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Abstract

This thesis investigates the topic of joint positioning and radio channel esti-
mation and prediction. Both positioning and radio channel estimation have
a long history of research with many publications but the combination of
the two has so far at large been left unexplored. The reason for studying this
topic is twofold: improvement of positioning and improvement of radio chan-
nel prediction. Positioning is of interest in many situations, such as, e.g.,
localization in an unknown environment. Better radio channel estimates
and prediction enable improved transmission rates with fewer lost data
packages in wireless networks. In this thesis, both areas are covered with
analysis and simulations and the improvement in positioning performance
is also demonstrated with measurements from experiments.

A well established approach for positioning is using an inertial mea-
surement unit (IMU) which contains sensors measuring, e.g., acceleration
and angular velocity. Due to noise in the sensors, the dead reckoning per-
formance of the stand-alone unit is quickly degraded. The degradation has
previously been combated by fusing the accelerometer and gyroscope sig-
nals with other sensor information such as GPS or wheel encoders in order
to correct for the errors of the IMU. This is achieved by establishing a
model that combines the information from the sensors. In this thesis, such
a model is established between the accelerometer and gyroscope readings
and the radio channel estimates obtained from pilot signals transmitted in
a wireless network. The transfer characteristics of the narrowband radio
channel are described with multipath components, where amplitude and
angle of arrival are associated with each component. Since it is believed
that the performance of the solution is greatly affected by imperfections in
the receiver, its frequency error is also included in the modeled.

The joint model is estimated using Bayesian methods, suitable for non-
linear systems. By simultaneously estimating the variables of the multipath
components, the frequency error, and the location of the receiver, it is shown
that the positioning performance using an IMU, with similar quality found
in a modern day cellular phone, can be greatly improved. Since all the sig-
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nals needed are present in a typical cellular phone, the proposed solution
does not require any extra infrastructure. Both simulations and experi-
ments show that the technique has a potential to give a breakthrough in
positioning performance using low-cost inertial measurement units.

With the established model, the variables that describe the future radio
channel can also be predicted. By knowing beforehand what signal reception
the cellular phone can expect, the transmissions can be adjusted in terms of
modulation and transmission power to suit the future channel condition that
occurs at the moment when the transmission is received. This is commonly
known as link adaptation. Simulations show that the data transmission
rates to the end user can be greatly improved in communication systems
such as the LTE system.

The thesis also includes an investigation of performance bounds that
extends previously known results for the angle of arrival estimation problem
and also contributions to joint estimation of angle of arrival and frequency
error estimation. These results give an intuitive understanding of how the
receiver’s trajectory of movement impacts the accuracy achievable when
estimating the local radio channel landscape. In mathematical terms this
can be stated as that the space-time moments of the trajectory determine
the Cramér-Rao lower bound of the variables for joint estimation of angle
of arrival and frequency error.
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Cn$m Complex-valued matrices of dimension n$m
In The identity matrix of size n$ n
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N (m,σ 2) Normal distribution with mean m and variance σ 2

CN (m,σ 2) Circular symmetric complex Gaussian distribution
with mean m and variance σ 2
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Throughout this thesis scalars are denoted by lower case italic symbols,
vectors by lower case boldface italic symbols, and matrices with upper case
boldface symbols.
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1
Introduction

This thesis investigates the topic of joint estimation and tracking of a radio
receiver’s position and the radio channel. The underlying concept of the work
is fusion of information from different sensors by using statistical estima-
tion algorithms and models. Both positioning and radio channel estimation
are topics with a long history of research but the combination of the two
areas is at large unexplored. There are two motives for exploring this field:
to enable long-term positioning and to improve radio channel prediction.
Positioning is of great interest in many scenarios, e.g., localization in an
unknown environment. Reliable and accurate radio channel prediction can
significantly increase the rate at which application data can be transmitted
to the end user in a wireless network. At the same time the frequency
spectrum is used more efficiently. This thesis describes the background,
investigates suitable algorithms, and analyzes the performance of what can
be achieved when position and radio channel estimates are combined and
jointly estimated.

1.1 The Radio Channel

In radio communication, the transmission medium between the transmitter
(TX) and the receiver (RX) can be modeled as a linear time variant (LTV)
system which is called the radio channel. The radio channel is a descrip-
tion of the propagation properties such as attenuation and scattering of
the transmitted signal along the propagation path. The propagation prop-
erties are determined by the physical surroundings, e.g., buildings and the
landscape.

One way of representing the radio channel is in the time-frequency
domain. In Figure 1.1, an example of the magnitude of the transfer function
is shown as a function of time and frequency. As seen there, the channel
changes over time as well as over frequency. There are regions of the channel
that are strong, which correspond to good reception at the receiver. But there
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Chapter 1. Introduction

Figure 1.1 The magnitude of the channel frequency response as a function
of time and frequency. Light colors indicate strong channel conditions while
dark colors indicate fading dips.

are also some parts with fading dips in the magnitude transfer function.
These dips correspond to bad reception at the receiver. The origin of the
pattern can be described by multipath wave propagation and the origin
of the multipath components (MPC) can be explained by four phenomena:
reflection, transmission, diffraction, and scattering [Molisch, 2005]. Which of
the four phenomena that an object causes depends on the material and size
of the object compared to the wavelength of the radio wave. When the object
is much larger than the wavelength, the major energy of the impinging
radio wave is typically reflected by the object. In which direction and to
what amount the energy is reflected depends — amongst other things — on
the material of the obstacle, the wavelength, and the polarization. When a
wave hits an edge of an object, diffraction occurs, i.e., the radio waves bend
around the object according to the Huygens-Fresnel principle. The fourth
phenomenon, scattering, occurs when the wave hits an irregular surface
and energy is scattered in all directions.

Due to these phenomena, multiple time-shifted multipath components of
the transmitted signal reach the receiver unit. The scenario is illustrated in
Figure 1.2 where there are three MPCs reaching the receiver from different
directions. ’MPC 1’ is the line-of-sight (LOS) path between the TX and the
RX while ’MPC 2’ and ’MPC 3’ are both scattered by nearby buildings. If
the time duration of the transmitted signal is larger than the difference in
time it takes for all components to reach the receiver the components add
up, constructively or destructively, at the receiver. This scenario is usually
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RX

TX
MPC 1

M
PC

2

MPC 3

Figure 1.2 A multipath environment where the TX communicates with the
RX over a wireless link. The transmitted signal reaches the receiver through
a direct path, ’MPC 1’, and also via two scattered components, ’MPC 2’ and
’MPC 3’. Note that both units are equipped with two antennas each. Also
note that in a system where both units communicate with each other, the
roles of TX and RX are constantly switched.

referred to as narrowband [Molisch, 2005]. Since the interference pattern
is dependent on the amplitude and phase of each component at the point
of interference, the pattern becomes dependent on the physical location of
the receiver unit. Hence, the received signal strength will fluctuate as the
receiver is moved. This is what could be seen in Figure 1.1 and the effect is
commonly referred to as small scale fading as opposed to large scale fading
which is related to shadowing and absorption loss due to physical obsta-
cles such as building or dense vegetation [Molisch, 2005]. The relationship
between the transfer function of the radio channel and the location of the
receiver will be established in Chapter 2.

Channel Estimation Using Pilots
Since the radio channel alters the amplitude and phase of the transmitted
signal, the decoding of the received signal would be unsuccessful if no mea-
sures were taken to cancel the impact of the channel. Hence, most efficient
modern communication systems rely on channel estimation [Paulraj et al.,
2003]. One way of obtaining the channel estimates is by using training se-
quences or pilots. The pilot is a predetermined symbol or symbol sequence
inserted in the transmitted data stream. The pilot symbols are extracted
from the received data stream and treated separately in the receiver in
order to obtain a channel estimate. The principle of a pilot-based communi-
cation system is shown in Figure 1.3. Consider for example a time-frequency
communication system where multiple symbols can be transmitted simulta-
neously on orthogonal subcarriers. This is known as an orthogonal frequency
division multiplexing (OFDM) system and a commercial application of this
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ChannelTX
∑

RX

Channel
estimation

Bits

Noise

Channel feedback

Bits

Figure 1.3 Data transmission in a pilot-based communication system
where the channel estimates are extracted and used by the receiver and
also communicated back to the transmitter for link adaptation.

is the 3GPP LTE system [3GPP, 2016a; Ghosh et al., 2011]. In such a
system, the pilots are inserted in both time and frequency as seen in Fig-
ure 1.4 where one subframe consisting of 14 symbols and 12 subcarriers is
depicted. The channel estimate obtained from the pilot signal is valid for
that specific time slot and subcarrier it was transmitted on. If the channel
does not change too rapidly in time and frequency, the channel estimates
can be used for transmissions close to the pilot symbol.

The second usage area of the channel estimates is link adaptation [Gold-
smith and Chua, 1998]. Modern communication systems employ coding to
transform bits into symbols which are then transmitted. By changing the
number of bits per symbol, the number of error coding bits inserted, the
signal strength, and also the number of parallel data streams, the amount
of transmitted user data can be adjusted. The likelihood for the receiver to
successfully decode the received data is dependent on the current channel
quality. If the transmitter can adapt the next transmission to the quality
of the channel that applies during transmission, the likelihood is increased
and the data does not have to be re-transmitted. Since there is an inevitable
delay between the time instant the channel estimate is obtained and the
next transmission, a predicted channel estimate should be used to adapt
the link properties for future transmissions. Channel prediction and link
adaptation will be further examined in Chapter 8.

1.2 Positioning

Positioning and orientation relative to a fixed frame is one of the ingredients
in navigation and device tracking. The other part in navigation is the map,
which is usually thought of as a representation of the physical surroundings
but it could just as well be a description of the surroundings as seen by a
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Figure 1.4 The typical pilot scheme in an LTE subframe. A subframe
consists of two slots with 14 symbols in total and 12 subcarriers. The duration
of the subframe is 1ms with a total bandwidth of 180kHz. The dark squares
mark where the pilot symbols are inserted.

sensor. In some situations, the map is known beforehand and can be used
for improving the localization of the unit. However, if the map is unknown,
it needs to be constructed at the same time as the positioning is performed.
This problem is called simultaneous localization and mapping (SLAM) and
has been studied thoroughly in the literature over the last years [Bailey and
Durrant-Whyte, 2006a; Bailey and Durrant-Whyte, 2006b; Davison, 2003].

With the development of microelectromechanical systems (MEMS) ac-
celerometers and gyroscopes, which are the key components of an inertial
measurement unit (IMU), are today small and inexpensive. An accelerome-
ter measures proper acceleration of the device while the gyroscope measures
the angular velocity. The price for an IMU ranges from $1 to several $1000
for high-precision units. The expensive ones exhibit lower noise levels in
general compared to the inexpensive ones and they may also include soft-
ware and other sensors on the board, e.g., magnetometers for measuring
the magnetic field. Also, the size and power consumption differ between
different IMUs.

An IMU can be used for building an inertial navigation system (INS),
able to measure relative position [Titterton and Weston, 2004]. Due to its
simplicity, a tempting solution for positioning using an IMU is the dead reck-
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IM
U

∫

Rotate
∑ Î

Angular velocity

Acceleration Position

Orientation
−g

Figure 1.5 An IMU-based navigation system. The gyroscope signal is in-
tegrated once to obtain the orientation with respect to the initial orientation
of the device. The accelerometer signal is then rotated using the estimated
orientation before gravity is canceled. The position is obtained by double
integration of the residual acceleration. Due to the integrators, the position
estimates will be correlated in time.

oning approach depicted in Figure 1.5. Gyroscope readings are integrated
once in order to obtain the orientation of the device. The accelerometer
readings are then rotated based on the knowledge of the orientation of the
device before gravity is canceled and double integration then yields the
position. Such a system however fails to deliver good performance for any
longer period of time due to noise and imperfections inherent in the IMU.
Since the noise is integrated, the variance of the estimated position grows
unboundedly. Also, constant offsets or biases in the signals will keep adding
up to the orientation and position leading to an ever increasing estimation
error.

Depending on noise and bias levels, the IMUs are usually classified into
different grades. Common names for these grades are consumer, industrial,
and tactical grade. Consumer grade IMUs are found in cellular phones and
other consumer products, industrial grade IMUs can be used for enabling
detailed motion capture in, e.g., robotics while the tactical grade IMUs are
the most expensive and found in, e.g., high-precision weapons. In Figure 1.6,
the typical dead reckoning position error using an IMU from each class is
shown. The noise values used for simulations are presented in Table 1.1.
The noise processes of the IMU will be further explained in Section 3.1.

The performance of the accelerometers is improved a factor or two com-
paring the consumer grade and the tactical grade IMU while the perfor-
mance of the gyroscope is improved 100 times, see Table 1.1. The conclusion
is that the rapid growth of the position error as seen in Figure 1.6 is mainly
due to accumulation of gyroscope noise. The accumulated gyroscope noise
translates to an incorrect orientation estimation of the device and thereby
also an inability to cancel the contribution from gravity present in the
accelerometer signals. Hence, the IMU needs other sensor information in
order to be able to estimate orientation and position for any longer period
of time.
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1.2 Positioning

Table 1.1 Noise level for the accelerometer and the gyroscope for three
different IMU grades. The bias stability time is defined as the time when
the contribution from the angle random walk noise process is exceeded by
the contribution from the angle bias stability noise process. The values for
the different grades are approximative and correspond to products available
on the public market as of 2016 [Phidgets, 2016; Xsens, 2016; Systron, 2016].

Consumer Industrial Tactical

Velocity random walk [m/s/
√
h ] 0.1 0.07 0.05

Angle random walk [deg/
√
h ] 2 0.5 0.02

Angle bias stability [deg/h] 20 10 1

Stability time [s] 300 120 60

1 10
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Figure 1.6 Root mean square error of distance as a function of time for
three different grades of IMUs, see Table 1.1 for corresponding noise specifi-
cations. The vertical bars indicate one standard deviation. The accumulated
error compared to a wavelength of approximately 15 cm, used in many mod-
ern communication systems, is reached in 6 seconds by a consumer grade
IMU and in 30 seconds by a tactical grade IMU.
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Chapter 1. Introduction

IMU-Based Positioning
There are many different proposals in the literature on how to improve
positioning accuracy by combining information from IMU sensors with data
from other sensors. This concept is usually referred to as sensor fusion but
the subject is not limited to using IMUs and serves as a general framework
for estimation. By creating a model of how different variables depend on
the measurements and of how they evolve over time, all information the
measurements give can be combined and the variables can thereby be es-
timated. The work of [Gustafsson, 2010] serves as a good starting point
for the subject and it also presents several successful examples of sensor
fusion.

The concept of IMU-based sensor fusion is illustrated in Figure 1.7.
For improving IMU-based positioning, the Global Positioning System (GPS)
has been a viable source of additional position estimates for sensor fusion.
The GPS provides low bandwidth drift-free position estimates which is well
complemented by the higher acquisition bandwidth of the IMU. Together,
the units can give reliable position estimates with high bandwidth, see
[Sukkarieh et al., 1999; Carvalho et al., 1997]. Another approach, which is
particularly useful in situations where the estimates provided by the GPS
are unreliable, e.g., in an indoor environment, is fusion with information
from other available radio signals. In [Li et al., 2013; Fink et al., 2010],
the authors use the received signal strength (RSS) which is dependent on
the distance between the receiver and the access point. In [Jourdan et al.,
2005; Hol et al., 2009], the time of arrival is used a as distance measure
in an ultra-wideband (UWB) network. Together with an IMU, the solutions
provide high-accuracy positioning.

In a scenario when a wireless network is unavailable, pedestrian local-
ization has been researched by [Woodman and Harle, 2008; Sabatini et al.,
2005; Skog et al., 2010]. The common solution is to mount the IMU to a
boot and then to detect when the IMU has zero velocity during a step. This
can then be used for re-calibration of the IMU to remove the drift in the
velocity estimates and the positioning results are promising [Woodman and
Harle, 2008; Skog et al., 2010].

1.3 Joint Position and Radio Channel Estimation

Angle of arrival (AoA) estimation with either active or passive arrays is
a research area with many applications and several estimation approaches
have been presented over the years. The central problem within the field is to
estimate the AoA of a propagating wave that impinges on an array of sensors
[Krim and Viberg, 1996]. The applications are, e.g., radio transmission
source localization, active radar, seismic sensing, and astronomy to mention
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1.3 Joint Position and Radio Channel Estimation

IMU Sensor
fusion

GPS
WiFi
UWB

Acceleration
Angular velocity

RSS
TOA Position

Heading
etc.

Figure 1.7 Tight integration by sensor fusion between IMU sensors and
information acquired from wireless networks. The sensor fusion block com-
bines the information provided by the different sensors and produces an
estimate of the underlying variables such as position, heading etc.

a few [Van Trees, 2004]. For radio source localization, the sensor array
consists of several receive antenna elements placed at known locations and
a synchronized receiver which measures the phase of the received baseband
signal. Using the phase information of the received signals from the different
receiver antenna elements, the AoA can be estimated. The problem can also
be stated the other way around as localization of the sensors when the
transmitter locations are known. A survey of different localization methods
where the transmitter locations are known is given in [Yanying et al., 2009].
The novelty in our work is to jointly estimate the position of the receiver,
and at the same time estimate the location of the transmitters in the sense
of AoA.

As mentioned before, the radio channel can be described with a set of
parameters such as, signal strength, AoA, and Doppler shift. Accurate es-
timation of these parameters enables detailed radio channel models and
development of advanced wireless communication systems. In the litera-
ture there are many competing algorithms for parameter estimation, e.g.,
[Schmidt, 1986; Roy and Kailath, 1989; Veen et al., 1997; Fleury et al.,
1999]. Today there is a growing interest in channel parameter estimation
with tracking using a Bayesian approach such as an extended Kalman filter
(EKF) as presented in [Richter et al., 2005] or a sequential Monte Carlo
approach using a particle filter [Kirkelund et al., 2008]. These approaches
use a state-space model to describe how the channel parameters evolve over
time and how the channel response depends on them, but there is no motion
model of the receiver included. In [Olama et al., 2006], the authors show
how the position and velocity can be tracked when radio channel measure-
ments are available at the receiver. They compare estimation performance
of a particle filter and an EKF and the particle filter turns out to be the su-
perior choice. However, they do not include any variables in the estimation
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Chapter 1. Introduction

that describe the radio channel. In [Broumandan et al., 2007], the authors
used an IMU to make a synthetic antenna array, i.e., an antenna array that
is formed with a single movable receive element. By using it, the authors
performed AoA estimation for interference suppression in a GPS receiver.
The single receive antenna was placed together with the IMU on a revolv-
ing stick, and the radius of the circle was estimated from the IMU data
which also becomes the radius of the synthetic antenna array. However, no
tracking results for positioning was considered. In summary, none of the
sources address the problem of jointly estimating the position and tracking
the multipath component parameters.

In contrast to these sources, we will establish a state-space model that
combines a description of the radio channel and the location of the receiver.
The state-space of the model will be estimated using a nonlinear state
estimator. The purpose of joint position and radio channel estimation is
double: improving the long-term IMU-based positioning performance and
improving radio channel prediction. The radio channel will be modeled with
MPCs and each component is described with a set of states. These states
will be tracked and estimated using information obtained from the IMU
and the radio channel estimates. We will specifically study narrowband
systems, even though a wideband system where the individual MPCs could
be retrieved is deemed an easier problem. Since the states explain the
small scale fading pattern, the pattern will be seen as a map which is
simultaneously constructed while using it for positioning of the receiver.
With the estimated state-space model, predictions of the radio channel can
also be calculated and used for adaptation of the link parameters for future
transmissions. For illustrative purposes, and for showing the benefit on
transmission data rates, the LTE system is used, but the approach is not
limited to this system alone. Instead any pilot-based system where the
receiver is equipped with inertial sensors may be used.

Contributions
The contributions of this thesis are:

• a state-space model that combines a motion model and a radio channel
model for a narrowband system,

• identification of suitable algorithms for joint estimation of position
and the radio channel states,

• simulation results showing significantly improved performance of
long-term positioning,

• proof of concept experiments of using a low-cost IMU with good results,
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• investigation of fundamental performance bounds of space-time vir-
tual arrays under imprecise position estimates,

• a new method based on sparse Bayesian learning for joint estima-
tion of angle of arrival and frequency error under imprecise position
estimates, and

• link adaptation based on prediction of the joint position and radio
channel model to increase data throughput in the LTE system.

1.4 Publications

The work presented in this thesis is based on the following peer reviewed
publications, all mainly written by A. Mannesson.

Mannesson, A., M. A. Yaqoob, B. Bernhardsson, and F. Tufvesson (2015).
“Tightly coupled positioning and multipath radio channel tracking”.
IEEE Transactions on Aerospace and Electronic Systems. Accepted.

This article covers the joint state-space model and includes positioning re-
sults for both synthetic signals and for a set of measurements acquired
by experiments. The work concerns SISO systems. A. Mannesson was re-
sponsible for modeling, implementation, analysis, and writing the article.
The measurements were performed together with M. A. Yaqoob who had the
main responsibility for the experiment equipment and planning of the exper-
iments. He also contributed with ideas on the modeling and the manuscript.
F. Tufvesson and B. Bernhardsson contributed with the core idea and as-
sisted on modeling, choice of algorithms, and structuring the manuscript.

Mannesson, A., M. A. Yaqoob, B. Bernhardsson, and F. Tufvesson (2012).
“Radio and IMU based indoor positioning and tracking”. In: Proceed-
ings of IEEE International Conference on Systems, Signals and Image
Processing (IWSSIP). Vienna, Austria, pp. 32–35.

Preliminary work on positioning using experiment data. The work distribu-
tion among the authors is identical to the previous article.

Mannesson, A., B. Bernhardsson, M. A. Yaqoob, and F. Tufvesson (2014).
“Optimal virtual array length under position imperfections”. In: Pro-
ceedings of IEEE 8th Sensor Array and Multichannel Signal Processing
Workshop (SAM). A Coruña, Spain.

This article is an extension of the angle of arrival estimation presented in
the licentiate thesis by the author. A. Mannesson stated the problem and
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was responsible for the implementation, analysis, and writing the article.
The other authors contributed with feedback on the problem definition and
the manuscript.

Mannesson, A. and B. Bernhardsson (2015). “Cramér-Rao lower bound for
imprecise space-time virtual antenna arrays”. IEEE Transactions on
Signal Processing. Submitted.

Cramér-Rao lower bound calculations and analysis for space-time antenna
arrays. The core idea was initiated by B. Bernhardsson while A. Mannesson
was responsible for calculations, implementation, validation, and writing
the manuscript.

Mannesson, A., B. Bernhardsson, and F. Tufvesson (2015). “Link adaption
for MIMO systems using sensor fusion based channel prediction”. IEEE
Transactions on Wireless Communications. Submitted.

An extension of the joint state-space model used in previous publications to
cover MIMO systems. The article also presents work on channel prediction
and link adaptation. A. Mannesson was responsible for the problem def-
inition, implementation, and writing of the manuscript. B. Bernhardsson
and F. Tufvesson contributed with the underlying idea and gave valuable
feedback on the problem definition and the manuscript.

Preliminary work concerning positioning, performance bounds, particle
filter initialization, and experiment series has also been published in the
author’s licentiate thesis.

Mannesson, A. (2013). Joint Pose and Radio Channel Estimation. Licen-
tiate Thesis ISRN LUTFD2/TFRT–3263–SE. Department of Automatic
Control, Lund University, Sweden.

The work in the following publications is not included in this thesis but
A. Mannesson has been involved and has contributed with ideas for the
work and has also provided feedback on the manuscripts as well as helped
out with the measurement series.

Yaqoob, M. A., A. Mannesson, F. Tufvesson, and B. Bernhardsson (2013).
“Direction of arrival estimation with arbitrary virtual antenna arrays
using low cost inertial measurement unit”. In: Proceedings of IEEE In-
ternational Conference on Communications - Workshop. Budapest, Hun-
gary, pp. 79–83.

Yaqoob, M. A., A. Mannesson, F. Tufvesson, B. Bernhardsson, and N. R. Butt
(2014). “On the performance of random antenna arrays for direction of
arrival estimation”. In: Proceedings of IEEE International Conference on
Communications - Workshop. Sydney, Australia, pp. 193–199.
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Yaqoob, M. A., A. Mannesson, N. R. Butt, and F. Tufvesson (2015). “Source
localization using virtual antenna arrays”. In: 2015 International Con-
ference on Localization and GNSS (ICL-GNSS). Gothenburg, Sweden.

All published publications are available to download from
http://www.control.lth.se/Publications.html.

1.5 Outline

This thesis consists of nine chapters. In Chapter 2, a model for the radio
channel is presented and a connection between it and the location of the
receiver is derived. This connection will be used in the joint position and
radio channel state-space model derived in Chapter 3. In Chapter 4 algo-
rithms suitable for estimation of the joint state-space model is presented.
The fundamental estimation limitations are studied in Chapter 5 and in
Chapter 6, simulation results of the full estimation problem are presented.
Chapter 7 describes and presents results from a series of measurement
that has been conducted during the work and the results serve as a proof
of concept. In Chapter 8, the possible increase in end user data rates us-
ing link adaptation with the predicted state-space model is investigated.
Finally, the work is summarized and future research directions are pointed
out in Chapter 9.
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2
Radio Channel Modeling

2.1 MIMO Communication Systems

In a multiple-input multiple-output (MIMO) system, the transmitter and
receiver are equipped with two or more antennas each and use them si-
multaneously for communication. Compared to a single-input single-output
(SISO) system with one active channel between the transmitter and the re-
ceiver, MIMO systems provide several important benefits that can improve
link reliability and data transfer rates [Paulraj et al., 2003]. In Figure 2.1,
a simple generic MIMO system is shown. The transmitter pre-processes the
bits to be transmitted, what steps that are used depend on the particular
system but may include coding, modulation mapping, and antenna map-
ping, before finally modulating the information onto the carrier signal. The
carrier frequency used is system specific and ranges from approximately
450MHz to 6GHz for typical cellular and WiFi networks. Many systems
use several different frequency bands in order to increase the data transfer
rates or to serve more users and the given frequency interval is there-
fore densely occupied with different radio standards. The modulated carrier
signal is fed to the transmit antennas and when the receiver detects the
carrier signal, the RX retrieves the transmitted bits by, e.g., reverting the
pre-processing operations of the TX.

The MIMO scheme enables techniques which are not available for single-
channel systems. These techniques enhance the communication link in dif-
ferent ways which can be divided into three categories described briefly
below [Paulraj et al., 2003].

• Diversity. As seen in Figure 1.1, the wireless link can go into deep
fading dips due to multipath wave propagation. Since a MIMO system
enables more channels, and by combining the received signal from all
receive antennas, the likelihood of losing a transmission is decreased.

• Multiplexing. Since the MIMO technique enables several channels
between the TX and the RX, parallel data streams can be transmitted
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TX RX
· · · 001001 · · · 001100

Figure 2.1 A MIMO scenario with two transmit antennas to the left and
two receive antennas to the right. The pre-processing of the TX includes,
e.g., coding and modulation while the post-processing reverts these steps in
order to retrieve the transmitted bits.

using the same transmission bandwidth and time slot. In a single-
channel system, increased transmission capacity can only be gained
by either increasing the signal to noise ratio (SNR) or increasing the
bandwidth used. While these options increase the throughput to one
user, all other users will be negatively affected by them.

• Beamforming. By adjusting the amplitude and phase of the trans-
mitted signal at each transmitting antenna, the energy can be directed
towards the receiver. An analogy to this is an optical lens which fo-
cuses rays of light into a single point. Since less energy is emitted
towards other users, the general noise level in the system is lowered
which enables higher data rates in the wireless network.

The benefits of the MIMO technique and an increased demand on high
data transfer rates in wireless devices have resulted in several commercial
implementations of it, e.g., the LTE [3GPP, 2016a] system for 4G as well
as the IEEE 802.11 n/ac [IEEE S.A., 2016] for WiFi. Therefore, a MIMO
system is used in the derivation below.

2.2 MIMO Radio Channel Model

As discussed in Section 1.1, wireless transmissions are subject to multipath
wave propagation. We will now derive an MPC based radio channel model
which allows tracking of the individual MPCs in a MIMO system. It is more
advanced than traditionally used, but newer radio channel models such as
COST 2100 [Verdone and Zanella, 2012; Liu et al., 2012] is an application of
the geometry based radio channel modeling which is the basis of our model.
The derivation presented here follows [Pedersen, 2009] closely.

