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Abstract. With the inclusion of external software components in their
software, vendors also need to identify and evaluate vulnerabilities in the
components they use. A growing number of external components makes
this process more time-consuming, as vendors need to evaluate the sever-
ity and applicability of published vulnerabilities. The CVSS score is used
to rank the severity of a vulnerability, but in its simplest form, it fails to
take user properties into account. The CVSS also defines an environmen-
tal metric, allowing organizations to manually define individual impact
requirements. However, it is limited to explicitly defined user informa-
tion and only a subset of vulnerability properties is used in the metric. In
this paper we address these shortcomings by presenting a recommender
system specifically targeting software vulnerabilities. The recommender
considers both user history, explicit user properties, and domain based
knowledge. It provides a utility metric for each vulnerability, targeting
the specific organization’s requirements and needs. An initial evaluation
with industry participants shows that the recommender can generate a
metric closer to the users’ reference rankings, based on predictive and
rank accuracy metrics, compared to using CVSS environmental score.

1 Introduction

The current software development landscape shows a trend towards increasing
reuse of existing code. Products are constructed by using already existing li-
braries and software, such as OpenSSL, libxml, and many others. A report [20],
found that in the scanned applications, on average 57% of the code base was
open source. However, as a maintainer of products, vendors need to identify vul-
nerabilities in the components they use. As the number of external components
increases, the workload on developers to identify vulnerabilities and update these
components grows. At the same time, many vendors already have a hard time
to identify and evaluate vulnerabilities, for example in IoT companies [8].

Updating a component introduces a cost, since it requires a new release cycle
to be completed. This includes building, quality assurance, and the distribution
of the new release to the end-users’ devices. Therefore, vendors would like to
patch only vulnerabilities which are relevant to the product.



The Common Vulnerability Scoring System (CVSS) [5,11] defines a severity
ranking for vulnerabilities. The base score does not take into account individual
preferences of users. Instead, CVSS has an environmental metric which can be
used to modify the base score such that it represents user dependent properties
of vulnerabilities. It will rewrite the confidentiality, integrity, and availability
metrics both to adjust them according to measures already taken by the or-
ganization, but also to capture the actual impact such loss would have on the
organization. As this will differ between organizations, such a modified metric
will better reflect the actual severity of a vulnerability to that organization.

The environmental metrics must be evaluated on a per vulnerability basis and
are handled manually. This is both time consuming, error prone, and can lead
to inconsistencies in case there are several vulnerabilities and they are handled
by different analysts. Moreover, the environmental metric, though unique for
the organization, only constitutes the sub-metrics available in the base score.
Additional information that might affect the organization is not covered.

Recommender systems work by analyzing information about user preferences,
and combine this with information about items, or with the history of other users.
Their goal is to output recommendations targeting the specific user.

In this paper, we explore ways to improve measuring how a vulnerability
affects an organization. Using machine learning techniques applied to recom-
mender systems, we combine different properties and metrics in order to capture
vulnerability data and map it to requirements of the specific organization. Com-
pared to CVSS environmental metrics, our method provides several advantages.

First, the requirements for the organization is derived by combining explicit
requirements with requirements learned from previous analysis of vulnerabili-
ties. This data driven approach will not only use personal preferences, but also
take into account how real vulnerabilities have been evaluated previously. Such
learned data is able to capture information that might be overseen by analysts,
or that are difficult to express. Second, our approach is general and is not re-
stricted to a certain group of properties. It can be amended with new metrics if
needed, focusing on metrics relevant for the given organization or device.

Our goal is to design a recommender that provides a personalized severity
assessment based on a user profile. The profile is both explicit, based on the users’
own choices, and implicit as the recommender learns from the users’ previous
actions. We also support inclusion of domain knowledge into the system and
discuss how the different parts can be weighted, following a heuristic approach.
Suitable similarity functions are used to form a utility function that outputs
the personalized severity assessment. The recommender is also evaluated using
participants from the industry. Though the evaluation is small scale, the results
indicate that our recommender system is able to provide severity information
that is closer to the users’ actual preferences than the CVSS environmental
score.

