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Gaussian Integrals and Rice Series in
Crossing Distributions—to Compute the
Distribution of Maxima and Other Features
of Gaussian Processes
Georg Lindgren

Abstract. We describe and compare how methods based on the classical
Rice’s formula for the expected number, and higher moments, of level cross-
ings by a Gaussian process stand up to contemporary numerical methods to
accurately deal with crossing related characteristics of the sample paths.

We illustrate the relative merits in accuracy and computing time of the Rice
moment methods and the exact numerical method, developed since the late
1990s, on three groups of distribution problems, the maximum over a finite
interval and the waiting time to first crossing, the length of excursions over a
level, and the joint period/amplitude of oscillations.

We also treat the notoriously difficult problem of dependence between suc-
cessive zero crossing distances. The exact solution has been known since at
least 2000, but it has remained largely unnoticed outside the ocean science
community.

Extensive simulation studies illustrate the accuracy of the numerical meth-
ods. As a historical introduction an attempt is made to illustrate the relation
between Rice’s original formulation and arguments and the exact numerical
methods.

Key words and phrases: Computational statistics, distribution of maximum,
Durbin’s formula, excursion length distribution, first passage, independent
interval assumption, level crossings, multivariate normal probabilities, pe-
riod/amplitude distribution, Rice’s formula, RIND program, statistical com-
putation, stochastic process, successive crossing distance distribution, trun-
cated normal moments, Wafo toolbox.

1. CROSSING DISTRIBUTIONS—WHY AND HOW

“In 1944 and 1945, S. O. Rice published a monu-
mental study of noise, generally regarded to be the sin-
gle most useful source of information about Gaussian
noise” (Millman, 1984, page 41). The two papers (Rice
1944, 1945) were reprinted in Wax (1954), pages 133–
294.

The strong words in the quote illustrate how it came
about that abstract theoretical concepts, like Gaussian

Georg Lindgren is Professor emeritus, Mathematical
Statistics, Lund University, Box 118, SE-221 00, Lund,
Sweden (e-mail: georg@maths.lth.se).

process, correlation function and power spectrum, lin-
ear and nonlinear filters, became common goods in
one, very specialized, field of engineering, namely
communication theory. Steve Rice was a member of the
Bell Labs Mathematical and Statistical research cen-
ter. Rice, quoting Wiener (1930), Khintchine (1934),
and Cramér (1940) on Fourier representation of the co-
variance function, remarks (Rice, 1944, page 32) that
“Khintchine and Cramér appear to be interested pri-
marily in questions of existence, representation, etc.,
and do not stress the concept of the power spectrum”.
Middleton (1988) gives a personal history.

Rice’s formula for the average number of level cross-
ings in correlated Gaussian noise in continuous time
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is perhaps the most well known of the many original
contributions in the two articles. The formula was pre-
sented as part of an investigation of the fluctuations in
the length of the intervals between crossings, but it has
earned its reputation as a fundamental property of sta-
tionary stochastic processes.

In wider perspectives, Rice’s study of random noise
in communication systems had far-reaching conse-
quences outside communication engineering to lift the
statistical methods beyond simple distributions, cor-
relation, and energy spectra. Gaussian processes and
Gaussian fields in linear and nonlinear filters were
quickly accepted as standard tools in ocean engineer-
ing (StDenis and Pierson, 1953), aviation engineering
(Miles, 1954), acoustics (Lyon, 1956), automatic con-
trol (Laning and Battin, 1956), mechanical engineer-
ing (Crandall, 1958), and many other fields of science
and engineering. Blake and Lindsey (1973) give an
overview of the early history, with a short follow up
by Abrahams (1986). Kratz (2006) gives a more up to
date and theoretical synthesis.

A recurring theme in the mentioned applications
is the topographical features of a random function,
such as the crossing intervals and excursion lengths,
wave height and wave length, amplitude of fatigue-
causing fluctuations in a mechanical load process. We
have found more than two dozen scientific publica-
tions in the English language during 1950–1959 deal-
ing with such features and half of them deal with
the expected number of axis crossings and the dis-
tribution of axis crossing intervals. Slepian (1962)
summarizes known results and gives many new ones,
with strict proofs, including the “Slepian’s compari-
son lemma” (Leadbetter, Lindgren and Rootzén, 1983,
Theorem 7.4.2). Even today, Rice’s approximations
based on crossing moments continue to find new appli-
cations, i.a. in material science (Estrade, Iribarren and
Kratz, 2012), laser physics and optics (Youssef, Mu-
nakata and Takeda, 1996), to mention a few. A survey
of solved and unsolved crossing problems from science
and technology was presented by Munakata (1998).

Rice’s generalized crossing formulae are also used
to approximate the distribution of the maximum value
of a random process in time or in combined time and
space. Crossing moments in two and three dimensions
are simple to calculate (Cramér and Leadbetter, 1967,
Section 10.6) and (Azaïs and Wschebor, 2009, Chap-
ter 5), and they can give good results for extreme value
distributions over short intervals.

We shall, in the present paper, describe how Rice’s
“in and exclusion” series (Rice, 1945, equation (3.4-
11)), are replaced by Durbin formula (Durbin, 1985),

later refined by Rychlik (1987a, 1990), to give the
exact “first crossing” distribution. Highly efficient al-
gorithms for high-dimensional normal integration, de-
veloped by i.a. Genz (1992, 2012), Azaïs and Genz
(2013), and Brodtkorb (2006), have made the theoret-
ical Durbin’s formula useful, and we shall illustrate
how these are implemented in dedicated and simple-
to-use software for computation of topographical dis-
tributions in Gaussian processes.

In Section 2, we summarize and comment on Rice’s
original arguments around three topographical themes,
the expected number of axis crossings, the distribution
of the interval between, and number of crossings, and
the distribution of local extremes. We emphasize their
relations to modern terminology and formulations.

The next three sections intend to show how the Rice
series and the modern computational tools can be used
on three types of general statistical problems. The fo-
cus is more on the flexibility and generality of the dif-
ferent methods and less on the formal complexity and
difficulties of the numerical computations, which are
well described in the cited works (Genz, 1992, 2012;
Azaïs and Genz, 2013; Brodtkorb, 2006). We deal with
single-parameter problems only, leaving the very dif-
ferent area of extremes of Gaussian fields outside the
treatment.

Section 3 deals with the distribution of two related
quantities that can be observed in a continuous stochas-
tic process: the time from start to the first upcross-
ing of a fixed level, and the maximum value over a
finite interval. We discuss the software by Brodtkorb
and Genz, for calculating the distribution of the max-
imum, and compare the results with bounds based on
Rice’s crossings formula. The applications are plenty,
just to mention a few from statistics, multiple tests
and confidence bands in regression (Rychlik, 1992a;
Efron, 1997; Azaïs and Genz, 2013; Azaïs, De Cas-
tro and Mourareau, 2018), statistical machine learn-
ing and Gaussian process regression (Rasmussen and
Williams, 2006), as well as applications in science and
engineering.

Section 4 deals with the statistical distribution of the
length of excursions over a critical level, and with the
dependence between successive zero crossings inter-
vals, one of Rice’s original problems. We compare the
Rice series solutions with the exact solutions based on
Gaussian integration, with regards to generality and
computational efficiency. A new numerical algorithm
is introduced for exact computation of the joint distri-
bution of successive zero crossing intervals.
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In Section 5, we give examples of a more compli-
cated characteristic of a stationary Gaussian process,
the distribution of wave amplitude and period. This
is a quantity of great importance in mechanical and
ocean engineering, regularly employed in fatigue anal-
ysis and marine safety studies.

An appendix contains details about the example pro-
cesses, technical details about the computations, and
a presentation of the computational tool, the RIND
function in the Wafo toolbox (Brodtkorb et al., 2000;
WAFO-group, 2017a). Matlab code and instructions
can be found in the Supplementary material, Lindgren
(2019).

2. RICE’S FORMULA FOR AXIS CROSSINGS AND
EXCURSIONS

In the second of the two papers, Rice (1945) intro-
duces i.a. three themes of particular interest for the
present study: the expected number of axis crossings,
the distribution of the interval between and the number
of crossings, and the distribution of local extremes.

2.1 “Expected Number of Zeros” (Rice, 1945,
Section 3.3)

Rice’s formula for the expected number of level
crossings per time unit in a stationary stochastic pro-
cess does not occupy any prominent place in Rice’s pi-
oneering work. Rather, it is expressed as the probability
that a differentiable stochastic process X(t), station-
ary or not, will have a zero crossing in a time interval
τ, τ + dτ (Rice, 1945, equation (3.3-2)).

RICE’S FORMULA FOR CROSSINGS. The proba-
bility that the (differentiable) process X(t) has a zero
crossing in τ, τ + dτ is equal to

ν0(τ )dτ = dτ

∫ ∞
−∞

|y|p(0, y; τ)dy,

where p(u, y; τ) is the joint probability density of
X(τ) and X′(τ ).

Rice’s arguments do not require that X(t) is station-
ary. On the contrary, he argues from a “random curve”,
generated by random variables a1, a2, . . . , aN ,

y = F(x;a1, a2, . . . , aN).

In the vein of Kac (1943), Rice presents the formula
for the expected number of solutions to the equation
F(x) = 0 as the integral of the crossing intensity ν0(x),
which obviously may depend on x. Rainal (1988) gives
an interesting and personal history of the origin of
Rice’s formula.

Rice applies the crossings formula to the sum of ran-
dom harmonics and arrives at the stationary Gaussian

form for the expected number of upcrossings of a level
u per time unit (Rice (1945), equation (3.3-15)),

“Rice’s formula”

ν+
u = e−u2/2ψ0

1

2π

[
−ψ

′′
0

ψ0

]1/2
,

assuming the mean is zero and with ψt denoting the
covariance function.

2.2 “The Distribution of Zeros” (Rice, 1945,
Section 3.4)

For the distribution of crossing intervals and the
number of zeros Rice acknowledges the difficulty and
suggests a partial solution and a hint for an approxi-
mating scheme.

The Rice inclusion-exclusion series (Rice, 1945,
equation (3.4-11)) for the probability density of the
length of axis crossing intervals is a Bonferroni type
series. It reads as follows, in Rice’s arguments and no-
tation and with slightly modified formulation, valid for
a stationary process.