Consider a MIMO system with MT transmit antennas and MR receive
antennas, compare Figure 2.1. The transmitted and received signal can be
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H(t,τ)
∑s(t)u(t) y(t)

e(t)

Figure 2.2 The radio channel can be modeled as an LTV system with
additive complex valued Gaussian noise e(t). The input to the channel is the
baseband equivalent u(t) while the output is y(t). The channel is described
by the time-variant impulse response function H(t,τ).

represented with their complex baseband signals, respectively, as

u(t) =
[
u1(t) . . . um(t) . . . uMT (t)

]T
and

y(t) =
[
y1(t) . . . yn(t) . . . yMR(t)

]T ,
where (·)T denotes matrix transpose, um(t) is the input signal of transmit
antenna m, and yn(t) the output signal of receive antenna n, see [Paulraj
et al., 2003]. If the radio channel is modeled as an LTV system, the observed
noisy signal y(t) will be

y(t) =
∫ ∞

0
H(t,τ)u(t− τ) dτ + e(t), (2.1)

where t is the time when the receive antenna observes the signal, τ is the
time delay in the channel, and e(t) ∼ CN (0,Σ) is additive zero mean cir-
cular symmetric complex Gaussian noise with a positive definite covariance
matrix Σ ∈ Rnx$nx . The probability density function of the distribution is
given by

CN (xpm,Σ) = 1
πnx pΣp exp{−(x−m)∗Σ−1(x−m)}, (2.2)

wherem ∈ Cnx denotes the mean, x ∈ Cnx denotes the random variable, (·)∗
denotes Hermitian transpose, and p · p denotes determinant. Furthermore,
the integral kernel H(t,τ) ∈ CMR$MT is called the time-variant impulse
response [Molisch, 2005]. The noise can represent different things, e.g.,
thermal noise in the receiver or interference in the radio channel. The
channel operations are illustrated in Figure 2.2.

In (2.1), the transfer function is given in the time-delay domain. In
Chapter 1, the transfer function of the radio channel was illustrated in the
time-frequency domain and their relationship is given by

L(t, f ) =
∫ ∞

−∞

H(t,τ) exp{−i2π fτ} dτ, (2.3)
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which is the Fourier transform with respect to the delay. An example of
L(t, f ) is given in Figure 1.1.

If the channel is assumed to be time-invariant, i.e., the kernel function
is constant over time, its impulse response function is of the form H(t,τ) ,
Ht(τ), ∀ t. Furthermore, if the channel is assumed to be non-dispersive,
the kernel function is of the form H(t,τ) , Hτ (t)δ (τ − τ0), where δ (t) is
the Dirac delta function. If both these assumptions hold, then the channel
operations in (2.1) can be simplified and become

y(t) = Ht,τu(t− τ0) + e(t), (2.4)

where Ht,τ ∈ C
MR$MT is the non-dispersive time constant kernel function.

This matrix will be referred to as the channel matrix.
Time-invariance may be assumed for channels where changes of the

channel transfer function occur slowly compared to the considered transmis-
sion time duration. Similarly, a channel may be considered non-dispersive if
the corresponding time-frequency transfer function L(t, f ) is approximately
constant in the frequency domain over the bandwidth of the transmitted
signal. This is also referred to as frequency non-selective channels [Molisch,
2005].

Antenna Modeling
In this thesis it is assumed for simplicity that the antennas are isotropic,
i.e., the channel matrix H will not depend on the rotation of the receiver
which simplifies the models significantly. However, for future research, the
models describing the influence of the antennas on the radio channel model
are presented here.

By assuming that the antennas at the transmitters and the receivers are
time-invariant and non-dispersive with respect to their field pattern, the
antennas can be described by their direction dependent complex transfer
functions. For each antenna element, the complex electric field pattern is a
two-dimensional complex function. For the mth transmit antenna element,
it is described by [

cφTX,m(ρ)
cθTX,m(ρ)

]
, (2.5)

where cφTX,m(ρ) and cθTX,m(ρ) are the horizontal and vertical components of
the complex electric field pattern respectively and ρ is the direction vector
defined in Figure 2.3. Define the transmit antenna response matrix as

CTX =

[
cφTX,1 . . . cφTX,m . . . cφTX,MT

cθTX,1 . . . cθTX,m . . . cθTX,MT

]
∈ C2$MT , (2.6)
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x y

z

ρ =


cos(φ) sin(θ)

sin(φ) sin(θ)
cos(θ)




θ

φ

Figure 2.3 Definition of the direction vector ρ.

where φ denotes azimuth and θ elevation. Similarly, for the receive antenna,
a complex 2$MR response matrix CRX is introduced. The impulse response
function for the radio channel can then be written as

H(t,τ) =
Ï
[CRX(ρRX)]

TG(t,τ ,ρTX,ρRX)[CTX(ρTX)] dρTX dρRX, (2.7)

where the 2$2 kernel G(t,τ ,ρTX,ρRX) is the bi-directional impulse response
function of the radio channel. It describes the propagation properties for
different combinations of transmit-receive polarization pairs as

G(t,τ ,ρTX,ρRX) =

[
�φφ(t,τ ,ρTX,ρRX) �φθ (t,τ ,ρTX,ρRX)
�θφ(t,τ ,ρTX,ρRX) �θθ (t,τ ,ρTX,ρRX)

]
. (2.8)

Multipath Wave Propagation Assumption
The multipath wave propagation introduced in Section 1.1 is used to describe
the result of scattering. It is a commonly used model which is intuitive and
fits many other observed phenomena like channel delay and Doppler power
spectra. The multipath assumption also allows for physical interpretation
of observed changes in the radio channel due to movement of the receiver.
We will now establish this relationship.

The received signal is modeled as a superposition of NR multipath
components

s(t) =
NR∑

r=1
s(r)(t), (2.9)

where s(r)(t) denotes the signal contribution by the rth MPC. For a multi-
path model, the impulse response function is decomposed as

H(t,τ) =
NR∑

r=1
H(r)(t,τ) =

NR∑

r=1



h(r)1,1(t,τ) . . . h(r)1,MT

(t,τ)
...

. . .
...

h(r)MR ,1(t,τ) . . . h(r)MR ,MT
(t,τ)


 (2.10)
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Figure 2.4 Time delayed and attenuated multipath components arriving
at the receiver between τmin and τmax. The coherence bandwidth of the
channel is approximately 1/∆τ . If the bandwidth of the transmitted signal
is significantly lower than the coherence bandwidth, the radio channel is
said to be non-dispersive or frequency flat over the signal bandwidth. A
consequence of this is that the individual multipath components can not be
resolved after they add up at the receiver.

where H(r)(t,τ) denotes the time-variant impulse response function for the
rth MPC. Multipath wave propagation in the time domain is illustrated
in Figure 2.4 where there are four time shifted components arriving at
the receiver after different propagation times τ . The scenario is similar
to Figure 1.2 where there are three multipath components arriving at the
receiver.

Let the difference in time delay between the first and the last multipath
component be denoted by ∆τ , see Figure 2.4. For such a channel, the coher-
ence bandwidth is approximately given by Bcoh = 1/∆τ . If the bandwidth of
the transmitted signal u in (2.1) is denoted Bu and fulfills Bu ≪ Bcoh, the
frequency response of the channel can be considered to be flat over the sig-
nal bandwidth. This assumption is commonly referred to as the narrowband
assumption [Molisch, 2005]. A consequence of the narrowband scenario is
that the individual multipath components can not be resolved at the re-
ceiver. If the opposite holds, i.e., the signal bandwidth is significantly larger
than the coherence bandwidth, the difference between the absolute delays
of the components can be resolved. If so, time of arrival (TOA) information
can be obtained with time synchronized receivers and time difference of
arrival (TDOA) otherwise. The wideband transmission case would supply
more information about the radio channel, but in this thesis the investiga-
tion is focused on the more challenging narrowband case and the wideband
case is left for future research. The narrowband assumption will be used
later on in our derivation.

Since an isotropic antenna transmits energy with the same intensity in
all directions, the wavefront becomes a sphere in free space. If the distance
between the transmitter and the receiver is large, the curvature of the
wavefront can be neglected and then it can be considered to be a plane
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wave instead. This is known as the plane wave assumption. This implies
that all points on a plane, perpendicular to the propagation direction, is
assumed to have the same traveling distance and time delay, and thus the
same phase offset. If the plane wave assumption holds for all propagation
paths, the individual impulse response function for each MPC becomes

h(r)n,m(t,τ) =Ï
[CRX,n(ρRX)]

TG(r)
n,m(t,τ ,ρTX,ρRX)[CTX,m(ρTX)] dρTX dρRX, (2.11)

where CRX,n and CTX,m are the nth and mth column of CRX and CTX respec-
tively. Consequently, the (n,m)th element of H(t,τ) is

hn,m(t,τ) =
Ï
[CRX,n(ρRX)]

T
NR∑

r=1
G(r)
n,m(t,τ ,ρTX,ρRX)[CTX,m(ρTX)] dρTX dρRX. (2.12)

Specular Multipath Representation
A multipath component is called specular [Pedersen, 2009] when its impulse
response function has the form

G(r)
n,m(t,τ ,ρTX,ρRX) =

A(r) exp{−i2πν (r)t}δ (τ − τ (r)n,m)δ (ρTX − ρ
(r)
TX)δ (ρRX − ρ

(r)
RX), (2.13)

where A(r) is a complex 2$2 polarization matrix, ν r is the Doppler frequency,
τ (r) is the delay, ρ(r)TX is the angle of departure, and ρ(r)RX is the AoA of
component r. Inserting this expression in (2.11) and integrating over ρTX
and ρRX yields

h(r)n,m(t,τ) = [CRX,n(ρ(r)RX)]
TA(r)[CTX,m(ρ(r)TX)] exp{−i2πν (r)t}δ (τ − τ (r)n,m).

(2.14)
Thus, component r is determined by the parameters A(r), ρ(r)TX, ρ

(r)
RX, τ

(r)
n,m, and

ν (r). Since A(r) is a complex matrix with four elements and the directions
can be described by two real parameters each, a total of 14 parameters is
needed for each transfer function and multipath component. To simplify
the model and reduce the number of parameters, some assumptions will be
made.

We will start by assuming that the scatterers do not contribute to the
Doppler shifts, i.e., ν (r) = 0, ∀ r ∈ {1, . . . , NR}. This is the case if all MPCs
have been scattered by stationary objects. The next assumption is isotropic
antennas which leads to

[CRX,n(ρ(r)RX)]
TA(r)[CTX,m(ρ(r)TX)] = a(r), ∀ r ∈ {1, . . . , NR} (2.15)
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p(t0)

p(t1)

pTX

∆p

dp′

φ

Figure 2.5 The receive antenna is moved from location p(t0) to p(t1) and
a stationary transmitter is placed in pTX. Note that d , pTX − p(t0).

where a(r) is a complex scalar for the rth MPC.
Furthermore, assume that the transmitter is stationary, i.e., the delay

in the channel τ (r) is only dependent on the position of the receiver.
To establish how a translation of the receiver affects the delay of the

signal, the scenario in Figure 2.5 is considered. Introduce the location of the
receiver at time t as p(t) ∈ R3 and introduce the vectors ∆p , p(t1)−p(t0)
and d , pTX − p(t0), where pTX ∈ R

3 is the location of the transmitter. If
the vector ∆p is projected onto vector d as

p′ = 〈∆p, d〉
qdq2 d, (2.16)

where 〈 · , · 〉 denotes scalar product, the distance between the stationary
transmitter in pTX and the receiver in p(t1) is

qpTX − p(t1)q =
qd− p′q
cos(φ) . (2.17)

If q∆pq ≪ qdq, φ becomes small and thus

qpTX − p(t1)q ( qd− p′q = qd−
〈d, ∆p〉
qdq2 dq = qdq − 〈 d

qdq , ∆p〉. (2.18)

The vector d
qdq is the vector ρRX, compare Figure 2.3, pointing in the

direction of the impinging MPC. Introduce the notation of the nth receive
antenna position at time t by pn(t) ∈ R3. With these assumptions and this
notation, the travel time from transmit antenna m to receive antenna n of
the rth MPC can be written as

τ (r)n,m = τ(r)m −
1
vc
〈pn(t),ρ(φ(r), θ (r))〉, (2.19)
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where τ(r)m is a constant and vc is the speed of propagation. Using these
assumptions, the elements h(r)n,m(t,τ) of (2.10) are given by

h(r)n,m(t,τ) = a(r)δ
(
τ −τ(r)m +

1
vc
〈pn(t),ρ(φ(r), θ (r))〉

)
. (2.20)

We are now ready to formulate the relationship between the input RF signal
to the channel from the mth transmit antenna

uRF,m(t) = Re{exp{i2π fct}um(t)},

and output RF signal of the channel at the nth receive antenna

yRF,n(t) = Re{exp{i2π fct}yn(t)},

where um(t) ∈ C and yn(t) ∈ C are the baseband equivalents [Molisch,
2005] of uRF,m(t) and yRF,n(t) respectively. The relationship is given by

yRn,m(t) =
NR∑

r=1
a(r) exp{−iβ (r)m } exp

{
−i2π fc

vc
〈pn(t),ρ(φ(r), θ (r))〉

}
$

um
(
t+τ(r)m −

1
vc
〈pn(t),ρ(φ(r), θ (r))〉

)
, (2.21)

where the index of the output signal y denotes the active receive-transmit
antenna pair with NR impinging multipath components. The phase shift
β (r)m is a result of the unknown time delay τ(r)m . If the baseband signal
um(t) is slowly varying and thereby has its energy contained in a frequency
interval [0, uBW], then the approximation

um(t+τ(r)m −
1
vc
〈pn(t),ρ(φ(r), θ (r))〉) ( um(t+τ(r)m ), ∀m ∈ {1, . . . , MR}

(2.22)
is valid if τ (r)n (t) ,

1
vc
〈pn(t),ρ(φ(r), θ (r))〉 satisfies

τ (r)n (t1) − τ (r)n (t0) ≪
1
uBW

, ∀ r ∈ {1, . . . , NR},

i.e., the approximation holds if the delay in the channel is not significantly
changed by the movement of the receiver during the transmission time
t1 − t0 of a symbol.

If the transmitter is transmitting a known baseband signal as it does
during the pilot sequence, its contribution to yn(t) can be included in the
complex amplitude a(r)n,m. Also, if the scenario is limited to R2 the position
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of the receive antenna n at time t is denoted by pn(t) ∈ R2 and the unit
vector ρ is given by

ρ(φ(r)) ,
[
cos(φ(r)) sin(φ(r))

]T . (2.23)

The azimuth angle φ is hereafter called the angle of arrival (AoA). If the AoA
φ and amplitude a are slowly varying and only the mth transmit antenna
is active, the baseband model in (2.21) simplifies to

yRn,m(t) =
NR∑

r=1
a(r)n,m(t) exp{−i2π fc

vc
〈pn(t),ρ[φ(r)(t)]〉}, (2.24)

where pn(t) denotes the position of the nth receive antenna at time t, a(r)n,m
is the complex MPC amplitude, unique for each transmit-receive antenna
pair (m,n) and component r, and ρ(φ(r)) is a unit vector pointing in the az-
imuth direction of φ(r). This is the relationship between the channel impulse
response and the location of the receiver in the channel. This configuration
with a moving antenna is usually referred to as a virtual antenna array,
see [Molisch, 2005]. Note that a(r)n,m(t) has taken into account all different
contributions to the amplitude and phase that are independent of the lo-
cation of the receiver and it is hereafter referred to as the complex MPC
amplitude.

Illustrations
Before investigating (2.24) further, the impulse response function of (2.20) is
illustrated in Figure 2.6. The figure shows how the first component arrives
at 0.4 µs together with two MPCs arriving around 0.8 µs and 1.5 µs later.
The curvature of the delay profile is due to the movement of the receiver
which changes the distance to the scattering objects.

With the expression in (2.24) we have established a connection between
the physical position of the receiver and the baseband signal. The mea-
sured baseband signal yRn,m(t) is a sum of NR complex valued contributions
and depending on whether the receiver is approaching or leaving the scat-
tering object, the contribution from each component is rotating clockwise
or anti-clockwise in the complex plane as illustrated in Figure 2.7. Thus,
the components interfere constructively and destructively with each other
depending on the current receiver location and AoA. This is what was vi-
sualized in Figure 1.1 where destructive interference of the MPCs gave rise
to fading dips in the time-frequency power spectra. Equation (2.24) can
consequently be used to model the small scale fading pattern of the radio
channel.

If we study the argument of the measured baseband signal yRn,m(t), the
pattern resembles a map, see figures 2.8, 2.9, and 2.10. The three figures
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Figure 2.6 The impulse response function of a radio channel with delay τ
on the x-axis and time t on the y-axis. The color indicates ph(t,τ)p. Three
multipath components give responses at around 0.4 µs, 1.2 µs, and 1.9 µs
respectively. As time progresses and the receiver is moved, the delay time
increases or decreases as the physical distances to the sources change.

ℑ

ℜ
t0

t1

Figure 2.7 The contribution from four MPCs added together. As the re-
ceiver is moved between time instance t0 and t1, the components rotate
dependent on the AoA for the specific component.
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2.2 MIMO Radio Channel Model

Figure 2.8 Map of the radio channel with one impinging MPC with level
curves for the real (-) and imaginary (- -) value of the received complex signal
yRn,m(t). The colors indicate the argument of the complex signal. The plane
wave assumption is clearly visible as straight phase lines, perpendicular to
the AoA.

show this pattern where the number of impinging MPCs are one, two, and
three respectively and have constant amplitude and AoA. In the figures, the
real and imaginary parts, as well as the argument of the received complex
signal (2.24), are shown as a function of the receiver’s location.

The map in Figure 2.8 shows interesting characteristics of the radio
channel. The far field assumption is clearly visible as straight lines of the
color pattern where the argument is constant in the direction perpendicular
to the impinging MPC. Hence, the argument of the received signal will not
give any information about the position perpendicular to the direction of
the impinging MPC. Further, if the receiver is moved a wavelength in the
direction of the MPC, the argument of the signal revolves 2π during the
movement and ends up back at the same value as it was when the movement
was initiated. Clearly, the phase information is not usable for determining
the absolute distance to the scattering object, but relative movements can
be tracked.

In Figure 2.9, two MPCs are impinging on the receiver. The constant
argument lines have now become "wavy" due to superposition of the two
components. There are still areas wherein the argument is constant but
now the real and imaginary parts of the received signal are changing. This
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Figure 2.9 Same as Figure 2.8 but with two impinging MPCs giving a
more informative map.

Figure 2.10 Same as Figure 2.8 but with three impinging MPCs giving an
even more informative map.
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2.3 Cluster Modeling

information can be used to distinguish two points having the same argument
from each other. Finally, for the case with three MPCs in Figure 2.10,
the pattern becomes even more descriptive. There are several positions in
the plane that will be indistinguishable from each other when looking at
the real and the imaginary value of the received signal. Hence, the map
of the radio environment alone will not provide a unique location of the
receiver but rather multiple possible locations. This will have implications
on estimating the location of the receiver in the radio channel later on.
Finally, each transmit-receive antenna pair has its own unique map so for
a 2$ 2 MIMO system, there will be four maps in total.

2.3 Cluster Modeling

So far we have used a point scatter description for the interfering objects;
the incident energy of the radio wave is spread out in all different directions
but only one component from each scatterer reaches the receiver. However,
radio channel measurements show that several MPCs tend to reach the
receiver from the same direction with low angular separation and low delay
spread [Liu et al., 2012]. This can be explained by scattering in many nearby
points of the same object. Therefore, radio channel models like COST 2100
include clusters to explain this phenomenon [Verdone and Zanella, 2012].
In the COST 2100 radio channel model, three different types of clusters
are defined: single-bounce cluster, double-bounce cluster, and local cluster.
The different cluster types are illustrated in Figure 2.11. In this thesis, the
analysis is limited to single-bounce clusters.

The spatial description of a cluster is an ellipsoid. The cluster is oriented
towards the TX so that the width, depth, and height of the cluster represent
azimuth, delay, and elevation spread respectively. In this thesis, the analysis
is restricted to include azimuth and delay spread. Hence, the contribution
of a cluster consisting of NL components originating from transmit antenna
m to the baseband measurement on receive antenna n will be modeled as

y(c)n,m(t) =
NL∑

l=1
a(l)n,m exp{−i2π fc

vc
〈pn(t),ρ(φ(l))〉}, (2.25)

where φ(l) ∼ U(φ0 − µφ , φ0 + µφ), arg{a(l)n,m} ∼ U(−π,π), and pa(l)n,mp =
1, ∀ l ∈ {1, . . . , NL}. Furthermore, φ0 is the center of the cluster and µφ
is the azimuth spread of the cluster. If NC clusters are present in the
environment, the total response from all cluster on the baseband signal will
be

yCn,m =
NC∑

c=1
y(c)n,m(t). (2.26)
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TX

RX

Single-bounce
cluster Local

cluster

Double-bounce
cluster

Figure 2.11 Cluster types in the COST 2100 radio channel model. The
local cluster is a description of scatterers near the receiver. The single bounce
cluster describes a scattering object that resides between the transmitter and
the receiver while the double-bounce cluster contains two identical images
of one cluster.

Cluster Characteristics
In [Zhu et al., 2013] and [Poutanen et al., 2011], different radio environ-
ments have been investigated with respect to occurrence of clusters and
cluster parameters. In the former, two different outdoor radio channels, a
non line-of-sight (NLOS) channel and a line-of-sight (LOS) channel, are
characterized at a carrier frequency of 300MHz while the latter focuses on
indoor channels at 5.3GHz. From the extensive set of channel parameters
presented in the cited articles, Table 2.1 summarizes what we are inter-
ested in: the azimuth spread, delay spread, and the number of multipath
components per cluster. The spread values are given using log-normal dis-
tributions to avoid negative values. Hence, the azimuth spread of a cluster
can be drawn from the log-normal distribution as

µφ ∼ µφ10σφ η/10,

where µφ is the mean value for the azimuth spread, σφ is the standard
deviation of the spread, and η ∼ N (0, 1) and similarly regarding the delay
spread. However, since the mean delay spread corresponds to several wave-
lengths for carrier frequencies in cellular systems, it is justified to regard
the complex MPC amplitude a(l), ∀ l ∈ {1, . . . , NL} as a uniform random
number on the unit circle.
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2.4 Receiver Imperfections Modeling

Table 2.1 Number of multipath components per cluster, azimuth spread,
and delay spread of the cluster for three different scenarios. Scenario 1 and
2 correspond to the NLOS and LOS outdoor channels of [Zhu et al., 2013],
while scenario 3 is the indoor scenario of [Poutanen et al., 2011].

1 2 3

Carrier frequency [GHz] fc 0.3 0.3 5.3

Number of MPCs [-] NL 27 48 4

Mean of azimuth spread [deg] µφ 14.8 19.0 3.57

Std. of azimuth spread [dB] σφ 2.68 2.03 2.05

Mean of delay spread [µs] µτ 0.14 0.32 1.16 · 10−3

Std. of delay spread [dB] στ 3.66 2.05 3.65

2.4 Receiver Imperfections Modeling

The local oscillators of the transmitter and the receiver in the channel
model in Section 2.2 were assumed to be perfectly synchronized. The local
oscillators found in the base stations are usually of high quality and expe-
rience minor drift. A closer look at the receiver reveals that especially noise
in the local oscillator will be transformed into a phase/frequency error of
the receiver. The frequency error will accumulate into a phase error which
slowly deteriorates the radio map and thereby limits the information the
radio signal gives to the sensor fusion algorithm for the joint position and
radio channel estimation. Consequently, it is important to model the phase
noise carefully.

The local oscillator output of the receiver can be modeled as

z(t) = a(t) cos(2π fct+ ξ (t)), (2.27)

where ξ (t) is a perturbation of the phase of the output signal, fc is the
carrier frequency and a(t) is the amplitude. If ξ (t) is assumed to be small,
then

z(t) ( a(t) cos(2π fct) − a(t)ξ (t) sin(2π fct). (2.28)
Thus, the perturbation is modulated onto the carrier frequency and this
noise is termed phase noise. It can be quantified as the noise power in a
1Hz band at an offset of ∆ f from the carrier frequency. The spectral noise
density then becomes

S(∆ f ) = 10 log
(
Sξ ( fc + ∆ f )

P( fc)

) [
dBc
Hz

]
, (2.29)
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Figure 2.12 Output phase noise from the local oscillator of the receiver as
a function of frequency offset from the carrier ∆ f in logarithmic scale. In
practice, the spectrum is more complicated but this simplification is deemed
to capture the largest error contribution.

where P( fc) denotes the signal power of the carrier frequency and Sξ ( f )
is the noise power per unit frequency noise power spectral density of ξ (t)
in (2.28) at frequency f . A simplified output noise spectrum of the local
oscillator is shown in Figure 2.12.

The noise in the oscillator can be divided into different parts; a noise
floor with flat noise power at large offset frequencies and a 1/ f 2 part near
the carrier. The noise floor is due to thermal noise in the circuits while the
1/ f 2 noise comes from electronic noise in the oscillator circuits. However,
in practice both 1/ f and 1/ f 3 noise is typically present in the output of the
oscillator [Staszewski et al., 2005]. We decide to limit the analysis to the
white noise floor and the 1/ f 2 noise. As in [Staszewski et al., 2005], the
noise floor part can be seen as an uncertainty of the phase in the oscillator
output (2.28). Since the error from one time step to another is approximately
independent, it is modeled as white Gaussian noise on z(t). Furthermore,
the 1/ f 2 part is modeled as an accumulative process leading to a drift in
the phase of the oscillator. To model this effect, an integrator

ν(t) =
∫ t

0
δ f (τ) dτ (2.30)

is introduced where δ f (t) is a frequency error in Hz which is added to the
argument of yRn,m(t) and yCn,m(t) from (2.24) and (2.26) respectively.

Several other types of imperfections exist in the transmitters and the
receivers, e.g., nonlinearities and thermal noise in the amplifiers, noise
from digital and analog converters, and radio signal interference but for
simplicity they are all approximated to be covered by the zero mean circular
symmetric complex Gaussian noise e(t), see Figure 2.2.
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2.5 Summary

2.5 Summary

The baseband signal, measured on receive antenna n when transmit an-
tenna m is active is the sum of NR specular components yRn,m and the
contribution from the clusters yCn,m. After adding the contribution of the
frequency error from (2.30) to yRn,m ∀ (n,m) as well as scaling the positions

with 2π fc
vc

and the frequency error δ f with 2π , (2.24) becomes

yRn,m(t) =
NR∑

r=1
a(r)n,m(t) exp{−i〈pn(t),ρ[φ(r)(t)]〉 − iν(t)}, (2.31)

and similarly for the contribution from the clusters in (2.26)

yCn,m(t) =
NC∑

c=1
y(c)n,m(t)

y(c)n,m(t) =
NL∑

l=1
a(l)n,m exp{−i〈pn(t),ρ[φ(l)(t)]〉 − iν(t)}.

(2.32)

In both equations pn(t) denotes the location of the nth receive antenna
at time t with respect to its initial position pn(t0). The derived equation
gives a connection between the AoA of the impinging MPCs and how the
channel fading pattern will vary with the position of the receiver. The sum
of the two, with added zero mean circular symmetric complex Gaussian
noise en,m(t) becomes

yn,m(t) = yRn,m(t) + yCn,m(t) + en,m(t). (2.33)
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3
Joint Radio Channel and
Position State-Space Model

3.1 Inertial Measurement Unit

An IMU consists of accelerometers and gyroscopes and optionally magne-
tometers and pressure sensors. In order to be able to measure accelera-
tion and rotation around all axes, three accelerometers and gyroscopes are
needed. The gyroscope measures the angular velocity of the IMU’s body
coordinate frame with respect to the static coordinate frame. Rotation is
thereby defined as the orientation of the body coordinate frame with re-
spect to the static coordinate frame. The accelerometer measures the forces
acting upon the device, in the coordinate frame of the IMU. Acceleration
of the device leads to a displacement between the static coordinate frame
and the body coordinate frame called translation. Rotation and translation
is illustrated in Figure 3.1. The fixed coordinate frame is the coordinate
system relative to which position and orientation is defined and it is here-
after called the world frame while the coordinate system attached to the
moving body is called the body frame. All frames throughout the thesis are
assumed to be right handed.

O X

Y

Z

p
x

y
z

Figure 3.1 Translation and rotation of the body frame in relation to the
world frame. The world frame is fixed in O while the body frame is translated
to p.
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3.1 Inertial Measurement Unit

IMU Noise Sources
Various types of disturbances distort the IMU measurements. The main
distortion contributors are random noise, bias, calibration errors, and tem-
perature effects [Woodman, 2010]. Both the accelerometer and gyroscope
are subject to these noise sources.

Random Noise The random noise from the accelerometer and gyroscope
circuits is modeled as zero mean white Gaussian noise. For the gyroscope,
the random noise will be integrated once when calculating the orientation
resulting in so-called angular random walk. The standard deviation of
the orientation will therefore grow proportionally to

√
t. The unit for the

standard deviation of the angular random walk is usually given as deg/
√
h.

However, the mean value of the orientation is unaffected by this noise since
the integral of zero mean white Gaussian noise has zero mean.

For the accelerometer, the random noise is integrated once into a veloc-
ity random walk noise source. The unit for the standard deviation of the
noise becomes m/s/

√
h. As mentioned before, position is obtained by double

integration of the accelerometer signal. Thus, the noise from the accelerom-
eter will also be integrated twice and the standard deviation of the position
estimate will grow proportionally to t3/2. The mean value is left unaffected
due to the same reason as for the gyroscope.