The remainder of this paper is structured as follows: in Section 2 we describe
the necessary background of recommender systems and vulnerabilities. In Sec-
tion 3 the proposed model is described, which is followed by the implementation



of the model in Section 4. The recommender is evaluated in Section 5. Related
work is discussed in Section 6. Finally, the paper is concluded in Section 7.

2 Recommenders and Vulnerability Severity Ratings

Generally, the goal of a recommender is to present recommendations of items to
a set of users. An item can be for example a movie, a song, or a website. The
idea is that the recommender should present a subset of items to the user, such
that the user finds this subset relevant. The subset is found by matching user
preferences or activity using a learnt profile and sometimes other similar users’
activity. In a shopping scenario, the added value for the user also leads to higher
sales. In this paper, the goal of the recommender is to add value to an end-user
by tailoring the severity score for vulnerabilities.

Recommender systems can be divided into three major categories [1]: knowledge-
based systems, content-based systems, and collaborative filtering.

A knowledge-based recommender system can be used in cases where ratings
of items are not available, e.g., rarely used or bought items. It finds similarities
between user requirements and item descriptions. In other words, a knowledge-
based recommender allow users to specify desired domain-specific properties of
items, and the recommender tries to find suitable items.

In content-based systems, item descriptions are used for recommendations
and user ratings are combined with item information. One advantage of content-
based systems is that when a rating is not available for an item, items with similar
attributes that have been rated by the user can be used to make recommenda-
tions. On the other hand, because the lacking history of ratings for new users,
they are not effective at providing recommendations for new users.

Collaborative filtering systems use collaborative ratings provided by multiple
users to make recommendations. If two users have similar taste of ratings for
many items, this similarity is identified. When only one of them has specified a
rating, the other user can receive a similar rating.

Other than the types above, recommendations can be generated from domain-
specific knowledge. This generates recommendations for a specific field of knowl-
edge, and is designed specifically to handle data for that domain.

The above recommenders works well in defined scenarios. Knowledge-based
systems are efficient in cold-start settings, while collaborative methods works well
when a lot of ratings are available. Various features of different recommenders
can be combined in hybrid systems for better performance.

Many vulnerabilities are reported and given a CVE identifier. The CVE sys-
tem thus provides a centralized repository for vulnerabilities. As an example, in
2018, more than 16,500 vulnerabilities were added to the National Vulnerability
Database (NVD). For each vulnerability, NVD also provides a severity score.
This score, denoted the base score, uses exploitability and impact submetrics in
order to define a severity score between 0–10. This score is made to be repro-
ducible and organization independent. Instead, the environmental score can be
used to adapt the base score to an organization’s requirements and needs. In this
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Fig. 1. Flow chart of recommendation generation

paper, a recommender system has been applied to CVEs, and the performance
is compared to the environmental metric.

3 System Model

During the design of a recommender system for vulnerabilities, several require-
ments should be fulfilled. The following requirements have been identified: 1)
The recommender should give reasonable recommendations for new users of the
system, and thus avoid the cold-start problem of recommender systems. 2) It
should allow the user to select certain preferences that the system will honor.
3) It should expose a meaningful subset of user preferences to the user. 4) It
should learn from user actions, so that future recommendations are as relevant
as possible to the user. To avoid privacy concerns, only the user’s own actions are
considered. Thus, methods based on collaborative filtering will not be considered
in this paper.

We first note that no single class of recommender system can fulfill all require-
ments. Instead, we propose a hybrid recommender based on three parts. The first
is a domain-based subsystem which provides domain-specific knowledge unique
to a recommender for vulnerabilities. The second part is a knowledge-based sub-
system which allows the user to select certain user preferences that they are
interested in. Lastly, the third part is a content-based subsystem which learns
from the user’s previous actions to provide more meaningful recommendations
for each user.

