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Abstract

A method for determining transition matrices for inhomogeneous dielectric
shells is presented. The source can be either inside or outside the shell. The
method is based upon expansions of the electric and magnetic fields in vector
spherical harmonics. The expansion coefficients in the shell satisfy a system
of linear ordinary differential equations in the radial direction. The expan-
sion coefficients for the incident and scattered fields are related via transition
matrices, defined in the same way as in the T-matrix or null-field method.
Numerical examples show excellent agreement with results obtained by the
T-matrix method. Numerically the method is particularly strong for the case
of a source at the center of large, but thin, inhomogeneous spherical shell.

1 Introduction

In the present paper a method for calculating the scattered field from inhomogeneous
spherical shells is presented. The source can be either outside or inside the shell.
By expanding the electric and magnetic fields in vector spherical harmonics, the
scattering problem is reduced to a system of first order ordinary differential equations
(ODE) in the radial coordinate. Numerically these equations are straightforward to
solve by some standard ODE solver. The convergence of the method depends on the
variation of the permittivity in the shell, and the thickness and radius of the shell.
When the source is located at the origin it is possible to determine the radiation
pattern from an antenna in the center of a spherical shell for very large radii of the
shell. For these type of problems the method is superior to e.g. the finite-difference-
time-domain method (FDTD), the finite element method (FEM) and the method
of moments (MoM), which cannot handle structures that are very large compared
to the wavelength.

From the method it is easy to obtain the transition matrices for the shell, i.e.
the matrices that relate the scattered field to the incident field. In particular the
T-matrix that relates the scattered field to the incident field when the source is
outside the shell is obtained, cf [10]. There are a number of methods and results
developed for the T-matrix that then can be utilized. Thus it is possible to treat
scattering from several inhomogeneous objects, [8], objects in layered structures, [7],
objects in waveguides, [3], and resonances in objects, [11].

There are at least two methods that are related to the present method. One is
presented in [6]. The method is based upon the integral representation of the electric
field and expansion of the Green dyadics in spherical vector waves. By utilizing the
invariant imbedding method a Ricatti equation is obtained for the T-matrix. The
major difference between the imbedding and the propagator method is that the set
of ODE:s is non-linear for the imbedding method whereas the propagator method
gives a linear system of equations. Another difference is that the internal fields in the
shell are easier to obtain by the propagator method. The other method is presented
in [4] and [5]. In that method the Maxwell equations are rewritten in terms of
the angular components of the electric and magnetic fields. By an expansion of
these components in the system exp(i(n cos θ+mφ)) a system of ODEs is obtained.
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Numerically it is expected that the two methods and the method in this paper are
comparable.

The outline of the present paper is as follows: First the basic system of vector
functions is defined. In Section 3 the fields are expanded in spherical harmonics
in the shell and in spherical vector waves inside and outside the shell. The system
of ODEs for the expansion coefficients is derived in Section 4. A wave splitting
operator is defined in Section 5 where also the transition matrices are defined. The
numerical algorithm and numerical examples are discussed in Section 6 for the axially
symmetric shell. Energy conservation and reciprocity impose conditions on the
transition matrices and this is discussed in Section 7.

2 Vector spherical harmonics and spherical vector

waves

The vector spherical harmonics are defined by [2]

A1σml(r̂) =
1√
l(l + 1)

∇× (rYσml(r̂))

A2σml(r̂) =
1√
l(l + 1)

r∇Yσml(r̂)

A3σml(r̂) = r̂Yml(r̂)

The following definition of the spherical harmonics is used

Yσml(θ, φ) =

√
εm
2π

√
2l + 1

2

(l −m)!

(l +m)!
Pm

l (cos θ)

{
cosmφ

sinmφ

}

where εm = 2 − δm0 and σ, m, l take the values

σ =

{
e

o

}
, m = 0, 1, 2, . . . , l, l = 0, 1, . . .

