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Abstract

Modern antenna design for communication systems revolves around two
extremes: devices, where only a small region is dedicated to antenna design,
and base stations, where design space is not shared with other components.
Both imply different restrictions on what performance is realizable. In this
paper properties of both ends of the spectrum in terms of MIMO performance
is investigated. For electrically small antennas the size restriction dominates
the performance parameters. The regions dedicated to antenna design induce
currents on the rest of the device. Here a method for studying fundamental
bound on spectral efficiency of such configurations is presented. This bound
is also studied for N -degree MIMO systems. For electrically large structures
the number of degrees of freedom available per unit area is investigated for
different shapes. Both of these are achieved by formulating a convex opti-
mization problem for maximum spectral efficiency in the current density on
the antenna. A computationally efficient solution for this problem is formu-
lated and investigated in relation to constraining parameters, such as size and
efficiency.

1 Introduction
In modern communication technology the use of several antennas organized in
multiple-input-multiple-output (MIMO) systems have become ubiquitous. This en-
ables much greater bit rate (capacity) to be sent through the link between device
and base station [21, 22]. Within smaller devices, such as hand held electronics, the
space allotted for antenna design is extremely limited. Here, both space and power
efficiency needs to be utilized as effectively as possible. It is therefore of interest to
investigate fundamental bounds on performance of MIMO systems, both in terms of
size and efficiency. Previously, bounds on capacity has been investigated for spher-
ical geometries [7, 9], and through information theoretical approaches [6, 17, 19,
20, 24]. Characteristic modes have been utilized to design antennas for maximum
capacity and diversity [3, 18]. However, this does not solve the issue of predicting
the optimal performance available through antenna design in an arbitrary geometry.
A method for calculating optimal spectral efficiency available in an arbitrary volume
was presented in [5]. However, in most applications it is effective to use only a small
region of the device volume to excite currents over the entire device [13]. Therefore
bounding the performance of such sub-regions and finding their optimal placement
is of interest.

Current optimization has been utilized to construct fundamental bounds on many
different antenna parameters previously, such as, Q, directivity, and efficiency [5,
10, 11, 12, 16]. By controlling the current density in the full design space of the
antenna an optimal solution can be reached for that configuration. The power of this
method comes from the ability to formulate these optimization problems as convex
optimization problems. This means that all local minima of the problem are also
global minima [1]. Therefore there is no risk of getting caught in local minima and
the optimality of the solution can be guaranteed [1]. This method works very well
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for single feed, single resonance antennas where their performance, in e.g., Q-factor,
can be calculated as simple quadratic forms [11]. Such expressions can be evaluated
very efficiently using eigenvalue expressions that enables their optimization [2]. The
performance of MIMO antennas on the other hand is usually quantified in terms of
capacity, which is not calculated through a quadratic form in the current density,
but through a log-determinant of the covariance of the current density. Such an
optimization problem is a semi-definite optimization program in the covariance of
the current distribution, which has, in general, one more order of unknowns [1]. To
solve such optimization problems the number of unknowns need to be reduced [5].

In this paper the method presented in [5] is reformulated in order to find a
computationally efficient expression for its solution. A convex optimization prob-
lem to maximize the spectral efficiency of an arbitrary transmitter antenna in an
ideal channel is formulated in the current density on the antenna. The problem is
restricted by the allowed ohmic loss in the structure and normalized by the radi-
ated or dissipated power. This problem is solved by utilizing the good properties
of the matrices calculating radiated power and ohmic losses. The solution to this
problem is mainly dependent on the radiation modes, which are modes that max-
imize the fraction between the radiated power and the power dissipated in ohmic
losses [23]. These modes are dependent on the geometrical structure of the object
they are induced over, therefore the designer has control over how well they can be
induced. The relative strength of these modes, given by their normalized eigenval-
ues, is investigated for a sphere, a cylinder, a disc, and a plate and its sub-regions.
This information is used to analyze how many sub-regions are required to feed a N -
degree MIMO system and to fully utilize the potential of a plate design region. The
optimal spectral efficiency of the sub-region configurations is compared to an ideal,
lossless, system with equal power allocation and optimizing the currents over the
plate and sphere. Electrically large structures and their number of viable radiation
modes are also investigated.

The paper is organized in the following way. In Sec. 2 the MIMO system studied
in this paper is introduced and its convex optimization problem is stated. The dual
of that problem is formulated and solved in Sec. 3, creating an upper bound for the
original problem. This is followed by an analysis of how the radiation modes affect
the optimal solution in Sec. 4. In Sec. 5 the results of the optimization problem is
illustrated in several examples split into the following sub-sections: Sec. 5.1 where
the radiation modes of different shapes are studied, Sec. 5.2 where the radiation
modes of a plate are excited by sub-regions, Sec. 5.3 where the optimal spectral effi-
ciency of several structures is investigated, and Sec. 5.4 where the mode availability
of electrically large structures is calculated. The paper is concluded in Sec. 6.

