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On H-infinity model reduction of MIMO systems.

Aivar Sootla, Anders Rantzer, Georgios Kotsalis

Abstract—In this paper we study multi-input-multi-output
(MIMO) extensions of a recently proposed model reduction
algorithm for single-input-multi-output (SIMO) linear time-
invariant (LTI) systems. We discuss three versions, including
a trivial modification of the SIMO method. Reduced models
are found by solving a convex problem with Linear Matrix
Inequality (LMI) constraints given a state space model or a
frequency-sampled version. We construct examples that illus-
trate the properties of methods, compare algorithms and apply
them on an industrial bench-mark.

I. INTRODUCTION.

Model reduction problems has received considerable at-

tention in past and several approaches were developed. Bal-

anced Truncation (BT) and Hankel Optimal Model Reduction

(HOMR) are recognized in the control literature, (see, for

example, [6], [2]), due to well-developed theory and a priori

error bounds. Both methods rely on solution of Lyapounov

equations whose size is determined by the order of the

original models. The approximation error of G by HMOR is

bounded as:

σn(G) ≤ ‖G − Ĝh‖∞ ≤
N∑

n+1

σi(G),

where Ĝh is a reduced system, obtain by HOMR, N, n are

orders of original and reduced systems, correspondingly and

σ1(G) ≥ · · · ≥ σN (G) are Hankel singular values of G
(see, for example, [6], [2]). However, the approximation gap

depends on the order of the original system:

‖G − Ĝh‖∞
σn(G)

≤ N − n + 1

The approximation gap of BT depends on the order of re-

duced system as well. Using HMOR and BT on systems with

very big or infinite N produces two problems: computational

cost of solving Lyapounov equations depended on N and

generally unknown approximation gap.

In [5],[8] a new approach to model reduction was de-

veloped. A relaxation was proposed that allows formulation

of model reduction as a convex optimization problem. The

method can be applied to exact models or frequency sampled

models. Frequency sampling makes it possible to use much

less information about original model. In [8], a guaranteed

sub-optimality bound is obtained. The approximation gap of

the method does not depend on the original system order.
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In this paper we discuss MIMO extensions of the SIMO

model reduction method in [8]. We propose a general heuris-

tic algorithm, with two special cases. One special case is

a straightforward extension of the SIMO method with the

same suboptimality bound. However, this algorithm is rather

restrictive for MIMO systems. The second special case is

more general.

The paper is organized as follows. In section II we describe

reduction algorithms. In III we discuss some properties of the

reduced model. Section IV is dedicated to implementation

of algorithms. We construct examples in II-B,IV-C illustrat-

ing advantages and disadvantages of the methods and we

compare MIMO extensions in IV-D. In IV-E we apply our

reduction method on Shell Oil Fractionator bench-mark.

Notation.

We will use H∞ and H−
∞ to denote spaces of stable and

anti-stable scalar m×m transfer function matrices (TFMs),

where m ≥ 2. The set RH∞ is a subset of H∞ of all proper

rational TFMs, and RrH∞ — a subset of RH∞ of TFMs

with McMillan degree equal to r. If G ∈ H∞ the operation

˜ denotes a conjugate in H∞ space: G (̃z) = GT (1/z),
and h▽(z) = zkh˜(z), where h(z) =

∑k
i=0

hizi. Gw is

a frequency response G(ejw) to ω ∈ R

Since we will refer to both Hankel singular values and

singular values (singular value functions) of matrices (of

TFMs) we will use notation σ1(G) ≥ · · · ≥ σN (G), only

when we referring to Hankel singular values. σ(Gw) denotes
the maximal singular value of the matrix Gw.

The norm in H∞ is a L∞ norm of maximal singular value

function of G on the unit circle ‖G‖∞ = sup
w

σ(Gw). The

Hankel norm of a TFM is denoted ‖ · ‖H (see for example

[6]). In this paper we will use one more norm of elements

in R
n×m. Assume first that x ∈ R

m×1, A > 0 ∈ R
m×m,

then we can define a norm ‖x‖2
A = xT Ax. If x ∈ R

m×m,
we can denote norm as ‖x‖2

A = λ(xT Ax).