In the current application l will never have the value 0. It is convenient to introduce
a multi index n for the indices σml with some convention such that n = 1, 2, 3, . . . .
Some of the properties of the vector spherical harmonics are

r̂ · Aτn(r̂) = 0, τ = 1, 2

r̂ × A1n(r̂) = A2n(r̂)

r̂ × A2n(r̂) = −A1n(r̂)

r̂ × A3n(r̂) = 0

∇× A1n(r̂) =
1

r

(
A2n(r̂) +

√
l(l + 1)A3n(r̂)

)
∇× A2n(r̂) = −1

r
A1n(r̂)

∇× A3n(r̂) =
1

r

√
l(l + 1)A1n(r̂)
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∫
Aτn(r̂) · Aτ ′n′(r̂)dΩ = δττ ′δnn′ (2.1)

The outgoing divergence-free spherical vector waves are defined by

u1n(kr) = h
(1)
l (kr)A1n(r̂)

u2n(kr) =
1

k
∇×

(
h

(1)
l (kr)A1n(r̂)

)
The corresponding regular waves are

v1n(kr) = jl(kr)A1n(r̂)

v2n(kr) =
1

k
∇× (jl(kr)A1n(r̂))

3 Formulation of the problem

A spherical shell with an inner radius a and an outer radius b is located in a homoge-
neous medium. Without loss of generality it is assumed that there is vacuum in the
two regions r < a and r > b. The shell has an r dependent permittivity. The source
is time-harmonic and is located either inside the shell, i.e. in the region r < as < a
or outside the shell, i.e. in the region r > bs > b. With the time-dependence
convention e−iωt the Maxwell equations in the region bs > r > as read

∇× E(r) = iωµ0H(r)

∇× H(r) = −iωε0ε(r)E(r)

The objective is to find the scattered field in the regions r > bs and r < as, but also
the internal field in the region as < r < bs is of interest.

4 Expansions of the fields

Consider the general case with sources in both of the regions r < as and r > bs. In
the regions r < a and r > b the electric field is given by

E(r) = Ein(r) + Er(r) when r < a (4.1)

E(r) = Eout(r) + Es(r) when r > b (4.2)

where Ein(r) is the field in free space from the source in r < as and Eout(r) is the
field in free space from the source in r > bs. The fields in Eqs. (4.1) and (4.2) are
expanded in spherical vector waves with the condition that Eout(r) and Er(r) are
regular in r < bs and r < a, respectively. The field Ein(r) is the field from the source
in r < as in free space, and thus Ein(r) and Es(r) satisfy radiation conditions for
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large r

Ein(r) =
2∑

τ=1

∑
n

ain
τnuτn

=
2∑

τ=1

∞∑
l=1

l∑
m=0

∑
σ=e,0

ain
τσmluτσml(k0r), when as < r < a (4.3)

Eout(r) =
2∑

τ=1

∑
n

aout
τn vτn, when b < r < bs (4.4)

Er(r) =
2∑

τ=1

∑
n

bτnvτn, when r < a (4.5)

Es(r) =
2∑

τ=1

∑
n

fτnuτn, when r > b (4.6)

The coefficients ain
τn and aout

τn are assumed to be known. The scattering problem is to
determine the coefficients bτn and fτn and, if needed, the internal fields in the shell.

In the shell, a < r < b, the spherical vector waves do not satisfy the Maxwell
equations. Instead an expansion in vector spherical harmonics are used where the
r-dependent expansion coefficients satisfy a system of ordinary differential equations
(ODE). The electric field is not divergence free in the shell and a general expansion
in vector spherical harmonics reads

E(r) =
∑

n

e1n(k0r)

k0r
A1n(r̂) + ∇×

(
e2n(k0r)

k2
0r

A1n(r̂)

)
+
e3n(k0r)

k0r
A3n(r̂)

=
∑

n

e1n(k0r)

k0r
A1n(r̂) +

e′2n(k0r)

k0r
A2n(r̂)

+

(
e2n(k0r)

k2
0r

2

√
l(l + 1) +

e3n(k0r)

k0r

)
A3n(r̂), a < r < b

(4.7)

where prime denotes differentiation with respect to the argument k0r. The magnetic
field is divergence free and is expanded as

iη0H(r) =
∑

n

h1n(k0r)

k0r
A1n(r̂) + ∇×

(
h2n(k0r)

k2
0r

A1n(r̂)