2 MIMO
The received signals in a MIMO system is described by the expression,

y = Hx + n, (2.1)
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Figure 1: Schematic illustration of a MIMO setup. Rx is the set of receiving anten-
nas, Tx is the set of transmitting antennas, and H is the channel matrix describing
the propagation between Tx and Rx.

where y is an M × 1 vector containing the received signals, x is an N × 1 vector
containing the input signals, H is an M × N matrix describing the propagation
channel, and n is an M × 1 vector containing the noise perturbing the system. In
communication theory what is typically optimized is the power distribution in x in
order to send the maximum number of bits through a channel. However, in that
configuration the antennas in the system are assumed fixed [22], see Fig. 1. Here,
we are interested in how much performance can be attained from optimizing those
antennas for the specific application of transmitting the highest capacity. In order
to calculate that performance, the problem must be reformulated slightly. First,
the system in (2.1) concerns two sets of antennas. However, in most cases we are
not designing both the antennas in the system simultaneously, such as the base
station and the mobile phone. Therefore, we reformulate the problem to optimizing
a single device with regards to a general situation. In order to create such conditions,
one set of antennas is idealized; here we choose the receiving antennas. Consider
a receiving antenna completely circumscribing the transmitting antenna. This is
similar to massive MIMO and the intelligent surfaces discussed in [15], covering all
surfaces of a room. In such a configuration all radiated energy would be absorbed by
the receivers on the walls. This can be characterized by using the spherical modes
in the far-field as the receiving antennas [5, 7, 9], which will be used in this paper,
see Fig. 2.

The second issue lies in the method of calculating optimal performance for the
antennas. Since we do not know what shape an optimal antenna design would take,
we want to incorporate every possible antenna in our solution space. To accomplish
this we optimize the currents in the design space of the antenna, as these have the
ability to represent every possible antenna within it. Normally a MIMO system is
optimized through controlling the input signals to the antennas. These input signals
generate the currents on the antenna region Ω, see Fig. 2, that are connected by
a fixed mapping , I = Tx. However, since we are controlling the currents directly
we simply utilize this map in order to calculate the performance quantities, such as
capacity, from the currents [5]. For brevity and ease of notation we do not write out
this map in our expressions. For example, instead of optimizing over the covariance
of the input signals, we optimize over the covariance of the currents,

P =
1

2
E
{
IIH} . (2.2)

Essentially, each current element becomes an input signal to the system, whereas for
actual antennas the number of inputs is restricted by the number of antenna feeds.
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Figure 2: Schematic illustration of the idealized MIMO system where the receiving
antennas are the spherical modes in the far-field. The transmitting antennas are
illustrated as a plate with antenna design regions marked as small patches.

The antenna region is modeled with a method of moments (MoM) code, where
each basis function corresponds to an element in I. We call the matrix mapping the
current distribution on the plate to spherical modes S [25], see App. A, which gives
a new formulation of (2.1),

y = SI + n. (2.3)

In this formulation the received signals y are the radiated spherical modes, see Fig. 2.
The average transmitted power of the system is calculated as,

Pr =
1

2
E
{
IHRrI

}
=

1

2
Tr E

{
RrII

H} = Tr(RrP), (2.4)

where Rr is the radiation matrix [11], and we have utilized the cyclic properties
of the trace. The capacity of this channel, when we have perfect channel state
information, expressed as spectral efficiency, is calculated as [22]

C = max
Tr(RrP)=Pr

log2 det

(
1 +

1

N0

SPSH
)
, (2.5)

where 1 is the identity matrix, andN0 is the noise power, which can also be expressed
as the noise spectral density over a 1 Hz frequency flat channel [22]. The noise is
modeled as white complex Gaussian noise. Maximum capacity and optimal energy
allocation for (2.5) can be calculated by the water filling algorithm [22]. However, it
can also be written as an optimization problem solved by semidefinite programming,

maximize log2 det
(
1 + γSPSH)

subject to Tr(RrP) = 1

P � 0,

(2.6)
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where the radiated power is normalized to one, and γ = Pr/N0 is the total signal-
to-noise ratio (SNR). If the SNR is scaled with the number of included channels, in
this case mesh discritization and number of spherical modes, the spectral efficiency
is unbounded [5, 22]. However, if the SNR is fixed (2.6) converges to γ/ log(2)
as M,N → ∞, when the mesh discretization and number of spherical modes are
increased. This problem formulation has the advantage that additional constraints
can be added in order to gain a more realistic solution. Here, we can, for example,
limit the losses in the structure. Loss is modeled as a uniform impedance sheet with
surface resistance Rs in Ω/� and calculated as,

PΩ =
1

2
E
{
IHRΩI

}
= Tr(RΩP), (2.7)

where RΩ = RsΨ is the loss matrix of the antenna [11], and Ψ is the Gramian
matrix of the MoM basis functions on the antenna. Adding this constraint to (2.6)
gives the formulation

maximize log2 det(1 + γSPSH)

subject to Tr(RΩP) ≤ η−1 − 1

Tr(RrP) = 1

P � 0,

(2.8)

where η is the radiation efficiency of the antenna. This problem is bounded and
converges as the mesh discretization is refined, and the included number of spherical
modes is increased [5]. However, it contains many unknowns and is cumbersome to
solve numerically. Because it is a semi-definite programming problem the number
of unknowns scale as the square of the number of mesh cells, necessitating model
order reductions or other numerical procedures to run the optimization [5].