RICE’S IN- AND EXCLUSION SERIES FOR EXCUR-
SIONS. Consider the class of sample curves having
a zero at t = 0 and compute the functions p0(τ ),
p1(r, τ ), p2(r, s, τ ), etc., associated with this class,
where:

• p0(τ )dτ(= ν0(τ )dτ) is the probability the curve
having a zero in dτ ; (i.e., in τ, τ + dτ ),

• p1(r, τ )dτ dr is the probability the curve having ze-
ros in dτ and dr ,

• p2(r, s, τ )dτ dr ds is the probability the curve hav-
ing zeros in dτ , dr , and ds,

• etc.

The method then leads to an expression for P0(τ )dτ ,
the probability of having a zero at 0 and a zero in
τ, τ + dτ but none between 0 and τ . It is, without the
dτ factor,

(1)

P0(τ ) = p0(τ ) − 1

1!
∫ τ

0
p1(r, τ )dr

+ 1

2!
∫ τ

0

∫ τ

0
p2(r, s, τ )dr ds

− 1

3!
∫ τ

0

∫ τ

0

∫ τ

0
p3(r, s, t, τ )dr ds dt

+ · · · .

The restriction to “the class of sample curves having
a zero at t = 0” does not imply that the probabilities
in (1) are conditional probabilities, “given the process
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TABLE 1
Some examples of notation; +/− = upcrossing/downcrossing

ν+
u (t), ν+

u (X, t) upcrossing intensity of level u at time t by process X(·)
ν+−
u (s, t) bivariate intensity of upcrossing at s and downcrossing at t

νm+
u (t) m-variate upcrossing intensity at t = (t1, . . . , tm)

αu,αu(t) expected number of u-upcrossings in [0, t]
αu

m,αu
m(t) mth factorial moment of number of u-upcrossings in interval [0, t]

ν̃m+
u (t) m-variate upcrossing intensity at t = (t1, . . . , tm)

when sample path satisfies an initial condition,
e.g. X(0) < u or X(0) = u, upcrossing

α̃u
m(t) mth factorial moment for selected sample paths

X(t) = u and Xt = u X(tk) = u for k = 1, . . . ,m,
XI ≤ u X(t) ≤ u for t ∈ I ,
μ+

u (X, t) u-upcrossing intensity at t with X[0,t] ≤ u.

takes the value 0 at t = 0”, and not any other value.
Rather, it means that we have selected one of the time
points where the process crosses the zero level, and
called it t = 0. The conditional probability density is
obtained by dividing throughout by ν0(0).

Rice backed away from the difficult integrals in-
volved in the higher-order approximations. Interest-
ingly enough, he mentions (Rice, 1945, page 70) the
possibility to amend the condition leading to p0(τ )

with the condition that the process has constant sign
at equally spaced points between 0 and τ . He con-
cludes that also these integrals are hard to evaluate; cf.
Durbin’s formula, Fact 2 in Section 3.1.

EXAMPLE 1 (Up- to downcrossing interval). We
illustrate the use of the in- and exclusion formula to
find a partial solution to the density of the interval be-
tween an upcrossing and the following downcrossing
of the mean value level. Details about the numerical
computations are given in Section 4. Table 1 presents
some selected notations used in the paper.

In Rice’s words, we first seek the probability that the
process passes through zero in the interval τ, τ + dτ

with a negative slope, when it is known that it passes
through zero at τ = 0 with a positive slope. Let, with
Rice (1945), equation (3.4-12),

ν+−
0 (s, t)ds dt

= ds dt

∫ ∞
y1=0

∫ 0

y2=−∞
y1(−y2)

· p(0,0, y1, y2; s, t)dy1 dy2

(2)

be the probability that the process has a zero upcross-
ing in ds and a zero downcrossing in dt . We use here
the signed superscript notation that became standard in
applications of the “inclusion and exclusion” series for
crossing analysis (Longuet-Higgins, 1962). For exam-

ple, in (1),

p1(r, τ )

= ν±±(r, τ )

=
∫ ∞
−∞

∫ ∞
−∞

|y1||y2|p(0,0, y1, y2; r, τ )dy1 dy2.

Expressed in terms of a conditional expectation of

X′(0)+ = max
(
0,X′(0)

)
,

X′(t)− = −min
(
0,X′(0)

) ≥ 0,

we can write the intensity in (2) as

ν+−
0 (0, t) = E

[
X′(0)+X′(t)−|X(0) = X(t) = 0

]
· fX(0),X(t)(0,0),

which is the form we shall use in the examples. Rice
computes ν+−

0 (0, τ )/ν+(0) as an explicit first approx-
imation to the up-to-down zero-crossing distance in a
stationary Gaussian process.

To get more terms in the series, we have to add extra
downcrossings between 0 and t ,

ν+−−
0 (0, s, t)

= E
[
X′(0)+X′(s)−X′(t)−|X(0)

= X(s) = X(t) = 0
]

· fX(0),X(s),X(t)(0,0,0),

ν+−−−
0 (0, s1, s2, t)

= E
[
X′(0)+X′(s1)

−X′(s2)
−X′(t)−|X(0)

= X(s1) = X(s2) = X(t) = 0
]

· fX(0),X(s1),X(s2),X(t)(0,0,0,0).

The excursion time density approximated with the
first three terms in the Rice in- and exclusion series is
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FIG. 1. Rice series approximations to the axis excursion time
density for low-frequency white Gaussian noise. First order (dash–
dotted) and third order (dashed) overestimates the density, second
order (solid) under-estimates it.

then

fT (t) ≈ 1

ν+
0 (0)

{
ν+−

0 (0, t) −
∫ t

s=0
ν+−−

0 (0, s, t)ds

+
∫∫

0<s1<s2<t
ν+−−−

0 (0, s1, s2, t)ds1 ds2

}
.

Figure 1 shows the over- and underestimation of the
excursion density with one, two, and three terms in the
series. The process is low-frequency Gaussian white
noise with variance one and mean excursion length
π ≈ 3.14. In Section 4.4, we will see the exact density,
Figure 7.

2.3 “Distribution of Local Maxima” (Rice, 1945,
Section 3.6)

Rice (1945), Section 3.6, presented a result of quite
some practical interest, namely the distribution of the
height of local maxima (and minima) of a normal pro-
cess.

RICE’S DISTRIBUTION FOR LOCAL MAXIMA. Let
y = F(x;a1, . . . , aN) be a random curve. If suitable
conditions are satisfied, the probability that y has a
maximum in the rectangle (x1, x1 + dx1, y1, y1 +dy1),
dx1 and dy1 being of the same order of magnitude, is

−dx1 dy1

∫ 0

−∞
ζp(y1,0, ζ )dζ,

and the expected number of maxima of y in a ≤
x ≤ b is obtained by integrating this expression over

the range −∞ < y1 < ∞, a ≤ x1 ≤ b. Here p(ξ, η, ζ )

is the probability density function of ξ = F(x1;a1, . . . ,

aN) and the first- and second-order derivatives of F(x)

at x = x1.

Applying the formula to a Gaussian process, Rice
derives the explicit density for the height of a maximum
selected at random from the universe of maxima. Rice’s
formulation is actually very close to the frequency in-
terpretation of the horizontal window conditioning by
Kac and Slepian (1959). The beauty of the result is
not in the analytical form of the density (see Lindgren,
2013, equation (8.37)) but in its probabilistic represen-
tation.

RICE’S REPRESENTATION OF LOCAL MAXIMA.
The distribution of the height of a local maximum
X(tmax) in a Gaussian process with variance σ 2

X is
equal to the distribution of a weighted sum of a stan-
dard Rayleigh variable R and a standard normal vari-
able U ,

X(tmax)
L= σX

{√
1 − ε2R + εU

}
,

where ε =
√

1 − σ 2
X′/(σXσX′′) is a measure of the

width of the spectral density of the process.

3. MAXIMUM AND THE FIRST LEVEL CROSSING

We start our exposé of Rice’s formula and its exten-
sions with the simplest, and perhaps most important, of
applications, namely how to approximate the distribu-
tion of the maximum of a differentiable Gaussian pro-
cess over a bounded interval. We first give the modern
formulation of the Kac–Rice formula for the intensity
of level upcrossings, and the related formula by Durbin
(1985), extended by Rychlik (1987a), for the exact in-
tensity of first upcrossing time and for the maximum
distribution. In subsequent subsections, we present and
discuss the two available alternatives to compute the
distribution: the Rice method with alternating Rice se-
ries of factorial moments up to third order, and the
numerical method based on numerical integration of
Gaussian distributions.

3.1 Rice’s and Durbin’s Formulae

Let {X(t), t ≥ 0} denote a stochastic process, not
necessarily stationary, that satisfies some quite natural
conditions (see Azaïs and Wschebor, 2009, Chapter 3).
Specifically, we assume that the sample paths are con-
tinuously differentiable with nondegenerate joint den-
sity fX(t),X′(t)(x, u), and that, for any fixed level u

and finite interval I , there are no points in I where
X(t) = u,X′(t) = 0. This, of course, implies that each
crossing is either a strict upcrossing or a strict down-
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crossing. Write

Mt = max
0≤s≤t

X(s), Uu(t) = Uu(t;X),

for the maximum over [0, t] and the number of u-
upcrossings in [0, t], respectively.

FACT 1 (Rice’s formula). The intensity of u-
upcrossings by X(t) at time t is

ν+
u (X, t) = E

[
X′(t)+|X(t) = u

]
fX(t)(u),

and the expected number of upcrossings in [0, t] is the
integral

αu
1 (X, t) =

∫ t

0
ν+
u (X, s)ds

=
∫ t

0
E
[
X′(s)+|X(s) = u

]
fX(s)(u)ds.

For a stationary Gaussian process with mean 0,
V[X(t)] = λ0, V[X′(t)] = λ2,

ν+
u = 1

2π

√
λ2/λ0 exp

{−u2/2λ0
}
.