)

=
∑

n

h1n(k0r)

k0r
A1n(r̂) +

h′2n(k0r)

k0r
A2n(r̂)

+
h2n(k0r)

k2
0r

2

√
l(l + 1)A3n(r̂), a < r < b

(4.8)

The expansions (4.7) and (4.8) are inserted into the induction law ∇ × E(r) =
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iωµ0H(r) where

∇× E(r) =
∑

n

1

r

(
e3n(k0r)

k0r

√
l(l + 1) − e′′2n(k0r) + l(l + 1)

e2n(k0r)

k2
0r

2

)
A1n(r̂)

+
e′1n(k0r)

kr

A2n(r̂) +
e1n(k0r)

k0r2

√
l(l + 1)A3n(r̂)

The orthogonality of the vector spherical harmonics in Eq. (2.1) gives

h2n(k0r) = e1n(k0r) (4.9)

h1n(k0r) =
e3n(k0r)

k0r

√
l(l + 1) − e′′2n(k0r) + l(l + 1)

e2n(k0r)

k2
0r

2
(4.10)

Ampère’s law, ∇× H(r) = −iωε0ε(r)E(r) gives

∑
n

1

r

(
h2n(k0r)

k2
0r

2
l(l + 1) − h′′2n(k0r)

)
A1n(r̂)

+
h′1n(k0r)

r
A2n(r̂) +

h1n(k0r)

k0r2

√
l(l + 1)A3n(r̂)

=
k2(r)

k0

∑
n

e1n(k0r)

k0r
A1n(r̂) +

e′2n(k0r)

k0r
A2n(r̂)

+

(√
l(l + 1)

e2n(k0r)

k2
0r

2
+
e3n(k0r)

k0r

)
A3n(r̂)

Orthogonality gives

h′′2n(k0r) − l(l + 1)
h2n(r)

k2
0r

2
= −

∑
n′

h2n′(k0r)

∫
Ω

k2(r)

k2
0

A1n′(r̂) · A1n(r̂)dΩ

+ e′2n′(k0r)

∫
k2(r)

k2
0

A2n′(r̂) · A1n(r̂)dΩ

(4.11)

h′1n(k0r) =
∑
n′

h2n′(k0r)

∫
Ω

k2(r)

k2
0

A1n′(r̂) · A2n(r̂)dΩ

+ e′2n′(k0r)

∫
Ω

k2(r)

k2
0

A2n′(r̂) · A2n(r̂)dΩ

(4.12)

e′′2n(k0r) + h1n(k0r) =
√
l(l + 1)∑

n′

h1n′(k0r)
√
l′(l′ + 1)

∫
1

k2(r)r2
A3n′(r̂) · A3n(r̂)dΩ

(4.13)
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The functions h1n(r), h2n(r), h′2n(r), e′2n(r) are all continuous functions and satisfy
Eqs. (4.9)–(4.13), that are equivalent to the first order system of ODE

∂

∂k0r



h2n(k0r)

h′2n(k0r)

h1n(k0r)

e′2n(k0r)


 =Dn



h2n(k0r)

h′2n(k0r)

h1n(k0r)

e′2n(k0r)


 +

∑
n′

Cn,n′



h2n′(k0r)

h′2n′(k0r)

h1n′(k0r)

e′2n′(k0r)


 (4.14)