The optimization problem (2.8) is normalized to radiated power, however, when
losses are included it is sometimes intuitive to normalize dissipated power Pd =
Pr + PΩ instead. The problem is then written as,

maximize log2 det(1 + γSPSH)

subject to Tr(RΩP) ≤ 1− η
Tr((Rr + RΩ)P) = 1

P � 0,

(2.9)

where γ = Pd/N0 is the SNR when unit dissipated power is considered.

3 Dual problem
One way of bounding the solution to (2.8) is to construct a problem that will always
have a solution greater than or equal to that of the initial problem. This problem
is known as a dual to (2.8). The infimum of the dual problem provides an upper
bound to the maximum of (2.8) and they coincide when the duality gap is zero [1].
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The procedure for constructing the dual of (2.9) is very similar to that of (2.8).
For brevity we have chosen to include the derivation of the dual solution to (2.8),
referring to App. D for the dual of (2.9).

To construct a dual problem to (2.8) we can combine the two constraints in (2.8)
into one, as a convex optimization problem with less constraints will always have a
greater solution than the same problem with more constraints [1]. A linear combi-
nation of the two constraints can be taken to restrict the dual problem

Tr (RΩP + νRrP) = ν + η−1 − 1, (3.1)

where ν is a real scalar. Dividing the right-hand side to the left allows the introduc-
tion of a new matrix

Rν =
RΩ + νRr

ν + η−1 − 1
. (3.2)

The dual to (2.8) can now be written as

min.
ν

max.
P

log2 det(1 + γSPSH)

Tr(RνP)≤1

P � 0.

(3.3)

This problem is valid and convex for all values of ν for which Rν is positive semi-
definite, an interval calculated in App. C. The solution to this problem will always
be found at equality in its constraint due to the affine nature of the constraint.
Therefore the optimization problem will be written with equality.

To solve the dual problem, we rewrite it on such a form that it can be solved
by water filling. This can be done by simplifying the condition restricting it. Rν is
positive semi-definite by construction and can therefore be Cholesky factorized as
Rν = BHB [1]. By utilizing the cyclic invariance of the trace the condition can be
rewritten as Tr(BHBP) = Tr(BPBH). The matrix B can be seen as a coordinate
change for P. This allows the introduction of a new variable ‹P = BPBH to write
the optimization problem as,

min.
ν

max.
P̃

log2 det(1 + γH̃‹PH̃H)

Tr(‹P) = 1‹P � 0,

(3.4)

where the new channel is H̃ = SB−1. The maximum of this problem can be found by
water filling [22]. To perform water filling it is a simple matter of following the same
methodology outlined in [22], i.e., find the singular value decomposition (SVD) of the
channel matrix H̃ and iteratively fill the feeding vector ‹P such that the lowest loss
channels are utilized the most. With the singular values of the channel matrix, (3.4)



7

can be written more simply as

min.
ν

max.
Pn

N∑
n=1

log2(1 + γσ2
nPn)

N∑
n=1

Pn = 1

Pn ≥ 0,

(3.5)

where σn, n = 1 . . . N are the singular values of H̃, and Pn is the power allocated to
each mode associated with those singular values. These singular values σn can be
expressed as, see App. B,

σ2
n =

(ν + η−1 − 1)%n
1 + ν%n

=

{
(η−1 − 1)%n, ν = 0

1, ν →∞ , (3.6)

where %n are eigenvalues of modes known as radiation modes [23] and are calculated
through the generalized eigenvalue problem,

RrIn = %nRΩIn, (3.7)

where In are the radiation mode currents. These modes maximize the fraction
between radiated power and power dissipated in ohmic losses, and have orthogonal
currents and far-fields. It is evident from (3.6) that these modes are a dominating
factor in the singular values of the optimized channel. With this expression, water
filling can be performed fast and efficiently with minimal numerical calculations. The
minimization over ν, which can be calculated using conventional minimizers such as
fminbnd in MATLAB, finally provides an upper bound to the initial problem (2.8)
of the maximum spectral efficiency of MIMO antennas confined to the region Ω.
The reformulation (3.5) based on radiation modes (3.6) also determines bounds on
MIMO systems with N ports by restricting the analysis to the N strongest radiation
modes. This restriction to N modes can also be used to determine physical bound on
the spectral efficiency for MIMO systems without channel state information utilizing
equal power allocation [22].

