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Sub-Optimality Bound on a Gradient Method for Iterative Distributed

Control Synthesis

Karl Mårtensson and Anders Rantzer

Abstract— A previous paper introduced an online gradient
method to iteratively update local controllers for improved
performance. In this paper we modify that method to get an
offline method for distributed control synthesis. The complexity
of the method is linear in the number of neighbors to each
agent.

Since the controllers are constructed to be distributed and

the method is an iterative scheme, the controllers will always be
sub-optimal compared to a centralized controller. We describe
a method to calculate bounds of the sub-optimality of the
controllers, using the same variables that take part in the update
scheme.

I. INTRODUCTION

Decision making when the decision makers have access

to different information concerning underlying uncertainties

has been studied since the late 1950s [8], [9]. The subject

is sometimes called team theory, sometimes decentralized or

distributed control. The theory was originally static, but work

on dynamic aspects was initiated by Witsenhausen [14], who

also pointed out a fundamental difficulty in such problems.

Some special types of team problems were solved in the

1970’s [13], [5], but the problem area has recently gain

renewed interest. Spatial invariance was exploited in [1], [2],

conditions for closed loop convexity were derived in [12],

[11] and methods using linear matrix inequalities were given

in [7], [10], [3].

In [6] an online iterative control synthesis scheme is

considered. This paper uses a similar approach but instead fo-

cuses on an offline distributed control synthesis scheme. For

a centralized control problem, the method would be a special

case of iterative feedback tuning [4]. In this distributed setup,

agents only have access to information of the local dynamic

model and local states. The agent uses the local knowledge

to locally change the control law in order to improve a global

performance. The controllers will always be sub-optimal,

both since the controllers are constructed to be distributed

and since the method presented is an iterative scheme. Using

the same variables determined in the controller update step,

sub-optimality bounds can be found.

Section II contains a description of the distributed systems

considered and the notations used in the paper are defined.

In this section the method for updating the control laws

using descent directions to the cost function is presented. In

section III the theory for finding the sub-optimality bound to
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the previously mentioned method, is formulated. An example

is given in section IV, showing the methodology described.

II. PROBLEM FORMULATION

A. Distributed Systems

Consider linear time-discrete systems

x(t + 1) = Φx(t) + Γu(t), x(0) = x0, (1)

where x0 ∈ N (0, σ). The systems are restricted to have a

distributed structure, described by an associated graph. The

nodes (called agents) vi, i = 1, . . . , n, of the graph represent

subsystems of the complete system, that is the agents are

a partition of the states of the system. The edges of the

graph are represented by ordered pairs, (i, j). Let E be

the collection of edges (by convention (i, i) ∈ E, ∀i). We

call agents vi and vj neighbors if at least one of (i, j) and

(j, i) are among the edges. An edge (i, j) means that agent

vi directly influence agent vj through the dynamics of the

system, that is

Φji = 0 if (i, j) /∈ E,

(throughout the paper, subscripts i, j will refer to blocks

associated with agents i and j, respectively). Hence the

dynamics matrix has a sparsity structure which resembles

the graph structure of the distributed system. In the paper we

assume that each agent has one set of distinct control signals,

i.e. each control signal affects only one agent directly. This

is represented by the Γ matrix being block-diagonal, that is,

Γ = diag(Γ1, . . . , Γn),

where Γi is associated with agent vi. The case that an agent

does not have an input signal could be modeled as letting

the corresponding block in Γ be zero. This is not necessary,

and the columns corresponding to such zero entries in Γ will

be removed. One example of the complete setup is found in

Figure 1.

The system (1) is controlled using state feedback u(t) =
−Lx(t). When we consider a distributed setup, each agent

vi is restricted to use only the states of its neighboring agents

to calculate its control ui(t). This imposes the restriction on

the feedback matrix L,

Lij = 0 if (i, j), (j, i) /∈ E

With this restriction, the closed loop dynamics matrix Φ−ΓL
satisfies the property that [Φ−ΓL]ij = 0 unless agent i and

j are neighbors.
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Fig. 1. Graphical representation of a distributed system.
The arrows shows how each agent affects the others. The set
E = {(1, 1), (2, 2), (3, 3), (4, 4), (1, 2), (2, 1), (1, 3), (3, 2), (3, 4),
(4, 3)}

B. Iterative Distributed Control Synthesis

The performance we consider is the LQR cost

J(L, x0) =

∞∑

t=0

(
|x(t)|2Q + |u(t)|2R

)
, (2)

where x(t) and u(t) = −Lx(t) satisfies (1). This cost

function is only defined for stabilizing feedback matrices. We

assume that the cost can be separated to decentralized costs

for each agent, meaning that Q and R are block-diagonal

and

J(L, x0) =
∑

i

J (i)(L, x0) =
∑

i

∞∑

t=0

(
|xi(t)|

2
Qi

+ |ui(t)|
2
Ri

)

Using a similar approach as in [6] the following is stated.