The blocks Cn,n′ and Dn are given by

Cn,n′ =




0 0 0 0
α21

n,n′ 0 0 α24
n,n′

α31
n,n′ 0 0 α34

n,n′

0 0 α43
n,n′ 0




Dn =




0 1 0 0
l(l+1)

k2
0r2 − 1 0 0 0

0 0 0 1

0 0 l(l+1)

k2
0r2 − 1 0




The coefficients α read

α21
n,n′ = −

∫ (
k2(r)

k2
0

− 1

)
A1n(r̂) · A1n′(r̂)dΩ

α24
n,n′ = −

∫
k2(r)

k2
0

A1n(r̂) · A2n′(r̂)dΩ = −
∫ (

k2(r)

k2
0

− 1

)
A1n(r̂) · A2n′(r̂)dΩ

α31
n,n′ =

∫
k2(r)

k2
0

A2n(r̂) · A1n′(r̂)dΩ =

∫ (
k2(r)

k2
0

− 1

)
A2n(r̂) · A1n′(r̂)dΩ

α34
n,n′ =

∫ (
k2(r)

k2
0

− 1

)
A2n(r̂) · A2n′(r̂)dΩ

α43
n,n′ =

1

k2
0r

2

√
l(l + 1)

√
l′(l′ + 1)

∫ (
k2

0

k2(r)
− 1

)
A3n(r̂) · A3n′(r̂)dΩ

The propagator matrix K(r, r′) is a matrix-valued mapping that is independent
of the fields. It is defined as


h2n(k0r)

h′2n(k0r)

h1n(k0r)

e′2n(k0r)


 =

∑
n′

Kn,n′(r, r′)



h2n′(k0r

′)

h′2n′(k0r
′)

h1n′(k0r
′)

e′2n′(k0r
′)


 (4.15)

where

Kn,n′(r, r′) =



K11

n,n′ K12
n,n′ K13

n,n′ K14
n,n′

K21
n,n′ K22

n,n′ K23
n,n′ K24

n,n′

K31
n,n′ K32

n,n′ K33
n,n′ K34

n,n′

K41
n,n′ K42

n,n′ K43
n,n′ K44

n,n′



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By inserting the definition (4.15) into Eq. (4.14) it is seen that Kn,n′(r, r′) satisfies
the ODE

∂Kn,n′(r, r′)

∂k0r
= DnKn,n′(r, r′) +

∑
n′′

Cn,n′′Kn′′,n′(r, r′)

Kn,n′(r′, r′) = δnn′




1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1




(4.16)

The following useful relations are easy to obtain from Eq. (4.15)

K(r, r′)K(r′, r′′) = K(r, r′′)

K−1(r, r′) = K(r′, r)

Notice that K is a real matrix when the shell is lossless since C and D then are real.

5 Wave splitting and transition matrices

At the boundaries, r = a and r = b, the fields in the expansions (4.7) and (4.8) have
to be related to those in the expansions (4.3)–(4.6). This relation is expressed in
terms of the splitting matrix, P , that splits the field into an outward moving part
and a regular part. In vacuum the system of equations (4.14) are for every n divided
into two systems, each containing two equations

∂

∂k0r

(
h2n(k0r)

h′2n(k0r)

)
=

(
0 1

l(l+1)

k2
0r2 − 1 0

) (
h2n(k0r)

h′2n(k0r)

)
= dn

(
h2n(k0r)

h′2n(k0r)

)

∂

∂k0r

(
h1n(k0r)

e′2n(k0r)

)
=

(
0 1

l(l+1)

k2
0r2 − 1 0

) (
h1n(k0r)

e′2n(k0r)

)
= dn

(
h1n(k0r)

e′2n(k0r)

)

Now define the functions

Γl(k0r) = k0rh
(1)
l (k0r)e

−ik0r

γl(k0r) = k0rjl(k0r)e
ik0r

where jl(k0r) is the spherical Bessel function of order l and h
(1)
l (k0r) is the spherical

Hankel function of the first kind. The functions Γl and γl satisfy the equations

Γ′′
l (k0r) + 2iΓ′

l(k0r) −
l(l + 1)

k2
0r

2
Γl(k0r) = 0

γ′′l (k0r) − 2iγ′l(k0r) −
l(l + 1)

k2
0r

2
γl(k0r) = 0

Introduce the following transformation:(
h2n

h′2n

)
=

(
Γl γl

Γ′
l + iΓl γ′l − iγl

) (
v+

1n(r)
v−1n(r)

)
= p−1

n

(
v+

1n(r)
v−1n(r)

)
(5.1)
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and (
h1n

e′2n

)
=

(
Γl γl

Γ′
l + iΓl γ′l − iγl

) (
v+

2n(r)
v−2n(r)

)
= p−1

n

(
v+

2n(r)
v−2n(r)

)
(5.2)

In vacuum this transformation is a wave splitting that decomposes the field into out-
ward and inward moving fields. Since v+ is related to to far-field the transformation
is denoted the far-field to total field transformation.

