A short-lived aeolian event during the Early Holocene in southern Norway

Alexanderson, Helena; Henriksen, Mona

2014

Document Version:
Publisher's PDF, also known as Version of record

Link to publication

Citation for published version (APA):

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

- Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
- You may not further distribute the material or use it for any profit-making activity or commercial gain
- You may freely distribute the URL identifying the publication in the public portal

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.
The Starmoen dune field in southern Norway was formed during a single, brief phase of aeolian activity right after the last deglaciation, 11-10 ka ago, as shown by tightly clustered quartz OSL ages and non-migrating dunes with few discordances. Luminescence characteristics depend on sediment type, and incomplete bleaching causes age overestimation for glacifluvial deposits.

Crescentic dunes and dune heaps at Starmoen in the Jømna valley for part of one of Norway’s largest dune fields. The dunes overlie glacifluvial sediments, deposited during the last deglaciation.

Successively steeper beds indicates in-place build-up from a low heap to a dune, rather than a dune that has migrated to its present position, as seen in this example of a ground-penetrating radar (GPR) profile across a dune at Starmoen. This suggests that the dune-forming phase was short and did not allow for much migration.

A fast component dominates the signal, as shown above in comparison with Risø calibration quartz, although the Starmoen quartz is not very bright. The luminescence response to dose continues to grow until ~200 Gy (D, ~55 Gy).

A modern analogue, a small dune forming at a sand pit, shows that the aeolian sand is bleached and can give accurate ages.

Small aliquots show that aeolian samples from Jømna have broad dose distributions and apparent age overestimations, while samples from Starmoen have the expected narrow dose distributions and stratigraphically consistent ages.

Incomplete bleaching of glacifluvial sediments is suggested by broad and skewed small-aliquot dose distributions. Minimum age model (MAM-3) ages yield younger ages than the mean, but still older than expected from the regional deglaciation history and are based on very few aliquots (low-p-value).

Financial support from the Crafoord Foundation and the Norwegian University of Life Sciences. Lund (mona.henriksen@nmbu.no)

Geology

Aeolian and glacifluvial sediments may be sedimentologically very similar, but are distinctly different in their luminescence characteristics. Below are examples of finely laminated aeolian and glacifluvial deposits from Starmoen 3 and Hornmoen bruak, respectively.

IR-tests and preheat plateau tests show that the aeolian samples have no feldspar contamination (mean IR/Bl ratio ≤2%) and could be analysed with preheat/cutheat at 220°/200° or 180°/160°, while most glacifluvial samples suffered from feldspar contamination (IR/Bl 10-34%) and needed preheat/cutheat at 220°/200° or 180°/160°.

Chronology

Quartz OSL ages were determined from the 180-250 μm fraction of 14 samples at the Lund Luminescence Laboratory, Sweden. Both large and small aliquots were measured, using sample-adapted SAR-protocols on a Risø TL/OSL reader DA-20.