3.1 Overall Recommender System Design

An overview of the recommendation generation process can be seen in Fig. 1.
When a user requests recommendations for a set c of vulnerabilities, the feature
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data, domain-specific knowledge, user profiles, and weights are fetched from their
respective storage. Each of these parts will be described in details in the following
sections. These pieces will then be combined in the actual recommender, which
then outputs recommendations in the range [0, 1]. Such a value is generated for
each vulnerability in the set c of user requested vulnerabilities. A higher value
means that a vulnerability is more relevant to the user.

Our hybrid recommender system learns user preferences based on the user’s
interaction with vulnerabilities. An overview of the rating procedure is shown in
Fig. 2. First, the user rates a vulnerability based on their own preferences. While
such a rating can be of any form, this paper only considers positive feedback.
Next, the current user profile is updated with the new information, so that a
new user profile estimated called û is stored in the user profile database. The
profile update procedure will be explained in Section 3.8.

3.2 Feature Representation

A key task in designing a recommender is constructing a good feature extraction
stage. In our case, this means that we wish to extract features from each vulner-
ability, to be used as input to the recommender, see block (e) in Fig. 1. First, a
selection of features must be made, and later on their respective feature weight
parameters must be decided. We will discuss actual features to use in Section 4.1,
while here we describe how features are represented inside the recommender.

We consider the features of a vulnerability as a vector v, where each individ-
ual feature vi denotes a specific feature value. Such a value could be of any type,
such as a Boolean value, a real number, an integer in a specific range, categorical
data, or hierarchical data.

3.3 User Profile Representation

There are two distinct parts of the user profile. First, there is the explicit user
profile u, where the user explicitly select their own preferences. This is similar
to the requirements that can be defined in the CVSS environmental metric.
Second, there is the estimated user profile û, which is determined from the



user’s interactions with the system. The system learns this profile about the
user automatically. This allows the system to capture user preferences that are
hard to explicitly express for users, either because the feature is complex, or
because the user is unaware of them. The explicit user profile is the knowledge-
based part of our hybrid recommender, while the estimated user profile is the
content-based part.

Each of the two parts of the user profile is represented as a vector, where each
element of the vector describes the interest the user has for each feature. The
elements of the vectors are matched with the feature value from above, to find
vulnerabilities to recommend to the user. This matching is done by a similarity
function, which is further discussed in Section 3.6. In Section 3.8 we describe
how the estimated user profile vector is found.

3.4 Domain-specific Knowledge

The recommendations are not only based on the user profile, but also on a set
of domain-specific knowledge, unique to the field of vulnerability assessment.
Such knowledge is required both to provide recommendations suitable for such
a highly specific area of interest, but also serves as a component to solve the
cold-start problem.

The domain-specific knowledge w is represented in the same way as the
user profile above, but instead of being user-specific, it is global for all users
of the system. It is fetched at point (b) in Fig. 1. It can be used to express
rules that should apply for all users, such as prioritizing recent vulnerabilities,
or prioritizing vulnerabilities with lots of activity on social media.

3.5 Subsystem Weights

As described earlier, the recommender system is a hybrid system with three
major parts. The three parts all contribute to the final result of the recommender,
but they should be able to do so to different extents depending on the features,
see Section 4.1. The subsystem weights are fetched at point (c) in Fig. 1.

The subsystems are given a weight between 0 and 1. Let the vectors α,β,γ
describe the weights for the domain-based, knowledge-based, and content-based
subsystems, respectively. For any given feature i, the sum αi +βi + γi = 1. Note
that relative weight of each subsystem can vary between different features.

3.6 Similarity Functions

A similarity function compares a value from the user profile, called the target
value ti, with the feature value extracted from the vulnerability vi. We denote
this function simi(ti, vi), where 0 ≤ simi(ti, vi) ≤ 1. Higher value means that
the feature value is more similar to the target value. Here, we use the similarity
functions given below. For examples of other variants, see e.g. [18].



The similarity function for the distance between ti and vi is given by

simdist(ti, vi) = 1− |ti − vi|
maxdist−mindist

, (1)

where maxdist and mindist are the maximum and minimum possible distances
between ti and yi. This guarantees that the output is in the range [0, 1].