II. MODEL REDUCTION OF MIMO SYSTEMS.

The basic problem we want to solve can be formulated as:

Gn = arg min
bG∈RnH∞

‖G − Ĝ‖∞ (1)

and G ∈ H∞. This problem is not convex and often

suboptimal methods are used. Here we will relax (1) and

obtain a convex optimization problem.

A. General MIMO case algorithm.

Assume Ĝ = ba−1
1 , where a1 =

∑r
0
(a1)iz

i is a matrix

polynomial of degree and (a1)r 6= 0, with det(a1) a Schur



polynomial (det(a1) > 0∀z : |z| ≥ 1 ) and b =
∑r

i=0
(b1)iz

i

is a matrix polynomial with (a1)i, (b)i ∈ R
m×m ∀i. We

rewrite the problem in new definitions:

min
b,a1

‖G − ba−1
1 ‖∞, (2)

We propose the relaxation to make problem a convex one,

similar relaxation was made in [5]. Instead of (2) minimize

the following over a1, a2, b, c :

‖G − ba−1
1 − ca−▽

2 ‖∞, (3)

where ∆− = ca−▽

2 ,∈ RrmH−
∞ is an anti-stable term, c, a2

are matrix polynomials of order less than r− 1 and equal to

r correspondingly. det(a2) is a Schur polynomial and a1, a2

are related in the following way

A = a1a1˜ = a2˜a2 (4)

The relaxation needs motivation. In fact, min ‖G−G−‖∞ =
‖G‖H , where minimization is performed over all possible

anti-stable terms G−. Moreover if we release ∆− term we

will get HOMR:

min
∆−,b,a1

‖G − ba−1
1 − ∆−‖∞ = min

b,a1

‖G − ba−1
1 ‖H (5)

Denote:

B + jC = z−r(ba▽

2 + ca1) (6)

The polynomials A, B, C have certain properties to fulfil.

A(z) > 0, if z = ejω ∀ω, making det(a1) a Schur

polynomial (the reduced system ba−1
1 stable). We will fix the

term (A)r to identity, to normalize calculations. Conditions

(A)i = (A)−i = (A)T
i , (B)i = (B)−i, (C)i = (C)−i imply

that A, B, C are trigonometric polynomials and provide a

convenient parametrization. The condition A0 > 0 implies

that the spectral factorization problems (4) can be solved1.

A = I(zr + z−r) +
r−1∑
i=0

(A)i(z
i + z−i)

B =
r∑

i=0

(B)i(z
r−i + z−r+i)

C = 1

j

r−1∑
i=0

(C)i(z
r−i − z−r+i)

There exist one to one correspondence between a1, a2, b, c
and A, B, C. It is obvious that knowing a1, a2, b, c we can

always find A, B, C. On the other hand with known A, B and

C, (4) gives co-prime a1, a2 ,̃ so (6) can be solved uniquely

for b and c. Now we have the problem:

min
A,B,C

γ subject to ‖G − (B + jC)A−1‖∞ < γ (7)

If A = ÃI, where Ã is a scalar polynomial, minimization

problem (7) is equivalent to a convex optimization procedure:

min
A,B,C

γ subject to

(
γÃI GÃ − B − jC

∗ γÃ

)
> 0 ∀ω,

1More about this condition in section III-A

where asterisk stands for hermitian transpose of upper right

corner. In MIMO-case we want to get a similar LMI con-

dition, but the minimization problem has to make sense as

well. Rewrite the constraint in (7) for every frequency ω as:

σ(Gw − (Bw + jCw)A−1
w ) < γ, what is equivalent to:

‖Gw − (Bw + jCw)A−1
w ‖I < ‖γ‖I, ∀ω

We propose following relaxation: instead of identity matrix

use Aw :

‖Gw − (Bw + jCw)A−1
w ‖Aw

< ‖γ‖Aw
∀ω (8)

One can show that constraint (8) can be rewritten in the form

of LMI:
(

γAw GwAw − Bw − jCw

∗ γAw

)
> 0, ∀ω, (9)

Finally we obtain a convex program:

min γ subject to (9) (10)

This is a generalized eigenvalue problem, that can be solved

for sample data model. It is also possible to use exact model

(see, section II-E).