As anticipated by Rice, the intensity of first cross-
ing can be obtained by adding conditions on the pro-
cess in the interval preceding the crossing, for example,
that X(s) does not have any u-upcrossings before t .
To formulate an exact relationship, we need to incor-
porate the starting value, and introduce the indicator
function that the process starts below u and has no u-
upcrossings in (0, t),

1u(X, t) = 1{X(s)≤u for 0 ≤ s ≤ t}.
This leads ultimately to a modified Durbin’s formula

for the restricted first upcrossing intensity, given in the
following form by Rychlik (1987a), Theorem 2.

FACT 2 (Durbin’s formula). The intensity at time t

of first u-level upcrossing by X(t) is

μ+
u (X, t)

= E
[
1u(X, t)X′(t)+|X(t) = u

]
fX(t)(u).

(3)

FACT 3 (The record method (Rychlik, 1990)). The
relation between the maximum tail distribution P(Mt >

u) = 1 − E[1u(X, t)] and the restricted first upcrossing
intensity μ+

u (X, t) is

P(Mt > u)

= P
(
X(0) > u

)
+

∫ t

0
E
[
1u(X, s)X′(s)+|X(s) = u

]
fX(s)(u)ds,

representing the fact that either the process starts above
u, or it starts below u and has a first u-upcrossing be-
fore t .

The normalized function

f̃Tu(t) = 1

P(X(0) ≤ u)
μ+

u (X, t), t > 0,(4)

is the density of time to first upcrossing for sample
paths that start below u.

3.2 Maximum of a Stationary Gaussian Process;
Simple Rice Method

Due to its simplicity, the Rice method has found
wide applications in engineering and science. It sim-
ply bounds the probability of high values in a continu-
ous process by means of the expected number of level
crossings, which involves the joint distribution of the
process and its derivative.

The upper Rice bound for the maximum tail reads

P(Mt > u) ≤ P
(
X(0) ≥ u

) + P
(
Uu(t) > 0

)
≤ P

(
X(0) ≥ u

) + E
[
Uu(t)

]
= P

(
X(0) ≥ u

)
+

∫ t

s=0

∫ ∞
z=0

zfX(s),X′(s)(u, z)dz ds.

If X(t) is stationary, the bound is P(Mt > u) ≤
P(X(0) ≥ u) + tν+

u (X,1) and, explicitly for a station-
ary Gaussian process,

P(Mt > u) ≤ 1 − �

(
u − mX

σX

)

+ t

2π

σX′

σX

exp
{
−(u − mX)2

σ 2
X

}
.

We will see, in Section 3.4, that the Rice bound for
the maximum cdf can be very accurate: as a rule of
thumb, above the upper tenth percentile of the distribu-
tion.

3.3 Calculation of the Maximum Distribution by
Gaussian Integrals

To be useful for numerical calculations, the “infinite
dimensional” expectation E[1u(X, s)X′(s)+

∣∣ X(s) =
u] in (3) has to be replaced by a finite dimensional one,
before it is integrated over time. For a smooth Gaus-
sian process over a short interval, one could hope that
few points would suffice; Arellano-Valle and Genton
(2008) give an example of how to proceed. A long
interval or a nonstationary mean/covariance function
should require a large and sometimes dense point
grid, and lead to almost singular covariance matrices.
Long computation times and numerical complications
should be expected.

The first algorithm that had a potential to develop
into a general tool for fast and accurate computation of
the distribution of the maximum of a smooth Gaussian
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process over a finite interval seems to have been pub-
lished by Genz (1992, 1993). The algorithm was based
on an ordered Cholesky factorization of the covariance
matrix (as all subsequent algorithms); it was later im-
proved by Genz and Kwong (2000).

Another line of development was followed by
Rychlik (1992b) and Podgórski, Rychlik and Machado
(2000), who used an explicit regression technique to
select the integration dimensions (Lindgren and Rych-
lik, 1991). This regression technique is very similar to
and plays the same role in the integration algorithm
as the Gaussian processes regression to reduce uncer-
tainty in modern Bayesian Machine learning; see, for
example, O’Hagan (2006), Rasmussen and Williams
(2006).

Brodtkorb (2006) combined the technique in Genz
(1992), Genz and Kwong (2000) with the regression
technique. Together with removal of redundant vari-
ables and truncation of the Cholesky factorization, this
led to additional improvements in speed and accuracy.

Implementations of the various dialects of the Genz-
Brodtkorb algorithms exist, either as “stand-alone”
packets or as parts of general projects. The MATLAB

function RIND is part of the Wafo toolbox; WAFO-
group (2017a, 2017b). It is built on compiled FOR-
TRAN and C++ routines and is very fast. There is also a
PYTHON implementation for Linux systems. The MAT-
LAB package MAGP written by Mercadier (2006a)
is available at Mercadier (2006b), and is based on
RIND.

Genz (2012) presents a list of MATLAB routines for
computation of the Gaussian maximum distribution,
i.a. MGP. Many of these routines are available as op-
tions in the Wafo toolbox. An R-package is available

at Genz et al. (2017); see also the book by Genz and
Bretz (2009).

3.4 Examples of the “Exact” Methods

We give examples of the use of the Rice, RIND, and
MGP methods for the maximum of a stationary Gaus-
sian process, and compare speed and accuracy. We
also compute the first upcrossing time distribution, and
compare with observations, generated by exact sim-
ulation from the covariance function in the Gaussian
model. The MATLAB code for RIND is described in
Appendix D, and that for MGP in Azaïs and Genz
(2013). Both MGP and RIND can use symbolic covari-
ance functions as arguments.

3.4.1 Maximum of Gaussian processes with “sinc”
and “Gaussian” covariance. The low-frequency white
noise process has constant spectral density up to a finite
cut-off point and its covariance function is the “sinc”
function. The standardized version, with V[X(t)] =
V[X′(t)] = 1, has the covariance function

rX(t) = sin
√

3t√
3t

.

Figure 2 shows the maximum distribution approxi-
mated by the Rice method and by the RIND approach,
compared to the empirical distribution function from
a simulation experiment. We illustrate the results for
three different interval lengths, t = 10,20,80. The fig-
ure shows the lower bound to the tail 1 − FMt (u) as a
solid curve. The Rice bound, which is an upper bound
to the tail, is shown as dots. The empirical distribution,
based of 10,000 replicates, is shown as the dashed line.
The RIND approximation is very accurate.

To get an idea of the uncertainties and reproducibil-
ity we computed the approximations for two inter-

FIG. 2. Distribution of maximum over intervals of length t = 10,20,80 for standardized low-frequency white Gaussian noise. Left: the tail
of the cdf. Right: the cdf. Solid curve: the RIND result; Dots: the Rice bound; Dashed curve: the simulated cdf.
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TABLE 2
Computed and simulated exceedance probabilities for Gaussian “sinc” process, computed with MGP and RIND, together with simulated

values; interval length = 2 and 10 seconds

T = 2 Levels: −2 −1 0 1 2 3

MGP Upper 0.9997 0.9821 0.7921 0.3502 0.0660 0.0049
Lower 0.9997 0.9817 0.7895 0.3489 0.0647 0.0048

RIND Lower 0.9997 0.9820 0.7916 0.3496 0.0653 0.0049

Simulation 4,000,000 repl 0.9997 0.9819 0.7912 0.3494 0.0657 0.0049

T = 10 Levels: −2 −1 0 1 2 3

MGP Upper 1.0000 1.0002 0.9954 0.7750 0.2209 0.0189
Lower 1.0000 1.0000 0.9944 0.7712 0.2179 0.0179

RIND Lower 1.0000 1.0000 0.9947 0.7751 0.2199 0.0183

Simulation 4,000,000 repl 1.0000 1.0000 0.9947 0.7752 0.2206 0.0190

val lengths, 2, 10 seconds, and six different levels,
−2,−1, . . . ,3 , for the Gaussian low-frequency white
noise process. Table 2 shows: computed upper and
lower bounds for P(Mt > u) from MGP, and computed
lower bound from RIND.

As a second example we compare MGP and RIND on
a Gaussian process with “Gaussian”, that is, squared
exponential covariance function

rX(t) = exp
(−t2/2

)
,

which is an example in Azaïs and Genz (2013), Exam-
ple 5.1. In contrast to the oscillating “sinc” covariance,
the Gaussian covariance decreases with time, and there
is no typical periodicity in the sample functions. The
results in Table 3 deviate slightly from those in Azaïs
and Genz (2013), Table 1, since we use a denser inte-
gration grid. Both methods give good results, but RIND
is the fastest. For large levels the simple Rice method
is best.

Experiments with longer intervals, up to 100 sec-
onds, reveal that RIND, for some covariances, can give

good results up to at least the upper one percent quan-
tile, but for others, it underestimates the exceedance
probability.

3.4.2 Time to first upcrossing. The time to first up-
crossing is a “dual” to the maximum over an interval,
and the normalized function f̃Tu(t), (4), is the density
of first upcrossing time for samples that start below u.
It can be computed directly by the RIND function, as
described in Appendix D.

Figure 3 shows the conditional pdf, f̃Tu(t), for time
to first upcrossing of levels u = 0,1 for realizations
starting below u. The histograms are based on about
650,000 realizations. The oscillating “sinc” covariance
function induces small oscillations in the first crossing
density for level u = 1, and these are found by the al-
gorithm.

3.5 Theoretical Aspects on Rice Series for
Maximum and First Upcrossing

The Rice in- and exclusion series for the time to first
upcrossing is a simplified version of the original Rice

TABLE 3
Computed and simulated exceedance probabilities with “Gaussian” covariance, computed with MGP and RIND, together with simulated

values; interval length = 1 second

T = 1 Levels: −2 −1 0 1 2 3

MGP Upper 0.9944 0.9279 0.6528 0.2542 0.0443 0.0031
Lower 0.9944 0.9275 0.6524 0.2540 0.0441 0.0030

RIND Lower 0.9944 0.9279 0.6527 0.2543 0.0446 0.0029

Simulation 4,000,000 repl 0.9944 0.9280 0.6527 0.2543 0.0445 0.0032
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FIG. 3. Left: Pdf computed by RIND for time to first upcrossing of zero level for low-frequency Gaussian white noise, for realizations
starting below zero. Right: Similar for level u = 1. The histograms are based on about 650,000 realizations.

series for crossing intervals, (1), the difference being
the starting condition: X(0) < u instead of X(0) = u,
upcrossing. Even though the formula is simple and of-
ten referred to in applications, the theoretical founda-
tions are only partially explored, and its value as a com-
putational tool is limited. We here refer to the investi-
gations by Azaïs and Wschebor (2002); see also Azaïs
and Wschebor (2009), Chapter 5.