Another similarity function is a scoring function, which sees the target value
ti as a multiplier to multiply the feature value with. This is suitable when we
simply wish to rank higher feature values higher.

simmult(ti, vi) = ti · vi (2)

Note that ti must be selected so that the output range still stays within [0, 1].
In the two previous similarity functions, both the target value ti and the

feature value vi have been numerical values. However, as described earlier in
Section 3.2, they can be of any type. Two examples of such similarity functions
are simdaydist and simcosine, which calculates the difference between two dates,
and the cosine similarity between two vectors, respectively. The date similarity
simdaydist can be implemented as in (1), with the date being days since the epoch,
while the cosine similarity is calculated using

simcosine(ti, vi) =

n∑
i=1

tijvij

/√√√√ n∑
i=1

t2ij

√√√√ n∑
i=1

v2ij , (3)

where tij and vij are the jth components of the vector ti and vi respectively.
A special case is a similarity function for Boolean values. In this case, ti is

simply a constant which is returned if vi is true.

simboost(ti, vi) =

{
ti, if vi is true,

0, otherwise
(4)

Note that the similarity functions as described above follows the definition
from [18], where the similarity function compares individual feature values.

3.7 Generating Recommendations

Combining the building blocks from the sections above, a complete recommender
can now be described. The goal here is to describe a utility function U , which
takes a given vulnerability v as input, and outputs the utility value, i.e. the
user-specific severity assessment. As can be seen at point (f) in Fig. 1, the utility
function U is the final step in a series of actions.

Recall that the design is a hybrid recommender. Therefore, subsystem weights
will be combined with the similarity functions for the different feature values for
all d features. Utility U for vulnerability can be described as:

U =
1

d

d∑
i=1

αi · simi(wi, vi) + βi · simi(ui, vi) + γi · simi(ûi, vi) , (5)



where αi, βi, γi are the subsystem coefficients, simi is the similarity function
for the ith feature, wi, ui, ûi are the target values for feature i for the different
subsystems (i.e. elements of w,u, û respectively), and vi is the feature value for
feature i.

Because the similarity functions are limited to the range [0, 1], and αi +βi +
γi = 1, the output of U will be a value between 0 and 1. A higher value indicates
higher utility, i.e. a better match to the user’s preferences.

3.8 Updating User Profile

For estimating the user profile û, we wish to combine the previous estimation
with the new data about the user’s preferences. We consider only input of vul-
nerabilities that the user is interested in, that is, positive training examples.
Then, the update function update can be expressed as a function of the form
û′ = update(û,v), i.e., a function taking a new vulnerability v, the current û,
and returning a new estimation of the user preferences û′.

Depending on what kind of user preferences the system should model, there
are different ways to design the update function. In [12] the authors used the
vector space model to represent text from web pages. The user profile was rep-
resented as a single vector û, therefore the authors represented their update
function as û′ = a · û + v, where a is a decay factor. Since the vectors had
weights determined by the tf-idf scheme, in combination with using the cosine
similarity measure, simple addition of the vectors worked well as an update func-
tion, because the cosine similarity measures vector orientation, not magnitude.

We propose an approach inspired by the paper above, with some adaptions
to make the update function applicable for any type of feature, not only text.
The proposed update function is given by

update(û,v) = (mer1(û1, v1), . . . ,meri(ûi, vi), . . . ,merd(ûd, vd)) , (6)

where d is the number of features, and therefore elements in û and v.
For each pair (ûi, vi), a merge function meri is applied. The merge function is

similar to the similarity functions simi, but instead of comparing two elements,
it merges them. The merging needs to be handled different for each feature type,
and this construction is thus a generalization of [2,12], where the merge function
is equivalent to meri(ûi, vi) = ûi + vi.