The total field to far-field transformation is obtained from the Wronskian for the
Hankel and Bessel functions that implies

iΓlγ
′
l − iγlΓ

′
l + 2Γlγl = 1 (5.3)

Using the Wronskian in Eq. (5.3), the total field to far-field transformation is ob-
tained as (

v+
1n

v−1n

)
=

(
γl + iγ′l −iγl

Γl − iΓ′
l iΓl

) (
h2n

h′2n

)
= pn

(
h2n

h′2n

)
(5.4)

and (
v+

2n

v−2n

)
= pn

(
h1n

e′2n

)
(5.5)

In vacuum the split fields satisfy the diagonal system of ODEs

∂

∂k0r

(
v+

τn

v−τn

)
= (pndnp

−1
n − pn

∂p−1
n

∂k0r
)

(
v+

τn

v−τn

)
= i

(
1 0
0 −1

) (
v+

τn

v−τn

)

with solutions v±τn(r) = V ±
τne

±ikr. In the region r > bs the constants V +
τn are the

far-field amplitudes of the scattered field. It is possible to obtain the equation for
the split fields v± also in the shell, and one can introduce propagators for the split
fields. These propagators are seen to satisfy the same equations as v± and these
equations can be used instead of Eq. (4.16). However, the system (4.16) is simpler
and gives a somewhat faster numerical algorithm.

The relation between the expansion coefficients in Eqs. (4.3)–(4.6) and the split
fields v±τ follows from Eqs. (5.4) and (5.5)

ain
τσml = v+

τσml(a)e
−ik0a

aout
τσml = v−τσml(b)e

ik0b

bτσml = v−τσml(a)e
ik0a

fτσml = v+
τσml(b)e

−ik0b

(5.6)

The transition matrices are defined by(
f1n

f2n

)
=

∑
n′

Tn,n′

(
aout

1n′

aout
2n′

)
+Q−1

n,n′

(
ain

1n′

ain
2n′

)
(
b1n

b2n

)
=

∑
n′

Q̃−1
n,n′

(
aout

1n

aout
2n

)
+Rn,n′

(
ain

1n

ain
2n

) (5.7)
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The matrices Q, Q̃, R and T have the 2 × 2 block structure

Qn,n′ =

(
Q11

n,n′ Q12
n,n′

Q21
n,n′ Q22

n,n′

)

Let

P (r) =



P1(r) 0 0 · · ·

0 P2(r) 0 · · ·
0 0 P3(r) · · ·
...

...
...




where

Pn(r) =

(
pn(r) 0

0 pn(r)

)

It is then seen from Eqs. (5.1), (5.2), (5.6) and (4.15) that

Qij
n,n′ =

(
P (a)K(a, b)P−1(b)

)2i−1,2j−1

n,n′ eik0(b−a)

Q̃ij
n,n′ =

(
P (b)K(b, a)P−1(a)

)2i,2j

n,n′ e
ik0(b−a)

, i = 1, 2, j = 1, 2

The matrices R and T can be written as

R = −Q̃−1M̃

T = −Q−1M

where

M̃ ij
n,n′ =

(
P (b)K(b, a)P−1(a)

)2i,2j−1

n,n′ e−ik0(a+b)

M ij
n,n′ =

(
P (a)K(a, b)P−1(b)

)2i−1,2j

n,n′ eik0(a+b)
, i = 1, 2, j = 1, 2

6 A numerical algorithm and numerical examples

Equation (4.16) can be solved by an ODE solver. A simple type of ODE solver is
based upon the trapezoidal rule and gives the following scheme

K(a+ p∆r, a) =

[
I − ∆r

2
(D(a+ p∆r) + C(a+ p∆r)

]−1

[
I +

∆r

2
(D(a+ (p− 1)∆r) + C(a+ (p− 1)∆r)

]
K(a+ (p− 1)∆r, a)

(6.1)

where ∆r is the grid size. The boundary value for K is

Kn,n′(a, a) = δnn′




1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1



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Of course there are a number of other ODE solvers that can be used. Numerically
the trapezoidal rule and a third order Runge-Kutta method give the same accuracy.
For large systems Runge-Kutta methods might be faster since they do not include
matrix inversions.

