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ABSTRACT
With the promise of increased responsiveness and robustness of
the emerging 5G technology, it is suddenly becoming feasible to
deploy latency-sensitive control systems over the cloud via a mobile
network. Even though 5G is herald to give lower latency and jitter
than current mobile networks, the effect of the delay would still be
non-negligible for certain applications.

In this paper we explore and demonstrate the possibility of com-
pensating for the unknown and time-varying latency introduced
by a 5G mobile network for control of a latency-sensitive plant. We
show that the latency from a prototype 5G test bed lacks signifi-
cant short-term correlation, making accurate latency prediction a
difficult task. Further, because of the unknown and time-varying la-
tency our used simple interpolation-based model experiences some
troubling theoretical properties, limiting its usability in real world
environments. Despite this, we give a demonstration of the strategy
which seems to increase robustness in a simulated plant.

CCS CONCEPTS
• Networks → Network performance evaluation; Wireless ac-
cess points, base stations and infrastructure; • Computer systems
organization→ Embedded and cyber-physical systems;
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1 INTRODUCTION
In IoT scenarios there are many potential benefits of extracting con-
trol and decision algorithms from individual agents or plants and
placing them in the cloud. Such benefits include increased available
computational power, decreased cost through the economies of
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Figure 1: Control loop over amobile networkwith controller
C and plant P . Themeasurement at time tk is denoted asy(tk ),
while the control signal is denoted as u(tk ). The total delay
introduced by the mobile network can be split as τk = τ sck +

τ cak where τ sck is the delay between plant-controller and τ cak
between controller-plant.

scale effect as each plant does not have to carry expensive computa-
tional hardware, and better performance due to absolute awareness
between competing agents in the same area.

With the advent of Ultra-Reliable and Low-Latency Communica-
tions (URLLC) 5G [9] there is now a possibility to control latency-
sensitive applications across mobile networks as demonstrated by
Skarin & Tärneberg et al. [10], greatly increasing the flexibility of
IoT solutions in real-world scenarios.

For latency-sensitive or mission-critical control applications, it
is of high importance that the delay between the plant and the con-
troller remains low. By performing deadtime compensation (DTC)
[7] the effects of the latency τ could in theory be mitigated. The
DTC can be performed by predicting the plant measurement τ time
units into the future, and letting the controller act on this predicted
measurement instead.

Over a mobile network the latency will vary with time, and the
entire delay at current cycle k is unfortunately not measurable from
the controllers perspective. This can be seen by considering Figure
1, the delay τ cak between the controller and the plant has simply
not occurred yet. The latency must then also be predicted before
predicting the plant measurement, to know how far into the future
to look.

While control systems over networks and wireless communica-
tions has been extensively studied [3, 8], the advent of 5G creates
new possibilities and challenges for such systems. Although the
case of DTC with latency prediction for control of latency-sensitive
plants under time-variable network delays has been studied in e.g.
[13], the effects from a real 5G link in such systems remains to the
best of our knowledge uncharted.

In this workshop paper we thus aim at examining ways to per-
form latency prediction for DTC on a 5G link and to demonstrate
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Figure 2: The raw data and histogram from the RTT through
the LuMaMi. The histogram has been cropped at 25 ms.

Figure 3: The exponential moving expected value and stan-
dard deviation, calculated with a weight of 0.001.

its usability by extending the environment created by Skarin &
Tärneberg et al. [10]. We evaluate latency data gathered from a
prototype 5G base station and compare suitable latency predictors.
Using these we examine the suitability of a simple, interpolation-
based model for DTC when the delays are time-varying. Finally,
using our implementation we demonstrate a working controller
using DTCwith latency prediction on a simulated, latency-sensitive
plant, the Ball-and-Beam process [11].

2 CHARACTERISTICS OF SYSTEM LATENCY
The Lund Massive MIMO (LuMaMi) antenna system [6] was used
as a prototype 5G base station to capture and examine transmission
latencies. Data was gathered using the well-known command ping
between two computers connected via the 5G link. A sampling time
of 50ms was used to simulate packages sent at a frequency of 20Hz.
The latencies and its histogram are presented in Figure 2 as the
round trip time (RTT) in milliseconds. As can be seen the LuMaMi
has a tendency to generate latency spikes above 50ms.

The latency mean and variance are assumed to be time-varying,
or non-stationary and estimated using the exponential weighted
moving average/variance (EWMA/V) filter [2]. The results are
shown in Figure 3. As can be seen, the mean and variance seems to
at least have a stationary baseline.

We further explore the correlation between latency measure-
ments, also known as the autocorrelation [4], to see whether there
is structure in the signal that can be used to predict further events.
As with the mean/variance the autocorrelation is assumed to be
non-stationary and therefor calculated in small, overlapping bins.
The result can be seen in Figure 4. Here it is clear that the auto-
correlation is non-stationary and for most part lacks significant
correlation. This indicates that it will be difficult to find a predictor
that outperforms a mean value filter.

