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A Distributed Power Coordination Scheme for

Fatigue Load Reduction in Wind Farms

Daria Madjidian, Karl Mårtensson, and Anders Rantzer

Abstract— We consider a scenario where a wind farm is given
a power set point below its actual power production capacity.
The objective is to dynamically redistribute power in order to
minimize the fatigue loads experienced by the turbines, while
maintaining the desired power production at all times. We show
that this can be done in a distributed way by coordinating
neighboring turbines. The result is a control scheme where
both the synthesis and the resulting control law only require
each turbine to communicate with a limited set of neighboring
turbines.

I. INTRODUCTION

In the past decade, wind power capacity has continued

to grow at an annual rate of 30% [1]. While economy of

scale makes it attractive to position turbines close to each

other, forming large wind farms, such a placement causes

problems due to wake effects. The wind in a turbine wake

is characterized by a mean speed deficit and an increased

turbulence level. While the deficit reduces mean power

production, the increased turbulence levels increase fatigue

loads, and thereby maintenance costs [2].

Still, wind farms also offer an opportunity to mitigate the

loads experienced by the turbines. As wind farms become

more common, they will be expected to contribute to the

stability of the electrical grid [3], [4]. This means that wind

farms should be able to receive and maintain power set

points. In cases where a farm is asked to produce less

than maximum power, some turbines will need to limit their

power production. This implies that they have the freedom

to vary their power production in response to wind speed

fluctuations, as long as the total power production of the

farm meets the demand. Thus power can be redistributed

between turbines according to local wind conditions. Note

that since wind conditions across the farm are not uniform,

at any given time, one turbine might benefit from increasing

its power production while another from decreasing it.

To the authors’ best knowledge, most work on load

mitigation is devoted to individual turbine control (see e.g.

[5], [6] as well as [7], [8] and references therein). One

exception is [9], where the idea to exploit the freedom in

power distribution to reduce fatigue loads was first presented

in the context of disturbance rejection. There, the problem

is divided into two parts. First, optimal power set points are

computed explicitly offline for each turbine using a receding

horizon strategy. These set points are based on other auxiliary

power variables that are then used for online coordination of

the turbines in order to meet the total power demand.
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In this paper, we take a different approach and consider

a stochastic problem formulation. The goal is to an find a

sparse state feedback controller that minimizes a measure

of fatigue loading while maintaining the global power set

point. We solve the problem by extending the distributed

control synthesis scheme presented in [10]. We then show

how the optimal feedback matrix can be obtained iteratively

based only on information from a limited set of neighboring

turbines.

The outline is as follows: we begin by presenting the

wind farm model in Section II. The problem formulation is

given in Section III, and Section IV describes the synthesis

scheme. Section V presents simulation results, and finally

we summarize our findings in Section VI.

II. MODELING

We consider a wind farm consisting of N turbines in

a discrete time setting with a sampling time of 1 second.

The turbines are numbered 1, . . . , N . When describing two

turbines i and j, we say that i is to the left of j (and j to the

right of i) if i < j. Note that this numbering does not reflect

the geographical position of the turbines. It is only used in

describing the synthesis scheme in Section IV.

Wind Turbine Interaction

Wind turbines in wind farms are coupled by the wind flow.

This coupling is due to wake effects (the effect on the wind

field caused by turbines extracting power), and the natural

wind propagation through the farm.

Wake effects play an important role in the static analysis of

wind farms [11], [12]. However, when the dynamic behavior

of a turbine is considered in the vicinity of an operating

point, this coupling becomes less relevant. Empirical studies

suggest that the wind speed variation caused by pitch activity

at upwind turbines is small compared to the natural variation

of the wind [13]. We therefore neglect wake effects in the

model. We also neglect the wind propagation for two reasons.

First, we do not have a good model describing the flow

between adjacent turbines, and obtaining such a model is not

a trivial task [13]. Adding this part to the model at this stage

might increase complexity without contributing to accuracy.

Second, by neglecting the propagation, the model becomes

independent of wind direction and turbine positioning.

Power Controlled NREL Turbines

We consider a farm consisting of NREL 5 MW turbine

models. The turbines are variable speed, (collective) pitch

controlled, and equipped with standard internal controllers.
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Here, we only provide a brief overview of the internal

controller. More details can be found in [14] and [9].