In the numerical examples only the axially symmetric case ε(r) = ε(r, θ) is consid-
ered. All matrices then become diagonal in the indices m and σ, and every m−value
can be treated separately. The following integrals appear in the α coefficients when
there is no φ-dependence in ε(r):

I1n,1n′(r, θ) =

∫ 2π

0

A1n(r̂) · A1n′(r̂)dφ =

∫ 2π

0

A2n(r̂) · A2n′(r̂)dφ

= δσσ′δmm′ηmll′

(
∂Pm

l (cos θ)

∂θ

∂Pm
l′ (cos θ)

∂θ
+
m2

sin2 θ
Pm

l (cos θ)Pm
l′ (cos θ)

)

I1n,2n′(r, θ) =

∫ 2π

0

A1n(r̂) · A2n′(r̂)dφ = −
∫ 2π

0

A2n(r̂) · A1n′(r̂)dφ

= (δσoδσ′e − δσeδσ′o)δmm′mηmll′
1

sin θ

(
Pm

l (cos θ)
∂Pm

l′ (cos θ)

∂θ
+ Pm

l′ (cos θ)
∂Pm

l (cos θ)

∂θ

)

I3n,3n′(r, θ) =
√
l(l + 1)

√
l′(l′ + 1)

2π∫
0

A3n(r̂) · A3n′(r̂)dφ

= δσσ′δmm′l(l + 1)l′(l′ + 1)ηmll′P
m
l (cos θ)Pm

l′ (cos θ)

where

ηmll′ =

√
2l + 1

2l(l + 1)

(l −m)!

(l +m)!

√
2l′ + 1

2l′(l′ + 1)

(l′ −m)!

(l′ +m)!

The α coefficients then read

α21
n,n′(r) = −α34

n,n′(r) = −
π∫

0

(ε(r, θ) − 1)I1n,1n′(r, θ) sin θ dθ

α24
n,n′(r) = α31

n,n′(r) = −
π∫

0

(ε(r, θ) − 1)I1n,2n′(r, θ) sin θ dθ

α43
n,n′(r) =

1

k2
0r

2

π∫
0

(
1

ε(r, θ)
− 1

)
I3n,3n′(r, θ) sin θ dθ

(6.2)

The K−matrix now decouples into two matrices. If the indices ml,m′l′ are sup-
pressed the structure of the K-matrix is

Kσ,σ′(r, r′) =



K11

e,e K12
e,e K13

e,o K14
e,o

K21
e,e K22

e,e K23
e,o K24

e,o

K31
o,e K32

o,e K33
o,o K34

o,o

K41
o,e K42

o,e K43
o,o K44

o,o



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The other decoupled equation is found by exchanging σ = e and σ = o everywhere.

6.1 Electric dipole excitation

The simplest example of an axially symmetric source is an electric dipole p = pẑ at
the origin. When p = 1, the corresponding magnetic and electric fields are given by

H in(r) = − i√
6π
ωk2h

(1)
1 (kr)A1e01(r̂) = − i√

6π
ωk2u1e01(r)

Ein(r) =
i

ωε0
∇× H(r) =

k3

√
6πε0

u2e01(r)

