allows us to express the important necessitation relation
>< in two somewhat simpler ways, which we will have use for when
proving completeness.

Theorem 7.7 : X >< Y is equivalent to £ > X1 UY and to X ®
Yi=<o.

Proof. Obtainable by simple set-theoretical manipulation from the facts
that X > Y iff Q°(X) € Q3 (Y), ¥ (X uY) = Q3(X)uQ(V), P (X®
Y) = Q¥(X) n Q3 (Y), and Q3 (X1) = Q\Q¥(X). O

Worlds correspond to maximal consistent sets of facts:

Theorem 7.8 : A subset W c E is a world iff W >& & and, for any
e¢ W, Wu{e}>e 0.

Proof. From the definition, W €  iff W >& W. Suppose this holds.
Then W >& @, or W >& W¢ would have held, by Dilution. Let e ¢ W.
Then we must have that at(e) n W = &, for e necessitates its atoms.

246



7.3 CLASSICAL FIRST-ORDER LOGIC, FROM BELOW

Let a be any one of these. Now, a must be one of the types of atomic
fact, but if W is a world, it already contains a maximal number of these
(this is trivial from the conditions we have laid down on atoms). Thus
there can be no such entity e.

In the other direction, assume that W >& @ and that W u {e} > @
for all e ¢ W, and for contradiction that W >& W¢. Then any world
W' that strictly contains W must contain some entity e ¢ W, but this
means that W >& @, so W could not have been a world to start with.
Thus there is no world that contains W, and this means that W > @,
contrary to our first assumption. Therefore W >& W¢. O

We have taken facts as primitive, rather than individuals. But given
any world, we can still define a set of individuals. For a world w, let ~,,
be a relation on I such that ¢; ~, ¢; iff eq(c;,¢;) € w. This relation,
expressible as “c; and c; are identical in the world w”, has all the
properties we should expect from an identity relation.

Theorem 7.9 : ~,, is an equivalence relation, and if ¢; ~, ¢;, then
at(P",c1,..., Ciy...,cy) € w iff at(P",c1,...,¢4,...,¢,) € w, for any
predicate P™.

Proof. A simple verification from the postulates laid down on eg(cq, c2).
O

Let Ind(w) be the set of equivalence classes of I under the relation
~w- This set gives us a kind of representation of which individuals exist
in the world w, in terms of which individual concepts they instantiate. It
is easily seen that this allows us to represent domains of any cardinality
from 1 up to |1].

We will now describe the truthmakers for arbitrary sentences in
Ly, recursively. Let a basic assignment be a function vy, : Var — I,
where Var is the set of variables of L. Let an assignment be a function
v : Term — I, where T'erm is the set of terms of L, such that

e v(7) € I if 7 is a variable, and

o v(f™(11,...,Tn)) = appl(f™,v(11),...,v(7,)), for any func-
tion symbol f™ and any n-tuple of terms 7y, ..., 7,.
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As before, where v is any assignment, let v[c/£] be the assignment
exactly like v except at every occurrence of the variable £, where it takes
the value ¢. For each such assignment, define a truthmaking function
TM,: L« — p(FE) recursively, using the following clauses.

= A{at(P™,v(m),...,v())}

)
™, (t=7") = A{eq(v(r),v(7))}
TMy (—p) = TM, (‘:0)JL
M, (p AYp) = TM, (¢) @ TM, (¥)
M, (pvip) = TM, (p) v TM, (¢)
™, ((Y§)y) = CE@}(TMU[C/Q ()
i, (G99) = Ut ()

Lemma 7.10 : If v and v’ are assignments, and ¢ is a sentence, then

M, (p) =TMy (p)
Proof. By induction on the number of variables in ¢. O

Because of this lemma, we can define the non-assignment-relative
truthmakers TM () of a sentence ¢ to be TM, (), for any assignment
.

Theorem 7.11 : This semantics is sound and complete for first-order
logic.

Proof. Let us call the truthmaker semantics described here TM, and
use T to refer not only to the model space of Tarskian models, but
to the Tarskian semantics as well. We show that there are functions
m:Q— 7% and w: TR — €, where T%0 is the category of Tarskian
models with countable domains, such that w Eqms ¢ iff m(w) E=s ¢ and
w(M) Eme p iff M =4 ¢, for any sentence p, any world w, and any
countable Tarskian model 9t. This means that if ¢ is true in some world
in ©, then it is true in some model in 7%, and vice versa. Soundness and
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completeness follow from the soundness and completeness of countable
Tarskian semantics.

Define m(w) as the model whose domain D is the set Ind(w) of in-
dividuals of w, such that the extension of the predicate P™ is the set
of n-tuples dy, . ..d, such that at(P", cy,...,c,) € w, for some individ-
ual concepts ¢; € dy,...,c, € d,. Let the extension of the function
symbol f™ be the function f on D such that d = f(dy,...,d,) iff
at(f™, c,c1,...,¢n) € w, where again ¢x € d for k = 1...n. For any
assignment v on I, let v* be an assignment on D such that v*(7), for
any term 7, is the element of D in which v(7) is included.

For any countable Tarskian model 9 with domain D, let h be any
injective function from D to I. Let W € F be the set that contains the
atom at(P™, h(dy),...,h(d,)) iff {di,...,d,) is in the extension of P"
in 91, and likewise for the function symbols. Let = be any equivalence
relation on I such that ¢; = ¢; = ¢1 = ¢y for all ¢1,¢0 € h[D], and
UIR[D]]= = I. It is clear that such a relation always exists, and that
each class in I/ = contains exactly one element of h[D]. Extend W to
a set W’ such that for each ¢1,co € I for which ¢; = co, eq(cy, ) €
W' and such that W’ satisfies the postulates on equality atoms above.
Finally, define w(91) to be the unique world that contains W’ as its set
of positive atoms (there is such a world since W’ has to be consistent,
and it is unique because of the fact that the positive atoms are fixed
by the definition of W). For each assignment s on D, let s* be any
assignment on I such that s*(7) € h(s(7)), for each term 7.

We now wish to prove that the functions m and w preserve which
sentences are true or false. For this, it is clearly sufficient (and also
necessary, by the preceding lemma) that this holds for all assignments.
We proceed recursively, by induction on the complexity of formulae.
Let w be any world and 9% any Tarskian model of L, let v be any
assignment on I, and let s be any assignment on 97’s domain D. For
atomic formulae (i.e. those of complexity 0), we have one of the cases

e ¢ is of the form P"(ry,...,7,). Assume that wn TM, (¢) #
@. Then w contains the atom at(P",v(m),...,v(m)), s0O
w*(11),...,v*(7,)) must be in the extension of P" in m(w),
and thus m(w) E,x . If w F, ¢, on the other hand, then
m(w) does not have (v*(7y),...,v*(7,)) in the extension of
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P, so m(w) K= @.

For the function w, let M =5 . Then, by construction of
w(9M), w(M) must contain the atom at(P™, s*(71),...,s*(14)),
$0 w(M) =4+ p. Conversely, if M ¥, ¢, then

at(P™,s*(11),...,8"(7)) ¢ w(M)
must hold, so then P™(ry,...,7,) cannot be true in w(M).

e o is of the form 7 = 75. If w k=, @, then eq(v(11), v(72)) is in
w, so0 v(71) and v(72) are members of the same individual in
Ind(w), and v*(11) = v*(12). If m(w) =y @, then v*(r) =
v*(12), so eq(v(71),v(12)) € w.