The internal turbine controller manipulates generator

torque and pitch angle, and has three main regions of

operation, illustrated in Figure 1. In region 1, the wind speed

is too low to produce power. In region 2 the controller tries

to extract maximum power by fixing the pitch angle to the

optimal angle for power capture. The controller then varies

generator torque to track the optimal rotor speed. In region

3, the controller strives to maintain a power reference Pref .

This is achieved by keeping the rotational speed close to its

rated value by varying the pitch angle. The generator torque

Mg is used to produce the desired power according to

Pref = Mgωg

where wg is the generator speed.
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Fig. 1. Power curve of the NREL 5 MW turbine. Pref = 4 MW (solid),
maximum power production (dashed). The gray dashed lines show the
operating regions for the controller.

Note that on a farm level, the control input to a turbine

is the desired power Pref . Therefore, a turbine will only

respond to farm control in region 3, where the desired power

can be attained. Since this is the only region of interest, the

remainder of the paper assumes that all turbines operate in

region 3.

As previously mentioned, we assume that the incoming

wind speed to each turbine can be modeled independently.

We follow common practice, and model the incoming wind

speed at a turbine as a mean wind speed with turbulent

fluctuations superimposed. The fluctuations will have zero

mean when averaged over a period of about 10 minutes, and

are roughly Gaussian [11]. Thus, the incoming wind speed

vi to turbine i will be modeled as:

vi(t) = v̄i + wi(t) (1)

where v̄i denotes the mean wind speed over a 10 minute

interval, and wi is a stationary Gaussian process with zero

mean, and variance σ2
i . σi is usually defined implicitly

through the turbulence intensity ti = σi

v̄i

. To account for the

frequency content of turbulence, we model wi as the output

of an LTI system, (Φw,i,Γw,i, Cw,i), driven by Gaussian

white noise, ei with variance σ2
i :

ζi(t + 1) = Φw,iζi(t) + Γw,iei(t), wi = Cw,iζi (2)

The matrices (Φw,i,Γw,i, Cw,i) are obtained by fitting a

Kaimal spectrum (see [11]) to a rational function and per-

forming spectral factorization.

We will use the third order model used in [9], augmented

with the turbulence filter in (2), to describe turbine i around

its operating point (v̄i, P̄ref,i). Thus, given operating points

(v̄i, P̄ref,i), i = 1, . . . , N , the complete wind farm is

described by:

xi(t + 1) = Φixi(t) + Γiui(t) + Γe,iei(t) (3)

yi = Cixi + Diui

The state vector xT
i = [βi ωi zi ζT

i ], where βi, and ωi

are deviations from nominal pitch angle and rotor speed,

respectively, zi is a state of the internal controller, and ζi

is the state of the turbulence filter (2). The input ui is the

deviation from nominal power P̄ref,i, and ei is white noise

with variance σ2
i . The output yT

i = [Ti Mi], where Ti and

Mi are the deviations in tower bending moment and shaft

bending moment, respectively. It is important to mention that

the model neglects generator dynamics. This implies that ui

is the actual deviation in power production.

III. PROBLEM FORMULATION

Consider a scenario where a farm of N turbines is asked to

produce a certain power, Pd, which is less than what the farm

is capable of producing. We assume that a nominal power

distribution, Pi, i = 1, . . . , N , is given such that, for each i,
Pi < Prated, and that all turbines are operating in region 3

where they can be controlled on a farm level. This means that

there is freedom in distributing the desired power over the

turbines. The objective is to dynamically redistribute power

in order to minimize fatigue loads on the turbines, while

maintaining the desired power production Pd.

We will consider fatigue loads on tower and low speed

shaft. As in [9], we use tower bending moment, and shaft

bending moment, to model fatigue loading. The measure of

fatigue for turbine i is taken as

E(ρT,iT
2
i + ρS,iM

2
i ) (4)

where ρT,i, and ρS,i are weights reflecting the relative im-

portance of tower and shaft, respectively. Note that although

this is not a standard measure of fatigue loading, simulation

studies suggest that (4) correlates well with results obtained

based on rainflow counting algorithms [15].