Thus

aτσml =
k3

√
6πε0

δτ2δσeδm0δl1

and the transmitted field in the region r > b from a dipole at the origin reads

Es(r) =
∞∑
l=1

f2e0lu2e0l(r)

where, from Eq. (5.7)

f2e0l = Q−1
2e0l,2e01a2e01

Since h
(1)
l (kr) → i−l−1eikr/kr when kr → ∞ the radiation pattern from the dipole

is given by

|F (r)| = |
∞∑
l=1

i−lA2e0l(r̂)Q
−1
2e0l,2e01a2e01|

= |
∞∑
l=1

k3

2πε0

√
2l + 1

6l(l + 1)
sin θP ′

l (cos θ)i−lQ−1
2e0l,2e01|

where the far field amplitude F is defined by

Es(r) = F (r̂)
eikr

kr
, when r → ∞

In Figs 1 and 2 the radiation pattern from a dipole in two different thin spherical
shells are presented. The thickness of the shell is kd = 0.5 and the inner radius is
ka = 300 in Fig. 1 and ka = 301.5 in Fig. 2. The permittivity of both shells is
ε = 2 + cos 100θ. It turns out that it is sufficient to use truncation lmax = 104
both cases in order for the method to converge. It is clear that a truncation less
than 100 in the two examples would give erroneous results since ε can be expanded
in a series of Legendre functions with a maximum l−value 100. The coupling to
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Figure 1: The radiation pattern from an electric dipole, p = pẑ, in a spherical shell
with inner radius ka = 300, outer radius kb = 300.5 and permittivity ε = 2+cos 100θ,
compared to the radiation pattern for a dipole in vacuum. The truncation is lmax =
104. Equation (4.14) was solved by the trapezoidal rule with 64 points, and the
integrals in Eq. (6.2) were solved by the trapezoidal rule with 256 points.

l−values higher than 102 is very weak. A source with a more narrow main lobe is
expected to require higher truncation. It is interesting to notice that the radius of
the sphere does not affect the truncation or the number of integration points. One
can easily do the same numerical calculations for a sphere with any radius. There
is a considerable difference in the radiation pattern in the two figures 1 and 2. The
reason is that the difference in radius of the shell between the two figures is a quarter
of a wavelength. There is then destructive interference in Fig. 1 and constructive
interference in Fig. 2 between the wave that is reflected once from the shell and the
wave that has traveled directly from the source. There is radiation in the direction
θ = 0 and 180 degrees, even though the dipole in free space has no radiation in
these directions. There seems to be some kind of surface wave that gives rise to this
radiation.

6.2 An incident plane wave

Consider a plane wave incident along the direction k̂ = sin θix̂ + cos θiẑ with the
following polarization

Eout(r) = −E0
i

4π
eik0(sin θix+cos θiz)ŷ



13

  10.8915

Figure 2: The radiation pattern for an electric dipole, p = pẑ, in a spherical shell
with inner radius ka = 301.5, outer radius kb = 302 and permittivity ε = 2+cos 100θ,
compared to the radiation pattern for a dipole in vacuum. The truncation of the
matrices is lmax = 104. Equation (4.14) was solved by the trapezoidal rule with 64
points and the integrals in Eq. (6.2) were solved by the trapezoidal rule with 256
points. The radius of the shell is here quarter of a wavelength larger than in Fig. 1

The expansion of the plane wave in regular spherical vector wave can be found in [9]
and [2]. Thus

aτσml =E0i
l

√
εm
2π

2l + 1

2l(l + 1)

(l −m)!

(l +m)!(
−δτ1δσei sin θiP

m′
l (cos θi) − δτ2δσo

m

sin θi
Pm

l (cos θi)

)

The scattered field is given by

Es(r) =
∑
ml

f1emlu1eml + f2omlu2oml

where (
f1eml

f2oml

)
=

∑
m′l′

(
T1eml,1em′l′a1em′l′ + T1eml,2om′l′a2om′l′

T2oml,1em′l′a1em′l′ + T2oml,2om′l′a2om′l′

)

In Fig. 3 the normalized differential scattering cross section for a plane wave that
impinges on a prolate spheroid is presented. The normalized differential scattering
cross section is defined as in Ref. [1] by

σd(θ, φ)