The singular values of the optimal channel when the problem is normalized to
dissipated power, as in (2.9), can similarly be calculated as,

σ2
n =

(ν + 1− η)%n
1 + ν(1 + %n)

=

(1− η)%n, ν = 0
%n

1 + %n
, ν →∞ , (3.8)

see App. D.

4 Radiation Modes
In Section 3 it is shown that the only part of the optimal spectral efficiency prob-
lem (2.8) that is dependent on the geometry considered are the eigenvalues %n of
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Figure 3: The singular values of the channel calculated for η = 0.5 from (3.6)
for normalized radiated power on the left and from (3.8) for normalized dissipated
power on the right. The ν scales have been adjusted by the start of the interval ν0,
calculated in App. C, to include negative numbers.

the radiation modes. This means that optimizing spectral efficiency with a radi-
ation efficiency constraint has been reduced to solving the generalized eigenvalue
problem (3.7), followed by water filling over the singular values σn given by (3.6)
or (3.8). This means that it is possible to evaluate the quality of a geometry, in
terms of spectral efficiency, by only studying the eigenvalues %n of its radiation
modes. This section details how %n is connected to the spectral efficiency.

To understand how the spectral efficiency varies with %n let us select some ar-
bitrary values %n = {100, 10, 1, 0.1} and study the optimization problem. In Fig. 3
the singular values of the channel has been calculated by (3.6) and (3.8) and plotted
against the parameter ν. Here we can see that a larger value of %n corresponds to a
stronger singular value of the channel σn, i.e., less loss in the channel. For greater
ν the singular value of the channel decreases for strong channels and increases for
weak channels. When ν is varied the difference between the two different power
normalizations become evident. For the radiated power normalization, all singular
values converge to 1 when ν increases (3.6). For the dissipated power normalization
σn stabilize with a difference proportional to %n/(1 + %n), see (3.8). In Fig. 3 the
eigenvalue %3 = 1 has a stable singular value for all ν, this is due to the choice of η.
The radiation efficiency restriction defines what is considered a good or a bad mode,
separated by an eigenvalue for which the singular value is stable. This separating
value can be found by studying the asymptotics of (3.6) and (3.8) and is calculated
as %n = η/(1− η) for both normalized radiated and dissipated power.

To find the spectral efficiency, corresponding to different values of ν, perform
water filling on the singular values σn found in Fig. 3. This is illustrated in Fig. 4
with ν = 0.1 and ν = 10, the SNR set to γ = 3, and dissipated power is normalized.
The loss corresponding to each singular value is found by taking the inverse of its
square, 1/σ2

n. The water filling algorithm then allocates power to the indices with
least loss in the same way as pouring water into the graph. The resulting spectral
efficiency is calculated from the first equation in (3.5). In this example ν = 0.1
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Figure 4: Water filling performed for the radiation mode eigenvalues %n =
{100, 10, 1, 0.1} from Fig. 3, while normalizing dissipated power. To the left ν = 0.1
and to the right ν = 10, with γ = 3. The last bar extends far above the edge of the
plot, due to the great amount of loss in the ρ4 = 0.1 mode.

gives the spectral efficiency C = 3.1855, ν = 10 gives C = 2.5829, and the minimal
value C = 2.5828 is found at ν = ∞. Here the smallest value is sought as it
calculates the bound through (3.5) to the initial problem of maximizing spectral
efficiency in (2.9). As can be seen in Fig. 3, for low ν the difference between the
different singular values is increased leading to fewer channels being used. Whereas
for high ν the difference between between the singular values decreases, leading to
more channels being utilized, as in the right part of Fig. 4. In general, a low singular
value will not be utilized unless the SNR is very high, evident by ρ4 = 0.1 producing
a much greater loss than the other three in Fig. 4.

5 Results
The solutions to the optimization problems (2.8) and (2.9) provide upper bounds
on the spectral efficiency available for different structures. These bounds have been
verified by optimizing the same problems in CVX [1, 8] for several of the consid-
ered cases confirming that the duality gap is zero for these cases. However, it is
also interesting to investigate the radiation modes that contribute to the spectral
efficiency in (3.6). To illustrate both of these results this section is divided into four
sub-sections. First, the mode strength of different shapes is studied in Sec. 5.1, then
feeding a plate through sub-regions is investigated in Sec. 5.2. The optimal spectral
efficiency of the same plate is discussed in Sec. 5.3, and finally the mode availability
of electrically large shapes is shown in Sec. 5.4.