Another example of a more complex merge function, used later in this paper,
is a merge function based on the Modified Moving Average (MMA):

mermma(ûi, vi) =
(S − 1)ûi + vi

S
, (7)

where S controls the exponential smoothing.
Just as in Section 3.6, where similarity functions could handle both scalars

and vectors, depending on the feature type, merge functions must support this
as well. Consider the case where ûi and vi are vectors, then the following merge
function performs element-wise addition over n-dimensional vectors ûi and vi.

meradd(ûi, vi) = (ûi,1 + vi,1, ûi,2 + vi,2, . . . , ûi,n + vi,n) , (8)



4 Implementation

Given the theoretical model described in the previous section, the actual recom-
mender can now be constructed. At first, the set of features must be selected.
While the proposed model is flexible enough to handle many different feature
types, an actual implementation must still have suitable similarity functions,
merge functions, and subsystem weights for all selected features. This section
describes such decisions for our implemented recommender. We stress that this
is an example implementation of the model described in the previous section.
Another implementation may choose different features, weights, or functions.

4.1 CVE Features

The implementation has used several sources for vulnerability information. A
majority of the data is collected from NVD [15], but also other sites such as
CVEdetails [13], and Google have been used. A list of features extracted is
available in Table 1, and below we discuss the features in more detail.

Table 1. Feature selection in the implementation, feature types, weights of domain-
based (α), knowledge-based (β), and content-based (γ) subsystems, and finally simi-
larity and merge functions

Subsystem weights Functions

Features Data type α β γ sim mer

Impact metrics Categorical 0.0 0.5 0.5 simmult mermma

Exploitability subscore Numerical 0.0 0.8 0.2 simmult mermma

Authentication Categorical 0.3 0.35 0.35 simmult mermma

Access vector Categorical 0.3 0.35 0.35 simdist mermma

CWE Hierarchical 0.0 0.0 1.0 simcosine meradd
Published date Date 1.0 0.0 0.0 simdaydist N/A
Metaspolit exploits Boolean 0.3 0.7 0.0 simboost N/A
Linked external resources Numerical 1.0 0.0 0.0 simmult N/A
Google hits Numerical 1.0 0.0 0.0 simmult N/A

Impact metrics includes the impact metrics in the CVSS score, namely con-
fidentiality, integrity, and availability impact. These are categorical values
where the impact can be NONE, PARTIAL, or COMPLETE. In our implementa-
tion, we map these values to numerical scores of 0.0, 0.5, and 1.0 respectively.
These metrics are interesting since they describe how serious the impact is
on different security properties.

Exploitability subscore is the exploitability subscore from the CVSS ranking,
which estimates the ease of exploiting the vulnerability. This is a numerical
value between 0.0 and 10.0. This metric is interesting since a higher value
means that the vulnerability is easier to exploit.



Authentication (CVSS metric) describes how many times an attacker needs
to authenticate before performing an attack. It is a categorical feature with
values NONE, SINGLE, or MULTIPLE. In our implementation, we map these
values to numerical scores of 1.0, 0.5, and 0.0 respectively. This is interesting
since if no authentication is required, a vulnerability is easier to exploit.

Access vector (CVSS metric) describes the attack vector for the vulnerability.
It is categorical with the value NETWORK, ADJACENT, LOCAL. In our implemen-
tation, we map these to numerical values of 1.0, 0.5, and 0.0, respectively. The
access vector is relevant since different users have different threat models.
Some users may consider network attacks as most serious, while others may
perceive local attacks as more serious. Later in the paper we will describe
how the recommender allows the user to describe their preferences.

CWE ID categorizes vulnerabilities according to the type of the vulnerability.
This is a hierarchical structure, but we treat each individual CWE as a
category in our implementation, because there is only a limited set of all
possible CWE IDs that are actually used in CVEs. We expect the CWE ID
to be important in providing recommendations based on the user’s history,
since it describes the vulnerability class.

Metasploit exploits is a Boolean value which describes if there is a Metasploit
module [16] available for this vulnerability. A module in Metasploit means
that attackers may find and launch attacks through easy-to-use tools. Thus,
such vulnerabilities are considered more serious.

Linked external resources is a numerical value which counts the number of
linked resources for a specific CVE on NVD. These resources may include
links to news articles, exploits, or security advisories. A vulnerability with a
high amount of external resources may be more relevant to consider.