Let Uu = Uu(T ,X) be the number of upcrossings
of the level u by X(t) in the interval [0, T ], and write
U [m]

u = Uu(Uu − 1) · · · (Uu − m + 1) for the mth fac-
torial. Then,

α̃m = E
[
U [m]

u 1{X(0)<u}
]

is the factorial moment of the number of upcrossings,
counting only samples that start below u. We state the
Rice series for P(Mt > u), and then give some details
on its validity.

“The Rice series” is the expansion

1 − FMt (u) = P
(
X(0) ≥ u

)
+

∞∑
m=1

(−1)m+1 α̃m(t)

m! ,
(5)

where, with t = (t1, . . . , tm),

α̃m(t) =
∫
[0,t]m

ν̃m(t)dt1 · · · dtm,(6)

is the factorial moment, and

ν̃m(t) =
∫ u

x=−∞
E

[
m∏

k=1

X′(tk)+|

X(0) = x,X(t1) = · · ·X(tm) = u

]
· fX(0),X(t1),...,X(tm)(x,u, . . . , u)dx

=
∫ u

−∞
fX(0)(x)E

[
m∏

k=1

X′(tk)+|

X(0) = x,X(t1) = · · ·X(tm) = u

]
· fX(t1),...,X(tm)|X(0)=x(u, . . . , u)dx,

(7)

the mth order u-upcrossing intensity for sample paths
starting below u.

The alternating Rice series offers an automatic error
control if one wants to compute the maximum distri-
bution, under the condition that the factorial moments
are finite and the series converges. We quote the results
by Azaïs and Wschebor (2002) for Gaussian stationary
processes.

FACT 4 (Azaïs and Wschebor, 2009, Theorems 5.6
and 5.7). (a) If the covariance function r(t) for the
stationary Gaussian process X(t), t ≥ 0, has a Taylor
expansion at the origin that is convergent at 2t , and the
sample paths are infinitely differentiable, then the Rice
series for max[0,t] X(s) converges and (5) can be used
to compute the maximum distribution.
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(b) If the sample functions are sufficiently differen-
tiable, the truncated sum

P
(
X(0) > u

) +
K∑

m=1

(−1)m+1 α̃m(t)

m!(8)

over- or underestimates P(Mt > u), depending on if K

is odd or even. (For precise conditions on the degree of
differentiability, see Azaïs and Wschebor (2009).)

In (4), we encountered the (conditional) density
f̃Tu(t) for the time Tu of first upcrossing for sample
paths that start below u, and obviously

P(Mt ≥ u) = P
(
X(0) ≥ u

) + P
(
X(0) < u

)
· P

(
Tu ≤ t | X(0) < u

)
= P

(
X(0) ≥ u

) + P
(
X(0) < u

)
·
∫ t

0
f̃Tu(s)ds.

The same inclusion-exclusion arguments that lead to
the alternating bounds (8) will lead to bounds for the
density f̃Tu(t) in terms of the intensities (7), a fact we
will use later.

3.6 Numerical Aspects on Rice Series for
Maximum and First Upcrossing

Formula (5) contains truncated moments of deriva-
tives in the conditional Gaussian distribution, condi-
tioned on the process values at the selected time points,
and on the starting value X(0) = x < u. Indeed, these
moment can be expressed as functions of conditional
expectations and covariances; Rosenbaum (1961) gives
the explicit expression for bivariate normal variables,
Kan and Robotti (2017) give an overview of recursion
formulas for general dimension and a reference to ef-
ficient software. We describe how to calculate the first
three terms in the Rice series by exact truncated mo-
ments. Azaïs and Wschebor (2009) refer to explicit
expressions for the first two terms given in Cierco-
Ayrolles, Croquette and Delmas (2003) but use Monte-
Carlo simulation for the third.

To evaluate (6) we compute the intensity, condi-
tioned on X(0) = x,

ν̃m(t;x) = E

[
m∏

k=1

X′(tk)+|

X(0) = x,X(t1) = · · ·X(tm) = u

]
· fX(t1),...,X(tm)|X(0)=x(u, . . . , u),

(9)

before we integrate over [0, t]m and take the average
over X(0) = x < u.

We express the first three expectations,

(10)

E
[
X′(t1)+|X(0) = x,X(t1) = u

]
,

E
[
X′(t1)+X′(t2)+|X(0) = x,

X(t1) = X(t2) = u
]
,

E
[
X′(t1)+X′(t2)+X′(t3)+|X(0) = x,

X(t1) = X(t2) = X(t3) = u
]
,

as follows.
With y+ = max(0, y), the moments E(Y+

1 ),
E(Y+

1 Y+
2 ), and E(Y+

1 Y+
2 Y+

3 ) for Gaussian variables
can be expressed by means of functions, ψ1, ψ2, and
ψ3. The first two are

ψ1(y) = φ(y) + y�(y),

ψ2(y1, y2, ρ) = (y1y2 + ρ)�2(y1, y2;ρ)

+ y2φ(y1)�(w2·1)
+ y1φ(y2)�(w1·2)
+ (

1 − ρ2)
φ2(y1, y2;ρ),

where φ,φ1 and �,�2 are the standard uni- and bi-
variate, with correlation ρ, normal densities and distri-
bution functions, and wi·j = (yi − ρyj )/(1 − ρ2)1/2.
The third function, ψ3, has a similar structure as ψ2
but the expression is lengthy and we give it in the ap-
pendix, (21).

FACT 5. For Gaussian variables Y1, Y2, Y3 with
mean m = (m1,m2,m2), variances (s2

1 , s2
2 , s2

3), covari-
ance matrix R = (Cov(Yi, Yj )), and correlation matrix
ρ = (Corr(Yi, Yj )),

E
(
Y+

1

) = �1(m1, s1) := sψ1(m/s),

E
(
Y+

1 Y+
2

) = �2(m,R)

:= s1s2ψ2(m1/s1,m2/s2;ρ),(11)

E
(
Y+

1 Y+
2 Y+

3

) = �3(m,R)

:= s1s2s3ψ3(m1/s1,m2/s2,m3/s3;ρ).

We express the truncated expectations in (10) in
terms of the �-functions. We need the joint normal dis-
tribution of derivatives X′(s) and process values X(t),
with Cov(X′(s),X(t)) = ∂

∂s
r(s, t) and Cov(X′(s),

X′(t)) = ∂2

∂s∂t
r(s, t).

To simplify notation we use mk
2·1,Rk

2·1 to denote
the conditional mean and covariance matrix for deriva-
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tives, given process values:

X′(t)|X(0) = x,

X(t) = u∼N1
(
m1

2·1,R1
2·1

)
,(

X′(s),X′(t)
)|X(0) = x,(

X(s),X(t)
) = (u,u)

(12)
∼ N2

(
m2

2·1,R2
2·1

)
,(

X′(r),X′(s),X′(t)
)|X(0) = x,(

X(r),X(s),X(t)
) = (u,u,u)

∼ N3
(
m3

2·1,R3
2·1

)
.

FACT 6. The conditional truncated moments (10)
are given by the functions �k(m

k
2·1,Rk

2·1) in (11).

Finally, the factorial moments and intensities have to
be evaluated by numerical integration, for example, as

α̃m(t)

=
∫ u

x=−∞
fX(0)(x)

[∫
[0,t]m

�m

(
mm

2·1,Rm
2·1

)
· fX(t1),...,X(tm)|X(0)=x(u, . . . , u)dt1 . . . dtm

]
dx.

REMARK 1. Note that all normal distributions in-
volved in (9)–(12) are conditional on X(0) = x. This
means that mean values and covariances for the in-
volved X(tk),X

′(tk) are conditioned on X(0) = x. For
example, if the unconditioned process is stationary
Gaussian with mean 0 and covariance function r(t),

r(0) = λ0,

(13)

E
[
X(t) | X(0) = x

]
= xr(t)/λ0,

Cov
[
X(s),X(t)

] | X(0) = x]
= r(s − t) − r(s)r(t)/λ0,

Cov
[
X′(s),X′(t) | X(0) = x

]
= −r ′′(s − t) − r ′(s)r ′(t)/λ0.

3.7 How Efficient Is the Rice Method?

How efficient is the moment-based Rice method for
maximum and first crossing, compared to the exact
method, based on numerical integration? The answer
depends on the character of the covariance function and
on the length of the interval. We shall illustrate this on
the two Gaussian processes with “sinc” and “Gaussian”
covariance, and compare with the examples in Azaïs
and Wschebor (2009), Chapter 5.

We use one, two, and three terms in the Rice approx-
imation of the density for first upcrossing, and compare
with simulations and with the density derived by RIND.
It should be noted, however, that Azaïs and Wschebor
(2009) use the unconditional α3(t), without the initial
condition X(0) < u, and that it is computed by simula-
tion in their work, while we integrate to get α̃3(t).

Figure 4, left diagram, shows Rice approximations
in Gaussian white noise for the conditional density of
first upcrossing time of level u = 1 when X(0) < u,
and the RIND pdf f̃Tu(t), together with histogram for
simulated data. The latter two agree for the entire in-
terval [0,40]. The oscillating first-order approximation

FIG. 4. Comparison between Rice approximations and exact pdf for time to first upcrossing by Gaussian process. Left: Gaussian low-fre-
quency white noise (“sinc” covariance WN) that starts below level u = 1. Right: Gaussian process with “Gaussian” covariance (AW-1) that
starts below u = 0. The RIND pdf agrees with simulated histogram in both cases.
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is correct for t ≤ 3, and the second-order for t ≤ 7, and
both are computed in reasonable time. The 3rd order
approximation takes considerable time and is correct
for t < 12. One can observe that these approximations
fail to work after the respective local minima in the co-
variance function; see Figure 17 in Appendix A.

Figure 4, right diagram, shows the result for a Gaus-
sian process with Gaussian covariance, AW-1 in Fig-
ure 17. Here, the Rice method gives almost correct
results for time up to t = 1.5,4.5,7.5, for the three
approximations, respectively. The RIND method gives
entirely correct result.