If M 5 @, then s(m1) = s(72), so we must have s*(m) =
s*(12) as well. But since eq(c, ¢) is in all worlds, for any indi-
vidual concept ¢, we have that eq(s* (1), s*(72)), s0 w(IM) =g
. In the other direction, assuming that w(IM) =« ¢, it fol-
lows from the injectivity of h that I =, .

Now assume that we have proved that m(w) .+ ¢ iff w =, ¢ and
W(M) =g ¢ iff M =, ¢ for all formulae 9 of complexity n, and wish
to prove that the same holds for formulae of complexity n + 1. We give
the proofs for all rules except those of A and 3, since these are very
similar to those of v and V.

e ¢ is of the form —1). Assuming that w =, ¢, w must contain
some element e such that e € TM, (¥)L. But no world can
contain both such an element and an element that makes i
true, so 1 is false. We must therefore have that m(w) ¥ = 9,
so m(w) E,x .

Let 9 =4 —1. Then v is not true, so it does not have a
truthmaker in w(9), and since any world contains truthmak-
ers either for ¢ or for —1), we must have that w(IM) =z« .
Conversely, if 9 ¥, —1), then M ;s 1, so w(M) has some
truthmaker for ¢. Therefore it cannot have one for —, so

w(f)ﬁ) bés* _"l/)~
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e ¢ is of the form ; v 9. Let w =, ¢. Then w contains
some element in TM (¢1)u TM (12), but it can do so only if
it contains some truthmaker either for ¢, or 5. Therefore
11 or 1y must be true, so m(w) Eux p. If w ¥, @, then w
contains truthmakers neither for 1, nor 15, so both of these
are false, and therefore m(w) ¥, ¢.

M =, @ is true iff 11 or i is. But these are true iff
some truthmaker for 1; or 1y exists, so M E, Y1 v o iff
W) g P1 Vv 2

e ¢ is of the form (V&)ty. From the earlier theorems we have
proved about cross-sums, it follows that

w i, (YO iff w Folc/e] i forall ce I

But (-)* is a surjective function from assignments on I to
assignments on Ind(w), so this holds iff m(w) &=/ ¥, for
all assignments s on the domain of m(w).

If M =, (VE), then, for any assignment s’ on D that is
like s except possibly at £, M =4 1. We need to show that for
no assignment s*[c/€], w(M) Fgx[c/e] . But suppose that
there were such an assignment. Then, since all individual
concepts of an individual d satisfy the same formulae, we
must have that for some c in the image of h, M ¥ x[c/i] ¥,
so M e ¥ for some d € D, contrary to assumption.
Likewise, if there is some d € D such that O b [q/¢] ¥, then
it follows by the construction of w that DM F[q/epx ¥

O

What kind of metaphysics is this? The fundamental entities we have
are facts, or at least fact-like, since they can do the work of making true.
Identity, as we interpret it, does not have the same role as in Tarskian
semantics. Instead, it is a relation between individual concepts, and
these concepts, in turn, are used only to specify facts. It is only the
facts themselves that exist, and individuals and individual concepts are
merely linguistic aids for us to talk about them.
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Another feature worth commenting on is that we seemingly do have
the disjunction thesis, since TM (¢ v ) =TM (p)u TM (). But, of
course, this is not so. The identity holds only for complex formulae,
and not for atomic ones. In this semantics, we have taken the atomic
formulae to be those traditionally seen as atomic and their negations,
but as we saw in the last section, this is only one of the infinity of
choices we could have made.

7.4 Set Theory and Mathematics

Mathematics is a subject whose metaphysics has inspired and intrigued
philosophy since Plato. If numbers, sets and functions are not out
there in the physical world, then where are they? Does the use of
mathematics really presuppose the ontological excesses of Platonism, as
Quine argued? To simplify matters here, and to allow the application
of the methods of this book, we shall assume not only that mathematics
is useful, but also that it is true.

At first glance, it might seem that this settles the matter: if “there
are primes larger than 100” is true, does that not entail that there are
primes? And does that, in turn, not entail that there are numbers,
since primes are numbers? Yes and no. The first entailment certainly
holds in Peano arithmetic, and the second holds if one has a wider
theory that incorporates the concept of number, such as ZFC. But
this just concerns which sentences we may infer from which. Why does
the sentence “there are numbers” commit one to numbers?

Put this way, this question looks almost silly. The sentence commits
one to numbers because that is what it means! But, the only thing we
can infer from this is that we are entitled to infer “there are numbers”
from it. We are moving in a circle, inside one and the same theory. In
Carnap’s terms, the internal question of whether there are numbers is
trivial, and it can lead us to no metaphysical insights.

For the external question, not so. Carnap is certainly right that it
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does not make sense to ask a purely external question, separated from
any language or theory. Such a question is just noise, or marks on paper
without any significance, and a theory is needed to interpret it. But we
may still be interested in questions that are external to mathematics.
Seen this way, it is trivial that numbers exist in a mathematical sense,
but do they exist in some other sense as well?

The way to get a clear picture of such a “sense” is by semantics,
and in this chapter, we focus on truthmaker semantics. The question
of whether holding Peano arithmetic to be true commits one to num-
bers then transforms into the question of what the truthmakers of true
statements in Peano arithmetic are.

But here we encounter a surprise. If mathematics is truly necessary,
i.e. if mathematical statements hold in every possible world, then they
need no truthmakers of their own. Equivalently, every possible entity
is a truthmaker for every mathematical statement. Seen from an “ex-
plationist” viewpoint, p only needs explaining (or at least only needs
an ontological explanation) if it could have been false. If we hold that
5+ 7 = 12 couldn’t have been otherwise, there is nothing to explain,
and the statement needs no specific truthmakers. Thus, mathematics
does not involve us in any ontological commitments at all, above those
we already had.

So suppose that mathematics is not necessary, at least in some sense.
It is, for instance, not usually seen as logically necessary, as there are
models of predicate logic where 5+ 7 # 12. Since the Peano axioms (at
least as both Dedekind and Peano presented them) presuppose some
kind of set or class theory, it will be more useful for us to discuss such
a theory. We take ZFC as our example. What kind of ontological
commitments does one involve oneself in by holding ZF'C' to be true?

Starting with the language, ZF'C' is expressible using only the prim-
itive two-place predicate € and no function symbols. We do not even
need an identity predicate, since identity can be defined in terms of
having the same members, but to keep the formalism general, we will
include identity as a primitive concept as well. The language thus
consists of sentences in a variant of first-order logic without function
symbols, and without any other relations. We assume that the regular
consequence relations hold, so that I' -+ ¢ iff ¢ is a first-order conse-
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quence of I'. ZFC then comprises a theory in this framework, which
we shall call FZFC.

The problem that interests us here is what commitments we impose
by taking ZFC' to be true, rather than merely FZFC. Since ZFC' is a
theory in FZFC, it is true iff Tz p¢ is true, so what we need is to find
truthmakers for these sentences: the theorems of ZFC. Since ZFC
is formally incomplete, these do not decide all claims in Lz g, unless
Z FC is inconsistent. This entails that any semantics we use must have
more than one model.