We will use program (10) to find denominator a1 only,

where a1 is a spectral factor of A as in (4). The numerator

will be found from another convex program:

min
b∈C

δ where C =
{
b
∣∣‖G − ba−1

1 ‖ < δ
}

(11)

The described method has a lot of advantages, but there

is major drawback. LMI condition (9) doesn’t imply that

‖G− BA−1‖∞ is small. To show that, we will consider an

example.

B. Example 1. Existence of error bound.

Assume we want to reduce:

G =

[
0 z−n

0 0

]

We can achieve arbitrary small γ solving (10), because

method doesn’t produce nor upper bound, nor lower bound

for σ(A(ejω)). However, computing (11) gives us approxi-

mation error ‖G− ba−1
1 ‖∞ ≤ 1.02. and we still get a better

approximation than HMOR. All the Hankel singular values

of G are equal to 1. So the lower bound is σ6(G) = 1. That
means that the best approximation is in fact a stable TFM

with gain very close to zero. HMOR produces a static gain

TFM, with approximation error
√

2:

Ĝ =

[
0 1
0 0

]
.

Although described algorithm fails to provide error bound

‖G−BA−1‖∞ < Kγ, for any constant K, we can achieve

it if we enforce extra constraints on A.



C. Restriction of denominator to diagonal matrix.

Assume, that our polynomial A has diagonal structure, i.e.

A = ÃI, where Ã(z) > 0 ∀|z| = 1 is a scalar polynomial.

Thus we obtain the similar program:

min γ subject to (12)(
γÃwI GwÃw − Bw − jCw

∗ γÃwI

)
> 0, ∀ω (13)

One can show that constraint (13) enforced for all ω implies

‖G − BA−1‖∞ < γ. In this case the problem is a trivial

extension of SIMO method [8], what allows us to formulate

similar result:

Theorem 2.1: If γ is obtained from minimization proce-

dure (12,13), Ĝrm, δ are obtained from minimization pro-

cedure (11) and σrm+1(G) is a rm + 1-th Hankel singular

value, then:

1) γ ≥ σrm+1(G)
2) ‖G − Ĝrm‖∞ < δ ≤ (rm + 1)γ

D. Relaxing the restriction on denominator.

We would like to have a method with a guaranteed

suboptimal bound as in previous section, but with extra

freedom on A. One way to deal with this problem is relaxing

(12,13) as follows:

min γ subject to (14)(
γÃwI GAw − Bw − jCw

∗ γAw

)
> 0, ∀ω (15)

where A, B, C matrix polynomials from section II-A,

Ã(z) > 0 ∀|z| = 1 is a scalar function and ÃwI < Aw∀ω
Lemma 2.2: If matrix polynomials A, B, C and scalar

function Ã satisfy (15) and constraints described above for

some G, γ, then ‖G − (B + jC)A−1‖∞ < γ,

Proof: Rewrite LMI condition (15) using Schur com-

plement:

γ2Ãw > (Gw − (Bw + jCw)A−1
w ) ·

· Aw(Gw − (Bw + jCw)A−1
w )′

γÃ−1 > σ(G − (B + jC)A−1)A1/2)

γ
(
Ã/σ(A)

)1/2

> σ(G − (B + jC)A−1)

Since Ã/(σ(A)) < 1, result follows after taking supremum

over all ω of the right-hand side of inequality.

Consequence 2.3: Theorem 2.1 is valid for described al-

gorithm.

E. Enforcing LMI conditions for all frequencies

LMI (9) and A(ejω) > 0 can be enforced for all ω at

once using KYP lemma. The simpler condition A > 0 we

examine first. Notice that, A(z) can be written as:

A(z) = A0 +

r∑

i=1

(
Aiz

i + A′
iz

−i
)

= Vz˜AmVz (16)

where

Am =




A0 A1 . . . Ar

A′
1 0 . . . 0
...

...
. . .

...