A direct comparison with Azaïs and Wschebor
(2009), Table 5.1, is obtained by integrating the den-
sities in Figure 4 to get approximations of P(Mt ≥ u)

for different interval lengths t ,

P(Mt ≥ u) = P
(
X(0) ≥ u

)
+ P

(
X(0) < u

) ×
∫ t

0
f̃Tu(s)ds.

The result is seen in Figure 5 for the “sinc” and “Gaus-
sian” cases in Figure 4. As anticipated in Azaïs and
Wschebor (2009), page 151, the third-order Rice ap-
proximation gives somewhat better approximation than
in that work, since we use the full initial condition
X(0) < u.

The conclusion is that the Rice approximations work
for moderate interval lengths, depending on the covari-
ance function, but that the computational cost is high.
Direct integration or exact simulation from the covari-
ance function are fast and more generally applicable.

4. LENGTH OF EXCURSIONS

The statistical problem of zero-crossing distance in
Gaussian noise was one of the main motivations behind
Rice’s analysis (Rice; 1944, 1945), and it was the main
topic of research in the early years. Longuet-Higgins
(1962, 1963) gave an authoritative and complete ac-
count of the knowledge at the time, comparing many
alternatives to the Rice series, including new estimates
of the distribution for short intervals. Wong (1966) de-
rived the only known, nontrivial, zero crossing distri-
bution for a differentiable Gaussian process.

Crossing intervals have remained an issue in physi-
cal and engineering applications, often generalized to
length of excursions over a fixed or variable level.
Estrade, Iribarren and Kratz (2012) give a theoretical
overview, with many references, from a material sci-
ence perspective, and discuss Rice series versus numer-
ical integration alternatives. Most applied publications
in geostatistics, material science, physics, and telecom-
munication use Rice series; see, for example, Smith,
Hopcraft and Jakeman (2008), Brainina (2013) for the
type of problems that appear. We first describe the anal-
ogy between first crossing distribution and the excur-
sion distribution, and then we give examples for dif-
ferent types of covariance functions. At the end of the
section we discuss the dependence between successive
intervals and present a numerical exact solution.

4.1 Comparison Between First Upcrossing and
Excursion Problems

The excursion length problem for a stationary Gaus-
sian process has a striking similarity with the first

FIG. 5. Comparison between Rice approximations and exact P(Mt > u). Left: Gaussian low-frequency white noise (“sinc” covariance
WN), u = 1. Right: Gaussian process with “Gaussian” covariance (AW-1), u = 0. The RIND curves agree with simulation in both cases.
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FIG. 6. Upper diagram illustrates the “first upcrossing time” for
a process that starts at a random ξ < u; ξ is truncated normal.
The Rice method and the exact method both put restrictions on the
dashed curve. Lower diagram illustrates the “excursion length den-
sity” for a process that has an upcrossing at a time Tk , selected
among all upcrossings; the random slope ζ at the upcrossing has a
Rayleigh distribution (Kac and Slepian, 1959).

crossing problem in Section 3, and one can use the
same Rice series and Gaussian integration routines to
calculate the distributions, with just one important dif-
ference: the choice of initial condition, illustrated in
Figure 6.

For the “first upcrossing density”, illustrated in the
upper diagram in Figure 6, we compute the intensity
of an upcrossing at T = t , under restrictions on the
process from a fixed starting point, 0, chosen inde-
pendently of the process. For the Rice series, restric-
tions are placed on the number of additional upcross-
ings, 0,1,2, between 0 and t . In the exact integration
method, the restriction requires that the process stays
below the level in the entire interval. The curve in the
diagram is a realization of a nonstationary Gaussian
process with mean and covariance function (13), that
starts at the randomly selected X(0) = ξ < u; obvi-
ously ξ has an upper truncated Gaussian distribution.

For the “excursion length density”, illustrated in
the lower diagram, we shall compute the intensity of
a downcrossing a time T = t after an upcrossing at
time Tk . The restrictions will be almost the same as
in the “first upcrossing case”, but the choice of initial
point is different, it is a point of upcrossing. The dis-
tribution we seek is what we observe, in the long run,
if we identify all u-upcrossings in an increasing time
interval. Kac and Slepian (1959) proved that the em-

pirical excursion distribution approaches the Rice for-
mulation if the process is ergodic.

4.2 Rice Bounds and Gaussian Integrals for
Excursion Length Pdf

The Rice bounds for the excursion length density are
built on the mth-order downcrossing intensities, writ-
ing X(t) = u,

ν̃m(t)

= E

[
X′(0)+

m∏
k=1

X′(tk)−|X(0) = u,

X(t) = u

]
· fX(0),X(t1),...,X(tm)(u,u, . . . , u)dx

(14)

=
∫ ∞

0
zfX(0),X′(0)(u, z)

· E

[
m∏

k=1

X′(tk)+|X(0) = u,

X′(0) = z,X(t) = u

]
· fX(t1),...,X(tm)|X(0)=u,X′(0)=z(u, . . . , u)dz.

To obtain the exact crossing intensity, we supple-
ment (14) with the indicator

1+
u (X, t) = 1

{
X(s) > u for 0 < s < t

}
,

and get the exact density expression, when normalizing
by dividing by the upcrossing intensity ν+

u (cf. Rychlik
(1987a) and Podgórski, Rychlik and Machado (2000),
equation 9),

(15)

fT (t) = 1

ν+
u

E
[
1+
u (X, t)X′(0)+X′(t)−|

X(0) = X(t) = u
]
fX(0),X(t)(u,u)

=
∫ ∞

0

z

λ2
e−z2/2λ2E

[
1+
u (X, t)X′(t)−|

X(0) = X(t) = u,X′(0) = z
]

· fX(0),X(t),X′(0)(u,u, z)dz.

The infinite-dimensional expectation in either of the
expressions (15) has to be approximated by a finite-
dimensional one. The routine RIND, that we used in
Section 3 implemented in the wave analysis package
Wafo (WAFO-group, 2017a; WAFO-group, 2017b),
does that to a high degree of accuracy; see Section 4.4.
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4.3 Slepian Models

The integration over z in (15) represents an averag-
ing over the initial random slope ζ at the start of the
excursion; see Figure 6. As shown by Kac and Slepian
(1959) the derivative at a generic mean level upcross-
ing of a stationary Gaussian process has a Rayleigh dis-
tribution, with λ2 = V[X(t)],

fζ (z) = z

λ2
e−z2/2λ2, z ≥ 0.

Slepian (1963) later derived what he called “the con-
ditional process x̂(t)” for the process after a zero up-
crossing. We present the model Xu(t) after upcrossings
of a general level u, and allow a nonstandardized vari-
ance, λ0 = V[X(t)].

For a stationary ergodic Gaussian process X(t) with
mean zero, the model for X(tk + t), conditioned on an
upcrossing of level u at tk , is

Xu(t) = ur(t)/λ0 − ζ r ′(t)/λ2 + �(t),

where ur(t)/λ0 − ζ r ′(t)/λ2 is a regression on X(tk) =
u,X′(tk) = ζ , and �(t) is a nonstationary zero mean
Gaussian residual process, independent of ζ , with co-
variance function (cf. the conditional covariance in
(13))

C(s, t) = r(t − s) − r(s)r(t)/λ0 − r ′(s)r ′(t)/λ2.

The interpretation of the model is as the limit of the
empirical distribution of the process X(tk + t) observed
after all upcrossings tk ∈ [0,∞], that is, “the long run
distribution”.

Slepian (1963) also derived a doubly conditioned
model for a process with upcrossing at tk and down-
crossing at tk + t . Crossing conditioned models of this
and similar types are named “Slepian models”; see
Leadbetter, Lindgren and Rootzén (1983), Chapter 10.

It should be noted that Slepian type models can be
formulated also for nonstationary Gaussian processes,
even if the interpretation is not the long run sense but in
Kac & Slepian’s “horizontal window” sense. Gadrich
and Adler (1993) give a general treatment for cross-
ings and local maxima. Slepian’s doubly conditioned
model is another example. Still other types of nonsta-
tionary Slepian models were used by Grigoriu (1989)
and Lazarov and Ditlevsen (2005), in reliability appli-
cations where both the level and the process character-
istics change with each occurred crossing. Abrahams
(1982), inspired by Wong (1966), found an explicit ex-
pression for the crossing problem for a special type
of nonstationary Gaussian process. Podgórski, Rychlik

and Wallin (2015) used a Slepian model to describe ve-
hicle movements on a non-Gaussian road. Gradient in-
formation in Gaussian processes regression is still an-
other example (Prüher and Särkkä, 2016).

4.4 Examples

We give examples of crossing intervals for regular
Gaussian processes with twice differentiable sample
paths, and whose covariance functions have an expan-
sion

r(t) = 1 − λ2t
2/2 + λ4t

4/4!
+ o

(|t |4+ε), t → 0.
(16)

Longuet-Higgins (1962) showed that for this type
of processes, the zero-crossing distance density ap-
proaches 0 at the origin. For irregular processes, like
the linear Gaussian oscillator, with a nonvanishing
third-order term, C|t |3/3! in (16), the density has a
nonzero limit at the origin (Longuet-Higgins, 1963).

The excursion length distribution can take many
different shapes, depending on the covariance func-
tion/spectrum and on the level, and it can not be fit into
any standard form. We illustrate the variety of shapes
on three processes from the list in Appendix A: the
low-frequency white noise (WN) process, the ocean
Jonswap wave spectrum, and the rational (AW-4) spec-
trum from Azaïs and Wschebor (2009).

We compute Rice series of first- and second-order
and “exact” distributions by means of the Wafo rou-
tine spec2tpdf for the excursion length after upcross-
ings of u = −1,0,1,2. The numerical results are com-
pared with Monte Carlo generated excursion lengths,
observed in simulated trajectories, Fourier simulated in
Wafo from the spectral density. In some examples, we
also compute the third-order Rice approximation. The
computational cost of this is high and nothing is gained
compared to the Wafo results.

Our main interest is the distribution of excursions
above a nonnegative level. Upcrossings of a negative
level have the same statistical properties as downcross-
ings of the corresponding positive level and will behave
very differently from upcrossings of a positive level.
As will be seen, the Rice method does not deal prop-
erly with negative levels, while the Wafo method gives
good results for all covariances and levels, at a moder-
ate or low computational cost.

