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“The important thing is not to stop questioning. 

Curiosity has its own reason for existing” 
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“Do. Or do not. There is no try.” 
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Introduction 

Obesity 

Obesity is a global public-health problem which started to increase in the mid-20
th
 

century
1
. The worldwide prevalence of overweight adults was over 1.9 billion 

(39%) in 2014, and out of these, 600 million (13%) were obese
2
. The obesity 

epidemic is predicted to continue to such degree that by 2030, 40-50% of the adult 

population will be obese
3
. The obesity prevalence in children and adolescents has 

also become more common, and this increases the risk of developing obesity-

related complications earlier than otherwise
4-6

. Obesity is defined as having a body 

mass index greater than 30 kg per square meter (kg/m
2
) and is most commonly the 

result of energy surplus
7
. An extended period of over-nutrition, in combination 

with decreased physical activity, is linked to development of several 

complications. The etiology of obesity-related complications is not yet fully 

understood but glucose intolerance as a result of obesity has been linked to 

conditions such as insulin resistance, type 2 diabetes (T2D), cardiovascular 

disease, cancer, and osteoporosis
8-10

. 

Metabolic regulation 

Fasting conditions  

All cells need energy to perform various biological processes, and different tissues 

have different means to maintain a constant energy supply. For instance, red blood 

cells and the brain use glucose as their energy source (ketone bodies can be used 

during starvation), whereas most peripheral tissues use both glucose and fatty 

acids as energy source, depending on blood concentrations of these nutrients
11

. 

The human body can efficiently regulate the glucose levels by secreting hormones 

and through different tissue-specific glucose transporters
12

. Through rigorous 

glucose regulation, circulating glucose levels are present at a relatively constant 

concentration. Due to that, the red blood cells and brain almost exclusively use 

glucose as their energy source; the body can store glucose as glycogen in the liver 
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and skeletal muscles
13, 14

. When glucose levels decrease (e.g. during the night), 

release of glucagon from pancreatic α-cells stimulates glycogen breakdown in the 

liver as well as glucose synthesis via gluconeogenesis. In addition, fatty acids, 

stored as triglycerides in the adipose tissue, are the main source of energy for 

peripheral tissues during fasting
15

. Triglycerides are degraded to fatty acids and 

glycerol by lipases
16

. They are then released to the bloodstream to become 

available as energy source for other tissues. Once fatty acids have entered the cell, 

β-oxidation of fatty acids produces acetyl coenzyme A (acetyl CoA), a substrate 

for the tricarboxylic acid (TCA) cycle. Glycerol, which is also released, can be 

converted both to pyruvate and glucose in the liver
15, 16

.  

Amino acids are another source of energy, although the main use of amino acids is 

in protein metabolism. There are 20 amino acids that are used in proteins. Of these 

20 amino acids, nine (histidine, lysine, methionine, phenylalanine, threonine, 

tryptophan, isoleucine, leucine and valine) are essential (or semi-essential) for 

humans, and cannot be synthesized de novo. The first step of amino acid 

degradation is removal of the amino group via transamination, and the remaining 

carbon molecule is metabolized into glucose, acetyl CoA, or one of several TCA 

cycle intermediates. Most amino acids are mainly degraded in the liver except for 

branched-chain amino acids (BCAAs): isoleucine, leucine and valine, which are 

mainly degraded in skeletal muscles, kidneys and heart
17, 18

. When measuring 

metabolite levels during an extended fast, ketone bodies and non-esterified fatty 

acids have shown to increase in the blood already after a few hours. On the 

contrary, a noticeable increase in BCAAs was first noticed after 24 hours, which is 

in accordance with amino acids being used primarily for protein metabolism and 

not as an energy source
19

.  

Prandial and postprandial conditions 

In food, fatty acids, amino acids and glucose, are found as lipids, proteins and 

carbohydrates, such as starch. These first need to be degraded into smaller 

components so nutrients can be absorbed from the small intestine, transported 

through the hepatic portal vein into the liver to then enter the blood circulation. 

Larger fatty acids and lipids are hydrophobic and therefore absorbed through the 

lymphatic vessels before entering the circulation (i.e. they bypass the liver). 