5.1 Mode strength

In the derivation of the optimized channels singular values (3.6), the eigenvalues
of the radiation modes (3.7) are the only contributing factors that depend on the
geometry of the structure. All other parameters are design specifications. The
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influence of antenna design and geometry on the problem is therefore fully described
by these radiation modes. Their relative strength can serve as a measure of how
many different modes are available for different shapes. This is the number of
orthogonal modes that are available to provide diversity for those structures. In
Fig. 5 the relative strength of the radiation and loss-less characteristic modes [3, 14]
of a ka = 0.56, `×`/2 plate, and the radiation modes of the circumscribing disc and
sphere are shown normalized to the eigenvalue of the first radiation mode of the plate.
We see that the two first radiation modes have the same strength and the third and
higher order modes are significantly weaker, and therefore require more input power
to be utilized, or an increase in the plates size to be effective. The characteristic
mode strengths of the plate have been evaluated by putting their eigenvalues into
the Rayleigh quotient related to the generalized eigenvalue problem (B.6), i.e.,

%c,n =
IH

c,nRrIc,n

IH
c,nRΩIc,n

, (5.1)

where Ic,n are the characteristic mode currents. These are presented as a comparison
to show how the characteristic modes perform at the task of maximizing spectral
efficiency while maintaining high radiation efficiency. We can see that the charac-
teristic modes perform slightly worse than the radiation modes, and have different
radiation patterns for higher order modes. The relative strength of radiation modes
for the circumscribing disc and sphere, normalized to the eigenvalue of the first ra-
diation mode of the plate, have been included as a reference. We see that the disc
has slightly higher mode strengths than the plate, whereas the sphere’s modes are
much stronger and grouped into a set of three for the first modes, rather than two.

5.2 Plate sub-regions

In wireless communication only a small part of the device is typically dedicated to
antenna design. It is therefore interesting to see how well small sub-regions can
excite the diversity available from the plate in Fig. 5. The optimization problem in
Sec. 3 can be reformulated for a sub-region of a geometry with the rest of the volume
acting as a ground plane, see App. E. In Fig. 7, the sub-region problem has been
solved for several different orientations of sub-regions, shown in Fig. 6, on the plate
in Fig. 5, where each region covers 1 % of the plate’s total area. In this figure the
eigenvalues have been normalized to the first eigenvalue of the full plates radiation
mode. This means that the shape of Fig. 6 is similar for different sized plates
except for a change in relative magnitude. For reference the eigenvalue of the first
radiation mode of the full plate is %plate,1 ≈ {971, 127, 32} for ka = {0.56, 0.2, 0.1},
or approximately %plate,1 ≈ k2AZ0/(6πRs), where Z0 is the free space impedance
and A = `2/2 the area. Multiplying these numbers to Fig. 7 gives an idea of
what modes are effective for different sizes. Here, we can see how well different
configurations of sub-regions are able to induce the diversity available in the plate
when fed optimally. It is clear that a single sub-region, in case A, is only able to
effectively induce the first radiation mode. However, two diagonally situated sub-
regions, as in case B, are only marginally better at inducing the second mode. This
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Figure 5: The relative strength of the first 5 radiation, %n, and characteristic, %c,n,
modes of a ka = 0.56, ` × `/2 plate, as well as the radiation modes of its circum-
scribing disc and sphere. All values have been normalized to the eigenvalue of the
first radiation mode of the plate , %plate,1 ≈ 971. The corresponding far-fields for
the radiation and characteristic modes of the plate can be seen as insets in the
figure. The first two radiation and characteristic modes are visually identical and
represented by the same patterns.
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`

Figure 6: The sub-region cases studied in the examples. The small blue regions have
the size 0.1`× 0.05`, each taking up 1% of the total plate area, and are the regions
in which the current is controlled during optimization.
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Figure 7: The relative strength of each radiation mode in Fig. 5 when controlling
only the current on sub regions shown in Fig. 6 of the ka = 0.56, `× `/2 plate with
Rs = 0.01 Ω/�, normalized to the eigenvalue of the first mode of the full plate. The
black curve without marks is the strength of each mode for the full plate normalized
to the first mode.

is due to that the first two radiation and characteristic modes are induced diagonally
across the plate [18]. Therefore, the diagonally opposite regions do not effectively
induce the second diagonal mode. However, if the two regions are placed on the
same side of the plate, as in case C, the second order mode is induced effectively.
The radiation mode strengths are very similar if these two regions are placed on the
long side of the plate. When going to higher order modes, this configuration is no
longer as effective, here, the diagonal regions in case B dominate. If three or four
sub-regions are utilized, as in cases D and E, we can get both of these properties.
However, adding the fourth sub-region only marginally increases the strength of the
three first radiation modes.

The values in Fig. 7 have a negligible dependence on the surface resistance Rs,
because they are normalized to the eigenvalue of the first radiation mode. However,
the calculation to produce the sub-region problem is dependent on the full impedance
matrix Z and thus the surface resistance, see App. E. This marginally changes
the relation between the mode strength. However, the surface resistance plays an
important role in which modes are utilized when feeding the structure for optimal
spectral efficiency. When the surface resistance is increased the loss in the higher
order modes is increased, pushing higher order modes out of availability. Therefore
decreasing the number of modes that can be utilized.