The low-frequency white noise is a standard exam-
ple with slowly decaying oscillating covariance func-
tion, r(t) = sin t

t
. This oscillation implies a similar os-

cillating density function which is most pronounced for
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excursions over low negative thresholds. The Jonswap
process is the most regular of the studied processes and
can be easily handled by the Wafo routine.

The processes with nonoscillating covariance are
hard to handle for u = −1, and the second-order Rice
approximation fails for u = −1,0 and gives good re-
sults for u = 1,2. Wafo gives the correct distribution
for all levels. When Wafo and Rice agree, the former is
by far the faster routine.

4.4.1 Low-frequency white noise (WN). Figure 7
and Table 5 illustrate excursion length distributions for
the WN-process. Most notable is the difference be-
tween excursions above nonnegative and a negative
level, which is equivalent to downcrossings of a posi-

tive level. Excursions above u = −1 have a peak value
about t = 2.5 with a long and oscillating tail, extend-
ing beyond T = 40. These oscillations have been the
object of many experimental studies in communica-
tion theory, for example, Mimaki, Tanabe and Wolf
(1981). The second-order Rice approximation ends be-
fore t = 14, while the Wafo pdf’s catch the oscillations
correctly, with reasonable computing time.

Excursion pdf’s for nonnegative levels are more ac-
cessible. For u = 0 the computation time for second-
order Rice approximation is much larger than that
for Wafo, and the distribution ends before t = 8. The
Wafo pdf catches the long tail correctly. For u = 1 the
second-order Rice curve agrees with the Wafo curve,

FIG. 7. Excursion length densities for low-frequency white noise: Rice series approximations (first order, dotted; second order, dash-dotted;
and third order, dashed) and “exact” Wafo pdf (solid) for excursions over levels u = −1,0,1,2, compared with simulated histograms.
Parameters from Table 5.
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and for u = 2 even the first-order Rice curve gives the
correct distribution.

For u = 0,1,2 the time steps used for the two meth-
ods are the same; Table 5. The execution time for the
Rice series is almost the same for the three levels.
This is due to the nonadapting straightforward inte-
gration method used in the program. The Wafo routine
spec2tpdf adapts to the complexity of the correlation
function, and is very fast.

For levels u = −1,0 we also computed the third-
order Rice term for a few time points to get a Rice
upper limit to the density. The results are given as the
dashed curve in the upper two plots in Figure 7. For
u = −1 the improvement over the second-order ap-
proximation is small, while for u = 0 the third-order
approximation is correct up to time t = 12. The com-

putation time is very large, and the Wafo routine should
be preferred.

4.4.2 Jonswap spectrum, oscillating covariance
function. We use the Wafo standard Jonswap spectrum
with significant waveheight Hs = 4σX = 7 m and peak
period Tp = 11 s and normalize it to λ0 = λ2 = 1.
Its covariance function is the most oscillating one of
the studied processes. The Wafo routine handles even
u = −1 within reasonable time. The second-order Rice
series ends before t = 17 for u = −1 and it is also too
short for u = 0. For u = 1,2, the second-order Rice
approximation works fine, and for u = 2 also the first
order gives the correct result. Figures and data in Fig-
ure 8 and Table 6. Note that all methods find the small
bump in the pdf for t < 2 when u = −1.

FIG. 8. Excursion length densities for Jonswap process. Parameters from Table 6.
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FIG. 9. Excursion length densities for covariance function AW-4. Parameters from Table 7.

4.4.3 Rational spectrum, AW-4, decreasing covari-
ance function. The rational spectrum AW-4 is rather
simple to solve with Wafo. For u = −1,0, the seocnd-
order Rice approximations end too early, before t = 12
and t = 7, respectively, while the Wafo pdf is correct
and fast for all levels. For u = 2 also the second-order
Rice pdf is correct. The third-order series diverges
quickly. Figures and data in Figure 9 and Table 7.

4.5 Joint Distribution of Successive Zero-Crossing
Distances

The previous section dealt with the marginal distri-
bution of individual excursion lengths. A problem of
considerable practical interest is the joint distribution
of successive crossing intervals, in particular the de-
gree of dependence between crossing intervals of the

mean level. We quote from Estrade, Iribarren and Kratz
(2012) on a study of porous media:

So the dependence between the chord-
lengths (= excursions) remains an issue.
Indeed, on one hand de Maré (1974) and
Rychlik (1987b) proved that, in the station-
ary Gaussian case, the independence as-
sumption . . . fails . . . . On the other hand in
the physics literature, the chord-length inde-
pendence is generally assumed, . . . , where
one speaks of Independent Interval Approx-
imation, but with no precision on the con-
cerned probability measure.

In fact, already Longuet-Higgins (1962) proved that
consecutive zero-crossing distances cannot be indepen-
dent. We refer to Mimaki (1973) and Mimaki, Myoken
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FIG. 10. Approximation of joint density for successive crossing
intervals (Rychlik, 1987b).

and Kawabata (1985) for early experiments on interval
dependence and its relation to spectral width, from a
physical signal perspective.

The exact solution to the bivariate dependence of
successive crossing intervals for a stationary Gaussian
process has been known since 2000 when Podgórski,
Rychlik and Machado (2000) published the Durbin
type solution, and applied it in an ocean wave context.
The solution has remained unnoticed outside the ocean
science community. In physics literature the indepen-
dence approximation has remained a popular theme
even if the dependence for non-Markovian Gaussian
processes is acknowledged, Sire (2008).

Wilson and Hopcraft (2017) make a systematic sim-
ulation study of the dependence for special class of cor-
relation function, and touch upon the possibility to ap-
proximate the interval sequence by a Markov chain, an
idea that goes back to McFadden (1958) and Slepian
(1962). They conclude, as does McFadden, that suc-
cessive intervals can be dependent even if their correla-
tion is almost zero, and that the Markov approximation
should be investigated further.

To study the Markov approximation in detail one
needs the transition kernel, that is, the conditional dis-
tribution of the next interval length. We can now, by
the aid of the RIND function, give an exact numerical
solution to that problem. It is based on a generalization
of Durbin’s formula, formulated by Podgórski, Rychlik

and Machado (2000), equation 10, with a formal proof
in Estrade, Iribarren and Kratz (2012):

fT1,T2(t1, t2)

= fX(−t1),X(0),X(t2)(0,0,0)

ν+
0

· E
[{X(−t1,0) < 0 < X(0,t2)}

· ∣∣X′−t1
X′

0X
′
t2

∣∣|X−t1,0,t2 = 0,0,0
]
.

(17)

The density (17) for two successive zero-crossing
distances, T1, T2, can be computed by RIND as de-
scribed in Appendix D with moderate computing time,
which gives excellent agreement with simulated data.
Figure 11 shows the exact pdf for low-frequency white
noise WN, Jonswap spectrum, shifted Gaussian spec-
trum SG-3, and the rational AW-4 spectrum. The level
curves in the theoretical pdf’s are chosen to include
10,30, . . . ,99,99.9% of the distribution, and they are
compared to level curves in a kernel estimated pdf,
based on more than 600,000 spectral simulated waves.
The pdf for the parametric Jonswap wave spectrum
is similar to that obtained in Podgórski, Rychlik and
Machado (2000) for an empirical ocean wave spec-
trum. Figure 11, upper left, should be compared with
Rychlik’s primitive approximation in Figure 10 for the
joint pdf for low frequency white noise.

Despite the great difference between the four distri-
butions the agreement between computed distributions
and simulations is striking. It is evident that the succes-
sive zero crossing distribution is a very complex type of
distribution that hardly lets itself be described in sim-
ple statistical terms. It is also evident that two succes-
sive zero crossings intervals are dependent, contrary to
the Independent Interval Approximation. The correla-
tion coefficient is 0.01 for the two broad-banded WN
and AW-4 spectra, and 0.42 and 0.20 for the narrow
Jonswap and SG-3, respectively.

The conditional density for any zero-crossing dis-
tance given the length of the preceding interval can be
obtained from (17). The result shows clear dependence
for the Jonswap spectrum, moderate dependence for
the SG-3 spectrum, and almost independence for the
WN and the AW-4 spectra.

REMARK 2. The RIND approach to successive
zero crossing intervals is not limited to the bivariate
distribution. The trivariate pdf is obtained similarly to
(17) by adding the condition that Xt2+t3 = 0 and in-
cluding |X′

t2+t3
|{Xt2,t2+t3 < 0} in the conditional ex-

pectation. Since the RIND function is linear in the num-
ber of variables (see Appendix D.2), this will not in-
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FIG. 11. Simultaneous crest/trough period pdf for low-frequency white noise (WN), Jonswap spectrum, shifted Gaussian spectrum (SG-3),
and rational AW-4 spectrum, (solid) compared with simulated pdf based on more than 600,000 waves.

crease the complexity of the integration, only the com-
putation time.

5. MAX–MIN PERIOD AND AMPLITUDE

5.1 The Problem and Some of Its History

Rice’s treatises (1944, 1945) on random noise as a
stationary Gaussian process inspired much research on
stochastic models for ocean waves. StDenis and Pier-
son (1953) and Longuet-Higgins (1957) wrote monu-
mental studies on the motion of ships on a “confused
sea”, and the statistical properties of a random surface,
while Cartwright and Longuet-Higgins (1956) elab-
orated on Rice’s results on local maxima. The Rice
series type approximations for interval distributions
(wave length or wave period) were studied in detail by
Longuet-Higgins (1962).

Solutions were also sought to the more complex
problem of joint period and amplitude distribution
for individual waves, an important distribution in sea-
keeping studies. A partial solution for general spec-
tral shape, based on a Rice series for an extended
Slepian model (cf. Section 4.3) was given in Lindgren
(1972). For narrow band spectrum an explicit expres-
sion for the joint density was derived by Longuet-
Higgins (1975, 1983). Other explicit approximations
were derived by Cavanié, Arhan and Ezraty (1976)
and Lindgren and Rychlik (1982). The work by Azaïs,
León and Wschebor (2011) contains some interesting
recent examples.