Take the following axiomatisation of ZF'C|, here given in English as
the translations to FOL are trivial and standard:

Ezxtensionality:  Sets with the same members are identical.

Replacement:  The image of any set under a functional rela-
tion is a set.

Powerset:  The subsets of any set together form a set.

Union: The elements of the sets in any set of sets to-
gether form a set.

Regularity: Every non-empty set contains some element
disjoint from it.

Infinity: There is an infinite set.

Choice: Every set of disjoint sets has a choice function.

There is no need for axioms for separation, pairing, or null set, since
these follow from the others due to the presence of Replacement. First of
all, we note that it is sufficient for the truth of ZF C that there exists at
least one truthmaker for each of the axioms, and for finite conjunctions
of them. In the case of replacement, which is an axiom schema, this
calls for a countable infinity of truthmakers. This means that we cannot
presuppose that there is a single entity (“the whole of set-theoretical
reality”) that makes all of ZFC' true, which would have been the case if
ZFC had been logically equivalent to a single first-order axiom. ZFC
thus is an example of a theory with no minimal truthmaker: every single
thing that makes ZF'C true, will make something else true as well.

Truthmaker semantics gives us a strikingly different picture of the
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ontological commitments of mathematics than the standard Tarskian
semantics. An axiom such as Choice, as it is usually read, postulates
the existence of one choice function for every set of disjoint sets. But
truthmaker-theoretically, the sets involved have little influence on the
ontology. We may compare their role with the individual concepts of the
last section, which are used only to specify facts. Prima facie, Choice
can be made true by a single entity.

Things are however not quite as simple as this. The individuation
of truthmakers is, by the fundamental theorem of the last chapter,
intimately tied to the logical relations among claims. Since ZFC is
a first-order theory, we have to look at the first-order consequences
of the axioms. Taking Choice as our example, every non-equivalent
sentence that follows from this axiom has to have its own set of possible
truthmakers. While nothing precludes the actual world from being
such that it contains a single thing, and that thing makes Choice and
all sentences that follow from it true, there needs to be other possible
worlds where more things are involved as well.

More specifically, whenever Choice 4 @1 Vv ... Vv @, for some log-
ically independent set 1, ..., p, of FOL sentences, there are possible
entities ay,...,a, such that ay Ik ¢1,...,a, IF ¢,, and thus such that
these together (plurally) make Choice true. But, since Choice requires
a single truthmaker in classical truthmaking semantics, these must ne-
cessitate such a truthmaker for Choice as well.

So from the truth of Choice, we can draw the conclusion that there
is some entity ¢ such that ¢ makes Choice true. But there may also be
other things, which together necessitate c. How do we find out if this is
the case? Taking a specific consequence ¢ of Choice as an example, the
question becomes one of whether there is some world w that contains
one of the things ¢ which make ¢ true in the actual world, but where
Choice is false. Or differently put, does TM (¢) contain the actual
world?

We have already noticed the difficulties with using a phrase such as
“the actual world”. All that our theories and semantics can do is to
separate out a world in which the same claims are true or false as in the
actual world. We can close in on 2, gradually, by adding more and more
theory, although we have no reason to ever expect to be able to identify
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it uniquely. Since the only access we have to metaphysics is through
our theories, we have to resist the temptation to try to answer questions
such as “what does actually make p true”? Given truthmaker theory,
all we can say is that something does, and then proceed to investigate
the structural properties of this something.

The problem can be simplified somewhat through the imposition
of a more specific semantics: if not every conceivable truthmaker of
p is taken to be possible, it may be that the necessitation structure
is enough to single out particular truthmakers. Take, for instance, a
classical-logical truthmaker semantics for F'ZFC based on a partition
II. In this semantics, each set in IT requires its own direct truthmaker.
We can prove the following:

Theorem 7.12 : The general commitments of ZFC are the sets of
entities that contain some set dtm(T'), where I' is any member of IT
which is contained in Crzpc(ZFC).

We are thus committed to something playing the role of truthmaker
for every theory contained in ZFC'. Unless we know something about
IT and the function dtm, we can say nothing about the specific commit-
ments. For the semantics described in the last section, the truthmakers
will have to depend on the nature of the set I, of basic individual
concepts. For each assignment v such that v(xy) # v(xs), the literals
“r1 € x2” and “x1 ¢ xo” will have unique assignment-relative truthmak-
ers. But they do not, of course, have proper non-assignment-relative
truthmakers, since only sentences do so.

Take, for instance, the Null Set theorem and the Extensionality
axiom.

(31’1)(V£L’2)CB2 ¢ I
(Vxl)(ng)((ng)(xg EX] <> X3 € 1'2) — X = 1’2)

These are usually interpreted as showing that there is a unique null
set. But in the truthmaker semantics we have used here, they say no
such thing. Let v be an assignment such that z; — ¢; and 3 — co.
We have that
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TMv (1'2 ¢ xl) = {a(6761702)}

so TM, ((Vxz2)(x2 ¢ x1)) is the set consisting of the single mereological
sum of all atoms of the form at(€, ¢y, ¢2), where ¢ € I. The truthmakers
for (3z1)(Vaz)(x2 ¢ x1) are then all such sums, for any value of 1. But
these are as numerous as the elements of I, and no model of ZFC has
to contain just one of them.

The Extensionality axiom, which “should” have given us uniqueness,
does not do so either. This is obvious if we remember that it does not
follow from the Null Set theorem, so it represents a strengthening of the
theory generated by that theorem. But adding more theory can never
reduce ontologies in a truthmaker semantics. Instead, the extensionality
axiom invokes truthmakers of its own, and does nothing to reduce the
ontological indeterminacy of the Null Set theorem.

For truly specific commitments, we need to consider sentences with-
out existential quantifiers or disjunctions. An example of such a sen-
tence is

(Vay)(z1 ¢ 21)

P
which follows from the axiom of regularity. This is made true by the sum
of atoms of the form at(€, ¢, ), for all ¢ € I. Since we have assumed sums
to be unique in our metaphysics, this entity indeed exists in every model
in which ZFC is true. It is thus part of ZF(C"s specific commitments.
It is clear that truthmaker theory lets us paint a picture of set-
theoretical reality far removed from how it is traditionally conceived.
We can find truthmakers for all of ZFC’s truths, but one is left with
the question: what are these objects? We are here invited to move away
from the model-theoretical approach to metaphysics, and into the more
expressionistic areas of trying to interpret truthmakers in terms of more
well-known objects. We have found a collection of objects identified
through descriptions such as “the truthmaker for a € b”, and we want
to see if there are more informative or intuitive ways to describe them.
Unfortunately, it appears we cannot take the truthmakers of ZFC
to be sets in the traditional sense, so that x € b is made true by b,
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for any z. The reason is that this would make the inference of a’ € b
from a € b valid, for any a,a’ in b, since they would have the same
truthmaker. But this inference is not valid in FZFC. On the other
hand, if use ZFC itself to settle validity, then all sentences could be
taken to have the same truthmaker.

What if we use some theory between FZFC and ZFC as a frame-
work, then? Any collection of consequences of the axioms of ZFC gen-
erates such a theory. The difficulties encountered lie both in identifying
exactly which sentences we should take as truths of the framework, as
well as in motivating why exactly this framework, rather than FZFC
or any other, is to be used.