Proposition 1: Given the system (1) and a stabilizing L,

the gradient of the cost function (2) is

∇LJ = 2
[
RL − ΓT P (Φ − ΓL)

]
X0, (3)

where

X0 = (Φ − ΓL)X0(Φ − ΓL)T + x0x
T
0 (4)

P = (Φ − ΓL)T P (Φ − ΓL) + Q + LT RL (5)

Proof. The cost function can be written as J(L, x0) =
tr(X0Q) + tr(LX0L

T R) = tr(Px0x
T
0 ). To calculate the

differential of P , let

ΦL = Φ − ΓL

M = [LT R − ΦT
LPΓ]dL

Differentiating (5) shows that dP satisfies the Lyapunov

equation

dP = ΦT
LdPΦL + M + MT

Hence

dP =

∞∑

k=0

(ΦT
L)k(M + MT )Φk

L

tr(dPx0x
T
0 ) = tr

(

2MT

∞∑

k=0

Φk
Lx0x

T
0 (ΦT

L)k

)

= tr
(
2dLT (RL − ΓT PΦL)X0

)

This concludes the proof. 2

Introducing adjoint states, we can rewrite this expression,

which is summarized in the following Proposition.

Proposition 2: Given the system (1) and a stabilizing L,

let the adjoint states λ be defined by the backwards iteration

λ(t − 1) = (Φ − ΓL)T λ(t) − (Q + LT RL)x(t), (6)

where x(t) are the states of (1), with lim
t→∞

λ(t) = 0. Then

∇LJ = 2

(

RLX0 + ΓT

∞∑

t=0

λ(t)x(t)T

)

Proof. For simplicity, let QL = Q + LT RL. For any j,

λ(j) = −
∞∑

k=j+1

((Φ − ΓL)T )k−j−1QLx(k)

= −
∞∑

k=0

((Φ − ΓL)T )kQL(Φ − ΓL)k+1x(j)

Hence (letting ΦL = Φ − ΓL)

∞∑

t=0

λ(t)x(t)T = −
∞∑

t=0

∞∑

k=0

(ΦT
L)kQL(ΦL)k+1x(t)x(t)T

= −P (Φ − ΓL)X0

Fitting this into (3) gives the desired result. 2

Projecting the gradient to the set of admissible feedback

matrices, we obtain a descent direction of J(L). To deter-

mine the local update direction for an agent, each agent first

simulates its states for a time interval [0, N ] by only sharing

states and control signals with neighboring agents. Thereafter

each agent simulates its adjoint states, λi(t), backwards in

time (ending with λ(N) = 0), by only sharing adjoint states.

That this can be done using only local states and adjoint

states can be found in [6]. With the adjoint states, each

agent approximately determines the blocks in the gradient

of the cost corresponding to its neighbors. The method is

summarized in the following update scheme

Algorithm 1: At iterate k, let the feedback matrix be L(k)

and let the time interval for the simulation be [0, N ]. To

update the feedback matrix in agent i

1) Let x0 ∈ N (0, σ) and simulate the states xi(t) of the

system (1) for times t = 0, . . . , N by communicating

states and control signals from and to neighboring

agents.

2) Simulate the adjoint states λi(t) of the system (6) for

times t = 0, . . . , N in the backwards direction (with

λ(N) = 0), by communicating adjoint states from and

to neighboring agents

λi(t − 1) =
∑

j∈Ei

(

Φ − ΓL(k)
)T

ji
λj(t)

−



Qixi(t) −
∑

j∈Ei

(L
(k)
ji )T Rjuj(t)







3) For every neighboring agent j, calculate the approxi-

mation of the projected gradient by

Gij = −2

(

Ri

N∑

t=0

ui(t)xj(t)
T

+ ΓT
i

N∑

t=0

λi(t)xj(t)
T

)

4) For each neighboring agent j, update

L
(k+1)
ij = L

(k)
ij − γkGij ,

for some step length γk.

5) Increase k and go to 1) and repeat. 2

An important property of the posed scheme is that the

complexity is linear in the number of neighbors to each

agent. Introducing more agents to the system only changes

the calculations for the agents which are to be neighbors to

the new ones. Hence it does not involve much effort to add

more agents to existing system.