5.2 The Exact Period/Amplitude Distribution

In this section let us, together with Podgórski, Rych-
lik and Machado (2000), be inspired by the exact cross-
ing interval density (15) in Section 4.2 to produce an
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FIG. 12. Three realizations of pairs of local maxima and minima.

exact formula for the joint distribution of the height of a
local maximum, the following local minimum, and the
time interval in-between, here called the “half-period”,
illustrated in Figure 12:

X
(
tmax) = Xmax, X

(
tmin) = Xmin,

tmax − tmin = T .

The distribution is best formulated as a combina-
tion of the density of the half-period T and the con-
ditional distribution function of the maximum = Xmax

and minimum = Xmin, given T = t . Define the indica-
tor function

1(t, x1, x2) = 1
(
X′(s) < 0,0 < s < t, and

X(0) ≤ x1 and X(t) ≤ x2
)
.

Then the joint distribution can be expressed as

fT (t) × P
(
Xmax ≤ x1,X

min ≤ x2|T = t
)

= 1

νmax E
[
1(t, x1, x2)X

′′(0)−X′′(t)+|(18)

X′(0) = X′(t) = 0
]
fX′(0),X′(t)(0,0),

where νmax is the intensity of local maxima, that is, of
zero downcrossings by the derivative. The condition-
ing, X′(0) = X′(t) = 0, indicates local extremes and
the second derivatives, X′′(0)−,X′′(t)+, specify to lo-
cal maximum at 0 and minimum at t . The indicator
qualifies the height of the extremes and the absence of
further local extremes between 0 and t .

We will use the Wafo routine spec2mmtpdf
(WAFO-group, 2017a), to accurately compute the
three-dimensional density fM,m,T (x1, x2, t), corre-
sponding to the distribution (18), of the height of local

maximum, M , the following minimum, m, and the time
T in-between. The routine calls the RIND function, Ap-
pendix D, to calculate the conditional expectations.

Integrating over x1 − x2 = h one then obtains the
joint amplitude, Xmax −Xmin = H , and period, T , dis-
tribution. Conditioning on the height of the maximum,
Xmax = u, one also can see how the joint distribution
of Hu = u − Xmin and T depends on u. More exam-
ples of cycle distributions can be found in Lindgren
and Broberg (2004).

5.3 Period and Amplitude by Rice/Slepian Type
Arguments

Lindgren (1972) used a combination of Rice type ar-
guments and Slepian models to approximate the max–
min period and amplitude distribution for Gaussian
processes with medium width spectrum. The derivation
proceeds in the following steps.

Step 1: Find a second-order Rice pdf f(2)(t) of the
time T from a local maximum to the next local min-
imum, under the condition that the maximum has
height u. Since T is actually the length of an excur-
sion below 0 by the process derivative the approxi-
mation f(2)(t) can be found by the technique in Sec-
tion 4.2 applied to the derivative with the extra con-
dition that X(0) = u.

Step 2: Find the joint distribution of the derivative ζ1
at a local maximum and ζ2 at a local minimum at
time τ later, without any assumption of intermediate
local extremes.

Step 3: Construct a Slepian model (Section 4.3),

Xu,τ (t) = uAτ (t) − ζ1Bτ,1(t) + ζ2Bτ,2(t) + �τ(t)

with regression on the height u of the maximum and
the derivatives at the maximum and minimum.

Step 4: Compute the distribution of Xu,τ (τ ) as the
convolution of the normal distribution of the resid-
ual �τ(τ) and the regression uAτ (t) − ζ1Bτ,1(t) +
ζ2Bτ,2(t); see Appendix B.2 for how to do it.

5.4 Examples

We illustrate the exact method to compute the max–
min period and amplitude distribution and compare
with the Rice method, conditioned on the maximum
height.

5.4.1 Low-frequency white noise. The low-
frequency white noise has a moderately oscillating co-
variance function. The height-conditioned max–min
amplitude and period distribution hints at a mixture of a
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FIG. 13. Max–min period and amplitude for low-frequency white noise, conditioned on max-height = 0,1,2. Solid = Wafo pdf, dashed =
estimated pdf based on almost 100,000 period-amplitude pairs, dotted = Rice series.

majority of short waves and occasional longer waves;
Figure 13. The Rice method catches the short waves
but cannot identify the longer ones. Figure 14 illus-
trates the accuracy of the exact algorithm for the un-
conditioned pdf. The level curves in the theoretic den-
sity are almost identical to the empirical curves, based
on almost 2.8 million cycles.

FIG. 14. Unconditional max–min amplitude and period density
for low-frequency white noise compared with empirical pdf from
2.8 million waves.

5.4.2 Jonswap ocean wave spectrum. The Jonswap
spectrum is a typical ocean wave spectrum and the
conditional max–min amplitude and period distribu-
tions exhibit the common regular wave shape. The
Rice method only catches the central part of the dis-
tribution. Figures 15–16 illustrate the excellent agree-
ment between the Wafo computed densities and simu-
lations.

6. CONCLUSIONS

Rice’s formula and in- and exclusion series approxi-
mations for level crossing distributions are well known
and continue to find new applications, but the scope
is limited, both with respect to the type of problems
that can be attacked, and to the range of model pa-
rameters. Advances in computational statistics and
high-dimensional numerical quadrature since the early
1990s have made it possible to construct fast and ac-
curate numerical routines for many more crossing re-
lated characteristics of a stationary normal process, for
which only computer capacity and time define the lim-
its.

We have compared Rice’s approximations and
quadrature routines for three types of problems. The
distribution of the maximum of a Gaussian process
over a finite interval, and the time to first curve cross-
ing, have general statistical interest. We have studied
the routines MGP, designed for the distribution of max-
imum, and the general purpose RIND algorithm, fo-
cusing on accuracy, computation complexity and time.
Another type of problems concern the sequence of
crossings and local extremes. The characteristics stud-
ied have been length of excursions over fixed lev-
els, both the marginal distribution and the notoriously
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FIG. 15. Max–min period and amplitude for ocean wave spectrum Jonswap, conditioned on max-height = 0,1,2. Solid = Wafo pdf, dashed
= estimated pdf, dotted = Rice series.

difficult dependence between successive crossing dis-
tances. The third type is the joint distribution of cycle
period and amplitude.

The RIND method shows excellent agreement with
simulated data for all three problem types and with rea-
sonable, in most cases very short, execution time. The
Rice method works well only for approximation of the
tail of the maximum distribution, and for the length of
excursions over high levels.

FIG. 16. Unconditional max–min amplitude and period density
for Jonswap spectrum compared with empirical pdf from 2.9 mil-
lion waves

APPENDIX A: THE PROCESSES, COVARIANCE
AND SPECTRA

The processes in the examples have very different
spectral characteristics, when normalized to have λ0 =
λ2 = 1, the average length of an excursion above the
mean level is π for all the studied processes. Three pro-
cesses have oscillating covariance functions and two
have strictly decreasing covariance functions. The co-
variances AW-1, AW-4, and WN listed in Table 4 were
used in Azaïs and Wschebor (2009), Chapter 5, WN
also in Lindgren (1972). The shifted Gaussian spec-
trum SG-3 is an example of a moderately oscillating
process.

The Jonswap spectrum is a realistic standard ocean
wave spectrum. The explicit form is not important
here; it can be found, for example, in Lindgren (2013),
equation 7.33, with parameters from the WAFO-group
(2017a) package.

The table gives one-sided un-normalized spectra,
while the covariance functions are given in normal-
ized form with λ0 = λ2 = 1. The table also gives

√
λ4,

which for normalized spectra is equal to the mean num-
ber of local maxima per mean level upcrossing. The
covariances and normalized spectra are shown in Fig-
ure 17.

APPENDIX B: SOME TECHNICAL DETAILS

B.1 Truncated Multivariate Normal Moments in
Section 3.6

Let Y1, Y2, Y3 be correlated normal variables with
mean μ1,μ2,μ3, variance one, and correlation matrix
R = (Corr(Yi, Yj )) = (ρij ), and define the following
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TABLE 4
Covariance functions and spectra, (“WN” = low-frequency white noise, “SG-3” = shifted Gaussian, “AW-1” and “AW-4” spectra from

Azaïs and Wschebor, 2009)

Process Covariance One-sided spectrum
√

λ4

Nonoscillating:
“AW-1” r1(t) = exp(−t2/2) S1(ω) = exp(−ω2/2) 1.732
“AW-4” r4(t) = exp(−|t |√5) × P4 S4(ω) = 1

(ω2+5)4 2.236

P4 = 1 + √
5|t | + 2t2 + (

√
5/3)|t |3

Oscillating:

“WN” rwn(t) = sin
√

3t√
3t

Swn(ω) = 1{0 < ω <
√

3} 1.342

“Jonswap” rJ (t) SJ (ω) = Jonswap(ω) 1.428

“SG-3” rsg(t) = cos( 3t√
10

) exp(−t2/20) Ssg(ω) = √
π/5(e−5(ω−ω0)

2 + e−5(ω+ω0)
2
) 1.38

functions (Kan and Robotti, 2017), to be used for trun-
cated moments:

ψ1(y) = φ(y) + y�(y),(19)

ψ2(y1, y2, ρ12) = (y1y2 + ρ12)�2(y1, y2;ρ12)

+ y2φ(y1)�(w2·1)
(20)

+ y1φ(y2)�(w1·2)

+ (
1 − ρ2

12
)
φ2(y1, y2;ρ12),

where wi·j = (yi − ρijyj )/(1 − ρ2
ij )

1/2, and

ψ3(y1, y2, y3;R)

= (μ1μ2μ3 + ρ23μ1 + ρ13μ2 + ρ12μ3)

· �3(μ;R)

+ (μ2μ3 + ρ12ρ13 + ρ23)φ(μ1)

· �2(w2·1,w3·1;ρ23·1)
+ (μ1μ3 + ρ12ρ23 + ρ13)φ(μ2)

FIG. 17. Top row: Nonoscillating and oscillating covariance functions. Bottom row: Normalized spectra for nonoscillating and oscillating
covariance functions.
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· �2(w1·2,w3·2;ρ13·2)(21)

+ (μ1μ2 + ρ13ρ23 + ρ12)φ(μ3)

· �2(w1·3,w2·3;ρ12·3)

+ (
1 − ρ2

12
)
μ3φ2(μ1,μ2;ρ12)�(w3·12)

+ (
1 − ρ2

13
)
μ2φ2(μ1,μ3;ρ13)�(w2·13)

+ (
1 − ρ2

23
)
μ1φ2(μ2,μ3;ρ23)�(w1·23)

+ det(R)φ3(μ;R),

where

wi·jk = (wi·k − ρij ·kwj ·k)/
(
1 − ρ2

ij ·k
)1/2

,

ρij ·k = (ρij − ρikρjk)/
√(

1 − ρ2
ik

)(
1 − ρ2

jk

)
.