Constant and Varying Bias If the IMU is kept at rest, the mean value
of the measurements from the gyroscope might differ from zero. Possible
reasons for this deviation are scale errors or periodic behavior in the circuits.
This offset is called bias and usually consists of one constant part and one
slowly time-varying part [Woodman, 2010]. The constant part can quite
easily be removed with a calibration scheme such as in [Skog and Händel,
2006]. Any remaining calibration errors in the gyroscope will be integrated
once leading to an orientation error that grows proportionally to t. The
effect on the position is an error that grows proportionally to t3 due to the
constant error. The time-varying part must be modeled and is usually done
so with a first-order Gaussian random walk process on the measurements,
see [Woodman, 2010] and [Gustafsson, 2010]. For the gyroscope, this noise
will be integrated once more into a second-order random walk process. The
standard deviation of the angular random walk process will then have the
unit deg/h3/2.

The same applies to the accelerometer; the constant part of the bias can
be removed by calibration but any remaining error will be integrated twice
to obtain position. The time-varying offset is also modeled with a first-order
random walk which yields a third-order random walk in the estimated
position. The unit for the standard deviation of the position noise process
is m/h5/2.
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Figure 3.2 Typical log-log plot of the Allan deviation as a function of
averaging time [IEEE Std 952-1997, 1998].

Note that in order to simulate a true bias stability process with the
units of deg/h and m/h2 for gyroscope and accelerometer respectively, a
noise source with intensity 1/ f must be used. Due to the challenge of
simulating this, only 1/ f 2 noise is considered here giving the noise sources
described previously [Staszewski et al., 2005; Kasdin, 1995]. The chosen
noise sources have other properties but it is deemed to capture the noise
behavior of the IMU needed in simulation during suitable time intervals.

Temperature Effects Temperature variations affect the accelerometers
and gyroscopes as changing bias and noise levels, etc. The temperature
dependence of the circuits can be modeled but this model will be difficult
to obtain if no temperature information is available from the device used.
Thus, the temperature dependence of the IMU sensors is left unmodeled.

Allan Variance
To determine which noise sources that are present in the measured signals,
a technique known as Allan variance can be used. A thorough description of
the technique can be found in [IEEE Std 952-1997, 1998]. To characterize
the IMU, data is gathered over a long period of time when the IMU is kept
at complete rest. The data sequence is then divided into N bins of length
T. For each bin, the mean value is calculated giving a set of averages
denoted by [a(T)1, . . . , a(T)N]. The Allan variance for the averaging time T
is calculated as

AVAR(T) = 1
2(N − 1)

N−1∑

n=1
[a(T)n+1 − a(T)n]2.

The Allan deviation, AD(T) =
√

AVAR(T), is plotted against the averaging
interval T. A typical such curve is shown in Figure 3.2.

From the Allan deviation plot, the white noise intensity and bias stability
can be obtained as well as other noise sources. The white noise gives a slope
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of −0.5 at short averaging times. As more samples are lumped together
and averaged, the variance of the mean value becomes lower. The bias
stability can be determined by the flat part in the plot and the bias random
walk is seen as the ramp with slope 0.5. If the signal contains correlated
noise, it will be visible as a hump in the plot. In this work, random noise
and bias are considered to be the two most important noise sources and
are therefore modeled. The bias is modeled as a first-order random walk
process, individual for each sensor axis. The measurements from the 3-
axis accelerometer and gyroscope sensors in the body frame are denoted by
uba,k ∈ R3 and ubω,k ∈ R3 respectively and become

uba,k = abk + δ a,k + na,k, (3.1a)
ubω,k =ωb

k + δω,k + nω,k, (3.1b)

where k denotes sample index, abk ∈ R3 are the acceleration forces acting on
the three axes of the device measured in m/s2, and ωb

k ∈ R
3 is the angular

velocity of the device measured in rad/s. Furthermore, δ a,k ∈ R3 and δω,k ∈
R3 are modeled as independent first-order random walk processes given by

δ a,k+1 = δ a,k + Tsnδa,k,
δω,k+1 = δω,k + Tsnδω ,k,

where Ts is sample time, nδa,k and nδω ,k are zero mean white Gaussian
noise processes with covariance matrices Σδa and Σδω respectively. Finally,
the noise processes na,k ∈ R3 and nω,k ∈ R3 are white Gaussian noise
processes

na,k ∼ N (0,Σa),
nω,k ∼ N (0,Σω),

where Σa and Σω are diagonal covariance matrices of appropriate sizes.

3.2 Kinematic Modeling

Kinematics is the dynamical description of how bodies move. To be able to
predict or evaluate the likelihood of the movements, a kinematic model is
of essence. The model derived here is for movements in three dimensions
even though simulations and experiments in this thesis are carried out in
two dimensions.

Orientation Representation
There are two widely used ways of representing rotation, Euler angles
and quaternions [Gustafsson, 2010]. Euler angles represent the rotation
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as three rotations around the coordinate axes. The Euler angles are easy
to understand but suffer from singularities when two of the rotational
axes coincide. The other representation, quaternions, does not have this
shortcoming and will therefore be used in our work. A quaternion q is
defined as

q ,
[
q0 q1 q2 q3

]T
= [q0 qTv ]T ∈ R4 (3.2)

with the internal restriction
qqq2 = 1. (3.3)

Let pb = [pbx pby pbz]T be a vector in the body frame and q the quater-
nion describing the relation between the body and the world frame. Rotation
of the vector pb from the body coordinate system to pw = [pwx pwy pwz ]T in
the world frame is calculated as

pw = R(q)pb, (3.4)

where R(q) denotes a rotation matrix from body coordinates to world coor-
dinates. The rotation matrix is given by

R(q) =


q2

0 + q2
1 − q2

2 − q2
3 2q1q2 − 2q0q3 2q1q3 + 2q0q2

2q1q2 + 2q0q3 q2
0 − q2

1 + q2
2 − q2

3 2q2q3 − 2q0q1
2q1q3 − 2q0q2 2q2q3 + 2q0q1 q2

0 − q2
1 − q2

2 + q2
3


 . (3.5)

Continuous Time Dynamics
Let the orientation of a rigid body be represented by the quaternion q and
let the angular velocity of the body be ω. The continuous state dynamics
for the quaternion written with matrix multiplication is [Kuipers, 1999;
Coutsias and Romero, 1999]

q̇(t) = 1
2P[q(t)]ω(t) = 1

2Q[ω(t)]q(t), (3.6)

where

P(q) =



−q1 −q2 −q3
q0 −q3 q2
q3 q0 −q1

−q2 q1 q0


 (3.7)

and

Q(ω) =




0 −ω x −ω y −ω z
ω x 0 ω z −ω y
ω y −ω z 0 ω x
ω z ω y −ω x 0


 (3.8)

with ω =
[
ω x ω y ω z

]T .
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For translation, there are several different motion models available [Li
and Jilkov, 2003]. If the movement of the object is constrained, e.g., a car
can not drive sideways, there are models that include this constraint. In
our scenario, the choice is to assume no prior information about the move-
ment of the device. This is provided by the Newton equations for free body
movement. The relationship between position, velocity, and acceleration is
given by

ṗ(t) = v(t), (3.9a)
v̇(t) = a(t), (3.9b)

where p(t) ,
[
px(t) py(t) pz(t)

]T , and v(t) , [
vx(t) vy(t) vz(t)

]T are
the position and velocity in the world frame at time t respectively. Before
the position and velocity states can be updated using the accelerometer
measurements from an IMU, they have to be rotated from the body frame
to the world frame using (3.5), and the contribution of the gravity �̄ ,[
0 0 �

]T must be canceled. Together, these operations yield

aw(t) = R[q(t)]ab(t) − �̄, (3.10)
where aw(t) will be used as the time derivative of the velocity in (3.9b).

Discrete Time Dynamics
The continuous dynamic models above must be discretized to fit the esti-
mation framework later. The rotational dynamics in (3.6) are discretized as
[Gustafsson, 2010]

qk+1 =

{
I4 +

Ts
2 Q(ω k)

}
qk +

Ts
2 P(qk)nω,k (3.11)

and the translational dynamics in (3.9) are discretized as

pk+1 = pk + Tsvk +
T2
s

2 ak (3.12a)

vk+1 = vk + Tsak. (3.12b)
When the IMU measurement equations from (3.1) are inserted and the bias
states are included, the state equations of the kinematics are given by

pk+1 = pk + Tsvk +
T2
s

2
{
R(qk)[uba,k + δ a,k] − �̄ + na,k

}
(3.13a)

vk+1 = vk + Ts
{
R(qk)[uba,k + δ a,k] − �̄ + na,k

}
(3.13b)

δ a,k+1 = δ a,k + Tsnδa,k (3.13c)

qk+1 =

{
I4 +

Ts
2 Q(ubω,k + δω,k)

}
qk +

Ts
2 P(qk)nω,k (3.13d)

δω,k+1 = δω,k + Tsnδω ,k, (3.13e)
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where I4 is the unit matrix of size 4 and Ts is the sample time. In total,
16 states are used to describe the kinematics of a rigid body. In the dis-
cretization step, without loss of generality, the sign on the bias states and
the white noise processes for both accelerometer and gyroscope has been
changed. Note that (3.13d) does not preserve the relation (3.3). This will be
dealt with when implementing algorithms for state estimation.

3.3 Joint Radio Channel and Kinematic Modeling

The radio channel model presented in Chapter 2 introduced two parameters
for each MPC, the complex amplitude and the angle of arrival. The AoA was
assumed to be independent of the transmit-receive antenna pair. Adding to
these two is the frequency error δ f , which is assumed common for all MPCs.
These parameters will now be added as states in the model. The complex
MPC amplitude is separated into two individual states as

α(t) , pa(t)p
β(t) , arg{a(t)}.

(3.14)

The absolute value of the complex MPC amplitude is regarded independently
of the antenna pairs considered, but the phase varies since the physical
displacement between the antenna elements leads to a difference in phase
offset. Let vector zn ∈ R3 be the displacement between the center of the
IMU, denoted p, and the nth receive antenna. Then,

pn = p+R[q]zn, (3.15)

and zn, ∀n = {1, . . . , MR} are assumed known. The phase offset due to
receive antenna displacement can thereby be accounted for. Hence, β is
modeled as dependent on the transmit antenna and a particular MPC.
Adding the phase error ν(t) to all βs makes β an integrator of the frequency
error. The absolute value, the AoA, and the frequency error are all modeled
as random walk processes and the dynamic equations for the states become

φ k+1 = φ k + Tsnφ,k, (3.16a)
αk+1 = αk + Tsnα,k, (3.16b)

βk+1 = βk + Tsδ f ,k + Tsnβ,k +
T2
s

2 nδ ,k (3.16c)

δ f ,k+1 = δ f ,k + Tsnδ ,k (3.16d)

where nφ , nα, nβ , and nδ are white Gaussian noise processes. By choosing a
random walk process for the complex amplitude, any path loss variation that
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arises as the distance to the transmitter changes, is not modeled. However,
the model can still track a changing amplitude.

We assume that there is no mutual information between the different
MPCs except for the frequency error that is common for all. Consequently,
equations (3.16a) – (3.16c) are reused for all φ, α, and β . The noise term
nβ is kept as a roughening noise term to let the phases slowly drift even
though they are assumed to be constant.

For the clusters presented in Section 2.3, the angular spread is so small
that they are not individually resolvable. Also, since the number of states
in the filter grows proportionally to NR, the number of states needed to
track all components of a cluster would rule out this modeling approach.
Instead, a cluster will be modeled as a single multipath component with one
exception. In the cluster model (2.25), the βs are unique for every cluster
component and consequently the interference pattern between the compo-
nents will not be the same for different transmit antennas. Therefore, the
absolute value of the complex MPC amplitude must be separated for dif-
ferent transmit antennas. To investigate the change rate of the amplitude
such a model imposes, 20000 datasets with each of the three clusters in
Table 2.1 is generated and the amplitude change rate is calculated as the
receiver is moving in a straight line with a heading ranging from a perpen-
dicular movement to straight towards the cluster. The result is presented
in Figure 3.3. From the figure it is seen that moving perpendicularly to the
cluster gives the largest amplitude change rates and the rate drops as the
movement is directed towards the cluster. The change rates are considerably
larger than what the amplitude of a distinct MPC is believed to be.

All the states are added to the state vector, which now becomes

x =
[
pT vT δTa qT δTω φT αT βT δ f

]T
∈ R17+NR(2+MT )+NC(1+2MT ),

(3.17)

where NR is the number of MPCs present in the radio channel, NC is the
number of clusters present, MT is the number of transmit antennas, and

φ =
[
φR1 . . . φRNR

φC1 . . . φCNC

]T
∈ RNR+NC

α =
[
αR

1 . . . αR
NR

αC
1,1 . . . αC

1,NC
. . . αC

MT ,NC

]T
∈ RNR+NCMT

β =
[
β R

1,1 . . . β R
1,NR

. . . β R
MT ,NR

βC1,1 . . . βC1,NR
. . . βCMT ,NC

]T
∈ RMT (NR+NC).

Equations (3.13) together with (3.16) is the final dynamic state-space
representation of the kinematics and the radio channel model together. The
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Figure 3.3 Amplitude change rate as a function of movement heading for
the three different clusters in Table 2.1. The cluster is located at 90 deg and
consequently a heading of 0 deg equals a movement perpendicular to the
cluster. The cluster energy is normalized to 1.

equation from (2.33) is sampled with sample rate Ts and becomes

yn,m,k = yRn,m,k + yCn,m,k + en,m,k (3.18)

where en,m,k is zero mean circular symmetric complex Gaussian noise,

yRn,m,k =
NR∑

r=1
αR
r,k exp{−iβ R

m,r,k} exp{−i〈pn,k,ρ(φRr,k)〉}, (3.19)

and

yCn,m,k =
NC∑

c=1
αC
m,c,k exp{−iβCm,c,k} exp{−i〈pn,k,ρ(φCc,k)〉}. (3.20)

Remember that pn,k is normalized with the constant 2π fc
vc

to facilitate the
notation, i.e., distances are measured in the unit of wavelengths. The equa-
tion (3.18) will be referred to as the measurement equation in subsequent
chapters.

Observability of the States
Since all MPCs are assumed to impinge on the receiver in 2D, neither the
measurement equation (3.18) nor any other states depend on the position
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along the z-axis. This state is therefore unobservable in this model. The
estimated position along the z-axis will therefore be the dead reckoning
estimate. To include estimation of pz, the elevation angle θ mentioned in
Section 2.2 can be used. Another possibility would be to include pressure
sensors in the IMU if they provide enough accuracy. Furthermore — as long
as the receiver unit has a displacement between the antennas and the IMU
center — the yaw angle, i.e., the rotation of the unit around the z-axis, is
observable.
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Nonlinear Estimation
Techniques

In an ideal case, all variables of a system are measurable. In the real
world this is however not the case; some quantities are difficult to measure
with reasonable accuracy under given noise levels or simply impossible to
measure at all. In such cases, we have to rely on an estimation. When
estimating, an estimate is sought of a latent variable given a set of noisy
measurements that are dependent on the latent variable. Furthermore, we
also seek an optimal estimate given some criterion by which the estimator
can be evaluated. A natural criterion is to minimize the mean square error,

minimize E{qx̂− xq2},

where x̂ is a vector containing the estimates and x are the true values of
the latent variables. For practical purposes such an estimator is generally
not available, so instead the estimator has to be restricted. If the problem
of finding the estimator is restricted to the linear class, i.e., the estimator
is linear in the measurements, then the well-known least squares solution
turns out to be the minimum mean square error (MMSE) estimator [Kay,
1993]. This estimator falls in the category of batch estimators, i.e., it col-
lects a set of measurements and finds the best linear estimate of the latent
variable. Another class of estimators is the recursive estimators where in-
stead the samples are processed one at a time and the estimate is updated
recursively given the new information provided by the measurements. This
kind of estimators are suitable for online estimation or where the underly-
ing latent variables are constantly changing. One of the most widely used
estimators of this kind is the Kalman filter [Kalman, 1960]. In this thesis
we will use both kind of estimators; they will be addressed in this chapter.
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4.1 Recursive State-Space Estimation

Consider the discrete state-space model

xk+1 = f (xk,uk,nk) (4.1a)
yk = h(xk) + ek, (4.1b)

where xk ∈ Rnx is the state vector at sample k, yk ∈ Rny is the mea-
surement vector, uk ∈ Rnu the exogenous signal vector, and nk ∈ Rnw and
ek ∈ Rny are noise processes acting on the states and measurements respec-
tively. Furthermore, f : Rnx $Rnu $Rnn → Rnx are the dynamic equations
and h : Rnx → Rny are the measurement equations, both sets of functions
are potentially nonlinear. Clearly, the state-space model is a recursive for-
mulation where the state vector propagates with time and produces a set
of measurements for each sample point k.

Let the posterior state distribution be denoted by p(xs:kpy1:K), s ≤ k,
where xs:k , {xs, . . . , xk} and y1:K , {y1, . . . , yK}. Depending on the choice
of s and k, three different estimation problems can be formulated.

• If s ≤ k < K the problem is called smoothing.

• If s = k = K the problem is called filtering.

• If k ≥ s > K the problem is called prediction.

In this thesis we will deal with filtering and prediction but smoothing could
be interesting for future research, see Section 9.1.

The Kalman Filter
As mentioned before, one of the most widely used filters for state-space es-
timation is the Kalman filter [Kalman, 1960] which is an elegant recursive
formulation of the filtering problem. The original formulation of the filter is
applicable for linear systems with additive Gaussian noise processes n and
e. It represents the states by a Gaussian distribution and the linear trans-
formation of updating the states and the measurement equation maintains
the Gaussianity. The Kalman filter has several nice properties, e.g., it min-
imizes the mean square error as K → ∞ and convergence of the estimate
to the true state vector is guaranteed if the noise covariance matrices for n
and e are positive definite.

For the more general problem of state estimation, where the state equa-
tions are nonlinear, a problem arises. A nonlinear transform of a Gaussian
distribution does not preserve the Gaussianity. To tackle this problem,
two commonly used formulations are available: the extended Kalman filer
(EKF) [Anderson and Moore, 2012] and the unscented Kalman filter (UKF)
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[Julier and Uhlmann, 2004]. The EKF propagates the covariance of the
states and the measurements using linearized equations instead, while the
UKF propagates sigma points through the nonlinearity and approximates a
Gaussian distribution to these propagated sigma points. Both formulations
thereby maintain a Gaussian description of the states but the convergence
of the filters is not guaranteed anymore. Still, the formulations are widely
and successfully used in many nonlinear scenarios. The equations for the
extended Kalman filter are given in Algorithm 4.1.

Algorithm 4.1—The extended Kalman filter
Input: Initial state estimate x̂1p0, and initial covariance P1p0.

State noise covariance matrix Qk
Measurement noise covariance matrix Rk.

1: for k = 1 to K do
2: Measurement update:

x̂kpk = x̂kpk−1 +Kk[yk − h(x̂kpk−1)] (4.2a)
Pkpk = [Inx −KkHk]Pkpk−1 (4.2b)
Kk = Pkpk−1HT

k [HkPkpk−1HT
k +Rk]

−1 (4.2c)

Hk =
�h(x)
�xT

∣∣∣∣
x=x̂kpk−1

3: Time update:

x̂k+1pk = f (x̂kpk,uk, 0) (4.3a)
Pk+1pk = FkPkpkFT

k +GkQkGT
k (4.3b)

Fk =
�f (x,u,n)
�xT

∣∣∣∣x=x̂kpku=uk
, Gk =

�f (x,u,n)
�nT

∣∣∣∣x=x̂kpk
u=uk

4: end for
Output: Posterior state estimate x̂K pK and posterior covariance PK pK

Note that the formulation in Algorithm 4.1 is applicable for the linear
case as well. In such a case, the derivatives become trivial. For the UKF
algorithm, refer to [Julier and Uhlmann, 2004].

The Particle Filter
The nonlinear state estimator that has gained the largest attention in the
last decade is the particle filter [Gordon et al., 1993; Doucet et al., 2000b;
Arulampalam et al., 2001]. The underlying idea of the particle filter is
to represent the state posterior distribution p(xkpy1:k) using particles, each
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carrying a hypothesis of the state vector x̂k and a weight wk as a measure of
the likelihood of that hypothesis when evaluated against the measurements
[Arulampalam et al., 2001]. The posterior filtering distribution is then rep-
resented by the particles. The main benefits of the particle filter compared
to the EKF and UKF are that nonlinearities can be dealt with without mak-
ing linearizations and that the posterior distribution is no longer limited
to a Gaussian distribution. The particle filter has found its use in many
different applications and there are also extensions, e.g., for the smoothing
problem [Godsill et al., 2004]. A derivation of the particle filter can be found
in Appendix A. The recursive formulation of the filter with a measurement
update and a time update, similar to the structure of the Kalman filter of
the filter, is given in Algorithm 4.2 and the approximation of the posterior
distribution can be written as

p̂(xkpy1:k) ∝

Np∑

i=1
w(i)kpkδ (xk − x̃

(i)
k ), (4.4)

where δ (·) is the Dirac delta function.

Resampling The particle filter has a problem with degeneracy or deple-
tion which means that after a few time steps, most particles have negligible
weight. The implication is that the approximation of the posterior distribu-
tion p̂(xkpy1:k) will be concentrated to a few particles. To make sure that
the approximation is a good description of the true posterior distribution,
the particles are resampled. The resampling is carried out using draw and
replace so that particles having a large weight w are more likely to be repro-
duced several times compared to particles with low weights. The resampling
step has some theoretical implications for the filter but it has proven to be
a good solution for the depletion problem, see [Gordon et al., 1993; Gustafs-
son, 2010]. Resampling can be performed in every time step but in order to
save time, we resample when the effective number of particles, calculated
as

Neff =


 Np∑

i=1

(
w(i)kpk

)2


−1

, (4.5)

drops below a predetermined level Nth. After resampling has been per-
formed, the weights are reinitialized as w(i)kpk = 1/Np, ∀ i ∈ {1, . . . , Np}.

Convergence The convergence of the particle filter is sensitive to the
initialization of the states as opposed to the Kalman filter which always
converges given positive definite covariance matrices. For the particle filter,
the state estimates might converge to a local maximum in the likelihood
function and the filter will be unable to find the global maximum. To
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facilitate convergence to the global optimum an initialization algorithm to
the filter, tailored to our estimation problem, will be derived in Section 4.2.

Algorithm 4.2—The particle filter
Input: Particles x(i)1p0 ∼ p(x1p0) and weights w(i)1p0 = 1/Np, ∀ i ∈ {1, . . . , Np}.
1: for k = 1 to K do
2: Measurement update: evaluate importance weights as

w(i)k+1pk =
p(ykpx

(i)
k )∑Np

j=1 p(ykpx
( j)
k )w

( j)
kpk−1

w(i)kpk−1, ∀ i ∈ {1, . . . , Np}.

3: if Neff < Nth then
4: Resample Np particles using draw and replace with weights w(i)k+1pk.
5: Reinitialize weights to w(i)k+1pk = 1/Np, ∀ i ∈ {1, . . . , Np}.
6: end if
7: Time update: draw new particles from the proposal distribution as

x(i)k+1 ∼ q(x(i)k+1pkpx
(i)
1:k, y1:k), ∀ i ∈ {1, . . . , Np}.

8: end for
Output: Posterior distribution p̂(xK py1:K), see (4.4).

The Marginalized Particle Filter
By representing the posterior distributions with particles instead of using
mean and covariance, as in the Kalman filter, the posterior distributions can
now be non-Gaussian. To obtain a good description of the filtering densities,
the particles must cover the true distribution. Therefore, more particles are
needed as the state dimension grows and the computing power and time
needed for solving the problem then increases linearly with the number of
particles, [Karlsson et al., 2005].

One solution to reduce the computational burden of the particle filter is
to use marginalization of the linear states. This means that the state vector
is split into a linear and a nonlinear part. The linear state vector holds the
states that can be estimated by using a Kalman filter while the nonlinear
state vector is still estimated by using the particle filter. This filter is called
the marginalized particle filter or Rao-Blackwellized particle filter [Doucet
et al., 2000a]. The derivations of the marginalized particle filter are long
and have been left out but can be found in [Schön et al., 2005]. The filter is
however summarized here for convenience.
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Let xlk denote the linear state vector and xnk the nonlinear state vector
at sample instant k. The system in (4.1) is rewritten as

xnk+1 = f nk(xnk) + An
k(xnk)xlk +Gn

k(xnk)nnk, (4.6a)
xlk+1 = f lk(xnk) + Al

k(xnk)xlk +Gl
k(xnk)nlk, (4.6b)

yk = hk(xnk) + Ck(xnk)xlk + ek. (4.6c)

The filtering algorithm for the decoupled case, i.e.,

nk =
[
nnk
nlk

]
∼ N (0,Qk), Qk =

[
Qn
k 0

0 Ql
k

]
, (4.7)

is summarized in Algorithm 4.3.

Algorithm 4.3—The marginalized particle filter
Input: Particles xn,(i)1p0 ∼ p(xn1p0) and weights w(i)1p0 = 1/Np, ∀ i ∈ 1, . . . , Np.

Initial state estimate xl,(i)1p0 = xl0,
and initial covariance P(i)1p0 = P0, ∀ i ∈ 1, . . . , Np,

1: for k = 1 to K do
2: Measurement update: evaluate importance weights as

w̃(i)k+1pk = p(ykpx
n,(i)
1:k , y1:k−1)w

(i)
kpk−1, (4.8)

and normalize as w(i)k+1pk =
w̃(i)k+1pk

∑Np
j=1 w̃

( j)
k+1pk

, ∀ i ∈ {1, . . . , Np}.

3: if Neff < Nth then
4: Resample Np particles using draw and replace with weights w(i)k+1pk.
5: Reinitialize weights to w(i)k+1pk = 1/Np, ∀ i ∈ {1, . . . , Np}.
6: end if
7: Measurement update of the Kalman filter:

x̂l,(i)kpk = x̂l,(i)kpk−1 +K(i)
k [yk − h

(i)
k − Ck x̂l,(i)kpk−1]

P(i)kpk = P(i)kpk−1 −K(i)
k S(i)k [K

(i)
k ]

T

S(i)k = CkP(i)kpk−1CT
k +Rk

K(i)
k = P(i)kpk−1CT

k [S
(i)
k ]

−1

8: Draw new particles from the proposal distribution

xn,(i)k+1pk ∼ p(xnk+1pkpx
n,(i)
1:k , y1:k), ∀ i ∈ {1, . . . Np}. (4.9)
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9: Time update of the Kalman filter:

x̂l,(i)k+1pk = Al
k x̂

l,(i)
kpk + f lk + L(i)k [x

n,(i)
k+1pk − f nk − An

k x̂
l,(i)
kpk ]

P(i)k+1pk = Al
kP

(i)
kpk[Al

k]
T +Gl

kQl
k[Gl

k]
T − L(i)k M(i)

k [L
(i)
k ]

T

M(i)
k = An

kP
(i)
kpk[An

k]
T +Gn

kQn
k[Gn

k]
T

L(i)k = Al
kP

(i)
kpk[An

k]
T[M(i)

k ]
−1

10: end for
Output: Posterior distributions p̂(xnK py1:K) and p̂(xlK py1:K), see (4.11).