A′
r 0 . . . 0


 (17)

Vz˜ =
(

I Iz−1 . . . Iz−r
)

(18)

Then the condition A(ejω) > 0 can be enforced for all w
using KYP lemma described in [10].
Rewrite matrix (9) as:

(9) =

„
0 GA

AGe 0

«
+

„
γA B + jC

(B + jC)e A

«

„
0 GA

AGe 0

«
=

„
G 0
0 I

« „
0 A
A 0

« „
Ge 0
0 I

«

Polynomials B, C can be represented the same way as A
polynomial in (16). Then:

(9) = Vw˜MwVw, (19)

where

Vw =

0
B@

Vz 0
0 Vz

Vz 0
0 Vz

1
CA

0
B@

Ge 0
0 I
I 0
0 I

1
CA

Mw =

0
B@

0 Am 0 0
Am 0 0 0
0 0 γAm (Bm + jCm)
0 0 (Bm + jCm)e γAm

1
CA

As matrix Vw doesn’t depend on any unknown parameter

we can use the same formulation of KYP lemma. Notice

that the dimension of second LMI will equal to 4rm, so the

number of parameters will rise too much and so will the

computational cost. In practice it is more convenient to use

only (16) and enforce LMI (9) on frequency grid.

III. PROPERTIES OF REDUCED MODELS.

A. Spectral factorization.

Assume we have A(z) — matrix polynomial of order

2r : A(z) =
r∑

i=−r

Aiz
r, where Ai = A′

−i. We can

write A(z) = Zpr(z) + Z ′
pr(z),where Zpr =

r∑
i=0

Aiz
−r.

Transfer function Zpr is proper, with state-space realiza-

tion {AZ , BZ , CZ , DZ}, and invertible DZ matrix. Last

condition is necessary for existence of solution to spectral

factorization problem2 (it also means, that A0 > 0).
Let’s examine the solution from [1]. First we need to solve

the Riccati equation:

Pk+1 = AZPkA′
Z − (AZPkC′

Z − BZ)·
· (DZ + D′

Z − CZPkC′
Z)†(AZPkC′

Z − BZ)′

(20)

where A† denotes Moore-Penrose pseudo-inverse. It is shown

that the limit lim
k→∞

Pk = P exists, the equation always has

solution P ≥ 0 and the matrix DZ + D′
Z − CZPC′

Z ≥ 0.

2see, for example, [1], [11]



In fact we would like the term DZ +DZ −CZPC′
Z to be

positive definite, not only positive semi-definite. Notice that

lim
ε→0

(DZ +DZ−CZPC′
Z +εI)−1 6= (DZ +DZ−CZPC′

Z)†,

but the solution Pε of:

Pk+1 = AZPkA′
Z − (AZPkC′

Z − BZ)·
·(DZ + D′

Z − CZPkC′
Z + εI)−1(AZPkC′

Z − BZ)′

(21)

is convergent to the solution P of (20), i.e. lim
ε→0

Pε = P, the

matrix DZ + D′
Z −CZPC′

Z + εI is positive-definite and as

follows invertible.

The state-space description of stable factor is given by

a1 · z−r = {AZ , Ba1
, CZ , Da1

}, where Da1
= (DZ +D′

Z −
CZPC′

Z + εI)1/2, Ba1
= (BZ − AZPC′

Z)D−1
a1

, and P is

a solution of (21) which converges to the actual solution of

(20). Since we introduced the ε term in Riccati equation we

will always get invertible Da1
matrix. In practice we would

rather solve the following equation:

−ε2I = AZPA′
Z − P − (AZPC′

Z − B)·
·(DZ + D′

Z − CZPC′
Z + ε1I)−1(AZPC′

Z − B)′
(22)

The term ε2I is added to get more robust numerically

solution. This way we don’t have to solve the equation (21)

recursively, so the relaxation which should make solution

less accurate, does the contrary.

B. McMillan degree of reduced system.

In this section we will prove that under our assumptions

Ĝ = b(z)a−1
1 (z) ∈ RrmH∞, where a1(z), b(z) are matrix

polynomials of degree r. All the results and definitions can

be found in [4].

If Ĝ = ba−1
1 , then a1, b is called matrix-fraction descrip-

tion. In our problem Ĝ is square matrix, so we can define

poles (MFD) of Ĝ(z) as zeros of det(a1(z)). An MFD

Ĝ = ba−1
1 will be said to be irreducible if b(z) and a1(z)

are right coprime.