Of course, there is nothing that hinders us from settling the problem
of couching truthmaker vocabulary in more familiar terms by stipula-
tion. We could, as in the last section, call the truthmakers “facts”, or
perhaps even “mathematical facts”. This is of course just a matter of
terminology, but on the other hand, one should never underestimate
the power of terminology either.?> What is important to remember is
that just because we have put a name on some class of things, that does
not make these things into a well-defined ontological category, separate
from everything else. By calling something a “fact”, we do not thereby
rule out that it may also be an “object”, for example.

Another perspective becomes available when we take a step back
and look at the place of ZFC in other theories. Presumably, a first-
order language for physics may include €, but it will also contain other
predicates. Could we have that the truthmakers of sentences of the
form a € b are identical to truthmakers of some other sentence ¢(a, b)?
While this would not necessarily give us a reduction of ZFC' to non-
mathematical vocabulary, it would show that ZFC does not add to the
ontological commitments of physics.

However, as long as our framework is purely first-order logical, this
cannot be. If a € b were to have the same truthmakers as ¢(a, b), where
¢ does not mention €, then we would be allowed to infer a € b from
©(a,b), as they are true in exactly the same models. But in FOL, no

3Cf. Feynman’s famous comment “We could, of course, use any notation we want;
do not laugh at notations; invent them, they are powerful. In fact, mathematics is,
to a large extent, invention of better notations.” (Feynman, 1963, p. 17-7)
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literal is inferable from a sentence that does not mention the literal’s
predicate.

Again, the matter is different if we consider frameworks stronger
than first-order ones. If the framework licenses the derivations ¢(a,b) 4+
a € b, we are free to adopt a semantics in which TM (¢(a,b)) =TM (a €
b). But this just pushes the question back, to one of which framework
we should adopt. The problem is that certain inferences are accepted
in mathematics, and other are not. If we were to, for instance, iden-
tify truthmakers of mathematical sentences with certain behavioural
patterns among mathematicians, it would be allowed to refer to these
patterns in a mathematical proof. But it is not: no type of argument
external to mathematics itself or classical logic is allowed in mathemat-
ics. The ontological question will, as the intuitionists saw, have to have
influence on the logical.

7.5 Quantum Mechanics

The applications we have considered so far have traditionally been seen
as a priori subjects. While we have not made anything of the a priori/a
posteriori or analytic/synthetic distinctions, it is instructive to also con-
sider a theory that falls within the usual concept of “empirical”. One
of the most fundamental of these theories is quantum mechanics. This
case also has intrinsic interest, since quantum mechanics is often seen
as requiring us to adopt new ways of thinking about metaphysics.

As in section 2.4.3, let QM be a theory whose language Lgas is a
collection of all sentences of the three forms

Preparation: the system is prepared in state g at t.
Measurement: observable A is measured at t.

Observation: the value of observable A at t is in the set V.
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where p is a density operator, A is an observable, ¢ is a time, and V is a
Borel set of real numbers. As before, we use p, p1, po, . . . for preparation
sentences, m,mi,Ma,... for measurement sentences, and 0,01, 09,...
for observation sentences. Recall that for any sentence s, t(s) be the
time mentioned in such it, and for any sentence of measurement or
observation, O(s) be the observable involved in it. Call the set of all
preparation sentences P, that of all measurement sentences M, and
that of all observation sentences O.

Define the probabilistic consequence operator Cg),, recursively, as
indicated in ch. 2. This means that C7,,(X) is obtained by time-
ordering the sentences of X, and then letting C),,[0](X) be the ob-
servation sentences that have probability 7 given the preparation and
measurement sentences first in X, and p € Cf,,[k](X) the observa-
tion sentences that have probability m, given the observation, measure-
ment/or and preparation sentences at point k. These probabilities are
calculable by use of the formulae we gave in section 2.4.3.

Adopting a probabilistic truthmaker semantics, we want to have
that

pe CHu(X) =@ TM[X]Z=TM (p)

for all X, p and 7. As we mentioned in the last chapter, the converse is
generally too strong, and we will see why later. Let A’ be a probabilis-
tically necessitarian metaphysics (E, Ny, whose entities will be referred
to as events. These events will be truthmakers for all statements of QM .
Just as there are three different kinds of sentence, these entities can be
classified according to which kind of sentences they are truthmakers for.
Let F = Ep u Ejp u Eo, where

Ep =] m[P]

By = v [M]
Eop = U T™ [O]
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We should not assume from the outset that Ep, Eyp; and Eo are
disjoint. For one thing, if sums of events make up events, then the
sum of a measurement event and an observation event would make true
sentences both about measurement and about observation. What we
can know about E are things like the following: if e is a measurement
that makes true the sentence “observable A is measured at t”, then all
of the possible worlds that contain e will contain some entity e’ that
makes true a sentence of the form “the value of observable A at t is in
the set V7, for some Borel set V. ¢/, in turn, will exist in all worlds
that contain some entity e” which makes true the sentence “The value
of observable A at ¢ is in the set V7, where V € V',

Some typically quantum-mechanical theorems can also be extracted
from this scheme. For instance, we have that TM (my) S=TM (ms)
whenever t(my) = t(msg) and O(mq) does not commute with O(ms),
so that the performance of a measurement excludes the possibility that
a measurement incompatible with it has been performed at the same
time. We also have that the entities whose times occur before an entity
e generally only give probabilities for the occurrence of those after them.

However, in the necessitarian metaphysic, all combinations of enti-
ties have probabilities. This follows from our having defined the prob-
abilistic necessitation relation >& so it can be interpreted as “the pro-
portion of worlds that contain all of X which also contain some Y is 7”.
But the quantum mechanics itself does not specify all probabilities, but
only those of observations, given measurements. We do not in general
do not have o1 3y, o2 for any value of 7, for different observation
statements 07 and o0y. This means that in the quantum theory, we can
not have a probability that a certain observation will be followed by
another. Such probabilities are only available in the case where some
measurement is actually made, and when the system has been prepared
correctly.

This fact is sometimes disguised by the wording “the value of ob-
servable A at ¢ is in the set V7 of an observation statement o. There are
two radically different ways this can be interpreted: actualistically and
subjunctively. On the actualist reading, o entails that the experiment
required for observing A actually has been carried out, and thus allows
inference to a corresponding measurement sentence. But that measure-
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ment sentence does not, on its own, entail any measurements at any
other time. This reading, which may be traced to Bohr’s interpretation
of QM, is the one we have adopted here.

On the other hand, if we read o subjunctively—as saying that if A
were measured at ¢, then its value would be in V—this does not allow
us to infer probabilities for another observation o’ such that t(o) # t(o')
either. That the value of 0 would have a value in V' if A were measured
does not mean that it is measured. And since whether A is measured or
not at t makes a crucial difference to the probabilities of observations
after ¢, it is not possible to assign probabilities in the “lateral” way,
straight from observation to observation.