5.3 Optimal spectral efficiency

In Fig. 8, the optimization problem (2.8) restricted to MIMO systems with N = 6
ports has been solved normalized to radiated power for different required radiation
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Figure 8: The optimal spectral efficiency for normalized radiated power (3.6) for
a ka = 0.56, ` × `/2 plate, its circumscribing sphere, and the sub-region cases in
Fig. 6 for different required radiation efficiencies. The SNR is fixed to γ = 20. The
horizontal lines show the spectral efficiency of equal power allocation to a certain
number, N = {1, 2, 3, 4, 5, 6}, of ideal channels. The physical objects have been
restricted to use at most 6 different modes.

efficiencies. This is compared in the figure to equal power allocation to a set number
of ideal, loss-less channels. We can see that 6 such channels perfectly bounds all
considered geometries when they are at most using 6 radiation modes. With the
different curves crossing the number of ideal channels when they start to utilize that
number of modes. The number of used modes can be compared to Fig. 7, where
we can predict how many effective modes the different sub-region orientations have.
Multiply the numbers in Fig. 7 with %plate,1 ≈ 971 and judge an effective mode as one
with an eigenvalue above η/(1−η). We see that case A has around 2 effective modes,
which is the region in which it is situated in Fig. 8. Similarly we see that case B has
3 effective modes and one slightly lower mode, whereas C has 2 effective modes and
two modes slightly below the effective line, this is mirrored in the optimal spectral
efficiency where B slightly outperforms C. In this way we can predict the results of
Fig. 8 by studying the eigenvalues of the radiation modes in Fig. 7. The real world
implication of this result is that to feed a certain degree of MIMO system that
number of radiation modes must be effective for the geometry. Take for example a
two port antenna design aiming to effectively induce two orthogonal channels across
its shape for communication. The viability of different designs for this purpose can
be evaluated by studying the values of the eigenvalues for the two first radiation
modes. These curves look slightly different if dissipated power is normalized. In
general each sub-region configuration is stable over all required radiation efficiencies,
dropping off once the solution is no longer realizable, see [5] for an example. The
reason for this low dependence on η can be found in the asymptotic of (3.8), where
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Figure 9: The optimal spectral efficiency for normalized dissipated power for a
ka = 0.2, `× `/2 plate, its circumscribing sphere, and the sub-region cases in Fig. 6
for different SNR. The radiation efficiency is chosen as η = 0.5. The dashed gray
lines indicate ideal, loss-less, equal power allocation channels with N = {1, 2, 3,∞}.

the singular values of the channel are independent of η for large ν.
For the dissipated power normalization it is interesting to study the dependence

on SNR rather than efficiency. In Fig. 9 the problem (2.9) has been solved over a
range of γ, for the plate in Fig. 6. It can be seen that for SNR γ < 10 the two cases
A and B induce one mode whereas the other sub-region orientations, as well as the
full plate, induce two. This result can be predicted by studying Fig. 7 where cases A
and B have a much weaker second mode than the others. However, when we increase
SNR cases A and B start to approach the performance of two ideal channels.

The different sub-regions introduced in Fig. 6 show some separation from the
spectral efficiency that can be induced by the full plate in Fig. 8. However, when
we consider a smaller plate of size ka = 0.1, in Fig. 10, we see that it is possible to
induce almost as much spectral efficiency as the full plate when only optimizing the
currents inside the small sub-regions. This is true for all sub-region orientations
except for cases A and B, which drop off faster than the others. We see that all
other geometries produce as much spectral efficiency as 2 ideal, loss-less, equal power
allocation channels, indicating that they utilize two different modes. The cut-offs
correspond to radiation efficiencies where a solution is no longer feasible. From this
it is possible to infer that two or three cleverly placed regions is enough to induce all
available spectral efficiency for a ka = 0.1 plate. Interestingly case C (two regions
on the same side of the plate) has an earlier cut-off than case B (two diagonally
opposed regions) even though case C outperforms B for lower radiation efficiency
requirements. This most likely corresponds to the slightly higher mode strength of
the first mode for case B seen in Fig. 7. For this plate the optimal spectral efficiency
of the sphere illustrates that the plate bound is much tighter for planar structures
than that of the circumscribing sphere.
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5.4 Mode availability