Postprandial increased blood concentrations of glucose, amino acids and fatty 

acids stimulate and potentiate insulin secretion from the pancreatic β-cells
20-22

. 

This stimulates the peripheral tissue, like skeletal muscles and adipose tissue, to 

take up these nutrients from the circulation (Figure 1). These adaptions take place 

to achieve glucose homeostasis. Also, lipolysis and proteolysis in skeletal muscle, 

liver and adipose tissue are inhibited, which reduces the release of these 
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metabolites. This process thereby induces the switch from catabolism to 

anabolism. 

 
Figure 1 Postprandial regulation 

Postprandial circulatory increase of glucose, amino acids and fatty acids leads to increased insulin secretion from the 
pancreatic β-cells. This further leads to increased uptake of metabolites into peripheral tissues (such as liver, skeletal 
muscle and adipose tissue) and decreased release of fatty acids from the adipose tissue.  

Circulating metabolite levels and obesity 

Failure in metabolic regulation is a common trait of obesity which may lead to 

altered circulating metabolite levels, such as glucose. Pathophysiological changes 

in people with obesity are often present long before the onset of chronic 

hyperglycemia and T2D
23

. Elevated plasma fatty acids and increased intracellular 

lipids in obese individuals inhibit insulin sensitivity in muscle, thus dysregulation 

of fatty acids have been linked to insulin resistance
24

. It is also believed that 

chronically high fatty acid concentrations have a “lipotoxic” effect on the 

pancreas
25

. Also, increased levels of valine, leucine, isoleucine, tyrosine and 

phenylalanine, and decreased levels of glycine in non-diabetic obese subjects was 

reported by Felig et al already in 1969
26

. Others have confirmed these 

observations through recent advancement in the use of metabolomics techniques, 

which can efficiently analyze large sets of metabolites
27-30

. In addition, several 

altered metabolite levels identified in obese, when compared to lean subjects, may 

be suitable as biomarkers for metabolic complications related to obesity
28-35

. 

Rauschert et al summarized a list of recent reports including potential metabolite 

biomarkers for obesity
33

. For instance amino acids, carnitines and glycerol have 

↑ Glucose 

↑ Amino acids 

↑ Fatty acids 

↑ Insulin release 
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been associated with BMI
30, 33

. Recent reports have specifically shown elevated 

levels BCAAs in individuals who are at risk of developing diabetes
36

, in those with 

established diabetes
27, 37

, and in overweight and obese humans
27

. Also, BCAAs 

together with aromatic amino acids (tyrosine and phenylalanine), have been 

associated with, and shown to predict, the development of insulin resistance
38, 39

, 

as well as the risk of developing T2D
36, 40

. Specifically, a set of isoleucine, 

tyrosine and phenylalanine showed strong predictive potential for incident T2D
36

. 

A score calculated from these three amino acids, called diabetes-predictive amino 

acid score (DM-AA score), has also been associated with risk of future 

cardiovascular disease (CVD)
41

. If there is causation between the BCAA and 

aromatic amino acids is not known, but they share the same transporter across cell 

membranes in a competitive manner, i.e. uptake is both regulated by the 

concentration of its own amino acid, but also that of its competitors
42

. Several 

hypotheses have been presenting trying to link dysregulation of lipids and amino 

acids, specifically the BCAAs. For instance, the activity of the branched-chain α-

ketoacid dehydrogenase (BCKD), which is one of the enzymes in BCAA 

degradation, may also be inhibited by increased β-oxidation of fatty acids. This 

would then lead to increased BCAA levels
35

. In addition, another theory is that 

over-nutrition leads to preferential use of glucose and lipid substrates, which may 

lead to a reduced need for amino acid catabolism
34

. Albeit, one theory is not 

excluding the other and it is therefore likely that it may be a mixture of several 

metabolic processes causing the increased levels of BCAAs.  