The goal is to find a linear state feed back law, ui =
−
∑

j(L)ijxj , that minimizes

N
∑

i=1

ExT
i Qixi + 2xT

i Siui + uT
i Riui

subject to (3) and
N
∑

i=1

ui = 0 (5)
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where Qi = CT
i OiCi, Si = CT

i OiDi, Ri = DT
i OiDi + ρi,

and Oi = diag(ρT,i, ρS,i). The positive scalar ρi is added to

penalize large deviations from nominal power, P̄ref,i. Recall

that since the model neglects generator dynamics, (5) states

that the deviation from nominal farm power should be zero.

In addition, we impose an information constraint on the

control:

L ∈ L (6)

where L defines a structural restriction, that determines the

neighbors that each turbine is allowed to communicate with.

This will be defined and further explained in Section IV.

IV. DISTRIBUTED SYNTHESIS

For each stabilizing feedback matrix, L, define:

J(L) = ExT Qx + 2xT Su + uT Ru (7)

We restate the optimal control problem in a more compact

form. Minimize (7) subject to (6), 1
T u = 0, and

x(t + 1) = Φx(t) + Γu(t) + e(t) (8)

where x = [xT
1 . . . xT

N ]T , u = [u1 . . . uN ]T , e =
[e1 . . . eN ]T , and the matrices Q = QT � 0, R = RT ≻ 0,

S, Φ, and Γ are all block diagonal.

Note that without the global power constraint, (5), the

problem is completely decoupled, and that this constraint

creates a direct coupling between all turbines. To satisfy (6),

the scheme presented in [10] will now be extended in order

to handle the power constraint.

The power constraint in (5) can be eliminated by con-

straining the control. Introduce auxiliary control variables,

ûi, i = 1, . . . , N − 1, and coordinate neighboring turbines

according to:

u1 = û1 (9)

ui = ûi − ûi−1, i = 2, . . . , N − 1 (10)

uN = −ûN−1 (11)

Note that ui is the actual control applied by turbine i, and

that (9)-(11) results in
∑

i ui = 0.

Define û = [ûi . . . ûN−1]
T , and let T = {ti,j} be a N ×

N − 1 matrix, with ti,i = 1, ti,i−1 = −1, and 0 elsewhere.

The constrained system becomes:

x(k + 1) = Φx(k) + Γ̂û(k) + e(k) (12)

where Γ̂ = ΓT .

Let R̂ = TT RT , and Ŝ = ST . For each control law,

û = −L̂x, that stabilizes (12), define

J(L̂) = ExT Qx + 2xT Ŝû + ûT R̂û (13)

The auxiliary control problem can be formulated as:

minimize (13), subject to (12) and

L̂ ∈ L̂l2
l1

(14)

where

L̂l2
l1

= {X | (X)ij 6= 0 only if i − l1 ≤ j ≤ i + l2}

and (X)ij is defined as the i, j :th block of X . This means

that each ûi may only depend on measurements from l1
neighbors to the left, and l2 neighbors to the right. For

notational purposes, from now on we will refer to L̂l2
l1

simply

as L̂.

Once the optimal L̂ has been found, L can be retrieved

through L = T L̂. This means that each ui will depend on

l1 + 1 turbines to the left and l2 turbines to the right. Note

that if l2 = 0 the will be no feedback from turbine N in the

final control law u = −Lx.

We now show how to adaptively change L̂ to improve

the performance J(L̂) by using only local measurements. At

every iteration, we wish to change L̂ in a descent direction

of J . If the gradient ∇
L̂
J of the cost is non-zero, we can

change the feedback matrix in the negative gradient direction

to get a lower cost. Since there is no structural restriction on

the gradient, the updated L̂ would not satisfy the structure

of L̂. But the gradient projected to the structural subspace,

∇
L̂
J
∣

∣

L̂
, is also a descent direction. Hence, the cost J is

reduced when changing L̂ by

L̂new = L̂ − γ ∇
L̂
J
∣

∣

L̂

where γ is sufficiently small. With this new feedback matrix,

we recompute a descent direction and continue iterating. The

next proposition gives an expression for the gradient of J(L̂),
which is suitable for distributed calculations.

Proposition 1: Given matrices Φ and Γ̂, consider L̂ such

that Φ − Γ̂L̂ has all eigenvalues inside the unit circle.