The examples in Sec. 5.1, 5.2, 5.3 have concerned electrically small structures. The
smaller sizes accentuate the availability of the lower order modes. When the size
of the structure starts to grow in terms of wavelength a plethora of modes become
effective, i.e., have high associated eigenvalues. Through solving the eigenvalue
problem (3.7) the number of viable modes, %eff , are those with an eigenvalue greater
than η/(1 − η), see Sec. 4. This is seen as when the excitation of the mode does
not accrue more losses. Since (3.7) depends on the geometry of the structure it is
possible to analyze different shapes and study how many modes they have available.
However, it is intuitive that shapes with greater surface area will induce more modes.
To understand if these shapes are actually inducing these extra modes efficiently per
area the number of modes can be normalized to the natural number of degrees of
freedom for that area [15, 19, 20]. That number is defined as

2L(L+ 2) ≈ 2ka(ka+ 2)→ 2(ka)2 , ka→∞, (5.2)

for a sphere [14]. This term can be rewritten in terms of the area of the sphere A,

2(ka)2 =
k2A

2π
=

2πA

λ2
. (5.3)

For the analysis of different shapes presented in Fig. 11 the degrees of freedom for
each shape has been calculated by (5.3) using the surface area of each geometry,
and η = 0.5. We can see that the curves are divided into two distinct groups, the
three dimensional shapes a, b, and c, and the two dimensional d and e. This metric
shows that a shape such as a cylinder induces modes almost as efficiently per area
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as a sphere. By arbitrarily permuting the surface of a shape to increase its area,
such as for the cylinder f, we can see that the efficiency does not increase with
increased area. In fact the efficiency of this shape is much lower. It is reasonable to
conclude that convex shapes with maximum area, such as the sphere, will be able
to induce the greatest number of modes efficiently. The jagged jumps in the curves
are due to the fact that the eigenvalues of modes are not continuously distributed.
This is illustrated for a sphere in the inset in Fig. 11, where we can see that there
is a significant jump between the eigenvalues for different groups of modes. The
consequences of this is that the number of efficient modes is monotonically increasing
with frequency, but when it is normalized with the wavelength, as in Fig. 11, discrete
jumps will occur when new groups of modes become available. For closed shapes,
such as the sphere, the internal resonances, occurring in the MoM evaluation of the
modes, also reduce the number of efficient radiation modes for certain sizes.

6 Conclusions
In this paper a computationally efficient expression based on water-filling and radi-
ation modes for calculating an upper bound on the optimal spectral efficiency for
an arbitrary shape, constrained by the radiation efficiency, was presented. It was
illustrated that the radiation modes can serve as a metric for studying spectral ef-
ficiency. The eigenvalues, relative strength, and availability of the radiation modes
were studied for several shapes including a plate, disc, cylinder, and sphere. Through
this analysis it was shown that it is possible to excite currents producing optimal
spectral efficiency for a plate using only a few small sub-regions. The number of
effective modes for electrically large shapes was investigated, and it was illustrated
that cylindrical shapes produce roughly as many effective modes per surface area as
a sphere.

The method presented here can also be used to study capacity optimization when
there is no channel state information. For such a situation equal power allocation
would be used for a number of radiation modes over structure. Optimizing this
number would yield the optimal solution. There is also potential to extend this
method to treat additional constraints in a computationally efficient manner, such
as self resonance, or Q-factor constraints. It remains as an interesting future prospect
to include random propagation channels and other realizations into the optimization.

A The S matrix
The elements of the loss less impedance matrix are calculated by the integral

Zpq = jkZ0

∫
Ω

∫
Ω

ψp (r1) ·G (r1, r2) ·ψq (r2) dA1 dA2, (A.1)

where Z0 is the free wave impedance, Ω is the source region, ψp and ψq are the
basis and test functions on the antenna, and dA denotes the area element integrated
over [4]. The Greens dyadic inside of this expression can be written as a product
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between out-going and regular spherical vector waves. The radiation matrix can be
found by taking Rr = Re(Z). By taking the real value of (A.1) both of the spherical
vector waves become regular and it is possible to split the double integral into two
identical integrals,

Sαp = k
√
Z0

∫
Ω

ψp (r) · u(1)
α (kr) dA, (A.2)

where u(1)
α are the regular spherical vector waves [25]. Those integrals produce a

matrix denoted as S which is the matrix connecting the basis functions in Ω to the
spherical modes in the far-field. The radiation matrix can thus be decomposed as
Rr = SHS.