B.2 The Distribution of ζ1B1 − ζ2B2 in Step 4,
Page 119

The density of ζ1B1 − ζ2B2 can be expressed explic-
itly in terms of the function ψ1, (19). The density can
be expressed as (for simplicity, m = mτ , T = T 2·1),

cz1z2φ2(z;m,T ), z1, z2 > 0,

with c a generic constant. Normalizing (a1, a2) =
(B1,−B2)/|B|, we get the density by integrating over
the first quadrant 1:

fζ1Bτ,1(τ )−ζ2Bτ,2(τ )(y)
(22)

= c

∫
1∩{a1z1+a2z2=y/|B|}

z1z2φ2(z;m,T )dz.

An orthogonal change of integration, v = Az =
(

a1 a2−a2 a1
)z, z = ATv, with corresponding new random

variable, ν = Aζ with mean n = Am and covariance
matrix C = AT AT, brings the integral (22) on the form

fζ1Bτ,1(τ )−ζ2Bτ,2(τ )(y)

= c

∫
A1∩{v1=y/|B|}

(a1v1 − a2v2)(a2v1 + a1v2)

· φ2(v;n,C)dv(23)

= c

∫
A1∩{v1=y/|B|}

(
b2y

2 + b1yv2 − b0v
2
2
)

· φ2(v;n,C)dv,

where we define b2 = a1a2/|B|2, b1 = (a2
1 − a2

2)/|B|,
b0 = a1a2.

In the integral (23) we can replace the two-
dimensional normal density for ζ by the one-

dimensional conditional normal density for ν2 given
ν1 = y/|B|. It has mean and variance

n2·1 = E
(
ν2|ν1 = y/|B|)

= n2 + C21
(
y/|B| − n1

)
/C11,

σ 2
2·1 = V

(
ν2|ν1 = y/|B|) = C22 − C2

21/C11.

Thus, the density (23) is equal to the normalized sum
of three moments in a normal distribution, truncated
to the interval J = {v2; (y/|B|, v2) ∈ A1} = (j1, j2),
j1 < j2,

fζ1Bτ,1(τ )−ζ2Bτ,2(τ )(y)

= c

∫
J

(
b2y

2 + b1yv2 − b0v
2
2
)

· φ1
(
v2;m2·1, σ 2

2·1
)

dv2.

For easy reference we give the standard recursion
for the truncated moments for a N(μ,σ 2)-distribution
(Kan and Robotti, 2017), with α = (j1 − μ)/σ , β =
(j2 − μ)/σ :∫

J
φ1

(
v;μ,σ 2)

dv

= F 1
0 = �(β) − �(α),∫

J
vφ1

(
v;μ,σ 2)

dv

= F 1
1

= σ
{
μ

(
�(β) − �(α)

) − σ
(
φ(β) − φ(α)

)}
,∫

J
v2φ1

(
v;μ,σ 2)

dv

= F 1
2

= mF 1
1 + σ 2F 1

0 − σ
(
j2φ(β) − j1φ(α)

)
.

APPENDIX C: DATA FOR EXAMPLES IN
SECTION 4.4

Tables 5–7 show interval lengths Tmax and time steps
dt , optional parameters for RIND and execution times
for the system used for the different computations. The
RIND parameter NIT defines which integration rou-
tine that is used, and the parameter SPEED sets the
error limits for the integration; SPEED = 1 is slow-
est and most accurate, SPEED = 9 is the fastest. For
each spectrum, Rice series and RIND were compared
on the same computing system, but different systems
were used for the three spectra, so only relative com-
parisons can be made.
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TABLE 5
Data for excursion length in low-frequency white noise (WN) example

Rice series RIND

u Tmax dt Time (s) Tmax dt NIT SPEED Time (s)

−1 14 0.1 30 40 0.1 −2 2 69
0 9 0.05 65 15 0.05 −2 2 10
1 8 0.04 57 8 0.04 5 5 0.88
2 4 0.02 59 4 0.02 5 5 0.18

APPENDIX D: THE RIND FUNCTION

D.1 The Function

The structure of the restricted first upcrossing inten-
sity (3),

E
[
1u(X, t)X′(t)+|X(t) = u

]
fX(t)(u),(24)

is recurrent in all crossing problems. It contains a
“crossing condition”, X(t) = u, with density fX(t)(u),
for the crossed level, a “bias factor”, X′(t)+, taking
care of the over-representation of large gradients at the
upcrossing, and a “qualifying factor”,

1u(X, t) = 1
{
X(s) ≤ u for 0 ≤ s ≤ t

}
,

for what other conditions need to be satisfied.
For other crossing intensities the precise form of the

factors will be different, but the structure will be the
same. For example, in (17),

E
[{X(−t1,0 < 0 < X(0,t2)}

∣∣X′−t1
X′

0X
′
t2

∣∣|X−t1,0,t2

= 0,0,0
]
fX−t1,0,t2

(0,0,0).

Since the indicator functions define infinite-
dimensional events, the conditional expectations have
to be found by a numerical algorithm, approximating
by finite-dimensional ones.

The RIND function is a MATLAB interface to a set
of algorithms, originally written in Fortran and C++,

for computation of complex expectations like (24) in
high-dimensional normal distributions. Based on ideas
in Rychlik (1987c), further presented in Lindgren and
Rychlik (1991), Rychlik (1992b), Podgórski, Rych-
lik and Machado (2000) designed an early version of
the basic RIND algorithm to systematically extend the
finite-dimensional distributions to obtain an accurate
value of the infinite-dimensional integral.

Brodtkorb (2006) combined the RIND algorithm
with numerical integration methods developed by Genz
(1992, 1993), Genz and Kwong (2000), and others
to an efficient and versatile routine. It is now avail-
able in the wave analysis Wafo project (WAFO-group,
2017a, 2017b), and it is also included in the extreme
value package MAGP by Mercadier (2006a). The Wafo
project comes both in a MATLAB version (WAFO-
group, 2017a, 2017b), and in a Python version (WAFO-
group, 2017b).

The RIND algorithm takes as input means and co-
variances for three groups of multivariate normal vari-
ables. One group consists of the variables to condition
on, Xc = xc, a second group are the derivatives Xd that
define the bias factors, and a third group Xt contains the
variables that have to satisfy an interval condition like
xlo ≤ Xt ≤ xup. Such constraints may also be imposed
on the derivatives. The mean vector and joint covari-
ance matrix for the three groups have to be specified;
see the help text for the routine in the Wafo package.

TABLE 6
Data for excursion length in Jonswap example

Rice series RIND

u Tmax dt Time (s) Tmax dt NIT SPEED Time (s)

−1 17 0.2 8.8 40 0.25 −2 2 51
0 7 0.1 8.3 8 0.05 −2 2 6.2
1 5 0.1 4.7 5 0.1 7 5 0.16
2 4 0.05 7.7 4 0.05 7 5 0.15
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TABLE 7
Data for excursion length in AW-4 example

Rice series RIND

u Tmax dt Time (s) Tmax dt NIT SPEED Time (s)

−1 15 0.1 40 40 0.2 −2 9 3.0
0 8 0.25 1.8 20 0.1 −2 5 4.5
1 8 0.16 4.7 8 0.16 −2 5 1.2
2 5 0.1 4.7 5 0.1 −2 5 1.2

In Section 3 we used RIND directly to compute max-
imum and crossing interval distributions. Another way
to use RIND is to embed it in a problem specific code,
depending of the type of crossing distribution. Exam-
ples of specific crossing routines in the Wafo package
in MATLAB are:

spec2tpdf: computes exceedance length density for
general level,

spec2ttpdf: computes joint density of successive
zero-crossing distances,

spec2thpdf: computes joint density of crest period
and amplitude of wave,

spec2mmtpdf: computes different three-dimensional
distributions related to local maxima and minima,

spec2tapdf: computes conditional and unconditional
max–min amplitude and period pdf (based on
spec2mmtpdf).

D.2 Calling RIND in Matlab Wafo

[E,err,terr,exTime,options] = rind(S,m,Blo,Bup,indI,xc,Nt,options);

E = expectation/density as explained below, size 1 x Nx
err = estimated sampling error, with 99% confidence level

terr = estimated truncation error.
exTime = execution time

S = Covariance matrix of X=[Xt;Xd;Xc]
size Ntdc x Ntdc (Ntdc=Nt+Nd+Nc)

m = the expectation of X=[Xt;Xd;Xc] size N x 1
Blo,Bup = Lower and upper barriers used to compute the integration

limits, Hlo and Hup, respectively, size Mb x Nb
indI = vector of indices to the different barriers in the

indicator function, length NI, where NI = Nb+1
(NB! restriction indI(1)=0, indI(NI)=Nt+Nd )
(default indI = 0:Nt+Nd)

xc = values to condition on (default xc = zeros(0,1))
size Nc x Nx

Nt = size of Xt (default Nt = Ntdc - Nc)
options = rindoptions structure or named parameters with corresponding

values, see rindoptset for details

rind computes multivariate normal expectations, that is,
E[Jacobian*Indicator|Condition ]*f_{Xc}(xc(:,ix))

where
"Indicator" = I{ Hlo(i) < X(i) < Hup(i), i = 1:N_t+N_d }
"Jacobian" = J(X(Nt+1),...,X(Nt+Nd+Nc)), special case is
"Jacobian" = |X(Nt+1)*...*X(Nt+Nd)|=|Xd(1)*Xd(2)..Xd(Nd)|
"condition" = Xc=xc(:,ix), ix=1,...,Nx.
X = [Xt; Xd; Xc], a stochastic vector of Multivariate Gaussian

variables where Xt,Xd and Xc have the length Nt, Nd and Nc,
respectively.

(Recommended limitations Nx,Nt<=100, Nd<=6 and Nc<=10)
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