Let the solutions to (12), with û = −L̂x, be stationary

stochastic processes, where e is white noise with covariance

W . Consider the stationary stochastic process λ defined by

the backwards iteration

λ(t − 1) =(Φ − Γ̂L̂)T λ(t) − (Q − ŜL̂ − (ŜL̂)T

+ L̂T R̂L̂)x(t) (15)

where x are the states of the original system. Then J(L̂),
defined by (13), has the gradient

∇
L̂
J = 2

(

(R̂L̂ − ŜT )ExxT + Γ̂T EλxT
)

Remark 1. The proof of Proposition 1 will show that the

gradient can also be expressed as

∇
L̂
J = 2

(

R̂L̂ − ST − Γ̂T P (Φ − Γ̂L̂)
)

X (16)

where P , and X are solutions to Lyapunov equations (17),

and (18) below. This expression can be useful for offline

computations.

Proof. First, define the following matrices

Φ
L̂

= Φ − Γ̂L̂

Q
L̂

= Q − ŜL̂ − (ŜL̂)T + L̂T R̂L̂

The solutions X and P for the Lyapunov equations

X = Φ
L̂
XΦT

L̂
+ W (17)

P = ΦT

L̂
PΦ

L̂
+ QL (18)
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are used in the proof. We know that J(L̂) = tr(PW ). By

calculating the differential of P with respect to L̂, we can

determine an expression for the gradient of J with respect

to L̂. Let M = dL̂T [R̂L̂ − ŜT − Γ̂T PΦ
L̂
]

dP = ΦT

L̂
dPΦ

L̂
+ M + MT ⇐⇒

dP =

∞
∑

k=0

(ΦT

L̂
)k(M + MT )Φk

L̂

Hence, since dJ = tr(dP · W ), we get that

dJ = 2tr

(

∞
∑

k=0

(ΦT

L̂
)kMΦk

L̂
W

)

=

= 2tr

(

M

∞
∑

k=0

Φk

L̂
W (ΦT

L̂
)k

)

= 2tr
(

dL̂T [R̂L̂ − ŜT − Γ̂T PΦ
L̂
]X
)

By using the relation about differentials, dZ = tr(dXT Y ) ⇒
∇XZ = Y for matrices XT , Y ∈ R

n×p, we conclude that

∇
L̂
J = 2[R̂L̂ − ŜT − Γ̂T PΦ

L̂
]X (19)

Now, by (15) we have that

λ(k) =

∞
∑

j=k+1

(ΦT

L̂
)j−k−1Q

L̂
x(j) =

=

∞
∑

j=0

(ΦT

L̂
)jQ

L̂
Φj+1

L̂
x(k)+

+ Ψ{e(k), e(k + 1), . . .}

where Ψ is the appropriate linear operator of how the

noise e(j), j ≥ k affects λ(k). Since x(k) and e(j) are

independent for all j ≥ k, we have that

Eλ(k)x(k)T = −E





∞
∑

j=0

(ΦT

L̂
)jQ

L̂
Φj+1

L̂
x(k)x(k)T



 =

= −PΦ
L̂
X

Using this relation in (19) concludes the proof. �

Let Φ
L̂

= Φ − Γ̂L̂. To simulate (15) locally, each turbine

needs to run:

λi(t − 1) =[ΦT
Lλ(t)]i

+ [(Q − ŜL̂ − (ŜL̂)T + L̂T R̂L̂)x(t)]i (20)

Using the structure of L̂, Φ, R̂, Γ̂, and Ŝ we have

[

ΦT
Lλ(t)

]

i
=

i+(l1+1)
∑

j=i−l2

(ΦL)T
jiλj(t) (21)

[

(Q − (ŜL̂)T )x]i = Qixi −

i+(l1+1)
∑

j=i−l2

(L̂T ŜT )ijxj (22)

[

(L̂T R̂L̂ − ŜL̂)x
]

i
= Siui − Siui−1

−

i+(l1+1)
∑

j=i−(l2+1)

(L̂T R̂)ijuj (23)

For each turbine i, the factors (ΦL)ji, and (ŜL̂)T
ij , for

j ∈ [i − l2, i + l1 + 1], and (L̂T R̂)ij , for j ∈ [i − (l2 +
1), i + l1 + 1], can be obtained by allowing the turbine to

communicate with l2 + 1 turbines to the left, and l1 + 1
turbines to the right. Hence, by (21)-(23), the adjoint system

(15) can be simulated locally (provided that each turbine may

communicate as explained above).