Definition 3.1: In general we can always write a1(z) =
(DhcS(z)+L(z)), where S(z) = diag{ski , i = 1, m}, Dhc

— the highest-column-degree coefficient matrix of a1(z) is

a matrix whose ith column comprises the coefficients ski in

the ith column of a1(z).
We will need one known lemma:

Lemma 3.1 ([4]): deg(det(a1(z))) = rm if and only if

the highest-column-degree coefficient matrix Dhc of a1(z)
is invertible.

The main result of this section is that we always get a

realization of degree not more than rm :
Lemma 3.2: If b, a1 a MFD, where A = a1a1˜ is ob-

tained from program:

min γ subject to (9),

then the McMillan degree of the system Ĝ = ba1 is less or

equal to rm.
Proof: First assume that MFD b, a1 is irreducible. If it

the case than the deg(Ĝ) = rm. If not we can always obtain

irreducible MFD and the order deg(Ĝ) would be equal to the

order of reduced denominator ã1.

Notice that we obtain a1 from spectral factorization problem

(described in section III-A). Since Da1
matrix of a1 is

invertible, then in every column there exist at least one non-

zero coefficient of highest degree. Then the highest-column-

degree coefficient matrix Dhc is equal to Da1
and invertible.

After applying lemma 3.1 the results follows.

IV. IMPLEMENTATION AND EXAMPLES.

A. Algorithm.

Basically we have discussed one algorithm with three

different cases:

min γ subject to (23)(
γA1 (GA2 − B − jC)

(GA2 − B − jC)˜ γA2

)
> 0 (24)

1) Matrix case. A1 = A2 = A, where A is matrix

polynomial (section II-A)

2) Scalar case. A1 = A2 = ÃI, where is a scalar

polynomial (section II-C).

3) Mixed case. 0 < A1 ≤ A2 on unit circle, where A1

is a scalar function multiplied with identity matrix and

A2 is a matrix polynomial (section II-D).

The algorithm is described as follows:

(a) First solve (23,24) for given γ. Solution will provide

us with A1, A2, B, C matrices.

(b) Solve the factorization problem for A1. Then minimize

over numerator b as in (11)

(c) Repeat (a-b) with smaller γ, if required.
(d) When the suitable value δ is achieved find the minimal

state-space realization of MFD.

The methods above were implemented using LMI solver

SeDuMi [12] with YALMIP [7].

B. Method of computing minimal state-space realization.

We assume that our MFD is irreducible. It is a reasonable

assumption, since reducibility implies zero-pole cancellation

and as follows lower degree Ĝ. It is obvious that for every

approximation of Ĝ we can find a better approximation

with higher degree McMillan degree then the original one.

Nevertheless there is no strict prof that b, a1 are always right

coprime.

This method is actually considered for strictly proper

TFMs, but it is not so difficult to obtain a strictly proper

from a proper TFM. Assume ba−1
1 is a strictly proper TFM.

Notice that in our case a1(z) = Dhcz
r + DlcΨ(z), where

Ψ′(z) = block diag{[zr−1, ..., 1], . . . , [zr−1, ..., 1]}. Then

b = NlcΨ(z). Denote:

A0
c = blockdiag

{(
0r−1,1 0
Ir−1 01,r−1

)

i

, i = 1, . . . , m

}

[B0
c ]′ = blockdiag

{(
1 0r−1,1

)
i
, i = 1, . . . , m

}

C0
c = In, n = deg det a1 = rm

Then the state-space realization of original TFM ba−1
1 is

{Ac, Bc, Cc} :

Ac = A0
c − B0

cD−1

hc Dlc Bc = B0
cD−1

hc Cc = Nlc (25)
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C. Example 2. Approximation of high order system.

The main advantage of our approach is that we use

less information about original system than HMOR and

BT. There is always a memory restriction on solving hign-

dimensional Lyapounov equations. Assume G is 2 by 2 TFM

with order N = 600 :

G =

(
5 + 5/z + 5/z2 +

600∑

i=3

0.01/zi

)
I2

We weren’t able to apply HMOR and BT on this system.

however, applying MIMO heuristics was successful. We

applied matrix case and mixed case algorithms with 20 points

in the grid and have got a 6-th order approximation with error

δ < 2 · 10−2 in both cases.