Impaired glucose response  

A well-established approach to study the postprandial response is to perform an 

oral glucose tolerance test (OGTT). Glucose clearance during an OGTT is also 

used in the clinic to evaluate glucose tolerance
43

. Healthy glucose tolerant subjects 

have fasting plasma glucose levels of 5.5 mmol/l or lower and a 2-hour glucose 

level of <7.8 mmol/l after the OGTT (Figure 2). Insufficient insulin action, either 

due to decreased insulin sensitivity or insufficient insulin release, results in 

impaired fasting glucose (IFG) and/or impaired glucose tolerance (IGT). People 

with IFG have elevated fasting plasma glucose (between 5.6-6.9 mmol/l) but 

normal response during OGTT. IGT is defined as 2-hour glucose levels between 

7.8-11.0 mmol/l
44

. IFG and IGT are prediabetic states, and common traits of 

obesity
45

, that may proceed to develop T2D. T2D is defined as fasting levels of 

≥7.0 mmol/l and 2-hour plasma glucose levels of ≥11.1 mmol/l
44, 46

.  
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Figure 2 Oral Glucose Tolerance Test 
Plasma glucose levels during an OGTT. Graph illustrates example of average glucose response in people with normal 
glucose tolerance (NGT), the prediabetes states; impaired glucose tolerance (IGT) and impaired fasting glucose (IFG) 
and type 2 diabetes (T2D). Some individuals may have both IFG and IGT (not illustrated)

47, 48
. 

Metabolite profiles of impaired glucose tolerance 

Since obesity is a metabolically complex disorder, it is relevant to study the flux of 

metabolites that occurs during energy regulation and is thus present in the 

pathology of obesity and its complications. Metabolomics, the systematic study of 

small molecules in cells and biological systems, has been performed on blood 

samples acquired during an oral glucose load in healthy subjects with normal 

weight
19, 49-52

 and overweight
52, 53

. In healthy individuals with a normal glucose 

tolerance, the expected glucose- and insulin-provoked decrease of free fatty acids 

and glycerol was observed
49, 50, 52

. This is due to the fact that fatty acid release 

from adipose tissue is efficiently switched off by insulin, reducing the blood 

concentration of fatty acids and glycerol. The oral glucose load has also shown 

decreased circulating levels of amino acids and β-hydroxybutyrate, which reflect 

the reduced proteolysis and ketogenesis, respectively
52

. Shaham et al
52

, and the 

extended study by Ho et al
53

, observed a blunted decrease in valine, 

isoleucine/leucine, methionine, β-hydroxybutyrate, pyridoxate, and a blunted 

increase of lactate during an OGTT in obese insulin resistant subjects. Another 

study in young obese individuals (20 years), reported 25 metabolite response 

differences between obese and lean including amino acids (e.g. alanine, glycine, 

phenylalanine and BCAAs) and fatty acids (C16:0, C16:1, C18:2 and C18:3)
54

. 
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Weight loss and weight maintenance 

Weight loss achieved by a combination of restricted calorie intake, increased 

physical activity and behavioral support has been reported to reduce the incidence 

of IGT and the risk of developing T2D in obese individuals
55-58

. Weight loss can 

be achieved by restricting caloric intake (e.g. initially by low-calorie diet), 

bariatric surgery or with drugs (such as orlistat and liraglutide)
59-61

. Bariatric 

surgery is the most effective way of weight reduction but not all are eligible for 

surgery, and it would be economically unfeasible to operate everyone who is obese 

globally. Thus, diet-induced or drug-mediated weight reduction would be 

preferable. Nevertheless, the drugs that are currently on the market typically report 

only about 5-10% body weight loss while the corresponding weight loss following 

bariatric surgery is in the range of 25-30%
59, 60, 62

. Another dilemma is that weight 

regain is common, about half of the participants return to baseline weight within 

five years of weight loss, since it is easy to fall back to previous eating and living 

habits
63

. Lifestyle intervention combining low-calorie diet, behavioral therapy, and 

if possible, physical activity, have showed best success in non-surgical weight loss 

and also in weight maintenance
55

.   