The distributions in (4.8) and (4.9) are given by

p(ykpxn1:k, y1:k−1) = N (ykphk(xnk) + Ck(xnk)x̂lkpk−1,Sk) (4.10a)

p(xnk+1pkpxn1:k, y1:k) = N (xnk+1pkpf nk(xnk) + An
k(xnk)x̂lkpk,Mk) (4.10b)

and the point estimates of the mean and covariance for the linear states
become

x̂lkpk =
Np∑

i=1
w(i)kpk x̂

l,(i)
kpk , (4.11a)

P̂kpk =

Np∑

i=1
w(i)kpk

[
P(i)kpk + (x̂

l,(i)
kpk − x̂lkpk)(x̂

l,(i)
kpk − x̂lkpk)T

]
. (4.11b)

Marginalization of the State-Space Model For our purposes, the
marginalized filter above is a suitable candidate for the state estimation
problem. The states in the state vector (3.17) must be divided into linear
and nonlinear in order to use the filter. The goal is to keep as many of the
states in the linear domain as possible. Due to the nonlinearities in the
measurement equation (3.18), position p, angle of arrival φ, and the argu-
ment of the complex amplitude β are clearly part of the nonlinear domain.
The nonlinear state vector becomes

xn =
[
pT φT βT

]T
∈ R3+(NR+NC)(1+MT ). (4.12)

The states of the quaternion q have nonlinear state dynamics but the
EKF has successfully been used in, e.g., [Sabatini, 2006] to estimate the
quaternion after the dynamics have been linearized. The success of the
linearization will depend on the angular velocity. For the angular velocities
used in the experiments, the linearization has been found to be a good
approximation and the quaternion is arranged with the rest of the linear
states as

xl =
[
vT δTa qT δTω αT δ f

]T
∈ R14+NR+NCMT . (4.13)
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For the state-space model with the dynamic equations in (3.13) and (3.16),
with the two state vectors in (4.12) and (4.13), the matrices defined in (4.6)
for the marginalized particle filter become

Al
k =




I3 TsR(qk) TsQ′(qk,ua,k + δ a,k) 0 0 0
0 I3 0 0 0 0
0 0 I4 +

Ts
2 Q(uω,k) Ts

2 P(qk) 0 0
0 0 0 I3 0 0
0 0 0 0 INR+NCMT 0
0 0 0 0 0 1



(4.14a)

Gl
k =




TsI3 0 0 0 0 0
0 TsI3 0 0 0 0
0 0 Ts

2 P(qk) 0 0 0
0 0 0 TsI3 0 0
0 0 0 0 TsINR+NCMT 0
0 0 0 0 0 Ts




(4.14b)

An
k =


 TsI3

T2
s
2 I3

T2
s
2 Q′(qk,ua,k + δ a,k) 0 0 0

0 0 0 0 0 0
0 0 0 0 0 Ts1MT (NR+NC)


 (4.14c)

Gn
k =



T2
s
2 I3 0 0 0
0 TsINR+NC 0 0
0 0 TsIMT (NR+NC)

T2
s
2 1MT (NR+NC)


 , (4.14d)

where 1K is a column vector of length K with ones, and the matrix Q′(q,p)
is defined as

Q′(q,p) = �(R(q)p)
�qT

= 2



pxq0 − pyq3 + pzq2 pxq3 + pyq0 − pzq1 pyq1 − pxq2 + pzq0
pxq1 + pyq2 + pzq3 pxq2 − pyq1 − pzq0 pxq3 + pyq0 − pzq1
pyq1 − pxq2 + pzq0 pxq1 + pyq2 + pzq3 pyq3 − pxq0 − pzq2
pzq1 − pyq0 − pxq3 pxq0 − pyq3 + pzq2 pxq1 + pyq2 + pzq3



T

,

(4.15)
where q =

[
q0 q1 q2 q3

]T and p =
[
px py pz

]T . As mentioned before,
the state update of the quaternion does not preserve the relation of (3.3).
This is dealt with by normalizing the predicted quaternion every time step
in order to maintain the unit norm.
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4.2 Angle of Arrival Estimation

As stated before, the particle based filtering solution intended for the esti-
mation problem is sensitive to initialization of the states. If no initialization
is used and the complete state-space of the AoA and amplitude is to be
searched by the filter, the number of particles needed will disqualify the
particle filter solution for any online estimation purposes. Also, if the filter
is initialized in an erroneous state, convergence to the true movement and
channel parameters would be a rare occasion. Thus, the filter needs to be
initialized with not only the number of MPCs to track but also with the
amplitude and AoA parameters describing each MPC. Consequently, we will
now derive an algorithm that can provide initial estimates for the filter to
use.

Background
The problem formulation of angle of arrival estimation can be applied to
widely different scenarios and several different estimation techniques have
been developed. Early solutions are based on beamforming like Bartlett and
Capon [Krim and Viberg, 1996; Capon, 1969], subspace decomposition like
MUSIC and ESPRIT [Schmidt, 1986; Roy and Kailath, 1989; Veen et al.,
1997], while later solutions like SAGE [Fessler and Hero, 1994; Fleury et
al., 1999] applied to AoA estimation separate the estimation problem into
several one-dimensional problems instead.

Another way to solve the AoA estimation problem is to use sparse signal
reconstruction. The idea is to reconstruct the measurements using as few
components as possible out of a predetermined dictionary, where each dictio-
nary component represents a hypothetical AoA. Since sparse reconstruction
based on norm minimization with a dictionary is a convex problem and
efficient frameworks for solving such problems are available, the solution
can be easily found [Tibshirani, 1996; Boyd and Vandenberghe, 2004]. For
an overview and comparison to previously mentioned techniques, see, e.g.,
[Malioutov et al., 2005]. The conclusion is that the sparse reconstruction is
well suited for these problems and the performance is very good.

Sparse signal reconstruction can also be seen from a Bayesian viewpoint
known as sparse Bayesian learning (SBL). Bayesian inference is based on
finding a set of parameters which maximizes the likelihood of the posterior
distribution for the parameters given the measurements [Tipping, 2001;
Tipping and Faul, 2003]. For AoA estimation, the method also uses a dictio-
nary of hypothetical source locations and several contributions to the field
have been made [Wipf and Rao, 2007; Ji et al., 2008; Babacan et al., 2010].
For our purpose, we will study the convex formulation and also SBL for
estimating as many parameters associated with the MPCs as possible to
initialize the particle filter.
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Problem Formulation
In the AoA estimation literature, the problem is usually formulated as-
suming a number of narrowband sources. However, we intend to use the
approach to estimate the AoA of multipath components. Since the MPCs
are also considered to be narrowband sources, the two formulations are
interchangeable.

By assuming the existence of NR multipath components, and a virtual
array consisting of K antenna elements placed in the far field, the baseband
equivalent can be written as

yk =
NR∑

r=1
a(r) exp{−i〈pk,ρ(φ(r))〉 − iδ f Tsk} + ek, (4.16)

where the pk is the location of the kth receiver element, φ(r) and a(r) is the
AoA and complex amplitude of the rth MPC, and δ f is the frequency error.
The signal is also subject to additive zero mean circular symmetric complex
Gaussian noise ek. This is a repetition of the equation presented as (2.33)
assuming one receive antenna element and that no clusters are present in
the environment. Note that the AoA, complex amplitude, and the frequency
error are assumed to remain constant during the acquisition period.

If the frequency error is neglected, the problem of finding the remaining
parameters can be formulated as a convex problem. Introduce the set of
all possible angles [−π,π] and cover this set with L equidistant angles
{φ1, . . . , φ L}. Then let Φ =

[
φ1 φ2 . . . φL

]
∈ CK$L be a dictionary with

these L hypothetical AoA directions. The lth base vector φ l in the dictionary
is then given by

φ l =




exp{−i〈p1,ρ(φ l)〉}
exp{−i〈p2,ρ(φ l)〉}

...
exp{−i〈pK ,ρ(φ l)〉}


 ∈ CK , (4.17)

where ρ(φ) =
[
cos(φ) sin(φ)

]T . The problem can now be stated as

minimize
a

qy− Φaq2, (4.18)

where a = [a1 . . . aL]T is a vector containing the sought complex MPC
amplitudes and y =

[
y1 y2 . . . yK

]T are the K measurements. This
formulation has the nice property of being a convex problem that can be
efficiently solved. However, since most AoA hypotheses are wrong the vector
a should be sparse, i.e., most elements are most likely zero. This can be
achieved by introducing {1 regularization [Tibshirani, 1996; Boyd and Van-
denberghe, 2004]; re-weighted {1 minimization has also been proposed in
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[Candes et al., 2008] to increase sparsity even more. The latter approach is
formulated as

minimize
a

qy− Φaq2 + κ
L∑

l=1
pµlalp, (4.19)

where κ > 0 is a weight of the regularization term and µl > 0 are the
costs for each element in a. The weighting coefficients {µ1, . . . , µL} can be
updated with an iterative algorithm, presented in [Candes et al., 2008] and
restated here as Algorithm 4.4.

Algorithm 4.4—Iteratively reweighted {1 minimization
Input: Φ, y, κ, imax

Initialize: Set µ(1)l = 1, ∀ l ∈ {1, . . . , L}
1: for i = 1 to imax do
2: Solve (4.19) with µl = µ(i)l ∀ l ∈ {1, . . . , L}
3: Update µl as

µ(i+1)
l =

1
pa(i)l p + ε

, (4.20)

where a(i) is the solution from (4.19).
4: Set i = i+ 1
5: end for

Output: a

The value ε > 0 is suggested in [Candes et al., 2008] to be chosen smaller
than the largest value expected in a. Thus, the reweighting scheme will
penalize small elements in a, forcing them to zero and thereby improving
sparsity as the algorithm is repeated. Choosing κ has been studied in the
literature, e.g., [Ohlsson et al., 2010]. With

κ = cqΦ∗yq∞ (4.21)

where q · q∞ denotes infinity norm and 0 < c < 1 is a constant, a good
trade-off between the two norm expressions in (4.19) is achieved. Hence, the
iteratively reweighted {1 minimization has three parameters to adjust, κ,ε,
and imax.

Extended Problem Formulation In the formulation (4.18), the fre-
quency error δ f is not taken into account. Given (4.16), the problem can be
reformulated as

minimize
a,δ f

qy− ∆(δ f )Φaq (4.22)

where
∆(δ f )[k,k] = exp{−iδ f Tsk}, k ∈ {1, 2, . . . , K} (4.23)
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and zero outside the diagonal. An important property of ∆ is that

∆∗∆ = ∆∆∗ = I.

However, the loss in the reformulation is that the cost function is no longer
convex in δ f and hence the convex optimization approach is not applicable.
Consequently, we will now look closer on sparse Bayesian learning instead
and also reformulate it to fit our problem.

Sparse Bayesian Learning
Let the measurements y be dependent on a set of unknown parameters
collected in the vectorψ . Then the sought parametersψ can be obtained as
the maximum a posteriori (MAP) estimate

ψ̂ = arg max
ψ

p(ψ py),

where p(ψ py) is the distribution of ψ given y. By using Bayes’ theorem,
a relationship between the posterior, observation likelihood, and the prior
distribution for the unknown parameters can be established as

p(ψ py) ∝ p(ypψ)p(ψ).

The concept of treating unknown parameters of the prior distribution as a
stochastic variable and then place a prior on them can be repeated endlessly,
but the increasing number of parameters to estimate will also make the
problem more complex and difficult to solve. For the problem stated in the
previous section, two layers of priors will be used. The derivations below
follow [Babacan et al., 2010] closely but the algorithm is adjusted so that
the frequency error can be estimated.

The observations in (4.16) can be formulated as a multivariate stochastic
distribution given by

p(ypa, δ f , ρ) =
K∏

k=1
p(ykpa, δ f , ρ) =

K∏

k=1
CN (ykp∆(δ f )Φa, ρ−1IK), (4.24)

i.e., a product of circular symmetric complex Gaussian distributions with
mean ∆(δ f )Φa and covariance ρ−1IK . Consequently, ρ is the precision pa-
rameter of the noise ek and a Gamma prior is placed on it as

p(ρpaρ , bρ) = Γ(ρpaρ , bρ), (4.25)

where aρ is the shape parameter and bρ is the scale parameter. Since
the Gamma prior is the conjugate prior to the precision of a Gaussian
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distribution, the posterior will also be a Gaussian distribution. This fact
will become useful later when solving the optimization problem.

As shown in [Babacan et al., 2010], a Laplace prior on the weight pa-
rameters a enforces sparsity. However, the Laplace distribution is not a
conjugate prior to the mean of the Gaussian observation model and there-
fore a two layer hierarchical model is used. The first layer is a complex
Gaussian distribution given by

p(apγ ) =
L∏

l=1
CN (alp0,γl) (4.26)

and γ = [γ1 γ2 . . . γL]T . For the second layer, the conjugate prior of
the variance γl is applied which again is a Gamma prior given by

p(γlpη) = Γ(γlp1, η/2) =
η
2 exp

{
−
ηγl
2

}
. (4.27)

Finally, for η, the Gamma prior

p(ηpaη, bη) = Γ(ηpaη, bη) (4.28)

is used. This prior can easily be transformed into a so-called noninformative
prior if aη → 0 and bη → 0. For the frequency error δ f a uniform prior

p(δ f ) = U(δ f p − Ts/2, Ts/2), (4.29)

where Ts is the sampling time, is used. The choice of this prior is done with
the Nyquist criterion in mind.

The joint distribution, including the parameters and measurements, is
given by

p(y, a,γ , ρ, η, δ f ) = p(ypa, ρ, δ f )p(ρ)p(apγ )p(γ pη)p(η)p(δ f ) (4.30)

and all distributions on the right hand side have been introduced in (4.24)
– (4.29). The sought set of parameters a,γ , ρ, η, δ f is given as the MAP
estimate as

(â, γ̂ , ρ̂, η̂, δ̂ f ) = arg max p(a,γ , ρ, η, δ f py) (4.31)
and the distribution p(a,γ , ρ, η, δ f py) is decomposed as

p(a,γ , ρ, η, δ f py) = p(apγ , ρ, η, δ f , y)p(γ , ρ, η, δ f py).

The concept of conjugate priors [Robert, 2007] leads to the conclusion that
p(apγ , ρ, η, δ f , y) must be a multivariate complex Gaussian distribution
CN (apµ,Σ) with

µ = ρΣΦ∗∆∗y∗, (4.32a)
Σ = [Λ + ρΦ∗∆∗∆Φ]−1 = [Λ + ρΦ∗Φ]−1, (4.32b)
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where Λ = diag(γ−1
l ) and the property of ∆∗∆ = I has been used. Now,

the parameters γ , ρ, η, and δ f can be estimated as the MAP estimate of
p(γ , ρ, η, δ f py). By noting that

p(γ , ρ, η, δ f py) ∝ p(y,γ , ρ, η, δ f )

this distribution is used instead to estimate the hyperparameters from
p(y, a,γ , ρ, η, δ f ) after marginalization over the weights a

p(y,γ , ρ, η, δ f ) =
∫
p(ypa,γ )p(apγ )p(γ pη)p(η)p(ρ)p(δ f ) da

=

(
1
π

)L
pCp−1 exp{−y∗C−1y}p(γ pη)p(η)p(ρ)p(δ f ), (4.33)

with C = ρ−1I + ∆ΦΛ−1Φ∗∆∗. Taking the logarithm of the marginalized
distribution yields

L = −L log(π) − log pCp − y∗C−1y+ L log η2 −
η
2

L∑

l=1
γl

+ aη log bη − log Γ(aη) + (aη − 1) log η − bηη

+ (aρ − 1) logρ − bρρ + 1
Ts
. (4.34)

If aη → 0 and bη → 0, the prior for η becomes noninformative and the
expression can be further simplified to

L = − log pCp − y∗C−1y+ L log η2 −
η
2

L∑

l=1
γl

− log η + (aρ − 1) logρ − bρρ (4.35)

where constants have been removed. The following expressions will be useful
when the maximization problem is solved.

pCp = pΛ−1ppρ−1IppΣ−1p

log pCp =
L∑

l=1
logγl − L logρ − log pΣp

C−1 = ρI− ρ∆ΦΣΦ∗∆∗ρ
y∗C−1y = ρy∗y− ρy∗∆ΦΣΦ∗∆∗yρ

= ρqy− ∆Φµq2 + µ∗Λµ
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To maximize the likelihood, given the current distribution of a, the deriva-
tives of L in (4.35) are calculated with respect to γl, ρ, and η and become

�L
�γl

= −
1
γl
+
pµlp2

γ 2
l
−
η
2 , (4.36a)

�L
�ρ =

L
ρ − qy− ∆Φµq2 +

aρ − 1
ρ − bρ , (4.36b)

�L
�η =

L
η −

1
2

L∑

l=1
γl −

1
η . (4.36c)

Finally, the derivative of the likelihood function L with respect to the
frequency error δ f becomes

L̇(δ f ) =
�L
�δ f

= −2ρ Re{y∗∆̇∆Φµ}, (4.37)

where
∆̇[k,k] =

�∆
�δ f

= (−i2πTsk)∆[k,k], ∀ k ∈ {1, 2, . . . , K} (4.38)

and zero outside the diagonal. By equating the derivatives of (4.36) to zero,
an update strategy for the parameters is obtained as

γ new
l =





1
η

(
−1+

√
1+ 2ηpµlp2

)
η > 0

pµlp2 η = 0
(4.39)

ρnew = L + aρ − 1
qy− ∆Φµq2 + bρ , (4.40)

and
ηnew = 2(L − 1)

∑L
l=1γl

. (4.41)

For the frequency error, a closed form expression is unavailable so instead
a Newton step is performed as

δ new
f = δ f −

L̇(δ f )
L̈(δ f )

(4.42)

where L̇(δ f ) is given by (4.37) and

L̈(δ f ) = −2ρ Re{y∗(∆̇)2∆Φµ}. (4.43)

The algorithm for finding the distribution for the weight vector a is then
carried out as described in Algorithm 4.5.
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Algorithm 4.5—Compressive sensing with frequency error detection
Input: y, Φ, δ f ,0, ρ̂
1: Set γl = 0, ∀ l ∈ {1, 2, . . . , L}, η = 0,
2: while qγ −γ oldq > κ do
3: Update γl by (4.39) ∀ l ∈ {1, 2, . . . , L}
4: Update η by (4.41)
5: Update δ f by (4.45)
6: Calculate µ and Σ with (4.32).
7: end while

Output: CN (apµ,Σ), δ̂ f

Since the likelihood function L is nonlinear in the frequency error δ f ,
a grid search is done to initialize the algorithm since the Newton steepest
decent search in (4.42) would not converge to the global minimum otherwise.
Also, as discussed in [Babacan et al., 2010], the noise precision ρ is not
updated in the algorithm due to unreliability of the estimate. As argued by
[Wipf and Rao, 2007] a heuristic estimate of the noise precision as

ρ̂ = 3K
qyq2SNR, (4.44)

where SNR is assumed known and K is the number of data points, is used
instead. Furthermore, the update of δ f has proven to be unstable when γ
is far away from the true values as it is for early iterations. Therefore the
updating of δ f is disabled for the first few runs of Algorithm 4.5. Since the
initial grid search is supposed to find a value close to the true frequency
error, the updated rate of δ f is limited to avoid unrealistically large changes.
Hence, the update rate is limited between −0.1 and 0.1 as

δ new
f = δ f −

[ L̇(δ f )
L̈(δ f )

]0.1

−0.1
, (4.45)

which is used instead of (4.42).
As shown in [Tipping and Faul, 2003], the algorithm can be altered into

a suboptimal version where one element of γ is updated in each run of the
algorithm. This lowers the complexity of the algorithm significantly and is
especially recommended for embedded systems. However, in this thesis, we
are only interested in the performance of the algorithm and decide to not
derive a sequential version of the algorithm.

Evaluation
To evaluate the iteratively reweighted {1 minimization approach against
the SBL algorithm, the following setup is used. The movement shown in
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Figure 4.1 is generated and noise levels similar to a consumer grade IMU
are added to the accelerometer and gyroscope signals representing that
movement. It is assumed that the movement is to be carried out in the
far field of the sources and that path loss is negligible over the virtual
array the movement creates. The position estimates are obtained by dead
reckoning of the signals, see Figure 1.5 for the operations. These estimates
are used when forming Φ in (4.22) with an angular resolution of 2.5 deg.
Based on findings that will be presented in the next chapter, an array that
stretches a larger physical area will have a better estimation performance
compared to a small one. Consequently, a large array would be preferred
if the position estimates are good. Since the position estimates supplied
by the dead reckoning scheme will deteriorate after a few seconds, it is
of interest to see how many seconds of data that can be used for reliable
joint AoA and frequency error estimation. Also, the number of data points
gathered during the movement will be altered in order to see how it affects
the reconstruction performance.

The iteratively reweighted {1 algorithm is implemented in MATLAB us-
ing the convex optimization package CVX [CVX, 2016] and executed twice
since it has been proven to yield a satisfying result. However, since the
algorithm is unable to detect the frequency error, no adjustment is made
for it. To initialize the sparse Bayesian learning algorithm, a grid search
is performed where the likelihood in (4.35) is calculated after a few itera-
tions of Algorithm 4.5 with a fixed η. This is to enable comparison of the
likelihoods calculated for the different grid points. The δ f in the grid that
yields the highest likelihood is chosen as starting point as the algorithm
is run the second time with varying η and the frequency error is updated
with (4.45).

To test the algorithms over different noise realizations, 1000 datasets
were generated where four MPCs and no clusters are present in the mea-
surement signal. The AoA for the MPCs are spread out randomly as
U(−π,π) with a minimum angular distance of 18 deg between any two.
The amplitude of an MPC is drawn from U(0.5, 1.5). Furthermore, the fre-
quency error, constant for each dataset, is drawn from N (δ0, 0.1) and δ0 is
varied. Both algorithms are using the same dataset with either 50, 75, or
100 data points to investigate how the reconstruction performance depends
on the number of data points. After the algorithms have finished, the four
highest peaks in the resulting sparse solution are selected and they are
matched with the four true AoA sorted in such a way that the root mean
square error (RMSE), given by

RMSEφ =

√√√√ 1
NR

NR∑

r=1

∣∣φ̂(r) − φ(r)
∣∣2 (4.46)
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Figure 4.1 The movement of the receiver, the total traveled distance is
approximately 36λ which yields an average speed of 1m/s assuming a carrier
frequency of 1.8GHz. The direction of movement is indicated by the arrows
and the markings on the curve indicate the time at different positions. At
0, 3, and 6 seconds the receiver is in the origin. Note that the movement is
larger in px than py but the movement is assumed to be in the far field so
that the plane wave assumption holds and path loss is negligible over the
virtual array.

is minimized where φ̂ and φ denote the estimated and true AoA respectively
and NR = 4. The complex amplitude estimates are then finally calculated
as the least squares solution of

y = Φa+ e (4.47)

where Φ has been reduced to only contain the vectors of the four detected
peaks.

Simulation Results For zero average frequency error and 50 measure-
ment points for reconstruction, the result is found in Figure 4.2. The two
algorithms perform well but the sparse Bayesian learning yields a lower
median RMSE for AoA and complex amplitude over a larger integration
time. There is a clear performance degradation for integration times larger
than 3 seconds for the iteratively reweighted {1 algorithm where the median
error increases. For the SBL algorithm, the median of angle of arrival φ and
amplitude α stays almost unaffected while the 75th percentile increases.
Estimation of β is clearly more sensitive to the position errors accumulated
by the dead reckoning than AoA and the amplitude are.

In Figure 4.3 the average frequency error is larger, δ0 = 0.6Hz and
the iteratively reweighted {1 minimization algorithm is unable to find the
AoA at all while the SBL algorithm has comparable performance with
the low frequency error case in Figures 4.2. In Figure 4.4 a box plot for the
estimation error of δ f is shown. It is clear that the sparse Bayesian learning
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algorithm is able to estimate the frequency error with good accuracy and
that the estimation is insensitive to the accumulated position errors as
time progresses. Furthermore, the frequency error estimation is improved
by updating it continuously with (4.45), the results are shown in the right
panel in Figure 4.4 compared to the value which the grid solver yields in the
left panel. In all, the result shows the necessity of estimating the frequency
error and that the derived SBL algorithm is able to produce more accurate
AoA estimates with a reasonable number of measurement points.

In Figure 4.5, the median RMSE for complex amplitude and AoA is
presented as a function of time for 50, 75, and 100 reconstruction points
for the small and large frequency error cases. The iteratively reweighted
{1 algorithm benefits from more data points but the SBL suffers from it.
The number of points must however be chosen with the Nyquist criterion
in mind in order to estimate the frequency error. Finally, robustness to
increased measurement noise is investigated and presented in Figure 4.6
where the SNR has been decreased to 10dB. The conclusion is that the
algorithms are quite insensitive to measurement noise.

Finally, the mean and standard deviation of the error is calculated based
on 80% of the estimation results. The mean value of the estimation error
is close to zero for all four variables. The results for standard deviation
for both 10 and 20dB are presented in Figure 4.7. At 20dB the standard
deviation attains its lowest value after approximately 2.5 seconds. Beyond
this time, the uncertainty in the estimate increases due to the accumulated
position errors. Worth noting is that for 10 dB, the performance is better
at longer integration time. The explanation is that the algorithm assumes
more noise in the measurements and later ones will therefore not deteriorate
the estimates as they will at 20 dB. This fact points towards a solution
that applies weights to the measurements so that the ones coming in the
beginning will be highly weighted while more uncertain measurements
coming from the later part of the array are assigned a lower weight.

Conclusions
The performance of the sparse Bayesian learning algorithm is promising.
While the iteratively reweighed {1 approach is shown to be very sensitive
even to small frequency errors, the combination of the grid search and
the recursive frequency error estimation has been shown to give superior
performance. In a real world scenario, the attainable performance is yet to
be investigated. The simulations are crafted to mimic real signals but one
potential error source not investigated here is how static the amplitude and
the frequency error really are during the movement. Also, if the movement
does not span the horizontal plane well, the estimation performance in some
direction might be bad. A third source of errors is vertical displacement
which is not accounted for here.
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Figure 4.2 Box plot of RMSE for complex amplitude α exp{iβ} and AoA
φ for the iteratively reweighted {1 and the SBL algorithms. The average
frequency error δ0 is 0Hz, the SNR 20dB, 50 data points are used for
reconstruction, and there are 1000 simulations. The solid line in each plot
marks the median and the crosses mark outliers. The RMSE for both AoA
and complex amplitude are comparable for integration times up until 3
seconds but for larger ones, the SBL algorithm produces a lower RMSE.
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Figure 4.3 Box plot of RMSE for complex amplitude α exp{iβ} and AoA
φ for the for the iteratively reweighted {1 and the SBL algorithms. The
average frequency error δ0 is 0.6Hz, the SNR 20dB, 50 data points are used
for reconstruction, and there are 1000 simulations. The solid line in each plot
marks the median and the crosses mark outliers. The iteratively reweighted
{1 algorithm fails to estimate the AoA at all. After 5 seconds both algorithms
fail due to the accumulated position errors.
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Figure 4.4 Box plot of the estimation error δ̃ f = δ̂ f − δ f for the SBL
algorithm with the same color coding as in Figure 4.3. The average frequency
error is 0.6Hz, the SNR 20dB, 50 data points are used for reconstruction,
and there are 1000 simulations. To the left, the estimation error yielded by
the grid search is presented and to the right is the error after Algorithm 4.5
has finished. There is a small but noticeable lowering of the estimation error
using the adaptive frequency error estimation to the right.
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Figure 4.5 Comparison of the median RMSE error with 50, 75, and 100
data points used for reconstruction at an SNR of 20 dB. There is no big differ-
ence in the performance by increasing the number of points. The iteratively
reweighted {1 algorithm benefits from more points while the SBL suffers
slightly from it. The iteratively reweighted {1 algorithm yields an RMSEβ
larger than 50deg for all integration times when δ0=0.6Hz.
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Figure 4.6 Comparison of the median RMSE error with 50, 75, and 100
data points used for reconstruction at an SNR of 10dB. There is no big
difference in the performance apart from φ for the iteratively reweighted
{1 when the number of reconstruction points are increased. There is an im-
provement in estimation performance as the number of reconstruction points
is increased, the effect is most visible for RMSEφ . The iteratively reweighted
{1 algorithm yields an RMSEβ larger than 50deg for all integration times
when δ0=0.6Hz.
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Figure 4.7 Standard deviations for the estimation error of complex MPC
amplitude, AoA, and frequency error using SBL. It is estimated using 80% of
the simulation results and presented as a function over the integration time.
There is an increase in the standard deviation after 2.5 seconds when the
SNR is 20 dB. The reason for better long-time performance at 10 dB is the
fact that the algorithm at 20dB relies on later measurements to the same
extent as early measurements. Hence, these measurements will deteriorate
the estimate since more error has been accumulated in the position estimate.
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5
Fundamental Performance
Bounds

Before investigating the estimation problem itself, we will look at the es-
timation performance bounds using the Cramér-Rao lower bound. We will
study both batch estimation as well as recursive estimation since both will
give valuable insights into the estimation problem at hand. For both sce-
narios a virtual array will be used which extends the traditional antenna
array model with the time dimension. The investigation will explicitly look
at the difficulty of joint estimation of AoA and frequency error. Sections 5.1
– 5.3 are based on [Mannesson and Bernhardsson, 2015].

Cramér-Rao Lower Bound
The Cramér-Rao lower bound (CRLB) [Cramér, 1999; Rao, 1945; Kay, 1993]
is a concept closely related to estimation. In the simplest form, the bound
is a lower limit of what variance an unbiased linear estimator can achieve
given the measurement model and noise levels. Even so, the theorem can
be used to, e.g., determine if a given system specification is realistic or not,
or to determine if an estimator is the minimum variance estimator.

Assume that y is a vector of K measurements, ψ is a vector of real de-
terministic unknowns, and ψ̂ are the estimated values given by an unbiased
linear estimator. Then the theorem states that

Eypψ
{
[ψ − ψ̂][ψ − ψ̂]T

}
≥ F−1(ψ) = C(ψ) (5.1)

where Eypψ{·} denotes the expectancy operator with respect to the likelihood
function p(ypψ), F(ψ) is the Fisher information matrix (FIM), and C(ψ)
is the CRLB for the parameters in Ψ. For observations with additive zero
mean circular symmetric complex Gaussian noise, y(ψ) ∼ CN (h(ψ),Σ),
the FIM is given in [Kay, 1993] as

F(ψ) = −Eypψ
{

Re �2L
�ψ �ψT

}
, (5.2)
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where Re{·} denotes real part,

L = log p(ypψ), (5.3)

and p(ypψ) is the probability distribution of the measurement noise given
the parametersψ . If element (i, j)with i ,= j of F equals zero, then variables
i and j are said to be mutually decoupled.