The difference between the readings is fundamental, and the sub-
junctive interpretation is largely to blame for the unclatiry in the char-
acterisation of what constitutes an “element of physical reality” in the
famous EPR paper (Einstein et al., 1935). As Bohr points out, it is only
in the context of a concrete measurement that it makes sense to talk
about observables having values (Bohr, 1958, pp. 59-61; for criticism
cf. Bell, 2004, pp. 155-156). But this has to be an actual measurement,
and not merely a counterfactual one. This is why our theory QM al-
lows inference of observation sentences only from sets of sentences that
contain measurement sentences.

Just as measurement sentences are irreducible to observation sen-
tences, measurements are distinct from observations. While every ob-
servation presupposes some definite measurement and thus could be
seen as a part of that measurement, a measurement only gives prob-
abilities to observations. Suppose that we attempted to “split up” a
measurement m, so that each observation was to correspond one-to-one
with a variant of this measurement:

01 m; =—=01
K/
m <> 09 o Mo =——= 09
\\
03 m3 ——= 03
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Here, dotted arrows indicate probabilistic necessitations, and solid
arrows deterministic ones. In the right-hand diagram, we can identify
each observation with a unique measurement, so suppose we took oy to
make true not only “observation 1 was made”, but also “measurement
1 was made”? This, however, would distort the inferential structure of
quantum mechanics. Suppose that we do know that a certain measure-
ment one was made, and want to calculate the probabilities of making
a certain observation. Then there are no probabilistic necessitation re-
lations to ground those probabilities, for if we identify measurements
and observations, we lose the probabilistic information.

The impossibility of reducing measurements to observations is closely
connected to the fact that the probabilistic semantics for QM is incom-
plete. If it was complete, we would also have a way of calculating the
probability that a certain measurement is made, given earlier observa-
tions.

Incompleteness in a semantics is a sign of weakness of the theory,
rather than of the semantics. There are extensions of QM for which
completeness seems attainable, such as the GRW theory which intro-
duces spontaneous wave function collapses (Ghirardi et al., 1986), or
the de Broigle-Bohm theory, which is completely deterministic (Bohm,
1952; Bohm and Hiley, 1993). Oun its own, however, even a density ma-
trix for the whole world does not give probabilities for the occurence of
measurements: they are outside the standard theory.

We also have that preparations, in the absence of further principles,
are irreducible to observations and measurements. Every density matrix
is, by Gleason’s theorem, interdefinable with a probability measure on
the algebra of observables (Gleason, 1957; Mackey, 1963). But the result
of an observation is not in itself sufficient to determine such a probability
measure, unless we have a probability measure which describes the state
before that observation was made.

To illustrate, suppose that we have made an observation o; through
a measurement mq, and that we wish to make a second measurement
my. Let oo be a possible observation of ms. To calculate the chance of
02 to occur given mi, 01 and ms, we need something playing the role of
a quantum state, which is determined by a density operator. But the
only thing we have available is whether the result of m; is in the Borel
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set specified in 01, and even if we can determine a density operator after
such an operation, this requires us to know what the density operator
was before.*

In his seminal work on quantum mechanics, von Neumann (1955,
pp. 328-346) anticipates these problems, but holds the density opera-
tor to be specifiable through use of the principle of insufficient reason.
However, apart from the many intrinsic problems with the principle in
question, this also has the problem that it rules out states not obtain-
able from a homogeneous mixture through the application of a finite
number of measurements. Therefore it seems to me that we are well
advised to take preparations to be entities in their own right, different
from observations, measurements, or sums thereof.

On the other hand, the so-called quantum state does not need any
ontological basis. It is sufficiently determined by the preparation event,
together with subsequent measurements and observations, and can be
seen as an attribute of these. Since there is no state, it does not undergo
time evolution. Time enters in the specification of a measurement or
an observation, just as in the Heisenberg picture.

The metaphysics of quantum mechanics that follows from adopting
probabilistically necessitarian semantics thus commits us to a certain
type of entities, which we have called events, and three types of these,
which we have called preparations, measurements, and observations.
These are connected with probabilistic necessitation relations, and it
is these that ground the validity of quantum-mechanical inferences.
Among the things that we are not committed to are the following;:

e A wave function. This function may be useful for us when we
want to calculate probabilities, but the quantum theory itself
does not need to mention it, and we do not require specific
truthmakers for statements about it.

e Microscopic particles. Although these possibly could be con-
structed from the truthmakers we have (for instance, through

4There are exceptions to this, such as where the outcome of a measurement is a
pure state. In that case, we can calculate the density operator trivially by assigning
that state probability 1 and all others probability 0. But pure states are uncommon
in practice, and if the observables in question are continuous, they are unattainable
even in theory.

264



7.5 QUANTUM MECHANICS

the equivalence that a particle is to be seen as any truthmaker
for a certain set of sentences about a given class of observ-
ables), these do not play any essential role. It is also not the
case that all systems can be separated into independent par-
ticles, so even the general usefulness of a particle language
can be questioned.

e An observer. This characteristic is shared with any Bohr-
style interpretation. While we have truthmakers for observa-
tions, nothing in these mentions an actual observer. Whether
observations are to be interpreted in physical, mental, or oth-
erwise terms is a question that appears first when we try to
place QM inside a larger framework, which includes such
events as well. The quantum mechanical metaphysics itself
is silent on this point.

e An existent multitude of worlds or minds (Everett, 1957;
De Witt, 1971), a quantum potential (Bohm and Hiley, 1993),
a dynamic state (van Fraassen, 1991), etc.

Despite this, the metaphysics is sufficiently rich, in the sense that all
truths have truthmakers. Now, it may be thought that this is because of
the poverty of our language: without connectives, we cannot say things
like “if measurement A is performed at ¢, then there is a probability
7 that the result will be in (a,b)”. But we can add connectives. For
instance, TM (—o), for an observation sentence, can be taken to be
the set of observations whose results are incompatible with s. The
truthmakers of 01 A 0y are certain observations o, such that O(o.) is
an observable that corresponds to a projection onto a subspace included
in both the subspaces projected onto by O(o1) and O(02).

Adequate connectives for material implication are notoriously hard
to design for logics that capture quantum-mechanical reasoning (see
Dalla Chiara and Giuntini, 2002, §3). A connective for strict implication
is different, however. We can take s; — sg, for any real number 7 in
[0,1], to be true iff TM (s1) Z&TM (s2). But in any probabilistically
necessitarian semantics, this holds in all worlds, or it holds in none.
Therefore, all true instances will have everything as truthmakers. It is,
S0 to say, a truth of the framework rather than of the world.
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We will not go into detail concerning how all connectives are to be
defined. It appears, however, that we do not need to introduce any new
kinds of entities in order to settle the truth-values of complex sentences
as well.

An interesting point of note is that the metaphysics, while necessar-
ily nonlocal (as any metaphysics of quantum theory must be, see Bell,
2004), is not completely holistic. A holistic metaphysics would be one in
which worlds never overlap, so that from the knowledge of one thing one
can draw inferences about everything else that exists. If truthmaking
is non-effective, all true sentences have the same truthmakers in such
worlds. To show that this metaphysics is non-holistic, it is sufficient
to find entities ey, ey such that {e1,es} >& @ and {e1} >k€ {e2}. Such
entities do not allow the inference of the existence or non-existence of
the other, from the existence of the one. But almost any observations
made at different times fulfil these conditions, and even at the same
time, almost all observations whose observables commute fulfil them as
well.