Metabolite changes with weight loss and weight maintenance 

Altered fasting metabolite levels observed in insulin resistant obese subjects have 

revealed several metabolic changes that are related to weight reduction
64-67

. For 

instance, elevated saturated fatty acids (myristic-, palmitic- and stearic acid), 

monounsaturated fatty acids (oleic- and eicosenoic acid) and several 

polyunsaturared fatty acids (including linoleic- and arachidonic acid) decreased 

after an 8-week weight loss
64

. These authors also observed a positive association 

between palmitoleic acid at baseline and change of body fat, but the decrease of 

fatty acid was not significant. Lien et al performed metabolite profiling in 27 

obese individuals after a behavioral weight loss intervention, after weight 

maintenance and after weight regain
65

. They observed change in levels of fasting 

metabolites, hormones and clinically measured variables, and thereby showing 

large metabolic change depending on if they were catabolic, anabolic or when 

achieving a new steady state, at different stages (i.e. weight loss, weight gain and 

weight maintenance). This illustrates that levels of many metabolites, in addition 

to glucose, were affected by weight change. Another study found BCAAs to 

predict improvement in insulin resistance with moderate weight loss
66

. However, 

the potential weight loss associated improvements of the BCAAs are controversial, 

and further analysis is required
64-68

. Furthermore, metabolite analysis after weight 

loss have also been performed in obese children
69

. This study observed significant 
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increase of glutamine, methionine, the acyl-alkyl phosphatidylcholine PCaeC36:2 

and the three measured lysophosphatidylcholines (LPCaC18:1, LPCaC18:2 and 

LPCaC20:4) one year after weight loss, compared to the group without weight 

reduction. Thus, intriguing findings regarding metabolite changes due to weight 

loss have been presented, but further research is necessary to provide clarity in 

which metabolites are linked to a healthier metabolic profile.  
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Aims 

The overall aim of this thesis was to elucidate the metabolite changes present in 

obese humans after diet-induced weight loss followed by weight maintenance. I 

investigated this by including both fasting levels and the metabolite response 

during an oral glucose load.   

 

Specific aims for the respective papers:  

I Identify differences in metabolite profiles during an OGTT in insulin 

resistant obese individuals and insulin sensitive individuals with 

normal weight. 

II Investigate if the altered metabolite profiles during an OGTT in obese 

individuals (from Paper I) are modified with a weight loss and weight 

maintenance intervention. 

III Identity fasting amino acid levels that are associated with obesity and 

investigate if weight loss and weight maintenance can improve levels 

of these amino acids. We also aim to test if amino acids can predict 

the potential benefit of a combined weight loss and weight 

maintenance program. 

IV Validate previous findings and further explore metabolite data using a 

larger cohort. Specifically, analyze if weight reduction is associated 

with baseline metabolite levels and weight loss-induced change in 

metabolites levels. 
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General methodology 

This section describes an overview of the methodology used in this thesis. For a 

detailed description, please review the respective paper. 

Study participants 

Obesity cohort  

In all studies, some or all included participants attended the obesity outpatient unit 

at the Department of Endocrinology, Skåne University Hospital, Malmö, Sweden. 

Paper I and II included 14 obese participants with IGT, who were subjected to an 

OGTT. The intervention study (paper II-III) included diet-induced weight loss (per 

protocol ≥10%, low-calorie diet of <1,200 kcal/day) and weight maintenance (per 

protocol ±5% weight change to define weight stability). The intervention also 

included group-based therapy lead by a dietitian. OGTT was conducted at baseline 

(paper I), after weight loss and weight maintenance (paper II). In paper III, 12 

obese individuals participating in the intervention study were included to evaluate 

change in fasting levels of glucose, insulin and metabolite levels. None of the 

participants in paper I-III were diagnosed with T2D, cardiovascular disease or 

taking any medications related to metabolic disease. In paper IV, a total of 84 

individuals visited the outpatient unit and participated in a program with the aim to 

lose weight by non-surgical means. This weight loss program consisted of 

participation in behavioral therapy (individually or in group) and a prolonged 

period of low-calorie diet. Overnight fasted blood samples were collected before 

and after treatment. The study outline of the obese cohort is illustrated in Figure 3. 

All participants gave their written informed consent and the ethics committee at 

Lund University, Sweden, approved the study.     

Normal weight glucose tolerant cohort 

A small glucose tolerant group with normal weight (n=6) was included for 

comparison in paper I and II. This group has been reported in detail previously
49

. 
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Metabolite profiling was performed during an OGTT after an overnight fasting, 

and samples were collected at 15, 30, 45, 60, 75, 90, 105 and 120 minutes. In 

paper I, data was reanalyzed using only time points 0, 30 and 120 minutes. 