Note that the Fisher information matrix is additive, i.e., if two inde-
pendent measurements series with information matrices of F1 and F2
respectively are joined, the total information is the sum F1 +F2.

The Hybrid Cramér-Rao Lower Bound
If the observation model has both deterministic and stochastic latent vari-
ables, the formulation of the hybrid information matrix (HIM) [Bay et al.,
2008] takes prior information on the stochastic variables into account. The
definition of HIM is

H(ψ ,Ω) = −Ey,Ωpψ





Re




�2L
�ψ �ψT

�2L
�ψ �ΩT

�2L
�Ω �ψT

�2L
�Ω �ΩT








,

[HψψT HψΩT

HΩψT HΩΩT

]
,

(5.4)
where ψ ∈ Rnψ and Ω ∈ RnΩ are vectors containing the deterministic
and stochastic latent variables respectively. Furthermore, the log-likelihood
function L is the logarithm of the joint distribution,

L = log p(y,Ωpψ) = log p(ypΩ,ψ) + log p(Ω), (5.5)

where p(Ω) is the prior information on the stochastic latent variables. By
using the matrix inversion lemma, the CRLB for the deterministic param-
eters ψ from (5.4) is obtained as

C(ψ) =
[
HψψT −HψΩTH−1

ΩΩTHΩψT

]−1
. (5.6)

Note that when HΩΩT is large, i.e., the prior of Ω is highly informative, the
formulation converges to the Cramér-Rao lower bound obtained by F−1 =
H−1
ψψT in (5.2).

Recursive Cramér-Rao Lower Bound
For the state-space models introduced in (4.1), the CRLB can be recursively
updated as presented in [Taylor, 1979; Tichavsky et al., 1998; Gustafsson,
2010]. For a nonlinear system with states and measurements subject to
additive white Gaussian noise processes, the recursively updated CRLB
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C(xkpk) propagates with the equations (4.2b) and (4.3b), found in the EKF,
Algorithm 4.1. This means that the EKF produces the CRLB as a side result
if the true state vector is supplied to the filter. However, the linearizations
in the EKF require that the true state vector is available, i.e., the recursive
Cramér-Rao lower bound can only be computed for simulations or when the
true state vector has been acquired without any measurement uncertainty.

5.1 Cramér-Rao Lower Bound for Space-Time Arrays

The CRLB for AoA estimation for space-time arrays is inspired by [Do-
gandžić and Nehorai, 2001] where the CRLB for estimating range, velocity,
and AoA is derived when using an active array in radar. The goal is to ex-
tend their work to cover joint estimation of AoA and frequency error using
space-time arrays.

Equations (4.1) and (4.5) from [Dogandžić and Nehorai, 2001, p. 1129]
are repeated here for completeness. The CRLB for azimuth and elevation
angle {φ,θ} is

C = F−1 =

[F11 F12
F12 F22

]−1
, (5.7)

where F is the Fisher information matrix. The components of the FIM F
are given by

F11 ∝ sin(θ)2[Qxx sin(φ)2 +Qyy cos(φ)2 −Qxy sin(2φ)] (5.8a)

F12 ∝ sin(θ)2
{[

1
2(Qxx −Qyy) sin(2φ) −Qxy cos(2φ)

]
sin(φ)

+ [Qyz cos(φ) −Qxz sin(φ)] cos(φ)
}

(5.8b)

F22 ∝ [Qxx cos(φ)2 +Qyy sin(φ)2] cos(θ)2

+Qzz sin(θ)2 +Qxy sin(2φ) cos(θ)2

− [Qxz cos(φ) +Qyz sin(φ)] cos(2θ), (5.8c)

where Qxx, Qyy, Qzz, Qxy, Qxz, and Qyz describe the moment of inertia
tensor of the array. To equate the notation from their work with ours,
we have substituted the notation ψ in their work with π/2 − θ when the
equations are repeated above. As seen in the equations the components
of the moment of inertia tensor of the array has a direct connection to
the estimation accuracy for AoA. This finding will be generalized here to
cover the time dimension that follows with the introduction of frequency
error estimation. The main difference is that we use a passive virtual
antenna array, i.e., no signals are transmitted from the array. We assume
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Figure 5.1 A traditional antenna array consisting of five stationary ele-
ments is shown in the left panel while a virtual antenna array with one
moving receive antenna element is shown in the right panel. A dot marks
the sampling time and the size of the dot indicates the SNR; a large dot rep-
resents higher SNR. Note that the virtual array can have non-equidistant
sample points in both space and time as indicated in the figure. The space
dimension is in R3.

that sources/transmitters/scatterers are stationary at a distance far away so
that only AoA is to be estimated. Finally, our work captures the scenario of
multiple impinging components and also analyses performance with respect
to uncertainties in position and time which is not covered in [Dogandžić and
Nehorai, 2001].

The work of [Collier, 2005] derives the Fisher information matrix for
both plane wave and spherical wave propagation in a medium where there
are random inhomogeneities, still with the limitation of a single impinging
component, but it serves as a good introduction to the subject although it
does not include any sensitivity analysis. The work of [Rendas and Moura,
1991] derives expressions for AoA estimation in an underwater multiple
wave scenario. However, it does not capture the effects related to the use of a
virtual antenna array. Furthermore, in [Friedlander, 1990] the influence of
the receive antenna element position errors on the estimation performance
was studied for a fixed array. The results show that the position errors
impact the estimation performance but the work is limited to fixed arrays.

To illustrate the difference between previous works and ours, Figure 5.1
shows how a virtual antenna array can be moved arbitrarily in four dimen-
sions compared to a traditional stationary antenna array. With the virtual
array, one could have several measurements at the same location in space.
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Signal and Noise Modeling
In this section, we derive and analyze the scenario of a SISO system with a
single impinging component. For equations treating multiple components,
see Appendix B. The signal model is a repetition from (2.33) in Section 2.4
with the assumptions that there are no clusters present and that there is one
impinging component. The equation is also extended into three dimensions.
Then, the measurements are given by

yk = α exp{−i(β + 〈pk,ρ(φ,θ)〉 − δ f tk)} + ek, k = 1, . . . , K, (5.9)

where tk = Tsk. Note that the parameters α, β,φ, and δ f are assumed to
be constant over the observations {1, . . . , K} in this analysis. The vector
ρ(φ,θ) is of unit length and pointing in the direction of (φ,θ), i.e.,

ρ(φ,θ) =
[
cos(φ) sin(θ) sin(φ) sin(θ) cos(θ)

]T . (5.10)

Remember that the position p in the argument of (5.9) is scaled with the
term 2πλ−1, while the frequency error δ f is scaled with 2π .

Motivating Example
Before going further, we will look at a motivating example of joint AoA and
frequency error estimation. Let the receive antenna element be moved in a
straight line with constant speed along the x-axis and acquire K samples.
Since there is no extension of the array in the z-direction, only estimation
of the azimuth angle φ and frequency error δ f is considered. The estimation
performance can be studied using the ambiguity function [Gu, 1996] defined
as

f (φ, δ f ) =
1
K

∣∣∣∣∣
K∑

k=1
exp{−i[(cos(φ0) − cos(φ))p2

x,k + (δ0 − δ f )T2
s k2]}

∣∣∣∣∣

2

,

(5.11)
where φ0 and δ0 denote AoA and frequency error given by an oracle. A high
value of the ambiguity function indicates that the estimated values φ and δ f
are close to these values. In Figure 5.2 the ambiguity function is shown as
a function of φ and δ f . Obviously there are infinitely many combinations of
φ and δ f that equally well explain the measurements. Hence, a straight line
movement can not be used to jointly estimate AoA and frequency error. If the
same receive antenna element is moved along the x-axis but returned back
to the starting position, the ambiguity function has a distinct peak as seen
in Figure 5.3. The conclusion from this example is that when the movement
is more informative, the ambiguity function gets a unique maximum and
the two parameters can be estimated jointly. This example will be revisited
and examined using the Fisher information matrix derived below.
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Figure 5.2 The ambiguity function for a straight line movement where the
star marks the values of φ0 and δ0 given by an oracle. There are infinitely
many combinations of φ and δ f that equally well explain the measurements.

Figure 5.3 The ambiguity function for a back and forth movement where
the star marks the values of φ0 and δ0. The peak of the ambiguity function
is distinct when a more informative movement is used.

84



5.1 Cramér-Rao Lower Bound for Space-Time Arrays

Signal Model Parameterization
To facilitate further analysis, the signal given on the form of (5.9) is param-
eterized. By applying the coordinate change χ , log{α} the observations
y =

[
y1 y2 . . . yK

]T are given by the column vector

y(Ω,γ , χ, β) = exp{χ − iβ} exp{−iΩγ} + e ∈ CK (5.12)

where χ ∈ R, β ∈ R, e =
[
e1 . . . eK

]T
∼ CN (0,Σe),

γ = f (µ) =
[
cos(φ) sin(θ) sin(φ) sin(θ) cos(θ) δ f

]T , (5.13)

with µ =
[
φ θ δ f

]T , and

Ω =



px,1 py,1 pz,1 t1
...

...
...

...
px,K py,K pz,K tK


 ,

[
px py pz t

]
∈ RK$4. (5.14)

The parameters in Ω will be referred to as the stochastic latent variables
and

ψ =
[
χ β µT

]T
∈ R5 (5.15)

as the deterministic latent variables. Note that other separations of the
variables are possible but this one suits our analysis aiming to understand
the performance impact of position and timing errors of the measurements.

Single Component Scenario
In this section, the FIM for the single component scenario where Ω is
assumed to be known is presented. The multiple components scenario is
presented in Appendix B.1.

Given the observation model (5.12), the log-likelihood function L be-
comes

L = c− (y− h)∗Σ−1
e (y− h) (5.16)

where (·)∗ denotes Hermitian transpose, y is the vector of observations,
h = exp{χ − iβ} exp{−iΩγ}, and c is a constant. With the deterministic
latent variables

ψ =
[
χ β µT

]T , (5.17)

the Fisher information for µ is given by

−Eypψ

{
Re �2L
�µ �µT

}
= 2 exp{2χ}Re

{
FTΩTW∗Σ−1

e WΩF
}
, (5.18)
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where W , diag{exp{−iΩγ}} ∈ CK$K is a diagonal matrix with
exp{−iΩγ} on the diagonal, and

F = �f (µ)
�µT =



− sin(φ) sin(θ) cos(φ) cos(θ) 0

cos(φ) sin(θ) sin(φ) cos(θ) 0
0 − sin(θ) 0
0 0 1


 . (5.19)

Furthermore, with w , exp{−iΩγ} ∈ CK we have

−Eypψ

{
Re �

2L
�χ2

}
= 2 exp{2χ}Re{w∗Σ−1

e w}, (5.20a)

−Eypψ

{
Re �2L
�χ �β

}
= −Eypψ

{
Re �2L
�χ �µT

}
= 0, (5.20b)

−Eypψ

{
Re �

2L
�β 2

}
= 2 exp{2χ}Re{w∗Σ−1

e w}, (5.20c)

−Eypψ

{
Re �2L
�β �µT

}
= 2 exp{2χ}Re{w∗Σ−1

e WΩF}. (5.20d)

Note that if the measurement errors are uncorrelated, Σe is diagonal and
thereby w∗Σ−1

e w = tr{Σ−1
e }, W∗Σ−1

e W = Σ−1
e , and w∗Σ−1

e W = 1TKΣ−1
e ,

where 1K ,
[
1 1 . . . 1

]T
∈ RK and tr{·} denotes the matrix trace.

Similar to the result in [Dogandžić and Nehorai, 2001], the FIM for joint
AoA and frequency error estimation, assuming error-free observations of Ω,
is summarized in Theorem 5.1.

Theorem 5.1
Consider observations given by

y(Ω,γ , χ, β) = exp{χ − iβ} exp{−iΩγ} + e ∈ CK (5.21)

where exp{·} is element-wise exponentiation, χ and β are real constants,
e =

[
e1 . . . eK

]T
∼ CN (0,Σe),

γ = f (µ) =
[
cos(φ) sin(θ) sin(φ) sin(θ) cos(θ) δ f

]T , (5.22)

and
Ω =

[
px py pz t

]
∈ RK$4. (5.23)

The Fisher information matrix for the unknown set of parameters ψ =[
χ β φ θ δ f

]T with perfect knowledge of Ω and uncorrelated mea-
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surement noise is given by

F(ψ) = 2 exp{2χ}



tr{Σ−1

e } 0 0T3
0 tr{Σ−1

e } PTF
03 FTP FTQF


 ∈ R5$5 (5.24)

where

F =



− sin(φ) sin(θ) cos(φ) cos(θ) 0

cos(φ) sin(θ) sin(φ) cos(θ) 0
0 − sin(θ) 0
0 0 1


 ∈ R4$3, (5.25)

P = ΩTΣ−1
e 1K ∈ R4, (5.26)

and
Q = ΩTΣ−1

e Ω ∈ R4$4. (5.27)
2

Proof See (5.18) - (5.20). 2

Corollary 5.1
If the origin of the array frame (p̄x, p̄y, p̄z, t̄) is chosen so that P = 0, the
Fisher information matrix is given as

F(ψ) = 2 exp{2χ}



tr{Σ−1

e } 0 0T3
0 tr{Σ−1

e } 0T3
03 03 FTQF


 ∈ R5$5. (5.28)

This can be achieved by the affine transformation moving the origin to the
center of gravity of the SNR weighted measurements, i.e.,

(px,k, py,k, pz,k, tk) ]→ (px,k − p̄x, py,k − p̄y, pz,k − p̄z, tk − t̄), ∀ k, (5.29)

with

p̄x =
∑K

k=1 px,kσ−2
k∑K

k=1 σ−2
k

, p̄y =
∑K

k=1 py,kσ−2
k∑K

k=1 σ−2
k

, p̄z =
∑K

k=1 pz,kσ−2
k∑K

k=1 σ−2
k

, (5.30)

and

t̄ =
∑K

k=1 tkσ−2
k∑K

k=1 σ−2
k

(5.31)

where σ 2
k is the variance of the measurement noise ek. 2
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The formulation in (5.24) reveals interesting structures in the relationship
between the latent variables. Firstly, the amplitude of the impinging compo-
nent is decoupled from all other variables. Secondly, the estimation accuracy
for the AoA and frequency error is determined by the components of Q given
in (5.27) describing the moment of inertia tensor for the structure that the
virtual array constitutes in four-dimensional space-time. The measurement
noise covariance matrix Σe can be interpreted as a re-weighting of the mea-
surements; more weight is given to the ones from locations with high SNR
and vice versa. Theorem 5.1 is an extension of the result of [Dogandžić
and Nehorai, 2001] where the SNR is assumed to be equal for all mea-
surements, the receive antenna elements are stationary, and the frequency
error is unmodeled.

Motivating Example Revisited
It is now time to revisit the motivating example from Section 5.1. The first
array which suffers from ambiguity between AoA and frequency error has
a moment tensor Q in the x, t dimension of the form

Q1 = c
[
1 1
1 1

]
, c ∈ R. (5.32)

The movement of the array is illustrated in the space-time domain to the
left in Figure 5.4. The figure clearly shows that the movement yields an
array with the same moments in both space and time as well as for the
product moment. Consequently, since the moment tensor Q1 does not have
full rank, the AoA and frequency error can not be separated as seen in
Figure 5.2. The second array, with back and forth movement, has a moment
tensor of the form

Q2 =

[
c1 0
0 c2

]
, c1, c2 > 0, (5.33)

and the corresponding movement is shown to the right in Figure 5.4. Since
the moment tensor Q2 has full rank, the two unknowns can be estimated
as seen in Figure 5.3.

5.2 Worst-case-optimal Array Configurations

As shown in (5.24), the CRLB for the AoA estimation in a given direction
is related to the inverse of Q, see (5.27). To illustrate the result, it is
used to find an array that has a constant AoA estimation performance
regardless of the direction. In a scenario where the SNR is constant for
the observation interval the covariance matrix Σe equals σ 2IK , where IK
denotes the identity matrix of size K . Then, the minimal eigenvalue of Q
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x

t

x

t

Figure 5.4 The space-time movements for the two arrays in the motivating
example with the direction of movement indicated by the arrows. The left
array suffers from ambiguity in the x, t dimension while the array to the
right has Qxt = 0.

describes the worst-case estimation performance and a natural goal is hence
to find the trajectory p of a given length that solves

max
p1:K

min
i
λi[Q(p)], (5.34)

where λ[Q] denotes the eigenvalues corresponding to the matrix Q. We
will assume that the antenna element can be moved with unit speed over
a given finite time interval. Finally, a large number of observations are
taken over a unit time interval at a constant sample rate, so the sums are
replaced by integrals over the time interval [0, 1].

Worst-case-optimal 2D Array
Let us assume that only positions in the plane pz,k = 0, ∀ k are considered
and that the frequency error is known. Thereby, pz,k and time tk in (5.27)
can be excluded from the optimization problem. The case with unknown
frequency error is revisited in Section 5.2. For a two-dimensional movement,
Q is with the choice of array center as stated in Corollary 5.1 defined by

Q = lim
K→∞

[
px py

]T Σ−1
e

[
px py

]
,

[Qxx Qxy
Qxy Qyy

]
, (5.35)
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with

Qxx =

∫ 1

0
p2
x dt−

(∫ 1

0
px dt

)2

, (5.36a)

Qyy =

∫ 1

0
p2
y dt−

(∫ 1

0
py dt

)2

, (5.36b)

Qxy =

∫ 1

0
pxpy dt−

∫ 1

0
px dt

∫ 1

0
py dt. (5.36c)

Finding the array optimizing the worst-case AoA estimation performance
can now be stated as an optimal control problem;

maximize
ṗx(t),ṗy(t)

Qxx,

subject to Qxy = 0,
Qxx = Qyy,
ṗ2
x(t) + ṗ2

y(t) ≤ 1.

(5.37)

Note that the integrals in (5.36) are stated with a correction term to account
for the displacement between the array frame and its mass center.

The first constraint of (5.37) can always be fulfilled since the array can be
rotated such that the off-diagonal elements in Q become zero. The second
constraint can be seen as a direct consequence of optimizing the worst-
case performance. If a candidate solution is found where the estimation
performance is different in the direction of the two eigenvectors of Q, a
better solution would be to lower the larger eigenvalue in order to increase
the smaller one. It is easily seen that this can always be done, e.g., by
rescaling the candidate solution. Consequently, the estimation performance
in the direction of the two eigenvectors of Q should be equal. Finally, the
last constraint limits the speed of the movement so that the length of the
trajectory can not exceed 1.

The optimal control problem of (5.37) can be described using a seventh
order state-space system as





ẋ1(t) = u1(t)
ẋ2(t) = u2(t)
ẋ3(t) = x1(t)
ẋ4(t) = x2(t)
ẋ5(t) = x1(t)x2(t)
ẋ6(t) = x2

1(t)
ẋ7(t) = x2

2(t)

xn(0) = 0, ∀n ∈ {1, . . . , 7} (5.38)
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Figure 5.5 Worst-case-optimal 2D array configuration with Qxx = Qyy and
Qxy = 0 in the sense of (5.34). The array center (p̄x, p̄y) has been moved to
the origin to obtain a block diagonal FIM.

with the constraint u2
1(t) + u2

2(t) ≤ 1, where u1(t) and u2(t) are the veloc-
ities in the x- and y- directions respectively and hence the control signals.
The optimal control problem has been solved using jModelica [jModelica.org,
2016] which is an open source tool for solving nonlinear dynamic optimiza-
tion problems. In the first scenario an open solution is wanted, i.e., the
start and end points are not constrained to be equal, and the solution is
presented in Figure 5.5 where the array center has been translated to the
origin according to (5.29). Also note that the solution can be rotated around
the origin, still yielding the same moment tensor Q. Hence, there are an
infinite number of solutions to the optimization problem but the one pre-
sented here is the one with the moments aligned with the coordinate axes. If
the problem is further constrained so that x1(0) = x1(1) and x2(0) = x2(1),
the solution becomes a circle.

The moments for four different array configurations are presented in
Table 5.1. The L-shaped array consists of two equally long perpendicular
segments while the square is a closed array, i.e., x1(0) = x1(1) and x2(0) =
x2(1). The worst-case-optimal array configuration is approximately 41%
better than the circle and 72% better than a square when comparing Qxx
(or Qyy). It is also seen that the moments of the L-shaped array are uneven
in x and y, which is due to the array configuration.

Worst-case-optimal 3D Array
A similar problem to the one in (5.37) can be formulated to yield a solution in
three dimensions with the constraint Qxx = Qyy = Qzz on the moments and
zeros everywhere else. A state-space model, similar to (5.38), with 12 states
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Table 5.1 Moments for four different array configurations. All configura-
tions have length 1, Qxy = 0, and Qxx ≤ Qyy.

Shape Qxx Qyy

L-Shape 0.01042 0.04167

Square 0.01042 0.01042

Circle 0.01267 0.01267

Optimal (open) 0.01784 0.01784

Table 5.2 Moments for four different array configurations. All configura-
tions have length 1 and for the worst-case-optimal configurations, Qxy =
Qyz = Qxz = 0. Note that Qxx ≤ Qyy ≤ Qzz for all configurations.

Shape Qxx Qyy Qzz

Linear 0.003086 0.006173 0.03086

Helix 0.005509 0.005509 0.005509

Optimal (open-end) 0.006610 0.006610 0.006610

Optimal (closed-end) 0.003932 0.003932 0.003932

is used. The open- and closed-end solutions of the problem are presented
in figures 5.6 and 5.7 respectively. Once again, the solutions presented
here are aligned with the coordinate axes and the center of gravity in the
origin to obtain a block diagonal FIM. The moments for four different array
configurations are summarized in Table 5.2.

The linear array consists of three equally long perpendicular segments
in the x, y, and z directions respectively and the helix antenna used for
comparison is described by





px(t) =
√

1− l2
r cos(rt)

py(t) =
√

1− l2
r sin(rt), r ,= 0, 0 < l < 1.

pz(t) = lt

(5.39)

By numerical optimization, parameters r = 8.987 and l = 0.2571 have been
found and yield a helix configuration that maximizes the smallest eigen-
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Figure 5.6 The curve indicates the open-end worst-case-optimal array con-
figuration in 3D as well as projections py(px) and pz(px) in the lower panels.
The array center has been moved to the origin to obtain a block diagonal
FIM.

value of Q for the corresponding FIM, see (5.34). In the 3D case the helix
beats the worst-case-optimal closed-end array but the array configuration
shown in Figure 5.6, i.e., the open-end array, performs approximately 20%
better compared to the helix.

Joint AoA and Frequency Error Estimation
The worst-case-optimal arrays were defined assuming that the frequency
error was known, see (5.35). If this is not the case, i.e., if the AoA and
the frequency error have to be estimated jointly, then the AoA estimation
performance will be affected. The effect can be studied using the Fisher
information matrix with a prior distribution on the frequency error. If the
prior is assumed to be Gaussian, the log-likelihood function in (5.16) is
extended as

L = c− (y− h)∗Σ−1
e (y− h) −

1
2σ 2

δ ,0
(δ f − δ0)

2, (5.40)
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Figure 5.7 The curve indicates the closed-end worst-case-optimal array
configuration in 3D as well as projections py(px) and pz(px) in the lower
panels. The array center has been moved to the origin to obtain a block
diagonal FIM.

where δ0 is the mean of the Gaussian prior, and σδ ,0 is the standard de-
viation. The other definitions remain unchanged. Consequently, the only
element of the FIM that is changed is

− Eypψ

{
Re �

2L
�δ 2

f

}
= 2 exp{2χ}Re

{
tTΣ−1

e t
}
+

1
σ 2
δ ,0
. (5.41)

By varying the standard deviation of the prior, scenarios with a highly
informative prior (σδ ,0 → 0) to non-informative priors (σδ ,0 → ∞) can be
investigated. The worst-case-optimal 2D open-end array is used for inves-
tigating its joint estimation performance under different levels of prior
knowledge. The simulation result is presented in Figure 5.8. The result
shows that for a highly informative prior, i.e., when the frequency error
is known, the array has the same estimation performance regardless of
the angle of arrival. This is expected from the assumptions underlying the
design of the worst-case-optimal array. When the prior becomes more un-
informative, the estimation performance is degraded. From the figure, it is
clear that the estimation performance degradation is largest for AoA angles
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Figure 5.8 Estimation performance of φ as a function of AoA angle for three
different levels of the standard deviation of the frequency error prior when
the SNR is 20 dB. The dashed line is the performance with perfect knowledge
of the frequency error and the dotted line when no prior information is
available and the array is used for joint AoA and frequency error estimation.
With perfect knowledge of the frequency error, the performance is equal
for all angles as expected. When the prior becomes more uninformative,
the estimation performance is affected with the largest deviation from the
uniform case at 90 deg.

of 90 deg whereas for AoA angles of less than 30deg or above 150deg, the
degradation is minor for all levels. The conclusion is that even though the
array was constructed without taking the frequency error estimation into
account, the array can often estimate the frequency error without a severe
loss of performance.

5.3 Sensitivity Analysis

The worst-case-optimal array configuration presented in the previous sec-
tion assumes perfect knowledge of the receive antenna element locations
and that the clock signal is undisturbed. These assumptions can be fulfilled
using a high precision tracking device and clock generator. However, if such
equipment is unavailable, the accuracy of the estimated latent variables
ψ will be degraded since the positions and time in Ω are created using
disturbed receiver locations and time stamps. To investigate the influence
of disturbances in both space and time, the formulation of the hybrid infor-
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mation matrix from (5.4) will be used. Here the analysis is limited to the
single component scenario and the calculations for the multiple component
scenario are provided in Appendix B.2.

The Hybrid Information Matrix
The calculations in (5.18) and (5.20) are reused for HψψT and the two ad-
ditional matrices HΩΩT and HψΩT in (5.4) are derived below. It is assumed
that the prior on Ω is a Gaussian distribution and that the measurement
noise is a zero mean circular symmetric complex Gaussian distribution. The
log-likelihood function L for the distribution p(y,Ωpψ) is then

L = c− (y− h)∗Σ−1
e (y− h) −

1
2(Ω − Ω0)

TΣ−1
Ω (Ω − Ω0), (5.42)

where c is a constant, y the observations, h = exp{χ − iβ} exp{−iΩγ}, Ω0
is the mean of the Gaussian prior, and ΣΩ is its covariance. The matrix
HΩΩT becomes

HΩΩT = −Ey,Ωpψ

{
Re �2L
�Ωv �ΩT

v

}
= 2 exp{2χ}Re

{
ΛTW∗Σ−1

e WΛ
}
+ Σ−1

Ω ,

(5.43)
where

Ωv = vec{Ω} ∈ R4K ,
Λ = γT ⊗ IK ∈ RK$4K ,
w = exp{−iΩγ} ∈ CK ,

and W = diag{w} ∈ CK$K . Here ⊗ denotes the Kronecker product. The
second element in the FIM becomes

HψΩT = −Ey,Ωpψ

{
Re �2L
�ψ �ΩT

v

}
(5.44)

with
− Ey,Ωpψ

{
Re �2L
�χ �ΩT

v

}
= 0T4K , (5.45)

− Ey,Ωpψ

{
Re �2L
�β �ΩT

v

}
= 2 exp{2χ}Re

{
w∗Σ−1

e WΛ
}
, (5.46)

and

− Ey,Ωpψ

{
Re �2L
�µ �ΩT

v

}
= 2 exp{2χ}Re

{
FTΩTW∗Σ−1

e WΛ
}
. (5.47)

The expressions above simplify if the measurement noise is uncorrelated so
Σe is diagonalized. This is summarized in Theorem 5.2.
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Theorem 5.2
Consider observations given by

y(Ω,γ , χ, β) = exp{χ − iβ} exp{−iΩγ} + e ∈ CK (5.48)

where exp{·} is element-wise exponentiation, χ and β are real constants,
e =

[
e1 . . . eK

]T
∼ CN (0,Σe),

γ = f (µ) =
[
cos(φ) sin(θ) sin(φ) sin(θ) cos(θ) δ f

]T , (5.49)

and

Ω =



px,1 py,1 pz,1 t1
...

...
...

