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Abstract 
This is a short review focusing on some 
research areas of neurophonetics: the 
neural underpinnings of speech pro-
cessing and the time course and compo-
nents of its neurophysiological corre-
lates. 

Introduction 
The relation between the brain and 
speech processing started to be studied 
in the 19th century through cases of apha-
sia, where speech or comprehension was 
impeded due to brain lesions. During the 
20th century, brain imaging and meas-
urements of neuronal activity made it 
possible to record brain functions during 
speech processing and even relate them 
to healthy brain structures. This short re-
view highlights some research areas 
starting with the anatomy of speech pro-
cessing and continuing with neural cor-
relates of online speech processing. 

Anatomy of phonetic processing 
Broca’s and Wernicke’s areas 
Already by the mid 19th century, a 
speech control center was identified in 
the left  frontal lobe (Bouillaud, 1825; 
Dax, 1865). Specifically, Broca’s area 
in the left inferior frontal gyrus (IFG), 
was found to coordinate “the movements 
of articulated language” (Broca, 1861). 
Ascribing complex coordination of 
movement to Broca’s area as a primary 
function is in line with its anatomical lo-
cation, rostral to primary motor and pre-
motor cortex areas controlling lip, jaw, 
tongue, and larynx movements involved 
in speech. Thus, a recent proposal sug-
gests increasingly complex motor plan-
ning to be represented in a rostral-going 

direction along the frontal lobe starting 
from primary motor cortex in the pre-
central gyrus (Badre & D'Esposito, 
2009; Uddén & Bahlmann, 2012). 

During the second half of the 19th 
century, a “center of acoustic images” 
was proposed in the superior temporal 
gyrus (STG) (Wernicke, 1874), which 
was later called Wernicke’s area. The 
originally proposed region of STG, lat-
eral to primary auditory cortex in 
Heschl’s gyrus (DeWitt & Rauschecker, 
2013) is thought to be homologous to an 
area responding to communication calls 
in macaque monkeys (Rauschecker & 
Tian, 2000). In humans, it is activated by 
segmental and prosodic phonological 
features (Mesgarani, Cheung, Johnson, 
& Chang, 2014; Tang, Hamilton, & 
Chang, 2017). Cortical thickness in 
Wernicke’s area has been found to cor-
relate positively with speed of pro-
cessing word accents in native Swedish 
speakers, supporting this region’s im-
portance for storing native phonological 
patterns (Schremm et al., 2018). 

Connections between language areas 
Although he had no firm proposal on the 
neural pathways underlying it, Wernicke 
(1874) also identified a “conduction 
aphasia,” affected by lesions in the con-
nection between Wernicke’s and 
Broca’s areas. Later research has shown 
that speech processing depends on two 
main streams of auditory processing, 
both originating in Heschl’s gyrus 
(Hickok & Poeppel, 2004). 

Dorsal stream 
The dorsal stream proceeds posteriorly 
from Heschl’s gyrus via the planum tem-
porale through inferior parietal cortex 
and the superior longitudinal fasciculus 
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(SLF)-arcuate fasciculus in anterior di-
rection to premotor cortex and Broca’s 
area (Makris et al., 2004). Whereas the 
arcuate fasciculus has been argued to 
have a special function in syntactic pro-
cessing (Skeide, Brauer, & Friederici, 
2016), the SLF is generally engaged in 
sound localization, spatial navigation 
and sensorimotor integration (Makris et 
al., 2004). The last aspect is important 
for language. Thus, the dorsal stream is 
involved in sensorimotor functions such 
as phonological working memory, inner 
speech, and word repetition, and is prob-
ably crucially involved during language 
learning and predictive processing 
(DeWitt & Rauschecker, 2013; Hickok 
& Poeppel, 2004; Roll, Söderström, 
Frid, Mannfolk, & Horne, 2017; Saur et 
al., 2008).  

Ventral stream 
From primary auditory cortex, the ven-
tral stream continues through the anter-
olateral part of Heschl’s gyrus and 
planum temporale to STG (DeWitt & 
Rauschecker, 2013). It then extends in 
anterior direction over STG until reach-
ing the anterior superior temporal sulcus 
(STS). From the anterior temporal lobe 
it connects to the anterior part of Broca’s 
area by joining the occipitofrontal fasci-
culus through the extreme capsule 
(Friederici, 2017; Saur et al., 2008). The 
general function of the ventral stream is 
auditory object recognition. It also rec-
ognizes known words and shorter 
phrases through a system of increasingly 
complex sound representations (DeWitt 
& Rauschecker, 2013). Thus, primary 
auditory cortex is “tonotopically” orga-
nized, meaning that different sound fre-
quencies map to different locations. Mid 
STG hosts hierarchically organized rep-
resentations of phonetic features 
(Mesgarani et al., 2014) and speaker-
normalized F0 patterns (Tang et al., 
2017). Following the ventral stream in 
anterior-going direction sensitivity to in-
creasingly complex unities is found:  
syllables, words, and shorter phrases. 