Google hits is a numerical value of the number of Google search hits a specific
CVE-ID has. Just like the number of linked external resources, this tells the
recommender about the popularity of the vulnerability in the Internet.

4.2 User Requirements Selection

When users start using the system, they should select what makes certain vul-
nerabilities more relevant to them. This is used to create the explicit user profile
u for the recommender. The user profile is constructed by rating the importance
of certain information about a vulnerability. The rating should be in the interval
of [0,1], and will be used to construct the vector u. User requirements can be
selected in many ways, in our implementation the user can rate the following
properties.

– Confidentiality impact: To what extent the vulnerability may cause private
information to be leaked to an attacker.

– Integrity impact: To what extent the vulnerability may cause stored infor-
mation to be modified by an attacker.

– Availability impact: To what extent the vulnerability may cause a system to
be unavailable to perform its normal functions.



– Exploit accessibility: How widely accessible or easily used attack code that
can be found for the vulnerability.

– Access vector: What access vector that is used for the attack, e.g. if network
access is enough, or if local access is required.

– Authentication: If the vulnerability requires an already authenticated user,
of if unauthenticated users can trigger the vulnerability as well.

4.3 Subsystem Weights

The choice of subsystem weights for each individual feature is based on two main
aspects: (i) is it meaningful for users to explicitly state their preference about
the feature, and (ii) do users’ preferences for the feature differ, or do all users
value the feature in the same way?

Recall that α,β,γ correspond to the domain-based, knowledge-based, and
content-based parts of the recommender, respectively. In Table 1 the choice of
subsystem weights for each feature can be seen. We discuss our choices below,
but other choices are of course possible.

Since impact metrics are highly user-dependent, the domain-based part is set
to 0.0, so that the user’s explicit choice and history are the only things affecting
the score for the impact metrics. In addition, an even split between explicit
and implicit user preferences is selected. Similar arguments can be made for the
Exploitability subscore, but since we wish the users to have a higher degree on
explicitly selecting the importance of this setting, we have a larger β for this
case.

The Authentication and Access vector features have a non-zero domain-based
component, since the importance of these factors can be considered more uni-
versal across users.

Looking at the CWE ID, the type of underlying weakness that is of interest
can be very user-dependent. Since there are several available CWE IDs, the
recommender solely learns the user profile based on the user’s previous action.
Thus, both the domain-based and knowledge-based components are zero.

The opposite is true for the publication date, which is treated equally for all
users, thus marking more recent vulnerabilities as more important. The same
argument can be made for the number of linked external resources, and the
number of Google hits.

Finally, the availability of Metasploit exploits is seen as a combination of a
domain-based and knowledge-based preference.

4.4 Similarity and Merge Functions

The choice of similarity and merge functions are described in Table 1. Refer to
Section 3.6 for the actual definitions of the similarity functions.

In general, simmult is the most common similarity function, since it maps a
higher feature value to a more important vulnerability, by multiplying with some
factor. It is a good fit for features ranging from less to more serious.



Considering a few special cases, such as access vector, the simdist distance
similarity function is used instead, since this instead measures how close the
feature value is to the user’s preference. In this way, the user can select to rank
e.g. local attacks higher than network-based attacks.

The Metasploit and publication date features have straightforward similarity
functions based on their data type, while the CWE feature requires the use of the
simcosine similarity to correctly handle the comparison between CWE vectors.

If we instead look at merge functions, a modified moving average mermma is
used for most features, since it provides a simple way to converge towards to
user’s preference. For CWE, the special meradd function needs to be used such
that the vector of previously seen CWEs are merged with the newly rated CWE.

Finally, features with γi = 0 do not need merge functions, and are marked
as N/A in Table 1.

5 Evaluation

In this section we present an initial evaluation of our recommender. The main
purpose of the evaluation is to determine if the system fulfills its goals, which in
our case is providing an assessment according to users’ own preferences.