This means that we very well can see a quantum mechanical system
as made up from independent parts. However, these parts are not
spatial, but logical. Some of them have essential spatial extension, such
as measurements and observations of a particle’s position. Others do
not, such as momentum or spin measurements. While these, in practice,
are always made somewhere (a Stern-Gerlach apparatus, for instance, is
certainly a spatiotemporal object), this does not entail that the system
measured itself is spatial.

If one may be allowed a bit of wild speculation, this could be in-
terpreted as an indication that the metaphysics of quantum mechan-
ics, while not necessarily holistic, is not in itself spatial either. Space
(or more generally spacetime) could appear as a macroscopic statisti-
cal phenomenon of the same class as, say, temperature. If this is so,
then it could be possible to find rare violations of relativity on the mi-
croscale. This would, in turn, explain how relativity fits with quantum
mechanics, despite the fact that they seem to depend on contradictory
presuppositions.

One interpretation of quantum mechanics along these lines is the
theory of causal sets by Sorkin and his collaborators (Sorkin, 1989;
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Bombelli, 1987). According to causal set theory, spacetime has the
structure of a locally finite partial order < with the interpretation that
a <X b iff a can influence b causally. The condition of local finiteness
then allows the derivation of a volume for each set of points, and this,
according to a theorem of Malament (1977), is enough to determine the
entire structure of spacetime.

The causal set interpretation is formulable as a necessitarian meta-
physic, since a partial order is nothing but a particularly simple form
of necessitation relation (i.e. a singular deterministic one). But the ne-
cessitation structure also opens up for generalizations. For instance, it
allows one to pull the dynamics into the model itself, since a necessi-
tarian metaphysics can describe possible models as well as actual ones.
Furthermore, it would be possible to use spacetime regions rather than
points as a basis for the structure. We would then get a kind of space-
time mereology, which could prove to be useful for framing questions
on the relation between quantum mechanics and general relativity.

7.6 Mind and Metaethics

Many parts of philosophy have metaphysical underpinnings. In this
final section, we will take a brief look at applications of truthmaker
semantics to the philosophy of mind and metaethics. Starting out with
the philosophy of mind, one of the fundamental metaphysical problems
in this area can be posed as: what is the mind, and how is it related to
the brain? In contemporary philosophy, the question has often centered
on qualia: purported subjective qualitative properties of experience.
What are these? Are they somehow reducible to physical entities?

We will focus on three influential types of answer, among which one
comes in at least two important varieties.
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Identity: Qualia are physical entities.
Distinctness: Qualia are distinct from physical entities.
—Supervenient: Qualia are determined by physics.

— Non-supervenient: Qualia are independent of physics.
Eliminativism: Qualia do not exist.

We here consider supervenience only in the form of supervenience
on the physical. It, however, is easy to generalise the discussion to the
case of supervenience on the non-mental, and in our second trio of view
below, to supervenience on the non-moral.

The first of the answers is often associated with the earlier identity
theories of mind (Lewis, 1966; Armstrong, 1968), but also some later
functionalist theories fit in here (Block and Fodor, 1972). Other forms
of functionalism, however, are supervenient dualisms, such as Putnam’s
(Putnam, 1975b, pp. 429-440). A non-supervenient distinctness thesis
is defended in Chalmers’s The Conscious Mind (Chalmers, 1996). Fi-
nally, eliminativism about qualia is most well-known as advocated by
Dennett (1988).

To proceed, and to place our spotlight on the metaphysical ques-
tion proper, we assume that positive claims about experiences (such
as “Mary has an experience of red at ¢t”) can be true. While not un-
controversial, this assumption seems defensible so long as we do not
presuppose any specific interpretation of “experience”. It is a fact that
experience claims, just as any other claims, can stand in inferential
relations. Let

a = Mary has an experience of red at ¢
c1 = Mary has a visual experience at ¢
co = Mary has an auditory experience at ¢

Then, unless Mary has synaesthesia, we have that a - ¢ and a t£ cs.
In a truthmaker semantics, it follows that

TM (a) > TM (c1)

TM (a) & TM (co)
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Let us call whatever makes an experience claim true a quale. What-
ever qualia are, this makes them fulfil several of the expected desiderata.
For one thing, they satisfy the esse est percipi principle: by being truth-
makers for claims about experiences, they cannot exist unless their cor-
responding experience claims are true, and this will entail that someone
in fact experiences them.

We can see at once that Eliminativism is incompatible with the truth
of positive experience claims given truthmaker semantics. If a positive
experience claim is true, then there must be something that makes it
true, and any such thing is a quale. So let us henceforth concentrate
on Identity and Supervenient Distinctness. Both of these postulate a
certain type of relationship between physical states and qualia. The
supervenience thesis inherent in both of these can be expressed as the
claim that the physical entities determine the qualia in the sense that
if w; and wy contain the same physical entities, they also contain the
same qualia. This entails that there is a function Q : p(P) — p(Q),
where P is the set of all possible physical entities, and @ the set of all
possible qualia, such that for any world w,

wNn@=QwnP)

This is what Kim refers to as global supervenience (Kim, 1984). It
is a very weak kind of relationship, and in many cases we are interested
not only in the condition that the whole of physical reality determines
the whole of qualia space, but also whether parts of the physical world
determine parts of the mental. When this holds for single qualia, we
have

wn Q= glwn P]

for some partial function g : p(P) — @ with the interpretation that
a € g(X) iff a occurs in any world in which the X’s occur. This means
that not only is the set of all qualia in a world determined by its physical
entities, but qualia are so determined individually as well.

For the identity theory, we have that g is the identity function wher-
ever it is defined, and thus it follows that @) € P, i.e. all qualia are phys-
ical. But even in the distinctness theory, qualia claims have physical
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truthmakers—at least if we allow truthmaking by pluralities, or have
a mereological metaphysics. As we have defined it, a truthmaker for
p is something that is sufficient for the truth of p. But if a collection
of physical entities is sufficient for the existence of a quale, and that
quale is sufficient for the truth of a positive experience claim p, then
the collection of physical entities itself must be sufficient for p’s truth
as well.

What work do the qualia do then? It is hard to say; their superve-
nience base can do the work of truthmaking just as well as the qualia
themselves, so it is not clear what the qualia are for. If we consider two
worlds, exactly alike physical

Indeed, in a truthmaker semantics, the purported differences be-
tween the identity view and the supervenient distinctness view almost
disappear. The distinction itself really presupposes a traditional cor-
respondence theory, in which non-equivalent claims cannot be made
true by the same thing. In a truthmaker theory, problems such as the
so-called “multiple realisability” argument tend to lose their bite: all
claims can be made true by different kinds of things, so there is nothing
special about mental states being thus multiply realisable.

To really distance oneself from the identity theory, one has to deny
supervenience as well, and hold that the qualia are underdetermined
by the physical world. But this means that one has to go for a fully-
fledged duality theory, on which the mental floats free of the physical.
The problem with this is, of course, that we can no longer avail ourselves
of interpersonal comparisons or other paradigms of scientific inquiry if
we are to explore such domains. All our evidence of others’ mental life
is physical, and if physical observation does not allow us to infer things
about the mental, then nothing else will either.