...
px,K py,K pz,K tK


 ,

[
px py pz t

]
∈ RK$4. (5.50)

The hybrid information matrix for the single component scenario with un-
correlated measurement noise and Ω ∼ N (Ω0,ΣΩ) is given by

H(ψ) =
[HψψT HψΩT

HΩψT HΩΩT

]
∈ R(5+4K)$(5+4K), (5.51)

where ψ =
[
χ β φ θ δ f

]T
∈ R5, and

HψψT = 2 exp{2χ}



tr{Σ−1

e } 0 0T3
0 tr{Σ−1

e } PTF
03 FTP FTQF


 ∈ R5$5, (5.52)

HΩΩT = 2 exp{2χ}ΛTΣ−1
e Λ + Σ−1

Ω ∈ R4K$4K , (5.53)

HψΩT = 2 exp{2χ}




0T4K
QT

FTΩTΣ−1
e Λ


 ∈ R5$4K , (5.54)

where

F =



− sin(φ) sin(θ) cos(φ) cos(θ) 0

cos(φ) sin(θ) sin(φ) cos(θ) 0
0 − sin(θ) 0
0 0 1


 ∈ R4$3, (5.55)

and

P = ΩTΣ−1
e 1K ∈ R4 (5.56)

Q = ΛTΣ−1
e 1K ∈ R4K (5.57)

Λ = γ T ⊗ IK ∈ RK$4K . (5.58)
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The CRLB for the deterministic parameters ψ is obtained as

C(ψ) =
[
HψψT −HψΩTH−1

ΩΩTHΩψT

]−1
. (5.59)

2

Acquisition Error Modeling
The acquisition error is characterized by the covariance matrix ΣΩ of the
prior. For simplicity, it is assumed that the position error and time jitter
are uncorrelated. The uncertainty in the sample time is due to jitter in the
baseband clock signal and this will for ease of presentation be modeled as
white Gaussian noise. For position errors, it is interesting to investigate
both uncorrelated and correlated disturbances. We have found that this cor-
relation has a significant impact on the resulting performance and therefore
it should be carefully modeled. The uncorrelated case is applicable in vir-
tual array solutions where the position of the receive antenna element is
measured directly with limited accuracy. For a solution where the receiver
unit is combined with an unaided IMU, the instantaneous positions are
obtained by dead reckoning, see Figure 1.5. This is what is used in the
initialization algorithm in Section 4.2 and also in [Yaqoob et al., 2013]. The
double integration gives rise to significant correlation of position errors over
time. The correlation is modeled using the state-space model,

pk+1 = Φpk + Γuk (5.60)

where uk ∼ N (ūk, σ 2
k ) is the noisy accelerometer signal. The double inte-

grator is obtained with

Φ =
[
1 Ts
0 1

]
, Γ =

[
T2
s /2
Ts

]
(5.61)

and the state vector pk =
[
px,k vx,k

]T . The correlation matrix Σp =
E{pxpTx } is then given by

[Σp](n,m) = σ 2
p


min(n,m)∑

k=1
Φn−kΓΓT[Φm−k]T



(1,1)

, (5.62)

when the stochastic process uk is considered stationary, i.e., σ 2
p = σ 2

k ∀ k ∈
{1, . . . , K}, making the correlation matrix Σp linear in σ 2

p . If the correlating
effect of a gyroscope in the inertial measurement unit is neglected, the
uncertainty in position can be modeled as uncorrelated between the three
axes. With these assumptions, the covariance matrix of the prior will be
block diagonal with [Σx,Σy,Σz,Σt] on the diagonal.
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Results for 2D Array
To illustrate the results of Theorem 5.2, the worst-case-optimal open-end
2D array derived in Section 5.2 is used again. As before, estimation of
the elevation angle θ is not considered for the 2D array since it can not
determine elevation angles. The distribution for the time jitter is zero mean
with covariance Σt = σ 2

t IK .
Furthermore, for the position errors two different scenarios are inves-

tigated, uncorrelated position noise, and second-order correlated position
noise. For simplicity it is assumed that the noise in x and y have the same
distribution. The covariance matrices for the uncorrelated case are set to
Σx = Σy = σ 2

p IK , while the correlated covariance matrices are given by
(5.62). The sample frequency is set to 250Hz and the measurement noise
level is set to 20 dB. The CRLB for the azimuth angle φ and frequency error
δ f , denoted σφ and σδ respectively, are shown in Figure 5.9 as a function
of position RMSE for three different levels of time jitter RMSE levels σt for
both scenarios.

There is a clear performance degradation when the time jitter noise
increases as well as when the position RMSE increases. The performance
degrades linearly with increasing position RMSE. The correlation of the
position errors also lowers the tolerable position RMSE level with a factor of
approximately 2.5. For the frequency error, the same factor is 10 indicating
that the array performance for frequency error estimation is more sensitive
to correlated position errors. From the results it is seen that the array has
similar sensitivity to position RMSE and time jitter RMSE levels for both
AoA and frequency error estimation.

Summary
In the single ray scenario, the relationship between the CRLB and the com-
ponents of the moment of inertia tensor in space-time was made clear and
presented as Theorem 5.1. The result was illustrated by finding arrays in
both 2D and 3D that maximize the worst-case estimation performance by
numerically solving an optimal control problem. The arrays were presented
in Figure 5.5 for an open-end 2D array and figures 5.6 and 5.7 for the 3D
arrays. The analysis was taken further by investigating the AoA estimation
performance of the worst-case-optimal array with a prior on the frequency
error. The result showed that the performance became dependent on the
AoA even though the array was constructed with uniform estimation per-
formance. The conclusion of the analysis is that the array is still usable for
AoA estimation.

To investigate performance degradation when perfect knowledge of po-
sition and time is unavailable, an analysis was carried out using the for-
mulation of the hybrid information matrix where prior information on the
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Figure 5.9 CRLB for φ and δ f for uncorrelated and correlated position
errors and uncorrelated time jitter. The dash-dotted line marks the CRLB
calculated when there are no disturbances on Ω, i.e., the formulation from
Theorem 5.1. The SNR is 20dB and the AoA φ0 is 30 deg. There is a clear
performance degradation in both φ and δ f estimation due to increasing levels
of jitter as well as position uncertainties. Note that the frequency estimation
is more sensitive to correlation of the position errors compared to the AoA
estimation.
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receive antenna element locations and the clock signal was included. The
formulation was presented as Theorem 5.2. This theorem provides an un-
derstanding of how position and time inaccuracies degrade the performance
of the virtual array. It was found that the correlation in position error which
typically arises when using an IMU had significant impact on the result
and therefore needs to be taken into account.

5.4 Recursive Cramér-Rao Lower Bound

From the previous section we know that the CRLB can efficiently be cal-
culated for a scenario where the angle of arrival and amplitudes of the
multipath components are considered constant during the acquisition pe-
riod. We will now study the joint problem where the location is estimated
simultaneously with the AoA and amplitude of the MPC as well as the
frequency error. For this purpose, the recursive Cramér-Rao lower bound
formulation for the state-space model derived in Section 3.3 will be used.
The CRLB is calculated using the extended Kalman filter presented as Al-
gorithm 4.1. Since the recursive estimation in subsequent chapters will be
carried out on a 2 $ 2 MIMO system, the CRLB analysis is for MIMO as
well. An analysis assuming SISO can be found in [Mannesson, 2013].

In the analysis, the movement of the receiver on the x-axis is given by

px(t) = 3λ sin(πt). (5.63)

There is no movement along neither the y-axis nor the z-axis. The receiver
is moving for one minute and is then left resting at px = 0 for two minutes.
The radio channel is configured as having one, two, or three impinging spec-
ular MPCs, all with the same amplitude and a noise power equivalent to an
SNR of 20 dB. The three simulation results are given in figures 5.10, 5.11,
and 5.12 where the standard deviation of the positions (px, py), amplitude
α, frequency error δ f , and AoA φ is presented as a function of time. In
Table 5.3, the slopes for the standard deviation growth rate for the different
states in the model are given, assuming an unaided IMU. For β no individ-
ual noise processes nβ are present. Consequently the uncertainty in phase
is coming from the uncertainty in frequency error δ f .

The result with one impinging MPC reveals that even though the phase
information of the radio signal is used, there is no change of the growth
rate in the uncertainty of the position estimate. This is consistent with
previous results; tracking one MPC does not provide any information per-
pendicular to the AoA, see Figure 2.8, and the uncertainty can therefore
increase in this direction. Hence, one MPC alone can not significantly in-
crease the accuracy of the estimated position. Looking at the AoA state φR1 ,
the algorithm is able to limit the growth of the uncertainty. This is different
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Table 5.3 Slope of the standard deviation growth rate for the recursive
model when the IMU is unaided.

State Slope

Position px, py 2.5

Angle of arrival φ 0.5

Amplitude α 0.5

Phase β 1.5

Frequency error δ f 0.5

0.0
1 1

10−3

10−1

10−2

6018
0

px
σpx

0.0
1 1

10−3

10−1

10−2

6018
0

py
σpy

0.0
1 1

10−2

100

10−1

6018
0

δ f
σδ

0.0
1 1

100

10−1

101

6018
0

φ R
1

Time [s]

σφ

0.0
1 1

10−1

10−2

6018
0

αR
1

Time [s]

σα

0.0
1 1

10−2

100

10−1

6018
0

β R
1

Time [s]

σβ

Figure 5.10 Cramér-Rao lower bound of state estimation with one MPC
impinging on the receiver with a sinusoidal movement along the x-axis.
The plots show standard deviation versus time for the states px, py, δ f , φ R1 ,
αR

1 , and β R
1,1 at an SNR of 20 dB. The dashed lines show the case when

no radio signal is supplied. The first vertical dotted line marks when the
receiver reaches the maximum deviation from the origin the first time and
the second when the movement has stopped. The only states that exhibit
any considerable improvement in estimation accuracy is AoA and amplitude
and there is a small performance gain of

√
2 for px and py.
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Figure 5.11 Same as Figure 5.10 but for two MPCs. The improvement in
position accuracy is approximately 32 dB but the asymptotic growth rate is
unaffected. The variance of the AoA is limited and the stationary level is
dependent on the AoA. The estimation variance of the amplitude varies over
time, which is due to the change in distance to the origin when the receiver
is moving.

from previously published results in [Mannesson et al., 2015b; Mannesson,
2013] and the reason is the MIMO system used in this set-up. Since the
receiver is equipped with two antennas with a separation of 0.6λ, compared
to one receive antenna in the previous results, the AoA can be estimated
since the physical displacement and orientation between the two antennas
is assumed to be known. The uncertainty in the amplitude and frequency
error is in line with the previous results. The amplitude, which the mea-
surements are linearly dependent on, can be estimated while the frequency
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error variance still grows at a constant rate.
The result with two impinging MPCs, see Figure 5.11, shows a perfor-

mance improvement of approximately 32 dB for the position estimate but
the asymptotic growth rate is unaffected. Also, the variance of the phase
of the components is still growing without any change. Furthermore, the
amplitude that before reached a static level now fluctuates with the move-
ment and settles on a static level once the receiver stops moving. In the
SISO case, the variance of the amplitude estimation starts growing after
the receiver is stopped. The conclusion is that two multipath components
do not provide enough information to improve either the position nor the
frequency error estimation performance significantly.

With three impinging MPCs the result is clearly different from the pre-
vious cases. The uncertainty of the position estimates is now bounded, and
the accuracy depends on the movement. As the receiver is moving away from
the origin, the uncertainty grows and when it turns back, the uncertainty is
reduced again. Clearly there is a dependence between the distance from the
origin and with what accuracy the position can be estimated. This is due to
the AoA modeling of the MPCs for the radio channel. A small variation of
φ when the receiver is far away from the origin will have a bigger impact
on the phase of the received signal compared to if the receiver is kept close
to the origin. The uncertainty in the frequency error is now bounded which
directly impacts the argument state β for all the components. However, with
three components, the amplitude and AoA estimates are now varying with
the movement but when the receiver stops, the uncertainty grows again.
The conclusion from these simulation results is that as long as the receiver
is moving, an estimator would be able to estimate the states of the joint po-
sition and radio channel state-space model with a non-growing uncertainty
and that at least three multipath components must be available in order to
estimate all the states with good performance.

The recursive Cramér-Rao lower bound calculations show promising re-
sults for the joint estimation problem. If the movement is rich enough and
at least three MPCs impinge on the array, all states can be estimated and
with bounded growth rate of the variance assuming that the receiver is mov-
ing. This is a huge fundamental improvement of what can be achieved in
terms of estimation and accuracy using the joint position and radio channel
tracking model compared to the unaided IMU case.
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Figure 5.12 Same as Figure 5.11 but with three impinging MPCs. The
improvement in position accuracy is clearly noticeable and the growth rate
has been restrained. Also, the performance improvement when it comes to
AoA and amplitude compared to the unaided scenario is similar to the result
in Figure 5.11. For the frequency error and thereby the argument β , the
growth rate is also restrained as long as the receiver is moving.
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6
Joint Positioning and Radio
Channel Estimation

With the performance studies from the last chapter we are ready to simulate
the marginalized particle filter to investigate its estimation performance
on synthetic signals. We will specifically investigate scenarios where all
impinging multipath components are considered to be scattered by point
sources and also scenarios with one cluster present in the environment. We
limit the analysis to a SISO system and a 2 $ 2 MIMO system. For the
SISO system, the antenna is assumed to be aligned with the IMU center.
In the MIMO system, the antennas are separated 10 cm which is justified
by the size of cellular phones available today. In all simulations, the carrier
frequency is set to 1.8GHz which corresponds to a wavelength of 16.7 cm.
Consequently, the antenna separation for the MIMO system is 0.6λ.

The marginalized particle filter, presented as Algorithm 4.3, is imple-
mented in MATLAB. For all simulations in this chapter, a trajectory span-
ning approximately 50 by 50λ in the x and y dimensions is generated
and sampled at 50Hz. The sample frequency is chosen to suit the velocity
reached when walking and the wavelength is approximately 16.7 cm. The
movement starts and ends in the origin and the full movement takes 60
seconds to complete. The maximum velocity during the movement is 7.5λ/s.
The trajectory is converted to accelerometer readings with additive white
Gaussian noise with intensity similar to what is seen in an IMU of con-
sumer grade. During the movement, the device is assumed to have a fixed
orientation, i.e., the gyroscope signal is only white Gaussian noise with
intensity similar to what is seen in a consumer grade IMU. This is however
not known by the filter which still estimates orientation. For this trajectory,
no random walk processes for the accelerometer or the gyroscope are in-
cluded. The reason is that for time periods of 60 seconds, the additive white
Gaussian noise is still the dominant part of the noise signal. See Table 1.1
for data sheet values. Constant bias in the sensors has also been neglected
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Table 6.1 Nominal settings used for simulations in this chapter.

Value

Carrier frequency [GHz] 1.8

Sample rate [Hz] 50

SNR [dB] 30

Angle of arrival change rate [deg/
√
s ] 0.5

Amplitude change rate [1/
√
s ] 0.1

Frequency error change rate [Hz/
√
s ] 0.1

Accelerometer noise intensity [m/s/
√
h ] 0.085

Gyroscope noise intensity [deg/
√
h ] 1.5

Table 6.2 The nominal initial distributions of the states where [·]v denotes
the true state value obtained by the sparse Bayesian learning algorithm
presented in Section 4.2.

State Distribution

Angle of arrival [deg] φ N (φv, 5)

Amplitude [-] α N (αv, 0.2)

Phase [deg] β N (β v, 12)

Frequency error [Hz] δ f N (δ vf , 5 · 10−2)

since the calibration error is assumed to be small compared to other errors.
The positioning results from the simulations with the filter are compared to
the dead reckoning performance of the IMU signal. The nominal parameter
setting for the simulations are given in Table 6.1. Note that the SNR is
defined as an average value over the whole dataset, the instantaneous SNR
can consequently be higher or lower.

In all the simulations it is assumed that the sparse Bayesian learning
algorithm has been able to find an estimate of the angle of arrival, complex
amplitude, and frequency error and the states are therefore initialized
according to Table 6.2. These values are justified by the results in Figure 4.7.
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6.1 Simulations for SISO Configuration

The filter performance for the SISO system is investigated when the number
of impinging MPCs is varied from three up to six. The angles of arrival for
the MPCs are randomly chosen from the range [−π,π] with a constraint
that two components can never be closer than 36deg from each other. This
restriction is introduced to avoid coinciding components which would make
them similar to a cluster. In Figure 6.1, one run of the analysis with four
MPCs is presented and in Figure 6.2 the mean position RMSE is presented
when the number of particles is varied for the four different cases.

In Figure 6.1 position RMSE, amplitude, AoA, and frequency error are
shown. It is seen that the filter tracks both position in x and y as well as
the states associated with the MPCs. The position RMSE is never higher
than 2.5λ during the whole movement and the average position RMSE for
the whole trajectory is 0.6λ which equals 10 cm at the given wavelength.
This is the most successful run and not average performance which is
approximately 4 times worse. At 30 s, the distribution for the AoA φ3 widens.
Since the amplitude for the same MPC at the same time instant is low, the
filter estimate of the amplitude is close to zero which makes the contribution
from the erroneous AoA estimate negligible. There is also a clear widening
in the distribution for the position at the same time instant which can be due
to reduced information obtained from MPC 3. Also note that the AoA for the
third component is approximately 240deg which is the direction the receiver
is moving in at the specific time instant. From our findings concerning
estimation performance, it is known that the estimation performance is
worse as the receiver travels towards or away from the impinging MPC.

Looking at the cumulative distributions in Figure 6.2, we see that as the
number of MPCs present in the environment is increased from three to four,
the mean position RMSE is almost halved. Compared to the performance
obtained by a stand-alone consumer grade IMU, the filter-based solution
performs 22 times better on average. For five MPCs, the mean position
RMSE for the best 50% of the cases is marginally lowered but for the worst
50% it is clearly worse compared to the scenario with four MPCs. This
effect is emphasized even more with six MPCs. The explanation for the
deteriorated behavior is the increased number of states for the estimation
problem with six MPCs. This is also seen in Figure 6.3 where the number
of particles has been varied instead and the number of MPCs is fixed
to five. The improvement in mean position RMSE when the number of
particles is increased is clear. For 500 particles, the filter fails to benefit
from the data given by the radio channel estimates; the nonlinearities in the
measurement equation are too severe and the state-space dimension is too
large to be well covered by 500 particles. When the number of particles is
increased, the filter can benefit from the extra information and the plateau
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Chapter 6. Joint Positioning and Radio Channel Estimation
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Figure 6.2 The cumulative distributions for mean position RMSE in the
SISO case when the number of MPCs is varied. The change rates for the
states used in the simulations are found in Table 6.1. The numbers indicate
the median of cumulative mean position RMSE for each distribution. The
number of particles is 5000 and the distributions are created from 250
simulations. When the number of MPCs is increased from three to four, the
performance is improved. If more MPCs are present, more particles would be
needed to maintain the performance. The dashed and dotted curves indicate
the performance of dead reckoning with different IMU grades without using
radio channel information.

which indicates where the filter completely fails to estimate the state vector
is pushed upwards. Hence, it is believed that the performance seen for four
and five MPCs can be reached when more MPCs are present given that the
number of particles can be increased accordingly. The reason for not doing
this here is simulation time.

6.2 Simulations for MIMO Configuration

For the MIMO case we study scenarios with four MPCs originating from
point sources and cases where one of the four MPCs is exchanged for a
cluster. For the case with only point sources, we investigate how the width
of the prior distribution on β affects the results since this is believed to have
a major impact on the estimation performance, at least with the number
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Figure 6.3 The cumulative distributions for mean position RMSE in SISO
when tracking five MPCs using different number of particles. The numbers
indicate the median of cumulative mean position RMSE for each distribu-
tion. There is a clear decrease in mean position RMSE when the number
of particles is increased. Note that the median performance for 5000 parti-
cles is equal to the performance at 4000 particles with four MPCs, compare
Figure 6.2. The dashed and dotted curves indicate the performance of dead
reckoning with different IMU grades without using radio channel informa-
tion.

of particles we have used. We also investigate how the angle of arrival
and frequency error change rate influence the estimation performance and
finally also the performance when the SNR is varied.

In Figure 6.4, position, amplitude, AoA, and frequency error are pre-
sented for a single particle filter run. The mean position RMSE for the
whole trajectory is approximately 0.8λ which equals 13.5 cm at the current
wavelength. The result is an improvement compared to the SISO case in
Figure 6.2, mainly since there are four channel estimates used for the esti-
mation. The estimates of the amplitude and AoA are also good with some
deviation on the AoA for the third MPC at 30 seconds. This is also seen in
a degraded RMSE at 30 seconds, similar to what is seen in the SISO case.

In Figure 6.5, the estimation performance is compared to the recursive
Cramér-Rao lower bound. The CRLB is calculated in the same way as in
Section 5.4. The filter is able to almost reach the CRLB for position and it
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Chapter 6. Joint Positioning and Radio Channel Estimation

actually outperforms the bound for amplitude estimates, see the lower part
of Figure 6.5. The reason for this can be bias in the estimates or that the
particle filter has recently resampled which lowers the state variance. For
the AoA in the middle part and the frequency error the filter is close to
the CRLB. The result indicates that there is almost no more information to
extract from the measurements.

In Figure 6.6, the cumulative distributions of the mean position RMSE
are shown when the number of particles is varied and also when the width
of the prior distribution on β is varied. As expected, the median value of
the mean position RMSE distribution is lowered as the number of particles
is increased. Compared to the SISO case, the performance for all numbers
of particles is improved. Worth noting is that the performance in 80% of
the cases is better than for a tactical grade IMU using dead reckoning.
The reason for fewer simulations where the filter fails to track the state
vector with MIMO compared to SISO is that the distance and orientation
of the two receive antennas is known. The filter is therefore able to exploit
the knowledge of this correlation between the measurements and produce
a better estimate with less particles. It is also clear that when the prior on
β is less informative, the performance is degraded. The 4000 particle filter
performance with a wider prior equals the 3000 particle filter performance
with a narrower prior. The conclusion is that if the prior becomes less
informative, the performance can be regained by increasing the number of
particles.

In Figure 6.7, the AoA change rate is varied and the SNR is lowered to
20 dB. Compared to the results from Figure 6.6 where the change rate was
0.5 deg/

√
s at 30 dB, there is only a minor difference due to the lowered SNR.

The reason for the slightly increased performance at the top of the distri-
bution is due to tuning of the filter while the median remains unchanged.
As the AoA change rate is increased, the performance is worsened. The
AoA change rate sets the rate at which the map over the fading pattern
becomes useless. A consequence of the higher change rate is that position
estimates that were unlikely at a lower change rate become likely since the
map provides less information. Hence, the filter will not be able to discard
these hypotheses and they are thereby deteriorating the position estimates.
Also, as the rate increases, the filter must spread out the particles wider
in the state-space which makes the particle representation a worse approx-
imation of the true underlying distribution. This is what causes lowered
performance as the change rate increases. It is believed that increasing the
number of particles can regain some of the lost performance but to what
extent is yet unknown.

The next investigation on parameter variation is SNR variations. Fig-
ure 6.8 shows the cumulative distributions for mean position RMSE with
250 simulations when the average SNR is varied from 0dB to 20dB. The dif-
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Figure 6.6 The cumulative distribution for mean position RMSE in the
MIMO case. The change rates for the states used in the simulations are found
in Table 6.1. When the number of particles is increased, the mean position
RMSE is lowered as expected. The difference in performance when the prior
becomes less informative is noticeable; the 4000 particle filter performance
is similar to the 3000 particle filter performance with a smaller prior. The
dashed and dotted curves indicate the performance of dead reckoning with
different IMU grades without using radio channel information. Note that the
particle filter solution with 4000 particles outperforms the dead reckoning
performance of a tactical grade IMU in 80% of the cases. Compared to the
consumer grade IMU, the mean position RMSE is almost 70 times lower.

ference between the distributions is small which indicates that the filtering
solution is capable of handling low SNR situations as well. An explanation
of the good performance, even for the low SNR scenarios, can be traced
back to the dead reckoning equations. As mentioned in Section 1.2, the
main contribution to the positioning error in dead reckoning is the noise
from the gyroscope which causes orientation errors. The incorrect orienta-
tion leads to a non-zero residual term when gravity has been canceled. This
residual term is then integrated twice. The noise from the accelerometer
gives, compared to this error, a minor contribution to the final position error.
Consequently, any particles in the filter that hold an incorrect hypothesis
of the orientation will quickly have an incorrect position and thereby be
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Figure 6.7 The cumulative distributions for mean position RMSE in the
MIMO case with 4000 particles and an SNR of 20dB. As the change rate for
the AoA is increased, the filtering performance deteriorates. The reason for
this is that the same number of particles is expected to cover larger filtering
distributions and that the map changes too rapidly between consecutive time
samples. It is believed that some of the lost performance can be regained if
the number of particles is increased.

removed in the next resampling step of the filter. This holds regardless of
the number of antennas on the receiver side. The conclusion is that if only
the orientation can be obtained with high accuracy, the accelerometer signal
with a negligible residual from gravity left can be used for calculating the
position and this is what is done by the filter.

Note that the states in the filter have been correctly initialized accord-
ing to Table 6.2 regardless of the average SNR. In a scenario where the
initialization of the filter has to be done at an SNR of 0 dB, it is unlikely
that the sparse Bayesian learning algorithm would find all MPCs and the
initialization of the filter would therefore be erroneous. The performance in
such a case would be seriously affected. Instead, the simulations can be seen
as what would happen if the SNR drops after the filter has been correctly
initialized, for instance when the receiver moves into an area with worse
reception.

To test the ability of the filter to track larger frequency errors, three
different levels of frequency error are tested at an SNR of 20dB. The cu-
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Figure 6.8 The cumulative distributions for mean position RMSE in the
MIMO case with 4000 particles and varying average SNR. The difference
between the distributions is small. The reason why the 10dB distribution
crosses the lower SNR distributions is unclear but a possible explanation
is tuning of the filter. Separate tuning of the particle filter parameters has
been performed for each case.

mulative distributions for 250 Monte Carlo simulations for one MIMO case
and three SISO cases are shown in Figure 6.9. The MIMO case is at large
unaffected by the increased frequency error which can be explained by how
the frequency error is modeled. In the model, it is a common contribution
on all receive antenna signals. Hence, the dual antenna unit can partition
the phase change that is seen in the received signals into two components:
one contribution from the movement and another one from the frequency
error. In the SISO case, the filter can not separate the contributions and
the positioning performance is thereby negatively affected by the increased
frequency error.

Simulations for MIMO Configuration With Clusters
For the cluster simulation, one MPC is exchanged for a cluster chosen from
Table 2.1. As before, the particle filter is initialized according to Table 6.2.
In Figure 6.10, the cumulative distribution of the mean position RMSE is
shown. Regardless of cluster type, the performance is negatively affected
when the cluster is introduced. The mean position RMSE is doubled and
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Figure 6.9 The cumulative distributions for the mean position RMSE in
the SISO and MIMO cases with 4000 particles and an SNR of 20 dB. As
the change rate for the frequency error is increased, the performance in the
SISO case is negatively affected since the filter can not determine if the
change in phase is due to the movement or due to frequency error. In the
MIMO case, the two contributions can be separated and the performance is
thereby not significantly affected.

the worst 50% of the runs are even more affected. Still, the performance
compared to the dead reckoning is impressive and it is believed that by
increasing the number of particles some performance can be regained.

In Figure 3.3, cluster type two is indicated to be the hardest cluster
to track since it introduces the largest amplitude variations. Figure 6.10
shows that cluster type one yields the worst mean performance. The reason
for this is not clear but it might be due to the large standard deviation of
the azimuth spread for cluster type one.

6.3 Summary and Discussion

The positioning performance seen in the simulations is very good compared
to the performance of a consumer grade IMU. For the MIMO case, the per-
formance also beats a tactical grade IMU in 80% of the cases. The MIMO
case performs approximately three times better than the SISO configura-
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Figure 6.10 The cumulative distributions for mean position RMSE in the
MIMO case with one cluster and three specular components with 4000 parti-
cles in the filter. The performance is negatively affected by all cluster types.
Compared to the scenario with four specular components, the presence of a
cluster type 3 yields a median RMSE that is a factor of two worse.

tion. The main reason for the improvement is believed to be the fact that
four times the data in terms of channel estimates is supplied to the filter
in the MIMO configuration. Another benefit of the MIMO configuration is
that the yaw angle, i.e., the rotation around the z-axis, is determined since
a rotation will be observed in both the channel estimates and the gyroscope
signals. In the simulation the measurement noise on the two receive an-
tennas is assumed to be uncorrelated. If the noise is correlated due to, e.g.,
coupling between the antenna elements, the MIMO case is believed to de-
grade in performance and become similar to the SISO configuration. Also,
in the MIMO case, the mutual location of the receive antennas is assumed
to be known with high precision. By this assumption, the phase difference
introduced by differences in travel distance can be accounted for. In a real
world MIMO system, the mutual location might be unknown and needs to
be estimated using some prior information. This is also believed to degrade
the performance in the MIMO case.

We also saw that the number of particles is crucial for the performance
of the filtering solution. If the number of particles is too low, the underlying
state distributions are not well represented which leads to erroneous state
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estimates. The upper performance limit that can be obtained by increas-
ing the number of particles is yet unknown and the CRLBs presented in
Figure 6.5 indicate that there is more performance to be gained and more
particles might be the answer to how to achieve this. It is also obvious from
Figure 6.7 that if the filter is to track a rapidly changing channel when it
comes to AoA, more particles are needed. The need for particles has to be
balanced with the computational effort of the filter which increases linearly
with the number of particles.