There are three common types of evaluation techniques for recommenders,
namely user studies, online methods, and offline methods. In user studies, feed-
back is collected from users before, during, and after use of recommender. In on-
line studies, information is collected from a running recommender, for example
using A/B testing, so that results from two different groups with recommenders
can be compared. Finally, in offline methods, a set of historical data is used to
evaluate the recommender, without requiring ongoing interactions from users.

An online evaluation requires an already existing user base, which makes
it difficult to use in our setting where we evaluate a new recommender. While
offline evaluation methods are popular in recommender system evaluation [1], it
requires the availability of historical data, which is domain specific. While data
sets such as the Netflix Prize data set [14] is widely used, it cannot be used to
evaluate a recommender system for vulnerabilities.

Because of the reasons above, we have decided to collect our own offline data
set from users. This is similar to the user study approach described above, but
the users do not actually use the recommender system, instead we ask them to
manually provide their user profile, and rank a set of vulnerabilities. These re-
sults are then used as a data set to evaluate the recommender. Since the utility
function applied to a set of vulnerabilities will induce a ranking of the vulnera-
bilities, we can use that ranking to determine how well our system succeeds in
recommending vulnerabilities.

5.1 Evaluation Metrics

There are several different metrics used in recommender system evaluation. How-
ever, care must be taken to select metrics that are suitable to the type of rec-
ommender in question. Two common metrics are precision and recall, which



both measure the frequency with which a recommender makes relevant deci-
sions. While common, these metrics are ill-suited for our recommender, since
they consider other types of recommender system goals. In our recommender,
the output is utility metrics for vulnerabilities, where it does not make sense
to talk about precision and recall. Instead, we wish to measure the deviation
between the recommender output and the actual rankings.

To do this, we have chosen predictive accuracy metrics and rank accuracy
metrics, as these metrics are closer to the goal of recommender systems similar
to ours [3,17]. Predictive accuracy metrics measure how close the recommender
system’s predicted ratings are to the true user ratings [7]. Root Mean Square
Error (RMSE) is probably the most popular metric used in evaluating accuracy
of predictive ratings. The system generates predicted ratings r̂ui for a test set L
of user-item pairs (u, i) for which the true ratings rui are known.

The other type of metric, rank accuracy metrics, measure the ability of a
recommender system to produce an ordering of items that matches how the
user would prefer to have them ordered. To be able to evaluate based on rank
accuracy, it is necessary to obtain reference ranking. We used the Yao’s Nor-
malized Distance-based Performance Measure (NDPM) [21] as rank accuracy
metric, which calculates the difference between the order of items in preferred
user order, and the system’s recommendation order. The RMSE and NDPM can
be calculated as follows [7]:

RMSE =

√∑
(u,i)∈L

(r̂ui − rui)2/|L| NDPM =
C− + 0.5Cu0

Cu

where C− is the number of contradictory preference relations between the sys-
tem ranking and the user ranking, Cu0 is the number of compatible preference
relations, and Cu is the total number of preferred relationships in the user’s
ranking. See [7] for details. The NDPM value varies between 0 and 1, where 0
means that the orderings are identical, and 1 means the ordering is reversed.

5.2 Experiment Results

In this section we want to evaluate the performance of the proposed recom-
mender. In order to do this we selected a subset of CVEs, and then compared
the recommendations made by the system, the manual ranking done by users,
and the CVSS2 environmental scores.

For the evaluation, 8 users have been asked to participate. The users are
working in the industry, for five different companies, and are people with high
security awareness. These people are potential users of such a recommender.
Each user started by selecting their own user profile, with preferences described
in Section 4.2.

Then, 30 sample CVEs were selected, the CVEs were from different products,
years, described different vulnerabilities, and were presented in a random order.
The users were asked to rank these CVEs on a scale from 0 to 10, where a higher



value indicated higher interest to the user. The users were asked to only consider
properties of the CVE itself, rather than the product it affected. To avoid bias
from the CVSS base score, this score, as well as the impact and exploitability
subscores, were hidden from the user during the evaluation. The users could
however see other information in the CVE to make an informed decision.