Motor involvement in speech perception 
Although the ventral stream seems to 
host a system for phoneme-to-word 
recognition in its own right, the dorsal 
stream is also consistently found to be 
activated during speech processing. In 
this vein, the motor and premotor areas 
controlling the articulators involved in 
producing a speech sound are also acti-
vated when perceiving the same sound 
(Pulvermüller et al., 2006; Wilson, 
Saygin, Sereno, & Iacoboni, 2004). The 
motor areas indeed seem to facilitate 
speech perception, since disabling e.g. 
the part of motor cortex controlling lip 
movements using transcranial magnetic 
stimulation (TMS) decreases perfor-
mance in discrimination of syllables 
along a /ba/-/da/ continuum (Smalle, 
Rogers, & Möttönen, 2015). Activation 
of the caudal part of planum temporale 
during speech perception might be part 
of a more general system of auditory 
representations of motor activity, like 
hammering, sawing etc. (Warren, Wise, 
& Warren, 2005). In sum, motor activity 
engaging the dorsal stream is likely to be 
involved in speech perception, but is 
probably most crucial when information 
needs to be completed, under noisy cir-
cumstances, during active prediction 
(e.g. listening to slow or disfluent 
speech), and during language learning. 

Online phonetic processing 
Mismatch negativity (MMN) 
Event-related potentials (ERPs) and 
magnetoencephalography (MEG) can 
record online speech processing with 
high temporal precision. Rapid phono-
logical processing has been detected in 
the ERP effect mismatch negativity 
(MMN) and its magnetic counterpart. 
MMN experiments use an “oddball” par-
adigm. This means that a standard stim-
ulus is presented with high frequency of 
occurrence interspersed deviant stimulus 
occurring with low frequency. The 
standard stimulus is thought to maintain 
a constant activation of its memory 
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trace, which the deviant interrupts, re-
sulting in an instantaneous increase of its 
trace activation. (Näätänen, 1992). The 
MMN responds more strongly to exist-
ing phonological contrasts in a given 
language (Dehaene-Lambertz, 1997). It 
has also shown to be more left-lateral-
ized, with sources in STG, for speech 
stimuli than for complex noise, giving 
further support for phonological repre-
sentations in Wernicke’s area (Shtyrov, 
Pihko, & Pulvermüller, 2005). MMN ef-
fects have further been found e.g. in re-
sponse to stress (Honbolygó, Csépe, & 
Ragó, 2004; Zora, Riad, Schwarz, & 
Heldner, 2016; Zora, Schwarz, & 
Heldner, 2015) and phonotactic proba-
bility (Bonte, Mitterer, Zellagui, 
Poelmans, & Blomert, 2005). The laten-
cies reported for the MMN have varied 
between 100 and 300 ms. The phonolog-
ical mapping negativity (PMN) is a sim-
ilar response that is slightly later timed: 
250-350 ms (Connolly & Phillips, 
1994). The difference between MMN 
and PMN is that the latter occurs without 
an oddball paradigm, with the context 
making phonemes unexpected. 

Preactivation negativity (PrAN) 
A recently proposed component over-
lapping the MMN in latency (136–200 
ms after word onset) but which is found 
without using oddball paradigm and 
mismatch is the pre-activation negativity 
(PrAN) (Roll et al., 2017; Söderström, 
Horne, Frid, & Roll, 2016). PrAN is a 
speech perception component indexing 
the predictive value of phonemes at 
word onset. In this way, it is larger for 
word onsets with small cohorts of fre-
quent lexical competitors. PrAN has 
been seen for predictively useful seg-
mental phonemes (Roll et al., 2017), 
word accents (Roll, 2015; Roll et al., 
2015; Söderström et al., 2016; 
Söderström, Horne, Mannfolk, Westen, 
& Roll, 2017; Söderström, Horne, & 
Roll, 2017), and boundary tones 
(Söderström, Horne, Mannfolk, Westen, 
& Roll, 2018). Increased degree of 

coarticula-tion between the first two 
phonemes of words (Lindblom & 
Sussman, 2012) would be likely to move 
the onset of PrAN to well before 136 ms. 

Prosodic phrases and working memory 
Intonation phrase boundaries give rise to 
a slow, positive-going waveform, a ‘clo-
sure positive shift’ (CPS) in ERP studies 
(Roll & Horne, 2011; Steinhauer, Alter, 
& Friederici, 1999). During silent read-
ing, commas cue implicit phrase bound-
aries also reflected in a CPS (Steinhauer 
& Friederici, 2001). Even without ex-
plicit cues a CPS is elicited if a phrase 
boundary is strongly expected (Toepel, 
Pannekamp, & Alter, 2007). Roll, 
Lindgren, Alter, and Horne (2012) ad-
justed reading speed during silent read-
ing so that one, two, or three syntactic 
phrases were read within a time span of 
2.7 s, similar to the time limit of 2-3 s 
proposed for phonological short-term 
memory (Baddeley, Thomson, & 
Buchanan, 1975). A CPS was produced 
every 2.7 s independently of how many 
phrases were read within the time con-
stant. The results indicate that readers try 
to construct implicit prosodic phrases 
with speech that fit into their phonologi-
cal working memory. Time-driven im-
plicit prosodic phrases have later been 
observed to guide syntactic parsing 
(Schremm, Horne, & Roll, 2016). 

Conclusions 
Speech perception involves a ventral 
stream for auditory object recognition 
with increasingly complex phonological 
representations and a dorsal stream im-
portant for auditory-motor integration. 
The first clear neural signs of phonolog-
ical processing occur around 100 ms fol-
lowing stimulus onset and can reflect in-
creased activation due to unexpected 
phonemes or increased pre-activation of 
anticipated word endings. 
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