 

 

 

 

 

 
 
 
 
 
 
Figure 3 Study outline 
Study outline for the obese cohort. Paper I included only OGTT at baseline, and was compared to metabolite 
response during an OGTT from a lean cohort. Paper II included OGTT at baseline, weight loss and weight 
maintenance. Paper III included fasting samples of obese participating in the weight loss intervention (pilot) and Paper 
IV included subjects participating in a weight loss program (validation).  

Malmö Diet and Cancer cohort  

In paper III, a subset of the population-based Malmö Diet and Cancer (MDC) 

cohort of 28,449 people, enrolled between 1991 and 1996 in Southern Sweden, 

was included. A subset of 6,103 individuals was randomly selected to participate 

in the MDC cardiovascular cohort (MDC-CC)
70

. Metabolomics analysis was 

performed in subjects from a nested incident CVD case-control study (n=506) 

with subjects matched for gender, age, Framingham risk score, and from a nested 

incident diabetes case-control study (n=326) in the MDC-CC
41

. A total of 804 

subjects were included in the analysis, after exclusion of subjects who participated 

in both studies and with incomplete data.   

Glucose and insulin analysis 

Oral glucose tolerance test (OGTT) was performed according to standard 

procedures of 75g glucose mixed in water and consumed after an overnight fast. 

Blood samples were collected at fasting (0 minutes) and after 30 and 120 minutes 

(paper I-II). Plasma glucose and serum insulin levels were measured at fasting 

(paper I-IV) and during an OGTT (at 30 and 120 minutes, paper I-II). Indices were 

calculated to evaluate insulin sensitivity and response including; insulin sensitivity 

Obese Cohorts 
OGTT (n=14) 

Paper II 
Fasting (n=12) 

Paper III 
Fasting (n=84) 

Paper IV 

Baseline 

Weight loss (>10%)  

Weight maintenance (± 5%) Follow up 

Baseline 

OGTT (n=14) 
Paper I 

Baseline 
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index (ISI), corrected insulin response (CIR), disposition index (DI) and 

insulinogenic index (IGI)
47, 71, 72

. Insulin resistance and β-cell function were 

estimated by the homeostasis model assessment-estimated insulin resistance 

(HOMA-IR) and HOMA-β, respectively
73

. How each index was calculated is 

presented as follows. 

𝐼𝑆𝐼 =
10,000

√([𝐺𝑙𝑢𝑐𝑜𝑠𝑒0 𝑚𝑖𝑛 𝑥 𝐼𝑛𝑠𝑢𝑙𝑖𝑛0 𝑚𝑖𝑛] 𝑥 [𝑚𝑒𝑎𝑛 𝑂𝐺𝑇𝑇𝑔𝑙𝑢𝑐𝑜𝑠𝑒 𝑥 𝑚𝑒𝑎𝑛 𝑂𝐺𝑇𝑇𝑖𝑛𝑠𝑢𝑙𝑖𝑛])

 

𝐶𝐼𝑅 =  
100 𝑥 𝐼𝑛𝑠𝑢𝑙𝑖𝑛30 𝑚𝑖𝑛

𝐺𝑙𝑢𝑐𝑜𝑠𝑒30 𝑚𝑖𝑛 𝑥 (𝐺𝑙𝑢𝑐𝑜𝑠𝑒30 𝑚𝑖𝑛 − 3.89)
 

𝐷𝐼 = 𝐶𝐼𝑅 𝑥 𝐼𝑆𝐼 

𝐼𝐺𝐼 =  
(𝑖𝑛𝑠𝑢𝑙𝑖𝑛30 𝑚𝑖𝑛 −  𝑖𝑛𝑠𝑢𝑙𝑖𝑛0 𝑚𝑖𝑛)

(𝑔𝑙𝑢𝑐𝑜𝑠𝑒30 𝑚𝑖𝑛 −  𝑔𝑙𝑢𝑐𝑜𝑠𝑒0 𝑚𝑖𝑛)
 