D. Example 3. Comparison of algorithms.

We would like to compare the performance of two special

cases and general heuristic algorithm. Although there is no

error bound in general case, example 1 provided us with

hope, that reduced model can be close in H∞ to original

one. We would expect the natural extension to have worse

performance then two other cases. Assume G is a random

2-input 2-output TFM with McMillan degree of 20. We will

Fig. 3. The ’Shell’ heavy oil fractionator.

TABLE I

NAMES, ROLES AND SYMBOLS OF INPUT AND OUTPUT VARIABLES.

Variable Role Symbol

Top Draw Control Input u1

Side Draw Control Input u2

Bottoms Reflux Duty Control Input u3

Intermediate Reflux Duty Measured Disturbance dm
Upper Reflux Duty Unmeasured Disturbance du
Top End Point Controlled and measured output y1, z1

Side End Point Controlled and measured output y2, z2

Top Temperature Measured output y3

Upper Reflux Temperature Measured output y4

Side Draw Temperature Measured output y5, z3

Intermediate Reflux Temperature Measured output y6, z4

Bottoms Reflux Temperature Controlled and measured output y7, z5

reduce the model to 6 states using three cases and HMOR.

The best approximation was found by mixed case algorithm

(see, pic. 1), and both mixed case and matrix case have better

approximation than HMOR almost for every frequency. Most

interesting to compare, of course, mixed and matrix case

algorithms. Although, we get a better error in mixed case,

we get a better upper bound δ in matrix case algorithm.

We can see on bode plot (pic. 2) of original model, mixed

case and matrix case algorithms, that reduced models almost

coincide with each other, but not with original model.

E. Shell Oil Fractionator.

The model is described in [9], but we will use a simplified

version given in [3].

The inputs of the model are: Top Draw, Side Draw, Bot-

toms Reflux Duty, Intermediate Reflux Duty, Upper Reflux

Duty. The Outputs are: Top End Point, Side end Point,

Intermediate Reflux Duty, Bottoms Reflux Duty, Bottoms

Reflux Temperature.

We will consider a transfer function from the inputs

u1, u2, u3, dm, du to outputs z1, z2, z3, z4, z5. In the original

model Intermediate Reflux duty, Upper Reflux Duty are

considered disturbances and Intermediate Reflux Tempera-

ture, Side Draw Temperature are considered just a measured

output. We added them just to make the problem more

interesting.

Now we have a 5 input, 5 output model with delays.

The model is nonlinear, but since all the delays are factors

of sampling time we will get a linear discrete model with



TABLE II

SOME EXPERIMENTAL DATA ON UNIFORM GRID.

Order 20 20 25 25 25

Number of points 16 64 25 50 125

δ for matrix case 0.75 0.88 0.83 0.78 0.84

Actual error (matrix case) 11.13 0.88 5.01 1.022 0.84

δ for mixed case 0.56 1.18 0.45 0.62 0.75

Actual error (mixed case) 3.53 1.19 2.74 0.84 0.74
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Fig. 4. The reduction error of matrix case (solid) and mixed case (dashed)
algorithm with 20-th order approximations.

McMillan degree equal to 72. It worth mentioning that norm

of original system is around 26.1 dB., we will assume that

5% approximation error of norm is allowed, i.e. we want the

error to be not more than 1.

We will compare our algorithms for 20 and 25 order ap-

proximations. The essential problem is choosing the number

of points in the grid (see table II). Too many points create

extra complexity, too less, however, may not provide you

with good approximation. On picture 4 we see maximal

singular value functions of 20-th order approximation error,

approximations are done with 64 points in the frequency grid.

Here clearly matrix case algorithm shows better performance

than mixed case. However, optimal A wasn’t provided by

lowest γ. It is clearly possible in matrix case algorithm, since

there is no error bound on ‖G − BA−1‖∞ < Kγ, for any
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Fig. 5. The reduction error of matrix case (solid) and mixed case (dashed)
algorithm with 25-th order approximations.

constant K.
On picture 5 we see the results of 25-th order approxi-

mations done with 125 points in the frequency grid. In this

case mixed case algorithm has better H∞ approximation.

V. CONCLUSION.

In this paper we have discussed MIMO extensions of [8],

where convex optimization is used to search for low order

models. Unlike the SIMO case, there is no a priori error

bound, but the MIMO extensions are very competitive in

numerical experiments.
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