Based on these results, two latency predictors was considered.
The first is based on our EWMA, the predictor is formed by guessing
on the current estimated mean which could arguably provide a
competitive prediction as the correlation is low.

The second predictor considered is the auto-regressive moving-
average ARMA(p,q) [4] filter, which models the signal output yk at
time k as a linear combination of previous measurements
{yk−1, . . . ,yk−p } and i.i.d. zero-meanGaussian noise {ek , . . . , ek−p },

Figure 4: The autocorrelation for 50 lags computed over bins
of 500 samples, overlapping by 80%.
i.e.

yk + a1yk−1 + · · · + apyk−p = ek + c1ek−1 + · · · + cqek−q .

The coefficientsA = [a1, . . . ,ap ],C = [c1, . . . , cq ] can then be fitted
such that the model output and data are as similar as possible.

However, since the latency exhibits non-stationary behavior, it
is unlikely that the optimal coefficients A,C will be the same for all
time instances. Instead A,C can be fitted on-line using the Kalman
filter [5] with the following state space model [4]

xk+1 = Fkxk +wk wk ∼ N (0,Q) ,

y
(m)

k = Hkxk +vk vk ∼ N (0,R) ,
where the states xk = [Ak , Ck ]

T , the measurement matrix Hk =

[−y
(m)

k−1, . . . ,−y
(m)

k−p , êk−1, . . . , êk−q ], the mean reduced measure-

ments y(m)

k = yk − µ̂k , and the transition matrix Fk = I . The

estimated residual ek can be retrieved as êk = y
(m)

k −Hk x̂k and the
estimated mean µk from the EWMA filter. The choice of Fk as the
identity matrix is based on the fact that we assume no dynamics
of the coefficients A,C but let their values be solely dependent on
the measurements. By experimental tuning the parameters where
chosen as p = q = 2, Q = 1e−6 · I and Rk equal to the variance
estimated by the EWMV.

Both latency predictors were evaluated on the data. The residuals
êk = yk − ŷk are displayed in Figure 5 and the ARMA coefficients
in Figure 6. Here it is clear that the EWMA and ARMA performs
roughly equal, as the histograms are similar. However, by con-
sidering the absolute residuals |rk | the ARMA filter seems to be
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a little better at capturing outliers. The root mean squared error
(RMSE) of the ARMA filter was ≈ 2.8 and for the EWMA ≈ 3.4.
The performance similarity is further enhanced by the fact that the
ARMA-polynomials shown in Figure 6 are often situated around 0,
implying that only little information for inference can be extracted.

3 DTC USING INTERPOLATION
As a crude model of the plant, different interpolation design are
considered. We generate state space representations of the interpo-
lation models by discretizing the n-th order continuous integrator
using the zero-order hold (ZOH) method [12]. The state space for
the n-th order discretized integrator becomes

F (hk ))
(n) =

©­­­­­­«
1 hk

h2
k
2 · · ·

hnk
n!

0 1 hk · · ·
hn−1k
(n−1)!

...
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. . .
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)
,

x
(n)
k =

(
yk

d
dt yk

d2

dt 2yk · · · dn
dtn yk ,

)
where hk is the time step. Using the Kalman filter [5] the states xk
can be tracked. At each new measurement that arrives, the states
are propagated one step with hk = tmk − tmk−1 where tmk is the
time at measurement event k . When the controller is triggered,
the measurement-prediction can then be calculated using hk =
τ̂k + (tk − tm+ ) as

ŷk+1 = HF (hk )xk = yk + hk Ûyk +
h2k
2

Üyk + · · ·

where τ̂k is the predicted latency from the precious section, tk the
current time and tm+ is the most recent measurement event.

3.1 Problems from layered predictors
A predicted latency will affect the quality of the measurement pre-
diction, compared to if τk was known. Here we will examine what
effects thismight have for our interpolationmodel by comparing the
error between two measurement predictors ŷak+1, ŷ

b
k+1 with known

and unknown τk respectively. For simplicity, we can let τk denote
the entire hk in this subsection. Assume that the latency prediction
is unbiased, i.e. E (τ̂k ) = τk and has a variance of V (τ̂k ) = σ 2

k . The
expected value and variance of the error then becomes
E(ŷak+1 − ŷbk+1)

= E

(
yk + τk Ûyk +

τ 2k
2
Üyk − yk − τ̂k Ûyk −

τ̂ 2k
2
Üyk + O(Ýyk )

)
= 0 +

(
τ 2k − E

(
τ̂ 2k

)) Üyk
2
+ E (O(Ýyk )) ;

V(ŷak+1 − ŷbk+1)

= V(ŷak+1) − 2C(ŷak+1, ŷ
b
k+1) + V(ŷ

b
k+1)

= 0 − 2 · 0 + V

(
yk + τ̂k Ûyk +

τ̂ 2k
2
Üyk

)
= σ 2

k Ûy
2
k + 2C

(
τ̂kyk ,

τ̂ 2k
2
Üyk + O(Ýyk )

)
+ V

(
τ̂ 2k
2
Üyk + O(Ýyk )

)
.