𝐻𝑂𝑀𝐴 − 𝐼𝑅 =  
(𝑓𝑎𝑠𝑡𝑖𝑛𝑔 𝑔𝑙𝑢𝑐𝑜𝑠𝑒 [𝑚𝑚𝑜𝑙/𝑙] 𝑥 𝑓𝑎𝑠𝑡𝑖𝑛𝑔 𝑖𝑛𝑠𝑢𝑙𝑖𝑛 [µ𝑈/𝑚𝑙] 

22.5
 

𝐻𝑂𝑀𝐴 − 𝛽 =
𝑓𝑎𝑠𝑡𝑖𝑛𝑔 𝑖𝑛𝑠𝑢𝑙𝑖𝑛 [µ𝑈/𝑚𝑙] 𝑥 20

𝑓𝑎𝑠𝑡𝑖𝑛𝑔 𝑔𝑙𝑢𝑐𝑜𝑠𝑒 [𝑚𝑚𝑜𝑙/𝑙]  − 3.5
 

Metabolomics analysis 

The collectively named “omics”-fields include genomics (the study of the genome, 

i.e. “what can happen”), transcriptomics (the study of the transcriptome, i.e. “what 

appear to be happening”), proteomics (the study of the proteome, i.e. “what makes 

it happen”) and metabolomics (the study of the metabolome, i.e. “what is 

happening and has happened”). Hence, metabolomics links the genotype with the 

phenotype
74

. Metabolomics is the systematic study of metabolites, i.e. small 

molecules (<1500 Da) from cells, tissues or biofluids that are substrates, 

intermediates or end products of metabolic reactions
75

. Several metabolomics 

techniques are available that efficiently detect and quantifies compounds, for 

example gas chromatography mass spectrometry (GC/MS)
76

, liquid 

chromatography mass spectrometry (LC/MS)
77

 and nuclear magnetic resonance 

(NMR) spectroscopy
78

. The advantage of NMR is that it is a quantitative method; 

however, the disadvantages, compared to MS-based methods, are lower 

sensitivity, dynamic range and resolution. In this thesis, I have not used NMR so it 

will not be addressed further. Advantages and disadvantages for the use of GC/MS 

and LC/MS, will be addressed in following paragraphs. Overall, it is possible to 
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detect up to thousands of metabolites using MS-based techniques, although this 

necessitates the use of several methods with different characteristics. 

Gas chromatography mass spectrometry 

In my thesis, I have used GC/MS to analyze metabolites in the obese and normal 

weight cohorts. The advantages with this method are that it has a high separation 

efficiency, robustness and throughput, while the main disadvantage that it only 

measures volatile analytes
79

. Metabolites are generally non-volatie, but can be 

made volatile by derivatization
80

. The retention is based on partitioning between 

the mobile phase (consisting of a carrier gas) and a stationary phase (consisting of 

a liquid residing on the inside the capillary wall). The GC is coupled to a time-of-

flight (TOF) mass analyzer, via electron ionization (EI) ion source. In the EI 

source, an electron is extracted from the analyte, resulting in the formation of an 

unstable radical cation. This ion then fragments, yielding a set of fragments 

characteristic for a specific analyte. The hereby formed ions are accelerated into 

the TOF mass analyzer, where they are separated based on their mass-to-charge 

ratio (m/z). The analytes are identified based on the time when they elute from the 

GC column, normally expressed as a retention index, and by matching their 

fragmentation pattern, i.e. their mass spectra, to mass spectra found in databases. 

The general procedure is illustrated in Figure 4. 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
Figure 4 Schematic protocol for metabolite profiling by gas chromatography mass spectrometry  
Metabolites are extracted from blood (serum or plasma), derivatized (A) and injected into the gas chromatograph (B). 

The metabolites are separated based on their partitioning between the gas phase and a thin layer on the inner surface 
of a capillary column (C). The metabolites are ionized. In this process, several fragments are formed from the same 
metabolite. These fragments are then separated in the TOF analyzer, and their flight time (i.e. the time it takes for 
them to reach the detector), which is proportional to the m/z of the metabolite, determine (D).   
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Liquid chromatography mass spectrometry 

Amino acids in the MDC-CC cohort was profiled using liquid chromatography-

tandem mass spectrometry (LC-MS/MS) and has been described in detailed
36, 41

. 