B SVD of SB−1

The singular values of a matrix can be calculated by taking the positive square
root of the eigenvalues of the matrix times itself, (eig(H̃H̃H))1/2. By expanding the
channel matrix to its component matrices,

eig(SB−1B−HSH) = eig(SR−1
ν SH), (B.1)

it can be seen that the evaluation of R−1
ν = (ν + η−1 − 1)(RΩ + νRr)

−1 needs to
be independent of ν. Due to their good properties, it is possible to decompose
both RΩ and Rr into more manageable matrices. Let’s start with Rr, this matrix
is the real valued part of the MoM impedance matrix Z in (A.1). It is possible to
decompose Rr as a multiplication between two instances of the S matrix, Rr = SHS,
see Appendix A. The loss matrix can be decomposed using a Cholesky factorization
RΩ = ΥHΥ. These matrices are numerically efficient to handle as S is a low rank
matrix and Υ is a sparse matrix. With these decompositions the matrix inside the
eigenvalue problem (B.1) can now be written as,

SR−1
ν SH

= (ν + η−1 − 1)SΥ−1(1 + νΥ−HSHSΥ−1)−1Υ−HSH. (B.2)

Take an SVD of the two decomposition matrices, SΥ−1 = UΣVH, and simplify (B.2),

SR−1
ν SH= (ν + η−1 − 1)UΣ(1 + νΣ2)−1ΣUH. (B.3)

Putting this back into the eigenvalue problem (B.1) an efficient solution with no
numerical operations dependent on ν is found,

eig(SR−1
ν SH) =

(ν + η−1 − 1)%n
1 + ν%n

, (B.4)

where %n are the eigenvalues of the generalized eigenvalue problem,

RrIn = %nRΩIn. (B.5)



19

The solutions to this eigenvalue problem are known as radiation modes [23]. These
are related to the singular values of SΥ−1 as,

svd(SΥ−1) = (eig(SR−1
Ω SH))1/2 = (eig(Rr,RΩ))1/2 = %1/2

n . (B.6)

It is evident that one of the main contributions to the singular values of the optimal
channel are the eigenvalues of these radiation modes. In fact, the only other part
of (B.4) is a requirement on the radiation efficiency η. This is a parameter which
the designer does not, in general, have control over. However, the eigenvalues of the
radiation modes, %n, depend on the geometry of the structure, which is controllable.

C ν interval
The linear combination of the two conditions in (2.8) are valid for values of ν that
ensure that the resulting matrix Rν is positive semidefinite. Since both of its con-
stituent matrices are positive definite this implies that ν > ν0, where ν0 is the lower
limit at which Rν is positive semidefinite. The lower limit can be established by
studying the eigenvalue problem in (3.6),

(ν + η−1 − 1)%n
1 + ν%n

≥ 0, (C.1)

where %n is always positive since it is a generalized eigenvalue of two positive semi-
definite matrices, and the efficiency η is a constant between [0, 1]. Therefore we gain
two conditions that must be fulfilled for Rν to be positive semidefinite.,

ν ≥ 1− η−1 and ν ≥ − 1

%n
, (C.2)

from the nominator and denominator, respectively. The greatest of the two will
provide the limit, i.e., ν0 = max {−%−1

n , 1− η−1}.

D Dissipated power normalization
When formulating the dual problem and solution to (2.9) we follow the same steps
detailed in Section 3 and Appendix B, with some differences in the matrix Rν .
When we combine the two matrices in (2.9) we get,

Tr ((RΩ + ν(Rr + RΩ)) P) = ν + 1− η, (D.1)

which can be simplified by the introduction of a new matrix, as in (3.2),

Rν =
1

ν + 1− η (RΩ + ν(Rr + RΩ)) . (D.2)

If this matrix is used in the derivation detailed in Appendix B, the eigenvalues are
calculated through the expression,

eig(SR−1
ν SH) =

(ν + 1− η)%n
1 + ν(1 + %n)

. (D.3)
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The lower limit on ν is thus calculated by the expressions,

ν ≥ η − 1 and ν ≥ − 1

1 + %n
(D.4)

from the nominator and denominator, respectively. Taking the maximum of these
expressions as the limit, ν0 = max {−(1 + %n)−1, η − 1}.

E Sub-regions
In order to simulate embedded antennas the antenna problem must be reformulated
in the currents that are controlled [10]. Consider the MoM matrix formulation
ZI = V, divide it into sub-matrices related to the controlled currents, denoted to
subscript a, and induced currents, denoted by subscript g,(

Zaa Zag

Zga Zgg

)(
Ia

Ig

)
=

(
Va

0

)
, (E.1)

where Zag connects the controlled region to the induced region, and Zga connects
the induced region to the controlled region. The right hand side is only non-zero for
the controlled region. The second equation is used to express the induced currents
in terms of the controlled ones,

Ig = −Z−1
gg ZgaIa = ZtIa. (E.2)

The MoM matrices of the problem can now be reformulated into forms which only
act on controlled currents. Take the Gram matrix Ψ as an example,

IH
a ΨIa = IH

a ΨaaIa + IH
a ΨagIg + IH

g ΨgaIa + IH
g ΨggIg

= IH
a (Ψaa + ΨagZt + ZH

t Ψga + ZH
t ΨggZt)Ia = IH

a ΨpIa. (E.3)

Similarly the S matrix connecting the currents to the spherical waves in the far-field
can be rewritten as,

SHI = SH
a Ia + SH

g Ig = SH
a Ia + SH

g ZtIa = SH
p Ia. (E.4)
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