We see that the error between the two predictors is unbiased only
if n ≤ 2, for higher order models to be unbiased then either (i) the

Init c = 0, told = now(), Dl ist = empty sorted list;
switch on new event do

case interrupt at incomming packet pc at time t do
d := d − dt ∀d ∈ Dl ist , dt = t − told ;
Dl ist .append({dc ,pc }), dc = data[c]/2;
wait(mind ∈ Dl ist ), told = t , c := c + 1;

end
case triggered wait() command at time t do

d := d − dt ∀d ∈ Dl ist , dt = t − told ;
{dc ,pc } = Dl ist .pop();
wait(mind ∈ Dl ist ), told = t ;
return pc

end
end

Algorithm 1: LuMaMi delay emulator.

difference between second moment and squared expected value
must be equal and this is only true if the variance is zero or (ii) all
higher order terms must cancel out which is highly unlikely.

Further, for all model orders n ≥ 2 the variance of the error is
inherently dependent on the variance of our predicted latency, and
scaled with Ûyk . Thus the spread and quality of the prediction will
be volatile, depending on the currents state of the plant.

4 TEST ENVIRONMENT
To demonstrate the approach, we extended the environment imple-
mented by Skarin & Tärneberg et al. [10] written in Calvin [1], an
IoT framework developed at Ericsson Research. Two new Calvin
functions, or actors, were created; a delay emulator to streamline
development and testing and a modified PID controller that incor-
porates both latency and measurement prediction.

As a demonstrative system, we set up two cascaded modified
PID controllers tasked with controlling a simulated Ball-and-Beam
plant sampled at 20Hz. The packet transmissions between the plant
and the controllers were delayed both ways using the emulated
LuMaMi link.

4.1 LuMaMi delay emulator
As the LuMaMi is a complicated piece of machinery, the process
from start-up to a working antenna is slow and cumbersome. To
avoid repeating the startup procedure, a new Calvin actor was cre-
ated that enables emulating the delay instead using the previously
gathered latency data from the LuMaMi.

This emulation strategy shown in Algorithm 1 will keep the
inter-sample dependencies from the LuMaMi and enable the delay
to give rise to unordered samples. The retrieved delay is divided
by 2 to emulate a one-way delay. This will unfortunately reduce
the jitter in our emulated delay with a small amount as we are
essentially averaging over the two delays τ sc and τ ca . This loss
was deemed acceptable.

4.2 Modified PID controller
Each PID controller was fitted with both latency and measurement
predictors. The latency was predicted using the EWMA filter, as its
performance was comparable to the ARMA filter but computation-
ally cheaper. As measurement predictor the interpolation model
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Figure 5: Analysis of the prediction residuals generated by
the EWMA and ARMA filters. The histogram has been trun-
cated between [−10, 10], as no visible residuals are situated
above this limit.

Figure 6: Analysis of the constants for the adaptive ARMA
polynomials.

Figure 7: Controlling the plant over emulated 5G without
any DTC.

Figure 8: Controlling the plant over emulated 5G with pre-
dicted latency and interpolation-based DTC.

using n = 2 was considered as it is the highest order model whose
gained error from the predicted latency is unbiased.

The actual latency τk−1 between a controller and the plant can
be measured by letting the plant return a confirmation packet to
the controller at each received control signal packet.

At each new measurement arrival, the model states are updated,
τk and yk+1 predicted, and a control signal uk calculated and trans-
mitted. When no new measurement packet has been received in
the last hc = 50ms, the prediction and control signal calculation is
simply performed for the delay τ̂k +hc instead. The covariance ma-
trices of the Kalman filters were experimentally tuned toQ = 100 · I
and R = 0.001 for both controllers.

4.3 Results
An experiment was conducted by running the system for 60 sec-
onds where the reference position of the ball was changed every 5
seconds between [−5, 5]. The results without DTC is show in Figure
7 and with DTC in Figure 8. As can be seen the system is stable
without any compensation, but the added DTC gives a smoother
transition between the reference levels, indicating increased robust-
ness.

5 CONCLUSION
In this paper we have examined and demonstrated deadtime com-
pensation with latency prediction for a controller/plant separated
by a 5G mobile network.

Since the correlation between consecutive latencies is small, the
performance of the two examined latency predictors is similar. From
the predicted latency, deadtime compensation was performed using
a simple interpolation-based model. Our demonstration suggests
that even our crude plant model provides some improvement.

Our small experiment does in no manner present any conclusive
evidence, but warrants future research. A deeper and wider exper-
imental comparison with the real process over the real LuMaMi
with multiple connected users is therefor a clear next step. Whether
or not the low correlation is platform specific is worth considering.
Further, any correlation effects of having multiple users connected
through the LuMaMi has not been tested and is of high interest. If
increasing strain adds not only latency/jitter, but also correlation
then the choice of latency predictor would suddenly play a larger
role in real settings. Finally, comparison between the interpolation
model and standard DTC methods in this setting should be per-
formed. An interesting question is how the predicted latency would
affect other choices of plant models.
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