The difference between GC and LC is that in an LC the separation is based on 

partitioning of analytes between a liquid phase (instead of gas) and a stationary 

phase that usually is covalently bound to solid particles. An advantage with LC is 

that it is applicable also to non-volatile metabolites, without any prior 

derivatization. Hence, LC can be used to analyze large polar metabolites as well as 

thermolabile metabolites. The disadvantages with LC/MS compared to GC/MS are 

lower reproducibility, lower robustness, longer analysis times and lower separation 

efficiency
74, 79

.  

Sample preparation  

Sample preparation prior to metabolomics analysis is very important to reduce 

biases in the determination of metabolite concentrations. In my thesis, I have 

analyzed both serum (paper I-II and IV, obese cohort) and plasma samples (paper 

I, lean cohort and paper III, both obese and MDC-CC cohort). Absolute 

concentration of metabolites may vary between plasma and serum samples
81

. 

However, in my work I have focused on variation, rather than absolute levels. 

Analysis by GC/MS is associated with some variation in the extraction and 

derivatization yield, as well as in the performance of the GC/MS. I have used a 

cocktail of isotope labeled standards, added prior to extraction, to correct for this 

variation.  

Statistical analysis  

Metabolomics techniques generate datasets with a large number of variables 

(metabolites) and many metabolites are also, since they are often strongly 

biologically linked, highly correlated. This increases the complexity of analyzing 

metabolomics data. In addition, analyses by GC and LC are associated with drift, 

due to e.g. a continuous contamination of the equipment which affects the 

sensitivity. Because of this we have restricted the number of samples analyzed in a 

batch to approximately a hundred. Variation within a batch can be corrected for 

using internal standards
82

, whereas variation between batches is corrected for 

using other methods. In paper IV we used ComBat to adjust for batch effects
83, 84

. 

Samples were scaled to unit variance to reduce inter-individual variations within 

an analysis and double-centered (paper I-III), i.e. normalized to the mean of the 
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three measurements for each individual (either the three OGTT time points or 

baseline, weight loss and weight maintenance) to reduce intra-individual 

variation
85

. Most statistics assumes the data to be normally distributed however 

sometimes this requirement is not fulfilled. Metabolites with skewed distribution 

were therefore transformed to resemble a normal distribution prior to analysis. 

Multivariate data analysis is a useful tool for examination and visualization of 

large datasets. Many of these methods aim to find latent variables and structures 

that more efficiently describe the data (i.e. with fewer dimensions), as compared to 

traditional uni-, bi-, and few-variable methods. For these calculations we used 

SIMCA 13 (Umetrics, Umeå, Sweden). Principal component analysis (PCA) is an 

unsupervised method, which aims at describing the variation in the data. PCA was 

used to examine the datasets for potential outliers and to generate a first overview 

of the data
86

. Orthogonal projections to latent structures discriminant analysis 

(OPLS-DA) is a supervised classification method which focuses the analysis on 

variation in metabolite levels responsible for the class discrimination
87

. OPLS-DA 

was used to find metabolite patterns discriminating between OGTT time points 

(paper I-II) or between weight loss phases (paper III). All multivariate models 

were evaluated by a 7-fold cross-validation
88

. In cross-validation, the analysis is 

performed on a subset of the samples (i.e. training set) and the analysis is then 

validated in another subset of the data (i.e. testing set), this was then performed 

seven times with different subsets to reduce variability. Significant changes were 

estimated from jack-knifed confidence intervals
89

, which is based on “leave one 

out” procedure which means starting from the whole sample, then leaving one 

sample out and the parameter of interest is estimated from this smaller sample set.  

For descriptive analysis of clinical variables, paired Student’s t-test (for normally 

distributed data), Wilcoxon Signed Rank Test (for skewed data) and x
2
-test for 

categorical variables, was used to assess difference in anthropometric data among 

the obese individuals. Non-parametric Mann-Whitney’s U test was used when 

comparing measures between obese and lean individuals. Spearman’s rank 

correlation coefficient was used to test for correlations between different variables 

or small sets of metabolites. Multiple testing was performed using Benjamini-

Hochberg false discovery rate (FDR) correction (paper IV)
90

. Linear regression 

was performed to associate BMI, or change in BMI with metabolite levels, 

adjusting for age, gender and T2D status (paper III-IV). Statistics were calculated 

using IBM SPSS statistics v.20 (IBM Corp. 2011, Armonk, NY, USA) or in R
84

.  
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Obesity and diabetes scores 