When a cluster was included in the environment, a degradation in per-
formance was noticed. This is as expected since the contribution given by
the cluster is described in a similar way as a single MPC. In the current
implementation, the filter lacks the ability to distinguish between contribu-
tions which can be modeled as a single component and contributions from
clusters. This ability is a feature that has to be added before the filter can
be used in rich multipath environments. Still, the cluster simulations reveal
that the filtering solution is able to track the components originating from
point sources.

In the investigations we have reused the same movement trajectory that
spans approximately 8m in both x and y directions. From the performance
bound investigation presented in Chapter 5, it is known that the movement
trajectory influences the estimation performance. For instance, a straight
line movement yields bad estimation performance in the movement direc-
tion. Consequently, moving towards an impinging MPC for a longer period
of time could worsen the performance but in a real world multipath en-
vironment, this kind of movement would be a rare occasion. Still, other
trajectories can improve or worsen the performance and the full potential
of the estimator is yet unknown.

Another topic not discussed here is tuning of the filter. The variances
of the state noise processes are assumed to be known in the simulations
and tuned accordingly. In a real world scenario, the noise parameters of the
accelerometer and the gyroscope as well as frequency error can be obtained.
To obtain change rates for AoA and amplitude is more challenging. There
exist extensions to the particle filter like particle smoothing with expectation
maximization (PSEM) [Olsson et al., 2008] where the variance level, seen
as a parameter, can be estimated. This challenge is left for future research.
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7
Positioning Experiments

7.1 Hardware

Inertial Measurement Unit
The IMU used in this thesis is delivered by Phidgets [Phidgets, 2016] at a
price of $150 and measures 30$ 35mm, see Figure 7.1. This IMU contains
one accelerometer, one gyroscope and one magnetometer along each princi-
pal axis and gives in total nine degrees of freedom. The performance of the
device is comparable to what is available in cellular phones today where
the same performance costs a fraction of the Phidgets device. The magne-
tometers have not been used in this thesis. The software for communication
with the device is implemented in LabVIEW.

Characterization and Calibration The Allan deviation technique de-
scribed in Section 3.1 is used for characterization of the noise sources in
the IMU. The IMU is placed on a table and data is gathered for 30 minutes

Figure 7.1 IMU 1044 from Phidgets used for the experiments. The circuit
board measures 30$ 35mm and is connected to a computer via USB.
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Figure 7.2 Allan deviation for the three accelerometers. In the x- and y-
axis, the noise performance is similar while the z-axis has more noise for
longer averaging times.

Table 7.1 Accelerometer noise parameters estimated from measurements
presented in Figure 7.2.

x-axis y-axis z-axis

Bias instability [m/s/h] 0.8 1.3 2.0

Bias instability time [s] 29 5.7 5.0

Velocity random walk [m/s/
√
h ] 0.032 0.035 0.042

at a data rate of 250Hz. The Allan deviation results for the accelerometers
and for the gyroscopes are presented in figures 7.2 and 7.3 respectively.

The performance of the x- and y-axis accelerometers is comparable while
the z-axis accelerometer has a larger noise level and also exhibits a higher
bias instability level. The reason for the uneven performance of the three
accelerometers is unknown. The IMU is among the inexpensive ones and
this is reflected in the performance of the unit. The gyroscopes show an
even performance for all units.

Before the IMU is used for measurements, its accelerometers are cal-
ibrated with respect to alignment, constant bias, and orthogonality. The
calibration scheme used is presented in [Skog and Händel, 2006]. The rea-
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Figure 7.3 Allan deviation for the three gyroscopes. The performance re-
sembles the ideal response in Figure 3.2.

Table 7.2 Gyroscope noise parameters estimated from measurements pre-
sented in Figure 7.3.

x-axis y-axis z-axis

Bias instability [deg/h] 19 18 21

Bias instability time [s] 359 36 144

Angle random walk [deg/
√
h ] 0.9 0.9 0.9

son for not calibrating the gyroscopes is lack of equipment since the device
has to be rotated at a known angular velocity.

Radio Equipment
To be able to have a controlled radio environment for the experiments, a
complete transmitter-receiver chain has been configured. For this purpose
a channel sounder known as RUSK LUND [MEDAV, 2016] is used, see
Figure 7.5. The equipment consists of one transmitter and one receiver unit
and has the capability of measuring the radio channel impulse response
from one transmit antenna to many receive antennas for radio channel
characterization and analysis.

Since the radio channel is reciprocal, i.e., the channel transfer function
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TX

Monopole antenna

IMU
PC

RX

Figure 7.4 Block diagram of the equipment used for experiments. The
RUSK TX is connected to a high-speed multiplexer feeding the three patch
antennas. The IMU and a monopole antenna with a ground plane are fixed to
a wooden stick and the measurement signals are fed to a PC and the receiver
respectively. Note that RUSK has several receivers and one transmitter but
due to the reciprocal property of the channel, it can be considered to have
several transmitters and one receiver. When the experiment starts, the PC
triggers the receiver to initiate data recording.

from the transmitter to the receiver is the same as it is for the channel in the
other direction, it does not matter which one of the receiver and the trans-
mitter that is moving. Hence, the description of the channel sounder from
here on is written as if it were to have one receiver and many transmitters
where the transmitters act as controlled scattering objects generating one
MPC each. By switching transmission frequency and transmit antenna at a
high speed, the individual channel impulse responses at different frequen-
cies are obtained. One benefit with this configuration is the possibility to
evaluate the radio channel’s individual impulse responses from each trans-
mit antenna to each receive antenna. The transmitter and receiver are
synchronized to minimize uncontrolled frequency error in the experiments.
A semi-schematic illustration of the equipment configuration is presented
in Figure 7.4.

The transmitter antennas are patch antennas, suitable for the frequency
band of 2.4GHz. The antennas are assumed to have high directivity and
are carefully placed so that the receive antenna is within the main lobe of
these antennas. The receive antenna is a monopole antenna for the same
frequency band with a ground plane to eliminate unwanted reflections. The
monopole can be considered to be isotropic in the plane aligned with the
ground plane.

7.2 Data Gathering

The IMU data recording is synchronized with the recording of the radio
signal. The IMU sensors are recorded at 250Hz but later down sampled to
50Hz by averaging over five samples. This gives sufficiently many samples
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RX

TX

Figure 7.5 The channel sounder RUSK with transmitter unit closest to
the viewer and receiver unit behind it.

per revolution of the measurement signal in the complex plane for velocities
up to 10λ/s. The IMU is mounted together with the monopole antenna
on a wooden stick, see Figure 7.6, making it easy to move them by hand
without interfering with the receive antenna. The experiments are carried
out outdoors on a rooftop with clear line of sight between the transmitter
antennas and the receiver on the stick. A total number of 129 frequency
points between 2.40GHz and 2.48GHz are recorded but only the one on
2.40GHz is used for the evaluation in this work. The wavelength λ is
12.5 cm for this choice of frequency. The noise level in the measurement
scenario is approximately 15 dB.

The three transmitter antennas are placed as shown in Figure 7.7 with
a table holding the stick to give stationary measurements during a short
startup sequence. A photo of the test area is shown in Figure 7.8 where
the transmitter antennas are marked. Also, the start and stop positions
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Table 7.3 The initial distributions of the states where φv denotes the true
AoA. When initializing the filter, an initial estimate of the AoA is assumed
to be obtained by the sparse Bayesian learning algorithm presented in Sec-
tion 4.2.

State Distribution

Angle of arrival [deg] φ φv + U(−20, 20)

Amplitude [-] α N (1, 0.3)

Phase [rad] β U(−π,π)
Frequency error [Hz] δ f N (0, 7 · 10−2)

are carefully tracked; the interim trajectory is however not tracked due
to lack of equipment. No exact ground truth is therefore available. In the
evaluation of the filtering results, the dead reckoned positions are adjusted
with a polynomial to fit the end point of the movement to the starting point
but it can not be considered to be the exact movement. The distances to
the transmitters are measured using a laser distance measuring unit and
the expected AoA is calculated. Therefore, AoA denoted as "known" might
be a few degrees off compared to the true values. For the complex MPC
amplitude and frequency error, nothing is known about the true values of
these states.

Two different sets of measurements are performed. In the first set the
stick is kept on the table while moving it in a circle at a maximum speed
of approximately 1m/s. By holding the stick on the table, the influence of
phase shifts due to elevation changes is reduced. For the second measure-
ment, the stick is initialized on the table but then lifted a few wavelengths
from it and an eight-shaped movement is performed in free air. Therefore,
this dataset is considered to be more difficult compared to the first one
since a small error in the orientation will quickly deteriorate the position
estimates. After the movement is completed, the stick is placed on the table.
In both measurements the start and stop positions on the table are within
centimeters from each other.

The same implementation of the marginalized particle filter for SISO
systems as used in Chapter 6 is reused here. The state initialization is
according to Table 7.3. Since the transmitter and the receiver are synchro-
nized, the frequency error becomes negligible. Thus, the white noise process
on the state modeling the frequency error is set to track slow changes.
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Monopole antenna
and ground plane

IMU

Figure 7.6 IMU and monopole antenna with ground plane mounted on the
wooden stick.

Receiver

MPC 1 MPC 3

MPC 2

8.3m

13.5m

11.1 m

90 deg

55 deg

22 deg
x

Figure 7.7 Layout of the test area with the three transmitters and the
IMU-equipped receive antenna in the upper left corner. Note that the x-axis
is defined as pointing downwards in the figure. The y-axis points from the
receiver towards MPC 2.
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MPC 2 MPC 3 MPC 1

Figure 7.8 The test area with the table holding the IMU and receive
antenna closest to the viewer. The three transmitter antennas acting as
scattering objects are marked in white.

7.3 Experiment Results and Analysis

The result of the first experiment is presented in Figure 7.9. Since the true
movement trajectory is not known, the adjusted dead reckoned result is
presented as ground truth. The number of particles is set to 4000 and the
result for estimated position is clearly following the circular movement. The
filter settles to zero velocity after the movement has stopped at 16 seconds.
The AoA is also tracked well with some offset to the true values. The error
at the end position is negligible and the maximum position RMSE is 2.7λ
or 34 cm with the current wavelength. The average position RMSE for the
whole trajectory is approximately 0.75λ or 9.4 cm. The same value with
dead reckoning is 47λ or 5.9m. The peculiar behavior of α for MPC 2 in the
beginning indicates that the filter has resampled and prefers low amplitude
on that specific MPC. When the movement begins, the filter increases the
amplitude quickly in order to explain the measurements.

To investigate how the number of particles influence the result, 200
Monte Carlo simulations with different numbers of particles are executed.
The result is presented as a cumulative distribution over the mean position
RMSE for the whole trajectory in Figure 7.10. As expected, increasing the
number of particles yields a better estimate while increasing it beyond
2000 does not significantly improve the median position RMSE but rather
reduces the number of simulations with large errors, i.e., the simulation is
more likely to converge if the number of particles is increased.
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Figure 7.9 The upper panel shows the result for the position states, com-
pared to the dead reckoned result and the ground truth trajectory. The lower
panel shows the estimate of AoA and complex MPC amplitude with the same
color coding as above. Note how the filter keeps multiple hypotheses of all
states until the movement begins at approximately 4 seconds.
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Figure 7.10 The cumulative distributions for the mean position RMSE for
the dataset shown in Figure 7.9. It is evaluated for 200 Monte Carlo runs
for five different levels of number of particles. The cases with 3000 and 4000
has similar performance for 70% of the runs while the 4000 particle filter
has better performance on the last 30%. The median value for each case is
marked in the figure.

The second experiment is presented in Figure 7.11. As before, the num-
ber of particles is 4000 and the positioning result follows the adjusted dead
reckoned ground truth very well. The filter also settles to zero velocity after
the movement has stopped and the stick is placed on the table again. The
error at the end position is negligible and the maximum position RMSE is
around 2.7λ or 34 cm with the current wavelength. The average position
RMSE for the whole trajectory is 1.2λ or 15 cm. The same result for the
dead reckoning is 25λ or 3.2m so the improvement in positioning is remark-
able. As with the previous dataset, the number of particles is varied and
the mean position RMSE is presented as a cumulative distribution over 200
Monte Carlo simulations in Figure 7.12. The shapes of the curves resembles
what is seen in Figure 7.10 but with a slightly higher median RMSE.

7.4 Discussion

The positioning results shown is a clear and remarkable improvement com-
pared to the dead reckoned result. The filter is able to fuse the information
from the radio receiver and the IMU and the multiple hypotheses, repre-
sented by the particles, evaluated by the filter is believed to be necessary
for convergence. The choice of movement will of course influence the perfor-
mance. From previous chapters, we know that the estimation performance
is related to the components of the moment of inertia tensor of the virtual
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Figure 7.11 Same as Figure 7.9 but for another dataset. The results are
comparable in performance. Here there are multiple hypotheses for the po-
sition in x but as soon as more data is gathered, they can be discarded. Note
that the dead reckoning in x is very good until 15 seconds while in y it fails
after 7 seconds.
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Figure 7.12 The cumulative distributions for the mean position RMSE for
the dataset shown in Figure 7.11. It is evaluated for 200 Monte Carlo runs
for five different levels of number of particles. The curves resembles the
result from Figure 7.10 with a slightly higher median value which is marked
for each curve in the figure.

array and the circle was found to be superior which justifies the circular
movements used here.

Even though the measurement scenario is carefully arranged with re-
spect to antenna placement and measurement of start and stop position,
there are error sources that are hard to eliminate. The derivation of (2.24)
in Section 2.2 assumes that the receiver and transmitters are in the same
plane. If not, the elevation angle will influence the argument of the re-
ceived signal. Since it is hard to keep a free-hand movement in a plane,
this effect will be present and will be altering the phase of the received
signal. This might be an explanation for the worse performance seen in
the second dataset, shown in Figure 7.11, where the stick is lifted from
the table in the beginning of the experiment. Another source of errors is
unaccounted multipath wave propagation. Since the filter can not detect
the number of components to track, it is configured to track the three most
dominant components but there might be more multipath components. One
way to investigate this is to use a receive antenna with several elements
and perform a high resolution AoA investigation of the environment.

Even though the experimental situation has been chosen to be
application-friendly, compared to what could be expected in worst-case sit-
uations, the belief is that the experiments can be taken as proof of concept
for the state-space model and the suggested state estimator. The limits of
performance and the full potential of the method is however an area for
future research.
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8
Link Adaptation

In this chapter we will study and investigate link adaptation with the joint
position and multipath radio channel model estimated by the particle filter.
The material presented in this Chapter is based on [Mannesson et al.,
2015a].

8.1 Introduction

The concept of link adaptation is to adjust transmission parameters to suit
the radio channel conditions that exist when the data is sent [Cavers, 1972].
The transmission parameters can be coding, power level, and modulation
scheme [Goldsmith and Chua, 1997; Chung and Goldsmith, 2001; Zhou et
al., 2005]. By link adaptation, the average spectral efficiency of the fading
radio channel can be increased without deteriorating the bit error rate
(BER) for other users in the network. For this reason, link adaptation is
used in many commercially available wireless communication system, e.g.,
UMTS/HSPA [3GPP, 2016b], LTE [3GPP, 2016a], and WiFi [IEEE S.A.,
2016].

Link adaptation relies on channel estimation and a feedback link be-
tween the receiver and the transmitter. In the feedback link, the channel
conditions as seen by the receiver are shared with the transmitter. As we
know from Section 1.1, the channel response is constantly being estimated
using pilot symbols for high performance networks. However, for any pilot
based system there is an inevitable delay between the time instant when the
channel is estimated and when the symbol is transmitted. An exception is if
time division duplex is used and channel reciprocity holds. Since there is no
guarantee that the channel transfer function remains unchanged during the
time period between the channel estimation and the next transmission, the
transmission parameters used might be unsuitable for the channel condi-
tions that reside at the transmission instant. Hence, it would be beneficial
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if the channel could be predicted so that the transmitter can adjust the
coding in advance.

With the MPC-based tracking model we have derived previously, the
channel fluctuations caused by small scale fading can now be predicted to
a large extent and used for link adaptation. To investigate the benefit for
the end user, we apply our proposed channel predictor and link adaptation
technique to the LTE system [3GPP, 2016a], [Ghosh et al., 2011] with the
limitation of bit rate and modulation scheme adaptation.

Previous Work
A common radio channel model is the tapped delay line model [Molisch,
2005]; its coefficients can be estimated using the pilot symbol sequence.
An early work using this approach is [Duel-Hallen et al., 2000] where the
authors investigate the performance of long range channel prediction using
autocorrelation of the pilot data. Their conclusion was that the approach
allowed for prediction ranges of approximately 0.5λ in most scenarios. This
work was followed by [Ekman, 2002] where filtered regressors are used for
prediction. The filtering makes the prediction less sensitive to estimation
errors of the individual coefficients of the taps in the tapped delay line
model. The results are similar to what is presented in [Duel-Hallen et al.,
2000].

Another approach is to use sinusoidal modeling of the channel impulse
response, which can be found in [Hwang and Winters, 1998] and [Andersen
et al., 1999]. Here the channel is modeled as superimposed sinusoids with a
fixed phase shift and Doppler shift for each sinusoid. This technique is ex-
tended in [Chen and Viberg, 2009] into non-stationary sinusoidal paramet-
ric modeling where the Doppler shifts are modeled as a polynomial function
instead. The results show that a predictor with a state-space model for this
extended sinusoidal model can improve the channel prediction compared to
a linear channel predictor.

8.2 System Overview

LTE System Overview
The wireless system considered for our work is the eighth release of the
LTE system [3GPP, 2016a]. LTE uses both MIMO and OFDM and the
system bandwidth is at maximum 20MHz divided into subchannels of
15 kHz [Ghosh et al., 2011], compare Figure 1.4. These subchannels are
considered to be frequency flat, i.e., the narrowband assumption holds for
each subchannel. The temporal spacing of 1ms is called a subframe and
twelve subchannels and seven temporal samples constitute a resource block
if normal cyclic prefix is used. [Ghosh et al., 2011].
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Figure 8.1 The extended downlink chain for a single subchannel with the
sensor fusion-based radio channel model. The subchannel is considered to
be frequency flat and k denotes sample index. The modulator is similar to
what is found in the LTE system. It includes amongst other modulation,
turbo coder, and rate adjuster.

In the LTE specification, the user equipment (UE) should report a chan-
nel quality indicator (CQI) value to the base station (eNB) [Ghosh et al.,
2011]. This value can be reported for every resource block or for the full
system bandwidth depending on the mode of operation. The CQI value re-
ported by the UE is a 4-bit value that suggests a predefined modulation
and coding rate in order to meet a certain threshold of the block error
rate (BLER) of the demodulated blocks at the UE. Due to the coding of the
blocks, modulation and bit rate are closely related to the data throughput to
the UE and it is therefore important to choose the most suitable CQI-value
in order to maximize throughput.

Downlink With Sensor Fusion-Based CQI Feedback
An overview of the downlink chain, i.e., the link from the eNB to the user
equipment, for our system is shown in Figure 8.1. The chain includes the
sensor fusion block that estimates the MPC-based state-space model using
information from the IMU and the channel estimates. The estimates are
fed to the channel predictor.

The modulator block is similar to what is found in the LTE standard.
The bits bk enter the modulator where several steps of signal processing
is done, among them are outer channel coding and modulation mapping.
The basic channel coding in LTE is a rate 1/3 turbo coder with a subse-
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Table 8.1 Modulation and code bit rates for LTE CQI values.

Modulation Rate [x/1024] CQI

4-QAM {78, 120, 193, 308, 449, 602} {1, . . . , 6}

16-QAM {378, 490, 616} {7, . . . , 9}

64-QAM {446, 567, 666, 772, 873, 938} {10, . . . , 15}

quent rate matcher to adjust the bit rate of the code [Ghosh et al., 2011].
Furthermore, LTE uses quadrature amplitude modulation (QAM) and the
available schemes are 4/16/64-QAM, which equals two, four, and six bits
per transmitted symbol respectively [Ghosh et al., 2011]. The output of the
modulator is the symbols transmitted over the frequency flat subchannel
with transfer function Hk. For a MIMO system with MR receiver anten-
nas and MT transmitter antennas, Hk ∈ CMR$MT . The received symbols
are subject to zero mean circular symmetric complex Gaussian noise, de-
noted ek ∈ CMR , before the demodulator can reverse the operations of the
modulator to obtain the most likely transmitted bits b̂k. In order for the
demodulator to compensate for the influence of the channel, it needs an
estimate of Hk and this is supplied by the channel estimator algorithm
using the pilot sequences. The channel estimates are also used for channel
prediction and CQI feedback discussed in the previous section. The imple-
mentation of the channel prediction is not specified in the system standard
and its design is decided by the implementer.

8.3 Particle CQI Prediction

LTE Downlink Throughput
The channel coder for the LTE system that we are considering is an ad-
justable rate turbo code [Ghosh et al., 2011; Berrou et al., 1993]. With the
three different levels of QAM symbol coding, 15 different combinations of
modulation orders and code rates are specified in the LTE standard (Table
7.2.3-1 [3GPP, 2009]) and summarized in Table 8.1.

A higher modulation order and rate yields higher throughput since
more bits are packed into every transmitted symbol but it also requires a
higher SINR level for successful decoding. The iterative scheme used by
the turbo coder yields a very sharp block error rate (BLER) curve with
respect to SINR. When the SINR exceeds the threshold, which is dependent
on the rate and modulation type, in practice all symbols of the block are
successfully decoded. To calculate the throughput for each level of CQI at
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Figure 8.2 Physical layer throughput in Mbit/s for one stream as a function
of SINR for a system utilizing 20MHz bandwidth under an AWGN channel
and no H-ARQ. The dashed curves indicate the throughput associated with
each CQI value. The maximum throughput is approximately 84Mbit/s for
SINR over 18 dB. The simulated throughput is approximately 16% lower
than the theoretical limit which does not include any channel overhead data.

a given SINR level, the LTE downlink simulator by [Schwarz et al., 2013]
is used. The setup is an additive white Gaussian noise (AWGN) channel
and a 2$ 2 MIMO system utilizing 20MHz system bandwidth, equivalent
to 100 resource blocks. The throughput as a function of SINR is presented
in Figure 8.2. Note that retransmissions with a hybrid automatic repeat
request (H-ARQ) protocol are for simplicity not considered in the simulation.
Furthermore, a normal cyclic prefix is used.

There are several suggestions in the literature on how to average the
estimated SINR over time and space, see, e.g., [Ghosh et al., 2011]. In our
work, no averaging is considered at all. Instead Figure 8.2 is used as a
look-up table (LUT) for translating an estimated SINR via a CQI value
to a throughput. This LUT is applied independently to all subchannels of
the MIMO system. The flat fading assumption is mainly for simplicity to
reduce simulation time. For frequency-selective channels with large delay
spread, a more involved filter, performing filtering in the frequency domain,
is needed.

Particle Channel Predictor
The state-space model introduced in Section 3.3 with the state vector given
in (3.17) will be the basis of our channel predictor. The goal of the channel
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predictor is to obtain an estimate of the SINR for future transmissions and
thereby enabling requesting a suitable coding rate according to Table 8.1.
Our channel predictor will be based on the particle method used for the
state estimation.

To obtain a predicted SINR, the first step is to predict the state vector
(3.17) given the information of the states at the current time instant. Since
the channel prediction is intended to be used for prediction horizons ranging
up to half a second, a reduced state vector is predicted instead of the full one
from (3.17). Firstly, the phase offset β is assumed to be constant in the model
and can therefore be omitted. The same holds for the bias states since they
do not affect the predicted positions for short time periods. If the position is
predicted with an uncertainty, the quaternion representing the orientation
does not have to be predicted either. Finally, since the measurements in
(3.18) do not depend on the position along the z-axis this state is also
omitted. Hence, the state vector that is to be predicted becomes

x =
[
px py vx vy φT αT δ f

]T
∈ R5+2NR . (8.1)

Given the state posterior distributions delivered by the state estimator, the
particle predictor draws Lp particles out of these distributions and uses
(3.13) and (3.16) to propagate the particles forward in time with the noise
levels used by the state estimator. Each predicted particle is also a repre-
sentation of a channel transfer matrix Hk+ppk, where k is the current sample
index and p is the number of prediction steps. This matrix is obtained by
the observation model in (3.18). Each predicted channel transfer matrix is
transformed into an SINR value assuming an MMSE receiver. For a pre-
dicted channel matrix Hk+p, the SINR at time k+ p of the mth subchannel
is given by [Paulraj et al., 2003]

SINRm,k+p =
γ
MT

h∗
mΩ−1

m hm

Ωm = IMR +
γ
MT

MT∑

j=1
j ,=m

h jh∗
j ,

(8.2)

where γ = Es/N0, Es is the average energy for an OFDM symbol, and
N0 is the intensity of the additive zero mean circular symmetric complex
Gaussian noise of the received signal including interference and receiver
imperfections. Furthermore, hm is themth column of Hk+p, i.e., the response
of themth transmitted stream on all RX antennas. The variance of the noise
N0 is assumed to be estimated by the UE and varies on a longer time scale
compared to the prediction horizon. Since the influence of the precoder is
not a part of the study, it is set to the identity matrix.
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The final step of the predictor is to choose the CQI value that will max-
imize the throughput using the LUT from Figure 8.2. For each subchannel
m, the requested CQI value is given by

CQImreq = arg max
x

Lp∑

l=1
I(x,CQIml )

I(x,CQIml ) =
{
T(x) if CQIml ≥ x
0 if CQIml < x

(8.3)

where CQIml is the CQI value of particle l for subchannel m, and T(·) is the
LUT function from Figure 8.2. This is a good approximation of the average
throughput of the turbo decoder. The channel predictor described above is
summarized in Algorithm 8.1.

Algorithm 8.1—The particle channel predictor
Input: Prediction horizon: P

Initial distribution: p(x0)
Number of particles: Lp

1: Draw Lp particles from initial distribution p(x0)
2: for p = 1 to P do
3: for l = 1 to Lp do
4: Propagate state vector (8.1) using (3.13) and (3.16).
5: Calculate predicted channel matrix Hk+p using (3.18).
6: Calculate SINRm for each subchannel m, (8.2).
7: Request CQImreq for each subchannel m, (8.3).
8: end for
9: end for

Output: Requested CQImreq for subchannel m

The operations of the particle predictor is illustrated in Figure 8.3.
The distribution of the particles are shown as circles where most particles
suggest CQI 10 to be requested. However, the expected throughput is slightly
higher at a requested CQI of 9.

SINR Prediction Illustrated
Before investigating the throughput the particle based predictor can yield,
we return to a simulated MIMO case from last chapter. In Figure 8.4, the
prediction of SINR is investigated at two different points in time. At the
prediction instant, the reduced state vector of (8.1) is predicted using the
same noise intensities that is used by the particle filter solution. The SINR
is calculated using (8.2) for the predicted channel matrices and weighted
mean is presented in the lower panel of Figure 8.4. The weighted mean

139



Chapter 8. Link Adaptation

0 2 4 6 8 10 12 14
0

10

20

30

40

50

Requested CQI [-]

Th
ro

ug
hp

ut
[M

bi
t/s

] Throughput T
Expected throughput

Figure 8.3 The throughput T from Figure 8.2 and expected throughput
as a function of requested CQI. The circles mark the particle likelihood
distribution. CQI value 9 yields the highest expected throughput.

SINR follows the true SINR well for about 100ms and the true SINR is
within one standard deviation up until 200ms. The weighted mean value
of the prediction is thereby well tracked for approximately 0.5λ.

8.4 Simulations

Simulation Setup
To investigate the performance of the proposed predictor, Monte Carlo sim-
ulations are used. To decrease the simulation time needed and also to
explicitly study the performance of the predictor without influence from the
estimation performance of the particle filter, the predictor and the particle
filter are not co-simulated. Instead, it is assumed that the state estimates
have reached a posterior distribution that can be described as N (x0,P0)
in the simulations shown in Chapter 6. An example of SINR prediction
using the particle filter is shown in Figure 8.4. The initial variances for the
different states are given in Table 8.3 and they are obtained from realistic
particle filter simulations presented in previous chapters. To mimic a CQI
reporting period of 2ms, which is the preferred setting according to the
LTE specification [Ghosh et al., 2011], the sample frequency of the simu-
lations below is set to 500Hz. Both data and the channel estimates have
an average SNR of 20 dB and the carrier frequency is set to 1.8GHz which
yields a wavelength of 16.7 cm. The simulation parameters are summarized
in Table 8.2.

For each Monte Carlo run, a set of reference channel matrices
Hk+ppk, p = 1, . . . , P is generated using four multipath components. The
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Figure 8.4 SINR prediction for two time instances using the same dataset
shown in Figure 6.4. The locations and corresponding time when predictions
are performed is shown in the upper panel where the circles mark the
95% confidence interval for position of the predicted particles. The standard
deviation in x and y is approximately 0.35λ. In the lower panel, the SINR
predictions for the two parallel MIMO streams are shown together with one
standard deviation of the predicted SINR as the shaded area. In the figures,
the physical distance predicted is also indicated. The predictor is close to
the true SINR for approximately 100ms. The true SINR lies within one
standard deviation of the predicted mean for 200ms.
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Table 8.2 Simulation parameters used for the channel predictor.