Let us now briefly consider metaethics. Much 20*" century debate
in the metaphysical parts of this field bears close resemblance to that
going on in the philosophy of mind. Instead of the triad we discussed
earlier, we have
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Naturalism: Moral facts are physical facts.
Realism: Moral facts are non-physical.
—Supervenient: Moral facts are determined by physics.
— Non-supervenient: Moral facts are independent of physics.
Nihilism: Moral facts do not exist.

Of these, Naturalism corresponds to the Identity Theory in the phi-
losophy of mind, Realism corresponds to Distinctness, and Nihilism to
Eliminativism. Nihilism is sometimes confused with non-cognitivism,
which holds that moral statements do not permit of truth and falsity,
but is different, since one very well can hold that moral claims are true
iff their corresponding facts exist, but since no such facts exist, all moral
claims are false. The most well-known philosopher to put forth such a
theory is John Mackie, in Ethics: Inventing Right and Wrong (Mackie,
1977).

As long as we adopt truthmaker theory, Nihilism is incompatible
with the truth of positive moral claims, just as Eliminativism is in-
compatible with positive truths about qualia. As for Naturalism and
Realism, the same lessons can be drawn as in the philosophy of mind.
A Realism that holds moral facts to supervene on the physical facts,
such as Moore’s (Moore, 1922), runs into exactly the same problems
as Supervenient Distinctness in the philosophy of mind: the “moral”
truthmakers do not play any role, as any true moral claim must have
physical truthmakers as well. They can be cut off using Occam’s razor,
without any loss in representative power.

These considerations seem to indicate that supervenient dualism
realism and moral realism are red herrings, at least if we adopt a truth-
maker semantics (this actually holds for general necessitarian semantics
as well). But how would a non-supervenient dualism or moral realism
work? Considering dualism first, if a quale does not supervene on the
physical entities, there are possible worlds—exactly alike physically—
both where this quale exists, and where it does not. Whether this makes
sense or not naturally depends on what we mean by “possible” here.
Perhaps these worlds are physically possible, but not psychophysically
so, as Chalmers (1996, p. 213) argues?

Something similar can be said for moral realism. If Naturalism is
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wrong, there can be no determination of the moral by the physical.
But we could envisage moral-physical laws nevertheless, even if these
cannot have the same modal force as the physical laws themselves. The
problem is to explain how we can have epistemic access to such laws.

If we back down on the claim that experience claims and moral
claims are true, we regain the possibility of adopting Eliminativism or
Nihilism. Both claims about qualia and claims about right and wrong
lack several of the properties that we generally associate with truth,
most important of which are intersubjective criteria of confirmation or
disconfirmation. On this reading, they are to be taken not claims at
all, but as what may be called pseudoclaims — things that have the
syntactic structure of claims, but may not be such.’

For pseudoclaims, truth may not be the semantic value we are after.
For morals, imperance could be more important, as Hare (1952) argued.
For experience pseudoclaims, we can take inspiration from the later
Wittgenstein, and say that these do not play the role of assertions
either (Wittgenstein, 1953, §244). Thus we could say that experience
pseudoclaims can be avowed, but not strictly true or false, since they
are non-assertory.

We can use moral or experiential pseudoclaims to make inferences,
as long as they are placed in the language of a many-valued theory.
Given the right consequence relations, we can infer from claims to pseu-
doclaims and back. It is only the semantic interpretation that differs,
so pseudoclaims can still have as central a logical role as claims do.
Denying the possibility that they can be true or false therefore does not
need to expose us to the so-called Frege-Geach problem (Geach, 1965).
This problem only appears if we require all forms of semantics to be of
the Tarskian kind, or if we disregard the possibility of using semantic
values other than ¢ and f.

5We have, of course, not assumed that claims need to have a syntactic structure at
all. Nevertheless, it is difficult to imagine that the question of truth or falsity would
even be posed for experience and moral claims, unless we put these in sentential
form, and compare them structurally to more paradigmatic claims such as “there
are three apples in this basket”. I conjecture that much of the attraction in assigning
truth-values to these claims comes from thinking of them syntactically.
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After describing the various types of scientific mind in his 1870 address
to the mathematical and physical sections of the British Association,
James Clerk Maxwell went on to state their relevance to scientific prac-
tice:

For the sake of persons of these different types, scientific truth
should be presented in different forms, and should be regarded
as equally scientific whether it appears in the robust form and
the vivid colouring of a physical illustration, or in the tenuity
and paleness of a symbolical expression. (Maxwell, 1870, p.220)

“This is almost the most important thing Maxwell ever wrote”
comments John Gribbin—himself a physicist—in his history of science
(Gribbin, 2002, p.430). But wherein lies this great importance?

Maxwell was one of the originators of the model-building (or picto-
rial) view of science, which we already have mentioned Hertz’s adher-
ence to. During the 20" century, physics grew more and more abstract.
But still, as we have entered the 21%%, most physicists primarily work
using representations: for quantum mechanics often a wave function, a
set of matrices, or a collection of paths (Dirac, 1958, ch. 3, Feynman
and Hibbs, 1965). The pictures, or models, are crucial to our thinking.
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This, however, should not lead us into the temptation to close our eyes
to their conventionality.

Poincaré took up this thread, first with regard to the structure of
space, and then with regard to science in general (Poincaré, 1905). This
influenced Carnap already in his doctoral dissertation, although the
influence was not to manifest itself in full until later, when he formulated
his principle of tolerance and his characterisation of external questions
as ones to be settled by convention rather than empirical or deductive
investigation.

Despite his animadversions to metaphysics, Carnap has been a large
influence throughout this book. The metaphysics we have advocated
is not the metaphysics that Carnap revolted against.® I have proposed
that we base metaphysics on model theory in order to make it relevant
to science, and in extension, to human affairs, knowledge and under-
standing. But a theory of models is a kind of language, and as such it is
shot through with convention. This makes all metaphysics conventional
at heart. But does this mean that we have lost the world? That meta-
physics, on our interpretation, does not after all concern how reality is,
but only how we represent it?

Although I agree that this question is natural, it is based on a faulty
and misleading picture of thought, language and theory. It is impos-
sible to think about, talk about, or even experience the world without
conceptualisation, so all metaphysics will presuppose a certain amount
of convention just due to the conventionality of concepts. Where con-
ventionality stops and fact starts is, as Quine rightly pointed out, quite
vague. The line itself is thus a matter of convention, and metaphysics,
rather than being purely about the world or purely about our represen-
tations, is just like any theory a pale grey lore of them both.

SIn Meaning and Necessity (Carnap, 1956, p. 43) Carnap explicitly took ex-
ception to Quine’s use of the word “ontology” for the set of objects falling under
the range of a language’s variables. He thought that such a word would invite
philosophers to attack such questions using metaphysical speculation, rather than
considerations of theoretical usefulness. Now we know that he was right to worry:
Quine’s position in On what there is has been misused as an invitation to intuition-
based speculative metaphysics ever since. I can only hope that my appropriation of
the word “metaphysics” here will not be taken in the same way.
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Furthermore, metaphysics as advocated here is not incompatible
with realism. We have assumed rather than denied that we can have
reason to believe theories (scientific or otherwise) to be true rather than
merely empirically adequate, useful, well-corroborated, or anything else.
We have also accepted the fact that truth means agreement with reality,
or in the more general case, agreement with what the theory is about.
This does not, on itself, determine that reality very much, but it does
so in the presence of a semantics. The choice of semantics is where
conventionality enters.