πb2
=

|F (θ, φ)|2
πb2

where b is the radius of the smallest sphere that circumscribes the scatterer.
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Figure 3: The normalized differential scattering cross section for a prolate spheroid
with half-axes ka = 1 and kb = 2 and with relative permittivity ε = 1.5 plotted
as a function of the angle θp between the z-axis and radius vector in the xz-plane.
The symmetry axis of the spheroid is the x−axis and the incident plane wave is
Ei(r) = E0e

ikzŷ. The solid curve is obtained by the present method and the dashed
curve is the correct cross section obtained by the T-matrix method. In this graph
lmax = 6, mmax = 4, and 256 integration points were used in the θ-integrals in
Eq. (6.2). Equation (4.14) was solved numerically from a sphere with radius kr = 0.1
out to kr = 2 using the trapezoidal rule with 256 steps.

The solid curve is obtained by the present method and the dashed curve is ob-
tained by the null-field approach using the program presented in [1]. Since Eq. (4.14)
cannot be solved from r = 0 a small sphere with radius kr = 0.1 and ε = 1 was
placed at the center of the spheroid, and Eq. (4.14) was solved numerically from
kr = 0.1 to kr = 2. The present method, and also the method in [6], are alter-
native methods to the null-field approach that was used in [10] and [1] to obtain
the T-matrix. In the null-field approach, the T-matrix is obtained from a surface
integral representation of the fields and an expansion of the surface fields in spheri-
cal harmonics, or regular spherical vector waves. The advantage with the null-field
approach is that it is a numerically fast method, especially for spheroids, and it can
handle perfectly conducting surfaces. The advantage with the propagator and the
imbedding methods is that they can handle inhomogeneous dielectric bodies and
that the fields can be computed everywhere.



15

7 Energy conservation and reciprocity

Energy conservation leads to well-known relations for the transition matrices, cf. e.g. [10].
If the shell a < r < b is source free and lossless Gauss theorem gives

Re

∫
Sb

(E × H∗) · r̂dS = Re

∫
Sa

(E × H∗) · r̂dS

where Sa and Sb are the spheres with radii a and b, respectively. If there are sources
in both of the regions r < as and r > bs then

Re

∫
Sb

(Es × Hs∗ + Es × Hout∗ + Eout × Hs∗) · r̂dS

= Re

∫
Sa

(Ein × H in∗ + Ein × Hr∗ + Er × H in∗) · r̂dS

The induction law

H = − i

ωµ0

∇× E

and the expansions of the electric fields Ein, Eout(r), Er and Es given in Eqs. (4.3)–
(4.6) lead to the following energy relation

∑
τn

|fτn|2 +
∑
τn

Re{aout
τn f

∗
τn} =

∑
τn

|ain
τn|2 +

∑
τn

Re{ain
τnb

∗
τn}

By first letting ain
τn be zero and then aout

τn be zero it is seen from Eq. (5.7) that

T †T = −Re{T}
Q−1†Q−1 = I + Re{R}

where † denotes the Hermite conjugate. These energy relations are used as tests of
convergence in the numerical calculations. It is important to remember that it is a
necessary condition, but not a sufficient one, that the relations are satisfied with a
large number of digits.

The reciprocity relations for the transition matrices are also well-known. If
(Ea,Ha) and (Eb,Hb) are two different fields that are source free inside a closed
surface S then it follows from Gauss theorem that∮

S

(Ea × Hb − Eb × Ha) · dS = 0

Let S consist of the spherical surfaces r = a and r = b. By first letting both fields
have sources in r > b, and then both fields have sources in r < a, and finally one
of the fields have sources in r < a and the other in r > b, the symmetries T = T t,

R = Rt, and Q−1 =
(
Q̃−1

)t

are obtained.
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8 Conclusions

Scattering from large objects is numerically difficult, unless high frequency approxi-
mations are used. In this paper it is shown that for a source inside an inhomogeneous
spherical shell one can determine the scattered field for very large shells by a prop-
agator method. The method is, for these particular problems, superior to purely
numerical methods such as FEM, MoM, and FDTD. The method will be further
developed in future work and it will be applied to radome problems. When the
layers are homogeneous all matrices are diagonal in the n index, that leads to major
analytical and numerical simplifications. This case is examined in a current project.
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