Value

Sample rate [Hz] 500

Average SNR [dB] 20

Carrier frequency [GHz] 1.8

Wavelength [cm] 16.7

Number of MPCs [-] 4

Channel realizations [-] 20000

AoA φ for each component is drawn from the uniform distribution U(−π,π),
with a complex amplitude α initialized to 1 while the argument β is ran-
domly drawn from U(−π,π). Finally, the frequency error is initialized to
0Hz without loss of generality. The UE is assumed to move in a straight
line, i.e., there is no acceleration acting on the device during the time of
the prediction but this is unknown to the estimator which instead assumes
the unconstrained motion model described in Section 3.2. The obtained set
of reference matrices is normalized according to

Hv

k+p = cHv
k+p, p = 1, · · · , P

c =
√

PMRMT∑P
p=1 qHv

k+pq
2
F
,

(8.4)

where P is the prediction horizon, and q ·qF denotes Frobenius norm. Thus,
the normalization yields a channel matrix with E{qHv

q2
F} = MRMT .

A second set of channel matrices is constructed, configured as above
but with an initial variance P0 added to the amplitude, AoA, velocity,
and frequency error states, given in Table 8.3. The channel predictor in
Algorithm 8.1 supplies the optimal requested CQI value for these predicted
matrices. Finally, the requested CQI value is evaluated against the CQI
value associated with Hv in (8.4) for the corresponding subchannel. Using
the requested CQImreq,p value, the throughput at time k + p for subchannel
m is denoted tm,p and given by

tm,p =




T(CQImreq,p) if CQImreq,p ≤ CQImp

0 if CQImreq,p > CQImp ,
(8.5)
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Table 8.3 Nominal initial variance P0 and noise process intensity σ for
the different states. Note that all MPCs use the same initial variance and
process intensity for amplitude and AoA.

Inital variance Value

Amplitude [-] P0,α 10−3

Angle of arrival [deg2] P0,φ 10−1

Velocity [m2/s2] P0,v 10−3

Frequency error [Hz2] P0,δ 10−4

Change rate Value

Amplitude [1/s] σ 2
α 1.0 · 10−2

Angle of arrival [deg2/s] σ 2
φ 2.5 · 10−1

Velocity [m2/s3] σ 2
v 1.6 · 10−1

Frequency error [Hz2/s] σ 2
δ 2.0 · 10−3

where CQImp is the CQI-value that corresponds to the SINR of the mth
subchannel at time instant k+ p for Hv.

For evaluation of the proposed channel predictor, two additional pre-
dictors are implemented. The first one assumes that the latest channel
estimate is valid for the entire prediction horizon. This is referred to as the
naive predictor. The second one is a linear predictor using the two latest
channel estimates Ĥk−1 and Ĥk for predicting the future channel. This pre-
dictor will be referred to as the first-order predictor. Finally, an oracle with
perfect channel knowledge is included in the simulations as an upper limit.
These three predictors use the same LUT as the particle-based predictor to
translate the channel matrices to SINR and finally to throughput.

The nominal values of the noise processes for amplitude, AoA, velocity,
and frequency error are given in Table 8.3. The process variance σ 2 for
amplitude and AoA describes a slowly varying channel. The variance for
velocity is chosen to yield an uncertainty in position with a standard devia-
tion of 0.5λ after 0.5 seconds. The presented results are the averages over
20000 channel realizations.
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Figure 8.5 Throughput T as a function of the number of particles in the
predictor for three different prediction horizons assuming a velocity of 6λ/s.
After 30 particles, the performance is stable.

Simulation Results
The first test is to investigate the predictor performance as a function of the
number of particles Lp used in the predictor when using the nominal noise
settings P0 and n0 given in Table 8.3. The simulation result is shown in
Figure 8.5. The result indicates that 30 particles are enough for describing
the non-Gaussian posterior channel distributions. To test the robustness
of the proposed predictor to different channel conditions and erroneous
initializations, five different scenarios are defined and simulated below. The
first scenario varies the speed of the UE while the remaining four scenarios
use the velocity 6λ/s which corresponds to 1m/s at a carrier frequency of
1.8GHz.

Nominal Initialization In the first scenario, three different velocities
are investigated, 6λ/s, 18λ/s, and 30λ/s. The lower speed equals walking,
while the higher corresponds to running or cycling at the given carrier
frequency. The result using the nominal noise levels is presented in Fig-
ure 8.6. The result shows a significant performance increase of the particle
based channel predictor compared to the naive and first order predictors.
At the lower speed, the predictor settles on a 30% increase in throughput
compared to the naive predictor. When the speed increases, the prediction
horizon corresponds to less time and thereby less uncertainty accumulated
in the states and thereby a better channel prediction performance of the
particle based channel predictor. However, since a longer distance is pre-

144



8.4 Simulations

dicted, the likelihood that the radio channel has significantly changed is
increased. In such a case, the predictor is believed to perform badly. The
naive and linear predictors do not depend on speed at all. Worth noting is
that the first-order predictor is better than the naive predictor in the first
few samples but falls off rapidly due to extrapolation of the channel impulse
response. The ripple seen in the performance of the naive predictor is due
to the correlation of the channel over the prediction horizon.

Incorrect Heading Initialization For the next simulation, the speed of
the receiver, which has been estimated by the particle filter, is assumed
correct but the heading is incorrect. The simulation result is shown in
Figure 8.7. At an error of 10 deg the performance of the sensor fusion based
predictor is reduced for shorter prediction horizons. It settles around the
same level as the correctly initiated particle predictor. When the heading
error is 45 deg, the performance for shorter prediction horizons is only
slightly better than the naive predictor but the performance increases as
the horizon extends. This is due to the accumulation of uncertainty in the
position state which the filter accounts for. The heading error leads to a
linearly increasing position error while the double integrator of the position
state has a standard deviation growth rate of t3/2. The nominal noise setting
of the velocity corresponds to a standard deviation in the position of 0.5λ at
a prediction horizon of 3λ. Hence, the particle predictor will underestimate
the position error for prediction horizons below 3λ and overestimate the
error for larger horizons.

Amplitude Uncertainty Here the robustness of the predictor to uncer-
tainty in the initialization of the MPC amplitudes and the change rate of
the amplitudes is investigated. The simulation results are shown in Fig-
ure 8.8 and Figure 8.9 respectively. The influence of the two parameters is
similar. At short horizons, the performance is degraded if the channel is
rapidly changing or the particle filter yields a higher posterior distribution
variance for the amplitude. The performance of the predictor at a change
rate of 10 s−1 shows a noticeable degradation for all horizons. This change
rate is similar to what is seen in the larger clusters, compare Figure 3.3.
Hence, the performance of the predictor when clusters are present in the
environment needs further studies.

Angle of Arrival Uncertainty In this scenario the robustness of the pre-
dictor to uncertainty in AoA estimation and AoA change rate is investigated.
The simulation results are presented in Figure 8.10 and Figure 8.11. As
seen in the figures, the predictor is not very sensitive to the change rate of
the AoA while there is a critical level of the initial standard deviation at
approximately 5 deg. If the estimation accuracy given by the particle filter
is worse, the performance of the predictor is negatively affected.
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Velocity Uncertainty The final scenario which is investigated is the
robustness of the predictor to initial uncertainty in velocity and velocity
change rate. The simulation results are presented in Figure 8.12 and Fig-
ure 8.13. The result is significantly influenced by both parameters. For
initial uncertainty, the performance for short horizons is affected while at
larger horizons the influence is negligible. The explanation is that the ini-
tial variance does not influence the position variance in the long run. In
Figure 8.13, it is seen that the prediction performance for larger horizons
is limited by the noise variance of the velocity state and that the nominal
simulation setup is on the edge of the performance curve at short prediction
horizons.

Discussion
The simulation results show great improvement in the throughput to the
end user when the predictor is initialized with the nominal values from
Table 8.3. The improvement compared to a first-order predictor is almost
three times at a prediction horizon of 1λ. The robustness to incorrect head-
ing initialization is considerable for a slowly changing channel. As the other
simulations show, the critical factor for the performance of the predictor is
the accuracy of the predicted position and velocity, see Figure 8.13. Given
the simulation results, a reasonable prediction horizon is 0.5λ under the
given channel parameters but could be 2λ if a better prediction of the
position was available.

Since the prediction model relies on the state estimates given by the
particle filter, a case where the filter has not reached the underlying true
distribution will heavily degrade the performance of the prediction algo-
rithm. Such cases have not been investigated here. The convergence of the
filter is as discussed previously dependent on initialization of the state vec-
tor, the number of particles and also the number of MPCs with significant
contribution to the channel matrix. The performance of the channel pre-
dictor in a dense multipath environment with many minor contributions to
the channel matrix is left for future research.

An aspect of the LTE system not considered here is retransmissions
using the H-ARQ protocol [Ghosh et al., 2011] briefly mentioned before.
Without H-ARQ, a single bit error will trigger a full package error with
a retransmission of all bits of the package as a consequence. However,
this will be wasteful if almost all bits were received correctly. The H-ARQ
protocol will retransmit a fraction of the encoded bits to facilitate successful
decoding of the original package. This functionality will improve the link
capacity even in poor channel conditions and result in a higher throughput
than indicated by Figure 8.2.
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Figure 8.6 Throughput T as a function of prediction horizon with correct
initialization of all states for 6λ/s, 18λ/s, and 30λ/s compared to the naive
and first-order predictor. The difference in throughput between the three
cases increases with the prediction horizon since at a lower velocity, a horizon
of 3λ will accumulate more uncertainty compared to a higher velocity and
thereby less prediction time. The performance at the lower speed settles at
a level which is 30% higher than the naive predictor.
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Figure 8.7 Throughput T as a function of prediction horizon with heading
error of 0, 10, and 45deg when the velocity is 6λ/s. A moderate heading
error of 10 deg slightly decreases the throughput at short horizons whereas
45deg reduces the throughput significantly for short horizons. Note that
the performance is regained as the horizon increases due to accumulated
uncertainty in the position state.
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Figure 8.8 Throughput T as a function of initial variance P0,α of the
amplitude for three different prediction horizons at a speed of 6λ/s. The
vertical dashed line marks the nominal case. The influence is noticeable
for short horizons while for large horizons, the performance is stable under
parameter variations.
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Figure 8.9 Throughput T as a function of amplitude change rate σ 2
α for

three different prediction horizons at a speed of 6λ/s. The vertical dashed
line marks the nominal case. As the change rate exceeds 1/s, the predictor
performance degrades rapidly.
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Figure 8.10 Throughput T as a function of initial variance P0,φ of the AoA
for three different prediction horizons at a speed of 6λ/s. The vertical dashed
line marks the nominal case. If the standard deviation of the AoA estimation
given by the particle filter is larger than 5deg, the performance of the
predictor is negatively affected. However, this critical level is approximately
15 times higher than the nominal level.

10−1 100 101 102
80
85
90
95

100
105
110
115

σ 2
φ [deg2/s]

T
[M

bi
t/s

]

0.6λ 1.2λ 3λ

Figure 8.11 Throughput T as a function of AoA change rate σ 2
φ for three

different prediction horizons. The vertical dashed line marks the nominal
case. The performance is stable for all horizons.
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Figure 8.12 Throughput T as a function of initial velocity variance P0,v for
three different prediction horizons at a speed of 6λ/s. The vertical dashed
line marks the nominal case. There is a clear influence on the performance
for short horizons due to the initial variance.
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Figure 8.13 Throughput T as a function of velocity change rate σ 2
v for

three different prediction horizons at a speed of 6λ/s. The vertical dashed
line marks the nominal case. The influence of the velocity change rate is
significant. Hence, the position uncertainty of the receiver in the future is
the limiting factor for prediction performance. This could be improved if a
more reliable movement model was available.
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9
Summary and Conclusions

In this thesis we investigated the improvements that can be achieved in
long-term IMU-based positioning performance, radio channel prediction,
and link adaptation. The enabler for this improvement was the joint position
and multipath radio channel state-space model. The target application of the
work was a hand-held device, equipped with an accelerometer, a gyroscope,
and a radio receiver for a pilot based communication system.

In the derivation of the state-space model, a narrowband description
of the radio channel was assumed. The implication of this description is
that the contribution from an individual multipath component can not be
resolved. Instead, each MPC was described by a complex amplitude and
its angle of arrival which were included in the state-space model. We also
derived the relationship between the location of the receiver and the radio
channel impulse response which allowed fusion of accelerometer and gyro-
scope sensor data and radio channel estimates. Furthermore, we identified
the frequency error in the local oscillator of the receiver as being crucial for
the success of the approach and it was therefore included in the resulting
state-space model. To account for the occurrence of clusters in the environ-
ment, their contributions to the channel impulse response was investigated.
It was decided to model the contribution as a single component in the state-
space model but with a higher change rate on the amplitude compared
to the specular components. The state-space model was estimated using
a marginalized particle filter capable of estimating the nonlinear model.
Since the filter is sensitive to initialization, two different techniques for
obtaining the number of MPCs, their complex amplitude, and also their an-
gle of arrival were investigated. It was concluded that the sparse Bayesian
learning algorithm, developed in Section 4.2, was superior to the iteratively
reweighted {1 solution since the former was also capable of correcting for the
frequency error which causes large estimation errors for the latter. We also
investigated the performance bounds for the estimation problem at hand.
An extension of known results from the radar literature was presented
regarding the connection between the Cramér-Rao lower bound and the
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components describing the moment of inertia tensor for space-time virtual
arrays and the findings were presented as Theorem 5.1 and Theorem 5.2.
With the established connection, we also created worst-case-optimal arrays
as a result of an optimal control problem. These arrays have equal estima-
tion performance regardless of the angle of arrival. We also studied how
jitter in sampling time and specifically correlated position errors affected
the estimation performance. It was concluded that the correlated position
errors degrade the performance by a factor of two in angle of arrival es-
timation and a factor of ten in frequency error estimation. Following that
investigation, we looked at the how the state estimation is affected by the
number of multipath components present in the environment. The conclu-
sion was that three components is the lower limit if all parameters of the
state-space model are to be estimated with a bounded variance growth rate.
This is a huge fundamental improvement of what can be achieved in terms
of estimation and accuracy compared to the unaided IMU case.

To investigate the positioning and radio channel state tracking perfor-
mance, both simulation studies and experiments were performed. The sim-
ulations served as an enabler for the experiments and the gain in long-term
positioning performance is remarkable. Comparing the performance im-
provement between a SISO system and a 2$2 MIMO system revealed that
the MIMO system was approximately three times better than the SISO
system and almost 70 times better on average compared to the unaided
IMU simulation scenario for a one minute movement. We also studied how
the number of particles, AoA and frequency error change rate, and SNR
variation affected the result. The conclusion is that the filter-based solution
is capable of delivering positioning performance that on average is within
a few decimeters in good channel conditions. When introducing clusters
in the model, the performance was degraded but for small indoor clusters
the degradation was limited. This confirms the belief that the technique
is suitable for high accuracy indoor positioning. Experimental results show
that the mean position RMSE for a 20 second movement is kept within a
few decimeters on average. The experimental results can be seen as a proof
of concept for the modeling and estimation approach. Further experiments
with other movement patterns are needed in order to understand the full
potential of the method.

Finally, we investigated the performance that can be achieved in data
throughput if a particle predictor is used for the channel prediction. The
results show that under slow channel fluctuations, the channel can be pre-
dicted for at least 0.5λ with sufficient accuracy to increase the throughput
to the end user. For the naive and first-order predictors, the prediction hori-
zon was well below 0.5λ. The number of particles needed for the prediction
was low and the computational cost of the predictor would therefore be
small in a real-time implementation.
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9.1 Directions for Future Work

The material presented opens up for interesting research directions for
the future. Below is a collection of ideas that are worthy candidates of
investigation in order to improve the methods described in this thesis.

Modeling Improvement
As touched upon previously, the modeling in Section 3.3 has implications
for the estimation of the state vector. As the formulation is currently given,
a small change in the angle of arrival when p is large yields a larger change
in the measurement signal compared to when p is smaller. This means that
when p is large, most predicted hypotheses in the particle filter will be
discarded which triggers resampling. If the two properties, angle of arrival
change rate and position, can be separated, the estimation performance
will be independent of how far the receiver has been moved since β was
initialized.

Multipath Component Detection and Classification
In this thesis we have investigated cases where the number of multipath
components is assumed to be known and fixed for the whole simulation
time. In a real world scenario, this would in general not be the case. Instead,
multipath components appear and disappear as the receiver is moved. The
current state of the model and the filter is such that it can remove a
component by setting its amplitude to zero but no new components can be
detected and added. This is a crucial feature for a future implementation.
A potential detection measure would be the residuals of the measurement
signal. Such an approach has been suggested in [Chen and Viberg, 2009;
Angelosante et al., 2009]. If most components are detected and estimated,
the residuals should be close to the noise level of the current measurement.
If the residual is larger, then there are most likely undetected components
present. Also, in the implementation investigated here, there is a clear
distinction between whether the signal contribution is from a cluster or a
single point source. In the real world, this must also be adaptively detected
by the filter.

Antenna Radiation Pattern Estimation
The directivity of the antennas has been excluded in this thesis even though
in the experiments, the antenna pattern is of course present. However,
antennas in general and especially the ones used in hand-held devices show
a high directivity, see, e.g., [Krogerus et al., 2007]. Also, the directivity is
for example dependent on whether the device is held in open air or closer to
the body. This would require the filter to account for the antenna pattern’s
influence on the received signals.
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Initialization Using MIMO Measurements
For initialization with the sparse Bayesian learning algorithm, data from
one receive antenna is used. This is a clear waste since the data available
from the other receive antennas could give a considerable contribution to
the estimation performance. A MIMO formulation of the regularized convex
approach is available in [Wipf and Rao, 2007] but for the sparse Bayesian
learning, no extension appears to exist yet.

Wideband Channel Extension
This work is restricted to single-frequency pilots. As seen in Figure 1.4,
pilots are transmitted on several subchannels. If all the available pilots are
taken into account by the filter, the performance can be increased assuming
there are some states that are common for different frequencies. A potential
candidate would be the angle of arrival. If the subchannel frequencies, and
thereby the wavelengths, are close to each other the phase information in
the different subchannels is almost the same. This corresponds to the maps
from figures 2.8, 2.9, and, 2.10 being almost identical for different subchan-
nels. The effect in such a case would consequently be similar to an increased
SNR level. If the subchannel frequencies are further apart the gain would
be larger. This is used in radio standards with aggregated frequency bands
that are in many cases several hundreds of MHz apart. However, extending
the algorithm to use more frequency bands will also introduce more states
that need to be estimated and a real time implementation of the marginal-
ized particle filter tracking several MPCs on different frequencies might be
difficult to achieve.

Performance in a Dense Multipath Environment
In the work of [Poutanen et al., 2010] the contribution of dense/diffuse
multipath components (DMC) to the total received power was investigated.
It was concluded that in an indoor environment under NLOS, the main
contribution to the received power comes from the DMC, especially when
the distance between the receiver and the transmitter is large. Furthermore,
in [Leitinger et al., 2015] the authors investigate the achievable positioning
performance under the existence of DMC using time delay measurements
in an UWB network. It is shown that there is a clear connection between the
positioning performance and the SINR where the DMCs are considered as
interference. A similar study of the particle filter based positioning solution
would be of interest to see how the performance will be affected.
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A
The Particle Filter

This appendix presents a derivation of the particle filter equations. The
recursive formulation of the filter is summarized in Algorithm 4.2. The
derivation of the particle filter follows [Schön, 2006] closely.

The dynamic and measurement equations of (4.1) can be written as
distributions where xk and yk are given as

xk+1 ∼ p(xk+1pxk), (A.1a)
yk ∼ p(ykpxk). (A.1b)

Now consider the posterior distribution density
p(xkpy1:k) = p(xkpyk, y1:k−1), (A.2)

where y1:k = {y1, . . . , yk}. Using Bayes’ rule

p(xpy) = p(ypx)p(x)
p(y)

and the Markov property of dynamic systems, (A.2) can be transformed into

p(xkpy1:k) =
p(ykpxk, y1:k−1)p(xkpy1:k−1)

p(ykpy1:k−1)
=
p(ykpxk)p(xkpy1:k−1)

p(ykpy1:k−1)
, (A.3)

where the denominator can, using marginalization, be written with known
densities as

p(ykpy1:k−1) =

∫
p(ykpxk)p(xkpy1:k−1) dxk. (A.4)

For the prediction step, the strategy with marginalization used above is
reused as

p(xkpy1:k−1) =

∫
p(xk, xk−1py1:k−1) dxk−1

=

∫
p(xkpxk−1, y1:k−1)p(xk−1py1:k−1) dxk−1

=

∫
p(xkpxk−1)p(xk−1py1:k−1) dxk−1. (A.5)
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Appendix A. The Particle Filter

The integrals in (A.4) and (A.5) are usually not analytically solvable. How-
ever, if the distributions are Gaussian and the dynamic system is linear,
the integrals above are solvable and yield the Kalman filter equations pre-
sented in Algorithm 4.1. For the more general case, an approximation of
the integrals can be used instead.

Introduce a particle as a sample from the posterior distribution

x(i)k ∼ p(xkpy1:k), ∀ i ∈ {1, . . . , Np}, (A.6)

where Np is the number of such particles. They can now be used to make
an approximation of the posterior distribution as

p(xkpy1:k) (

Np∑

i=1
w(i)kpkδ (xk − x

(i)
k ), (A.7)

where δ (·) is the Dirac delta function and

Np∑

i=1
w(i)kpk = 1, w(i)kpk ≥ 0, ∀ i ∈ {1, . . . , Np}.

By using the approximation above, the integrals in (A.3) and (A.5) can
be solved approximately. Starting with the prediction step in (A.5) and
replacing the posterior distribution with its approximation from (A.7) yields

p(xkpy1:k−1) =

∫
p(xkpxk−1)p(xk−1py1:k−1) dxk−1

(

∫
p(xkpxk−1)

Np∑

i=1
w(i)k−1pk−1δ (xk−1 − x(i)k−1) dxk−1

=

Np∑

i=1
w(i)k−1pk−1p(xkpx

(i)
k−1). (A.8)

To regain a set of particles instead of a distribution, Np new particles
should be drawn from (A.8). However, it is difficult to directly generate
samples from this distribution. Instead, importance sampling can be used
to generate the samples [Gordon et al., 1993]. From the sampling it is given
that the importance weights w are calculated as

w = p(xkpy1:k−1)

q(xkpxk−1, y1:k)
, (A.9)

where the numerator is the target distribution and the denominator is the
proposal distribution from which samples can be drawn. The first step of
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importance sampling is to draw new particles from the proposal distribution
as

x̃(i)k ∼ q(xkpx(i)k−1, y1:k), ∀ i ∈ {1, . . . , Np}. (A.10)
The weights w for the new samples are computed as

w(i)kpk−1 =
p(x̃(i)k py1:k−1)

q(x̃(i)k px
(i)
k−1, y1:k)

, ∀ i ∈ {1, . . . , Np}.

By choosing
q(xkpxk−1, y1:k) = p(xkpxk−1) (A.11)

as proposal distribution, which is the state dynamics from (A.1a), the fol-
lowing relation is obtained

w(i)kpk−1 =
p(x̃(i)k py1:k−1)

p(x̃(i)k px
(i)
k−1)

(

∫
p(x̃(i)k pxk−1)

∑Np
i=1 w

(i)
k−1pk−1δ (xk−1 − x(i)k−1) dxk−1

p(x̃(i)k px
(i)
k−1)

= w(i)k−1pk−1, ∀ i ∈ {1, . . . , Np}. (A.12)

There are other suggestions on how to choose the proposal distribution
q(xkpxk−1, yk), see, e.g., [Gustafsson, 2010]. The approximation of the pre-
diction step is then

p̂(xkpy1:k−1) =

Np∑

i=1
w(i)kpk−1δ (xk − x̃

(i)
k ). (A.13)

To solve the measurement update in (A.3), start with (A.4) and use the
previous result to get an approximation as

p̂(ykpy1:k−1) =

∫
p(ykpxk)

Np∑

i=1
w(i)kpk−1δ (xk − x̃

(i)
k ) dxk

=

Np∑

i=1
w(i)kpk−1p(ykpx̃

(i)
k ). (A.14)

Substituting this into (A.3) yields the approximation of the posterior distri-
bution as

p̂(xkpy1:k) =
p(ykpxk)p̂(xkpy1:k−1)

p̂(ykpy1:k−1)
(

Np∑

i=1

w(i)kpk−1p(ykpx̃
(i)
k )

p̂(ykpy1:k−1)
δ (xk − x̃(i)k )

∝

Np∑

i=1
w(i)kpkδ (xk − x̃

(i)
k ). (A.15)

166



B
Information Matrices for
Multiple Components

This appendix provides the derivation and resulting Fisher and hybrid
information matrices for the multiple components scenario.

B.1 Fisher Information Matrix for Multiple Components

The observation model for multiple components with a single parameter δ f
denoting the frequency error is given by

y(Ψ, δ f ,Ωp) = ∆
NR∑

r=1
exp{χr − iβr} exp{−iΩpγ r} + e ∈ CK (B.1)

where NR is the number of impinging components, and

∆ = diag{exp{−iδ f t}}, (B.2)
Ωp =

[
px py pz

]
∈ RK$3, (B.3)

Ψ =
[
ψ1 ψ2 . . . ψNR

]
∈ R4$R, (B.4)

ψr =
[
αr βr γT

r
]T , (B.5)

γ r = f (µr) =
[
cos(φ r) sin(θr) sin(φ r) sin(θr) cos(θr)

]T . (B.6)

Since time is excluded from Ωp there are only two parameters associated
with each component, φ and θ , while the frequency error δ f is common for
all components. This is a natural model when the deterministic parameters
to be estimated are Ψ together with δ f and the stochastic parameters are
Ωp together with t.
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Assuming that Ωp and t are known, the Fisher information matrix
F(Ψ, δ f ) is defined as

−EypΨ





Re




�2L
�ψ1 �ψT

1
. . . �2L

�ψ1 �ψT
NR

�2L
�ψ1 �δ f

...
. . .

...
...

�2L
�ψNR

�ψT
1

. . . �2L
�ψNR
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�2L
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�δ f
�2L

�δ f �ψT
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NR
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�δ 2
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(B.7)

where

− EypΨ

{
Re �2L
�ψn�ψT

m

}
=

2 Re




w∗
nΣ−1

w wm −iw∗
nΣ−1

w wm −iw∗
nΣ−1

w WmΩpFm

iw∗
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w wm w∗
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iFT
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w wm FT
n ΩT
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pW∗
nΣ−1

w WmΩpFm


 ,
(B.8)

with wn = ∆ exp{χn − iβn} exp{−iΩpγn}, Wn = diag{wn}, and

Fn =


− sin(φn) sin(θn) cos(φn) cos(θn)

cos(φn) sin(θn) sin(φn) cos(θn)
0 − sin(θn)


 ∈ R3$2. (B.9)

Furthermore,

−EypΨ

{
Re �2L
�ψn�δ f

}
= 2 Re




−iw∗
nΣ−1

w T
∑

rwr

w∗
nΣ−1

w T
∑

rwr

FT
n ΩT

p W∗
nΣ−1

w T
∑

rwr


 , (B.10)

and

− EypΨ

{
Re �

2L
�δ f 2

}
= 2 Re

{∑
r
w∗
r TΣ−1

w T
∑

r
wr

}
. (B.11)

where T = diag{t}. The first line of (B.8) reveals that the amplitude χn is
decoupled from βm, γm, and δ f if n = m. All other elements of the FIM are
potentially non-zero. Note that the CRLB F(Ψ, δ f )−1 is a full matrix.
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B.2 Hybrid Information Matrix for Multiple Components

The Hybrid information matrix for the observation model in (B.1) is given
by

H =

[
A B
BT C

]
(B.12)

where A is given by (B.7). Furthermore,

B = −Ey,ΩppΨ





Re




�2L
�ψ1 �ΩT

p,v

...
�2L

�ψNR
�ΩT

p,v

�2L
�δ f �ΩT

p,v








(B.13)

where Ωp,v = vec{Ωp},

− Ey,ΩppΨ

{
Re �2L
�ψn �ΩT

p,v

}
= 2 Re







−iw∗

nΣ−1
w Γ

w∗
nΣ−1

w Γ
FT
n ΩT

pW∗
nΣ−1

w Γ






, (B.14)

and Γ =
∑NR

r=1 Wr(γT
r ⊗ IK) in B. The last element is given by

−Ey,ΩppΨ

{
Re �2L
�δ f �ΩT

p

}
= 2 Re

{∑
r
w∗
r TΣ−1

w Γ
}
. (B.15)

Finally, C is given by

C = −2Ey,ΩppΨ

{
Re �2L
�Ωp �ΩT

p

}
= 2 Re

{
Γ∗Σ−1

w Γ
}
+ Σ−1

Ω . (B.16)
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