A point of importance to classical realism, on which we have been
largely silent, is to what extent the world is dependent or independent
of what we think or say about it. One of our model spaces (the space Ch
of coherence models) is definitely dependent on belief, since its models
are sets of beliefs. But the other spaces are neither belief dependent
nor belief independent on their own. Truthmaker semantics, for in-
stance, can can be dependent or independent depending on what the
metaphysics’ possible entities are.

Still, it may seem that the conventional aspects involved would in-
voke a necessary dependence between reality and convention — as if
reality itself somehow was a product of stipulation. But this worry is
hard to even state coherently. To raise the question of truth for a claim,
we generally need to place it inside a framework, i.e. a theory. Only
inside such a theory does a claim have enough inferential connections to
allow it to be tested. When used as a framework, however, the theory
is not true or false, but sound or unsound. Soundness means that no
matter what the theory’s subject may be like, the theory’s inferences
about it are truth-preserving. To raise the question of whether the
framework is true, it will have to be considered as a theory inside a
larger framework.

When testing a theory, we thus always need to place it inside a
framework. But truth itself does not entail anything about testing—it
is not in itself an epistemic concept. We have explicated “p is true”,
when p is a claim in a framing theory F' about the world, as “the world
is one of p’s models”. This does presuppose that the world has a certain
kind of structure, as given by the model space we use in the semantics.
What if the world does not have this kind of structure? For instance,
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suppose we use a Tarskian semantics, and the world is not a Tarskian
model?

We must not lose sight of the fact that even this question is framed
in a language, or otherwise we would not understand it. To ask “is the
world a Tarskian model?” | if it is not to be trivial, one has to entertain
the possibility that it is something else. This means that the semantics
we use for interpreting that question have to employ a model space
that contains more than just the Tarskian models. Nevertheless, it is
semantics-relative. Relative to a certain model space, the world is a
Tarskian model, and relative to another, it isn’t.

A staunch old-fashioned realist may of course, at this point, attempt
to hold that what matters is whether the intended semantics contains
the world as a model or not. But how are we to interpret this? The
possible “intendedness” of a certain semantics would be a property at-
tached to it by the proponent of a certain theory. This property must
be verbalisable if it is to be relevant to communication and science.
There must therefore be a way to discuss semantics, and to hear if one
interpretation or another is intended. This discussion will however it-
self have to be conducted in a language, and its results will depend on
how this language is interpreted. We cannot “step outside” language
or conceptualisation, and no theory ever interprets itself.

Of course, this does not mean that we cannot have objectivity rela-
tive to a theory (or a model space). This is, as Quine noted, just like ge-
ometry. But while large parts of geometry are accessible in a coordinate-
invariant form, there is no such thing as a framework-invariant theory.
We need theory to discuss theory.

One coordinate system that we have spent much time on in this
book is the one spanned by necessitarian semantics. This is a way to
interpret theories that lends itself well to metaphysical investigations:
limiting questions about models to questions about what exists in them
means that it is easy to keep track of the information encoded in such a
model. In the case where all combinations of entities make up possible
worlds, the information content I (in Shannon’s well-known sense of the
word) in being told that a specific model 9 is the actual one is simply
the number of possible entities |E|, since we can specify which world is
the actual one by saying for each e € F whether it exists or not, and
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this takes answers to 27! yes-or-no questions.

In metaphysics where some combinations of entities are impossible,
saying which model is the actual one gives less information. Accord-
ing to the usual definition, we have that I = log,(|Q2]), where Q, as
before, is the set of possible worlds. These information-theoretical no-
tions are relevant to the question of truth, since another reasonable way
to express the correspondence criterion would be the definition

p is true d:f the world encodes the information given by p
€

This pinpoints realism as the requirement that the information given
in a true claim must come from the world, rather than from anything
else. Encoding can of course be done in more than one way, and we
must therefore settle on an encoding scheme, or rather an algorithm
which converts the data, as it is in the world, to the form it has in p.
Such an algorithm plays the same role as a semantics.

The direct information-theoretical characterisation of truth is avail-
able for all kinds of necessitarian semantics, but the one that we have
concentrated on primarily here is truthmaker theory. The reason for
this is the current popularity of it in metaphysics, and it is therefore
time for us to come to some kind of verdict on its advantages and dis-
advantages.

General necessitarian semantics can be summarised in the slogan
“truth supervenes on being”. This is properly taken as a stipulation
rather than a substantial thesis. It lays down principles for how to
individuate objects, and thus also for what we mean by the word “ob-
ject” (or in our case, “entity”). This stipulation should therefore be
criticised according to its utility, rather than to pretentions of factual
correctness. It definitely conforms to the correspondence criterion, since
it characterises truth as dependent on the what the world is like.

It is harder to motivate truthmaker theory in the same way, either
in its singular or its plural form. Why should every truth be based on
the existence of something? Rodriguez-Pereyra’s argument that truth-
making is a relation and relations relate entities does not work if one
takes truthmaking to not be a relation in any substantial sense. It may
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very well be true that a makes p true, without there being any meta-
physically “thick” relation holding between them, if this is something
that follows from our adaption of a semantics rather than from any fact
about the world. To make an analogy, I am able to imagine a certain
crater on the far side of the moon, but this does not entail that there
is any substantial connection between my imagination and said crater,
even if it does exist. In fact there cannot be, as no information can
travel instantaneously like that.

All that correspondence really requires is that truths somehow are
related to the world, and this does not mean that they have to be related
to specific things, rather than to reality as a whole. To assume that
they do relate to parts of the world is to assume a form of truthmaker
theory, and thus it cannot be used as an argument for said theory the
way Rodriguez-Pereyra does.

Thus I hold that rather than by the kind of rationalistic arguments
traditionally given for it, truthmaker theory must be motivated by its
usefulness. How enlightening are the pictures we can paint using it?
How useful are they to science? Its main claim to these is, I believe,
the correspondence it sets up between the necessitarian structure of
metaphysics and the logical structure of a true theory. But to some
extent, it shares this property with general necessitarian semantics as
well. In chapter 6, we proved the isomorphism not only of truthmakers
and claims, but of truthmaking circumstances and claims as well.

Still, truthmaker theory has the advantage that the correspondence
between world and theory becomes particularly simple in it. Not as
simple as in, say, a straight correspondence theory, but simpler than in
general necessitarian metaphysics, and a straight correspondence the-
ory seems even harder to motivate. In a truly Carnapian fashion, we
can decide to require truth to be grounded in entities. We should not
imagine that this decision itself gives us any information about the
world. It simply sets up a convenient framework for us to discuss how
the world is, and relative to this framework, questions about the world
can be asked. When we wish to ask instead whether truthmaker theory
itself is true—for example, by asking whether every world in which p
is true contains something that does not exist in any world in which p
is false—we should use a wider framework. But as we saw in section
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2.5, we cannot expect there to be a widest one. All theory, and meta-
physics as well, is perspective-dependent. We always theorise from the
perspective of a framework, but nothing stops us from changing that
perspective to a more enlightening one, if the one we are viewing the
problems from at the moment does not give us the vantage point we
desire.
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