After collecting the data, we proceed with the actual evaluation. The CVEs
were divided into training and test sets using k-fold cross-validation, using k = 5.
We performed an evaluation where both the user profile and the training set
were used to train the recommender, before generating recommendations. As a
comparison, we also compared the results to using the CVSS2 environmental
score, with explicit user profiles mapped to impact subscore modifiers. For both
cases, the reference ranking was the manual ranking performed by the users.

The RMSE and NDPM values were then calculated between the reference
ranking and the recommender output, and between the reference ranking and
the CVSS2 environmental score. The metrics can be seen in Table 2. We see that
the RMSE values of the recommender system are lower compared to the CVSS
environmental score. This indicates that the recommender has higher predictive
rating accuracy for all users in comparison to just using the environmental score.
The results also indicate higher rank accuracy in comparison to the environmen-
tal score based on the NDPM metric, for the majority of test users.

Table 2. RMSE and NDPM of recommender system and CVSS environmental score,
relative the reference ranking, for different users

RMSE NDPM

Recommender Environmental Recommender Environmental

User 1 0.179 0.222 0.303 0.287
User 2 0.247 0.340 0.195 0.271
User 3 0.200 0.256 0.207 0.333
User 4 0.153 0.296 0.179 0.276

User 5 0.168 0.286 0.294 0.283
User 6 0.138 0.234 0.175 0.228
User 7 0.115 0.224 0.147 0.251
User 8 0.198 0.267 0.349 0.340

6 Related Work

In [4], a vulnerability management system called VULCON was proposed. VUL-
CON’s objective is to reduce time-to-vulnerability remediation (TVR) and total
vulnerability exposure (TVE) within an organization. VULCON takes inputs
such as vulnerability scan data, target TVR requirements, and personnel re-
sources. It then utilizes severity, persistence, and age of vulnerabilities to priori-
tize vulnerabilities. Compared to our paper, VULCON uses these three features,



while our recommender can utilize many vulnerability features. Furthermore,
VULCON does not include any learning based on user history similar to ours.

Another recommender system has been suggested in [6]. Among others, the
authors’ describe a system which can speed up response to events such as cyber
attacks. They use features such as the time since the vulnerability’s discovery,
severity of the exploit, existence of a patch, difficulty of deploying the patch, and
impact of the patch on users. Compared to our paper, the authors does not at
all discuss the construction of such a system. Their goal is also different, since
their recommender should suggest an appropriate action on how to handle the
vulnerability.

In [9], the authors present a method where they use textual description of
vulnerabilities to construct a graph of related vulnerabilities. The authors’ goal of
producing a vulnerability ranking is similar to ours, but they do not discuss user-
personalized rankings. The used features are also different: their recommender
looks only at keywords from textual description, while we currently look at many
other vulnerability features.

Previous work has also looked at designing different vulnerability metrics, as
opposed to using the CVSS score. In [10] the authors proposed VRSS, a system to
rate and score vulnerabilities, using a combination of qualitative and quantitative
methods, resulting in scores closer distributed to the normal distribution. WIVSS
[19] is a system with similar goals, where the authors propose a scoring system
with the goal of more diverse scores and better accuracy. However, neither of
these two vulnerability metrics consider individual user preferences as done in
this paper.

7 Conclusions and Future Work

We have defined, implemented and evaluated a recommender system providing
severity assessments of vulnerabilities. The recommender system is specialized
for vulnerabilities, and is designed to be useful specifically for the context of
vulnerability assessment. Recommendations are generated by considering both
users’ explicit preferences, and by considering their previous interactions with
the recommender. The system can be used with a variety of different inputs, and
can easily be extended with new features if desired.

The evaluation shows that the system gives better recommendations com-
pared to just using the CVSS environmental score. To be able to tune the pa-
rameters for optimized performance, data from more users is needed. However,
the results from our evaluation with real users suggests that it is possible to
improve the assessment using a recommender system approach. Other possible
future work includes consider negative feedback in the learning phase, which
may further improve the results when learning is enabled.
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