III. SUB-OPTIMALITY BOUND

A. Centralized Sub-Optimality Bound Calculations

Solving the ordinary LQR control problem is a well-

studied problem and has a tractable solution. But finding

the minimizing feedback matrix, when imposing a structure,

is not even guaranteed to be convex. The underlying method

in Algorithm 1 is a descent method, and hence we can not

guarantee that the optimal structured feedback matrix is ever

reached. A measure of the sub-optimality in each iteration

step of the update algorithm, is α ≥ 1 such that

J(L, x0) ≤ αJ(Lopt, x0), (7)

where Lopt = argminK J(K, x0). That is, J(L, x0) is

within a factor of α of the actual optimal value. This means

that if we can verify that an α close to 1 must satisfy (7), then

even though L might not be the optimal feedback matrix,

we will not find one that reduces the cost greatly. For the

remaining part of the paper

J(L, x0) =
N∑

t=0

(
|x(t)|2Q + |u(t)|2R

)

Theorem 1: If α ≥ 1 is such that for a given sequence of

dual (or adjoint) variables λ(t), with λ(N) = 0

J(L, x0) ≤ α
∑

i

min
xi,ui

N∑

t=0

[

|xi(t)|
2
Qi

+ |ui(t)|
2
Ri

+ 2λi(t)
T (xi(t + 1) − Φix − Γiui(t))

]

,

(8)

then

J(L, x0) ≤ αJ(Lopt, x0), (9)

where

Lopt = argmin
K

min
x

J(K, x0)

Proof. Assume that α is such that for a given sequence of

λ(t), (8) holds. We have that

J(Lopt, x0) =







min
K,x

N∑

t=0

|x(t)|2Q + |Kx(t)|2R

subject to: x(t + 1) = (Φ − ΓK)x(t)

≥







min
u,x

N∑

t=0

|x(t)|2Q + |u(t)|2R

subject to: x(t + 1) = Φx(t) − Γu(t)

≥min
u,x

N∑

t=0

[

|x(t)|2Q + |u(t)|2R

+ 2λ(t)T (x(t + 1) − Φx(t) − Γu(t))

]

,

where the second inequality comes from introducing dual

variables. Hence, if (8) holds, so must (9). 2

This theorem relates the finite horizon cost J(L, x0) with

the optimal finite horizon cost J(Lopt, x0). The interpreta-

tion then becomes that over the time interval [0, N ] we could

not reduce the cost by more than a factor 1
α

.

B. Distributed Sub-Optimality Bound Calculations

If we consider distributed control, that is, if we restrict the

feedback matrix to be such that each agent only is allowed

to use its neighboring states to determine its control action,

then each agent can locally solve its corresponding mini-

mization problem in (8). Hence, each agent can obtain a sub-

optimality bound locally. We state the following Corollary to

Theorem 1.

Corollary 1: Let the simulation interval be the time in-

terval [0, N ]. Let J (i)(Li, x0) =
∑N

t=0 |xi(t)|
2
Qi

+ |ui(t)|
2
Ri

.

Now, given sequence of λ(t), if for 1 ≤ i ≤ n, αi ≥ 1 is

such that

J (i)(Li, x0) ≤ αi min
xi,ui

N∑

t=0

[

|xi(t)|
2
Qi

+ |ui(t)|
2
Ri

+ 2λi(t)
T (xi(t + 1) − Γiui(t)) + 2

∑

(i,j)∈E

λj(t)
T Φjixi(t)

]

,

(10)

then, letting α = max
i

αi,

J(L, x0) ≤ αJ(Lopt, x0) (11)

Proof. Assume that (10) holds. We have that

J(L, x0) =
∑

i

J (i)(Li, x0)

Using (10) and that α = max
i

αi we get right hand side of (8)

and by Theorem 1 we have (11). 2

The Corollary 1 gives a method to evaluate the expected

performance an updated feedback matrix will give to the

system. We only have to choose the dual or adjoint variables.

The name suggest that we choose the adjoint variables

defined by (6). To motivate this choice, we could refer to



Pontryagin’s maximum principle. Another motivation comes

from examining

max
λ

min
u,x

N∑

t=0

[

|x(t)|2Q + |u(t)|2R

+2λ(t)T (x(t + 1) − Φx(t) − Γu(t))

]

︸ ︷︷ ︸

L(x,u,λ)

,

from Theorem 1. Let the objective function be L(x, u, λ).
To find a saddle point for L then

0 = ∇x(t)L = 2(Qx(t) + λ(t − 1) − ΦT λ(t))

0 = ∇u(t)L = 2(Ru(t) − ΓT λ(t))

We get (6) by ∇x(t)L + LT∇u(t)L = 0.

Algorithm 2: Given the feedback matrix L, the [0, N ]-
horizon sub-optimality bounds in each agent are determined

by

1) Simulate the states xi(t) of the system

x(t + 1) = (Φ − ΓL)x(t),

for times t = 0, . . . , N .

2) Simulate the adjoint states λi(t) of the system

λ(t − 1) = (Φ − ΓL)T λ(t) − (Qx(t) + LT RL)x(t),

for times t = 0, . . . , N in the backwards direction

(with λ(N) = 0.