Since L̂ ∈ L̂, the actual direction that we update the

feedback matrix in, must also belong to L̂. Hence, we project

the gradient ∇
L̂
J on L̂. Letting G be the update direction,

we have that

Gij =
(

∇
L̂
J
)

ij
if j ∈ [i − l1, i + l2]

Gij = 0 otherwise

Assuming that the projected gradient G is non-zero, −G is

a descent direction of J(L̂). Now, this means that to update

the feedback matrix, turbine i only needs to determine the

gradient in the blocks corresponding to the l1 turbines to

the left, and l2 turbines to the right. This requires that both
(

(R̂L̂ − ŜT )ExxT
)

ij
and

(

Γ̂T EλxT
)

ij
can be estimated

locally. Due to the structure of Γ̂, Ŝ, L̂, and R̂, the terms

can be expressed as

(

(R̂L̂ − ŜT )ExxT
)

ij
= −

1
∑

k=−1

R̂i,i+kEui+kxT
j

− ST
i Exix

T
j + ST

i+1Exi+1x
T
j (24)

(

Γ̂T EλxT
)

ij
= ΓT

i Eλix
T
j − ΓT

i+1Eλi+1x
T
j (25)

which can be estimated locally, given that we allow commu-

nication with max(1, l1) turbines to the left, and max(1, l2)
turbines to the right (since only j ∈ [i − l1, i + l2] needs to

be taken into account).

The method for updating L is summarized below:

Algorithm 1: At time tk, let the state feedback law be

u(t) = −L̂(k)x(t), where L̂(k) ∈ L̂. To update the feedback

matrix in turbine i:

1) For all neighbors j, compute the entries (ΦL)T
ji,

(ŜL̂)T
ij , and (L̂T R̂)T

ij , by communicating with neigh-

boring turbines.

2) Measure the states xi(t) of the system (8) for times

t = tk, . . . , tk + M .

3) Simulate the adjoint states λi(t) according to (20), for

times t = tk, . . . , tk + M in the backwards direction,

by communicating states from and to neighboring

turbines.

4) For each neighboring turbine j, calculate the estimates

of Euix
T
j and Eλix

T
j by

(

Euix
T
j

)

est
=

1

M

tk+M
∑

t=tk

ui(t)xj(t)
T

(

Eλix
T
j

)

est
=

1

M

tk+M
∑

t=tk

λi(t)xj(t)
T
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5) Use (24) and (25) to compute the estimate Gij of the

i, j-block of the gradient.

6) For each neighboring turbine j, update L̂
(k+1)
ij =

L̂
(k)
ij − γGij for some step length γ.

7) Let tk+1 = tk + M , increase k by one and go to 1).

8) At the last iteration, communicate local feedback vec-

tors, L̂i, upwind. Obtain the feedback vector, Li, for

the original system from (9)-(11).

We denote M by the iteration time, i.e. the length of the

time interval where the system is controlled using a constant

feedback matrix.

In order to obtain L, each turbine needs to communicate

with max(l1, l2 +1) turbines to the left, and max(l1 +1, l2)
turbines to the right. To apply u = −Lx, each turbine needs

to communicate with l1+1 turbines to the left, and l2 turbines

to the right. In total, each turbine needs to communicate

with max(l1, l2)+1 turbines to the left, and max(l1 +1, l2)
turbines to the right.

V. SIMULATION RESULTS

We consider an example where a farm with N = 5
turbines receives a power set point of Pd = 17 MW. For the

sake of simplicity, we assume that each turbine experiences

a mean wind speed of 20 m/s and a turbulence intensity of

0.1. The turbulence filter for each turbine is given by:

Φw =

(

0.34 −0.11
0.15 0.98

)

Γw =

(

0.62
0.09

)

Cw =
(

1.3 0.57
)

The nominal power distribution is as follows: turbines 1 and

2 produce 4 MW each, and turbines 3, 4, and 5 produce 3
MW each. The weights are set to ρTi

= 1, ρS,i = 0.1 and

ρi = 0.001, i = 1, . . . , 5. The step size is chosen to γ = 0.1.

Figure 2 shows the result of running algorithm 1 for a

large number of iterations with M = 30 s and different

combinations of l1 and l2.

We now focus more specifically on the case (l1, l2) =
(0, 1). Figure 3 shows the cost J , as well as Jt, Js, and Ju

related to cost components of tower, shaft, and power during

the first 50 iterations:

Jt =
∑

ET 2
i , Js =

∑

EM2
i , Ju =

∑

Eu2
i

Figure 4 shows the deviation from nominal power for each

turbine, as well as for the whole farm for the first 150 seconds

of running algorithm 1.

Next, we examine the relation between farm size and the

relative performance, J(L)/J(0). Table I shows the result of

running algorithm 1 for 500 iterations with M = 30, and γ =
0.1 on different farm sizes. The last line in the table shows

the result of applying optimal full state feedback. The result

shows that the number of turbines, N , has a negligible effect

on the performance. One possible explanation is that without

the power constraint in (5), the turbines would no longer be

coupled, and the farm size would therefore not have any

influence on the performance. By constraining the control,

we reduce the degrees of freedom to N − 1. But for large

farms N−1
N

≈ 1. Another interpretation that is closely related

is that when the farm is above a certain size, the likelihood
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Fig. 2. Relative decrease of J(L) for five different cases of (l1, l2) when
M = 30 s: blue — (l1, l2) = (0, 0); red — (l1, l2) = (0, 1); green
— (l1, l2) = (1, 0); magenta — (l1, l2) = (2, 2); black — (l1, l2) =
(4, 4); Note that in case of l2 = 0, no measurements from turbine 5 are
used in the final control law. This explains why (l1, l2) = (0, 1) gives
better performance than (l1, l2) = (1, 0). The dashed black line shows the
result of applying optimal full state feedback, and the dashed red line shows
the result of applying the optimal state feedback vector projected onto the

structural subspace L̂ with (l1, l2) = (0, 1). As seen this is not the optimal
solution as the result of algorithm 1 decreases the cost even further.
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Fig. 3. Relative decrease of J(L) and its components when (l1, l2) =
(0, 1) and M = 30 s. We observe that by allowing variations in individual
turbine power, both tower and shaft loads are reduced simultaneously. The
plots of J , Jt, and Js have been normalized with respect to the case of
L = 0. The plot of Ju was normalized with respect to the case of L(50).

for a turbine to find other turbines that they can exchange

power with is high, and increasing N only increases that

likelihood marginally.

VI. CONCLUSION

We have presented a method for reducing fatigue loads

in wind farms, while maintaining a global power demand.

The method has two properties. First, the resulting feedback

matrix can be made sparse and the level of sparsity can be

specified by choosing two parameters. This can be beneficial

since the SCADA systems used in wind farm control often

have low computational capacity and memory. The second

property is that the control law for each unit can iteratively
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Fig. 4. Deviation from nominal power during the first 150 seconds.
(l1, l2) = (0, 1) and M = 30. As more iterations are performed the
variation in individual turbine power increases. However, the total farm
power is kept constant. Note that the power deviation for the farm is is
shown in Watts.

TABLE I

COST REDUCTION FOR DIFFERENT VALUES OF N

N 5 10 20 50 80

l1 = 0 l2 = 0 0.850 0.831 0.821 0.815 0.814

l1 = 0 l2 = 1 0.773 0.760 0.753 0.749 0.748

l1 = 1 l2 = 0 0.823 0.793 0.777 0.769 0.766

l1 = 2 l2 = 2 0.731 0.715 0.707 0.701 0.700

l1 = 5 l2 = 5 0.722 0.701 0.693 0.689 0.687

Full optimal 0.690 0.651 0.631 0.620 0.617

be designed online, based on only on information from

neighboring units. In general, the main advantages of the

second property are:

• Modularity: All update laws are identical, and each unit

only needs to know which units to communicate with.

• Scalability: Adding or removing a unit from operation

does not change the computational effort of units that

are not its neighbors.

However, these advantages might have a limited impact in

a wind farm application. One reason is that they come

at the expense of convergence time, as can be seen in

Section V. Second, Table I suggests that it is possible to

split the farm into smaller groups and consider each group

separately without any noticeable loss in performance. This

means that scalability is not important. Also, the benefits

of modularity are not obvious. However, as suggested in

Section IV (after Proposition 1), the update direction for the

feedback matrix can also be obtained by iteratively solving

two Lyapunov equations. This provides a way of predesign-

ing gain scheduled sparse feedback controllers offline. In

general, the iterative scheme gives better performance than

solving the associated Riccati equation and projecting the

resulting feedback matrix onto the structural subspace L̂ (see

Figure 2).
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