3) Solve the optimization problem in (10) in every agent

to find αi. 2

C. Modified Distributed Sub-Optimality Bound Calculations

The distributed sub-optimality bounds found in Corol-

lary 1 does not equal the centralized one found in Theorem 1.

Some of the bounds in Corollary 1 may even be much

greater. In order get distributed sub-optimality bounds that

approaches the centralized one, a modification to (10) is

given. In each agent, a constant dij for every neighboring

agent is added

J
(i)
[0,N ](Li, x0) ≤ αi

(

min
xi,ui

N∑

t=0

[

|xi(t)|
2
Qi

+ |ui(t)|
2
Ri

+ 2λi(t)
T (xi(t + 1) − Γiui(t)) + 2

∑

(i,j)∈E

λj(t)
T Φjixi(t)

]

+
∑

(i,j)∈E

dij

)

,

with the restriction that dij = −dji. The constants dij will

be used to create consensus for all αi. Using a consensus

scheme, the dij are modified in order to make all αi equal.

In essence, if αj < αi for two neighboring agents, then dij

should be increased while at the same time dji should be

equally decreased. Since dij are constant in the minimization,

the minimization does only have to be carried out once for

every iteration.

x1 x2 x9 x10Φ21

Φ12

Φ9,10

Φ10,9

· · ·

Fig. 2. Graphical representation of the system in the example. The arrows
shows how each agent affects the others.

IV. EXAMPLE

The system

x(t + 1) = Φx(t) + Γu(t)

that is considered, consists of 10 agents, where the agents

are connected in a linear fashion, see Figure 2. This leads to

a tri-diagonal dynamics matrix, which, in this example, is

Φ =










0.5 0.5
−0.5 0.1 −0.3

0.4 −0.2 −0.5
−0.4 −0.5 0.2

0.2 0.3 −0.1
−0.3 0.1 0.3

0.2 −0.4 −0.4
0.2 −0.2 0.3

0.5 −0.5 0.3
−0.1 −0.1










and with the remaining entries equal to zero. We allow each

agent to have an input and set Γ = I . We wish to minimize

the cost

J(L, x0) =

N∑

t=0

(
|x(t)|2Q + |u(t)|2R

)

where u = −Lx, Q = R = I and x0 ∈ N (0, I).
The magnitude of the maximal eigenvalue of Φ, ρ(Φ) ≈

0.81, hence we can initially let the system be uncontrolled,

i.e. let L = 0.

In Figures 3-4 the evolution of the sub-optimality when

simulating the gradient method for 50 iteration. The horizon

N = 10 in the simulation. In Figure 3 the curve α is

the sub-optimality bound determined by each agent when

the modified sub-optimality calculations are performed. The

curve denoted by αexact shows the true sub-optimality the

feedback matrix in that iteration gives rise to, that is

αexact =
J(L(k), x0)

J(Lopt, x0)

In Figure 4 the relative difference between α and αexact is

shown, that is

∆αrel =
α − αexact

αexact

When the feedback matrix is far from the optimal, in

Theorem 1 it is not guarantee that the right hand side is

positive. This happens when the feedback matrix is far from

the optimal. In the case of a negative right hand side, there

is no positive α satisfying the inequality. In these cases, no

value of α is plotted.

In Figure 3 we see that the true sub-optimality approaches

1, meaning that the cost of the distributed feedback matrix

L(k) approaches the cost of the optimal centralized LQR

feedback matrix. After a few iterations we see that we can

calculate a sub-optimality bound using the theory previously

described. Figure 4 shows that this bound is within a factor

3 of the true sub-optimality.
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Fig. 3. Plots of the estimated sub-optimality using the described method
and the exact sub-optimality.
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Fig. 4. Plot of the relative difference between the estimated and the exact
sub-optimality.

V. CONCLUSIONS AND FUTURE WORKS

A. Conclusions

By introducing adjoint states, it is shown how to find a

descent direction to a globally defined cost function, using

only local information. Using this, a method to do offline

distributed control synthesis is posed. The method can be

used to update distributed controllers connected in a network,

in order to improve a globally defined objective of the global

system.

It is also shown how to use the same adjoint variables

to calculate sub-optimality bounds to the current set of con-

trollers, in a distributed fashion. The sub-optimality bounds

can for example be used as a stopping criteria for the

synthesis method.

B. Future Works

Using an approach similar to the one used in the sub-

optimality calculations, we could have a scheme to determine

an appropriate step length in the descent direction in the

synthesis method. This would allow for a faster convergence.

Looking at the possibility to reformulate the minimization

step in the calculations of the sub-optimality bounds to

exclude negative sub-optimality bounds.
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