OB-BMI score & OB-WC score 

In paper III, we aimed to create amino acids profile scores for obesity (OB): OB-

BMI and OB-WC, which included amino acids associated with obesity and known 

risk factors for CVD and T2D status. Noticeably, amino acids were chosen over 

other known altered metabolites, such as fatty acids, due to recent findings that 

amino acids alone are associated with metabolic diseases
36, 39, 41, 91

. This 

encouraged us to test this for obese subjects as well. In order to construct these 

scores, backward elimination regression was performed for all amino acids 

associated with BMI or waist circumference (WC), respectively, in the MDC-CC 

cohort adjusted for age, sex, diabetes status, anti-hypertension treatment and 

systolic blood pressure. The resulted amino acids were tested for their association 

to categorical measures of obesity database (BMI and WC, general obesity 

[BMI>30 kg/m
2
], and abdominal obesity [WC>108 cm for men; >88 cm for 

woman
32

]). The OB-BMI and OB-WC scores were constructed from the amino 

acid levels weighted by the β-coefficients. By constructing a score that includes 

both amino acids and known risk factors such as blood pressure and age, we may 

access a metabolic risk score more reflective of metabolic health than solely 

looking at BMI.  

WLWM-BMI score & WLWM-WC score 

From the OB-scores we constructed a second set of scores for BMI and WC that 

aimed to reflect the treatment-modifiable part of the amino acid constitution by 

including only if they are modifiable in the obesity cohort. Thus, these scores was 

created using the same variables as for the OB-scores but without those amino 

acids that did not show improvement as a result of the full weight loss and weight 

maintenance (WLWM) intervention, i.e. WLWM-BMI and WLWM-WC (in Paper 

III). Hence, the OB-scores assess the total amino acid-associated burden of 

obesity, whereas the WLWM-scores assess the portion of this burden which may 

be improved by weight loss and weight maintenance programs. The OB and 

WLWM-scores were constructed in paper III and further tested in the larger cohort 

in paper IV.   

DM-AA score 

The diabetes-predictive amino acid score (DM-AA score) consists of isoleucine, 

tyrosine and phenylalanine and has shown to predict the risk of developing both 

T2D and cardiovascular disease
36, 41

. The DM-AA score is equal to the 

standardized score of z-score of log isoleucine + z-score of log tyrosine + z-score 

of log phenylalanine. This score was evaluated both in paper III and IV.  
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Results and Discussion 

Metabolite responses during an OGTT  

Differences in metabolite profiles during an OGTT between obese and 

normal weight individuals (paper I) 

In order to access the postprandial alterations present in obesity, an oral glucose 

challenge was performed in 14 insulin resistant obese individuals (BMI 43.6±1.5 

kg/m
2
 [mean±SEM]) at three time-points (0, 30 and 120 minutes). These OGTT-

profiles were then compared to the response found in an insulin sensitive group 

with normal weight (BMI 22.4±2.4 kg/m
2
). Fasting and 30 minute concentrations 

of glucose in the obese group were the same as in the lean group, whereas 2-hour 

glucose concentrations were elevated in the obese group (p<0.01). Both fasting 

and 2-hour insulin concentrations were elevated in the obese group (p<0.0001 and 

p<0.01, respectively). This together with higher HOMA-IR (p<0.0001), HOMA-β 

(p<0.001), insulin sensitivity index (ISI; p<0.0001), corrected insulin response 

(CIR; p=0.017) but not the disposition index (DI) indicated that the peripheral 

insulin sensitivity was decreased but β-cell activity appeared to be adequate. 

Even though IGT is often observed prior to established T2D, not all people with 

IGT develop T2D. Thus, additional metabolic markers found during a 

conventional OGTT may improve the understanding of insulin resistance
45, 46

. In 

the obese group, 59 metabolite profiles were identified and OPLS-DA analysis 

showed clear metabolite level separation between the OGTT time points. Figure 5 

show an onset-decay-plot of the metabolite response during an OGTT in the obese 

group. Metabolite levels that are responsible for the classification of OPLS-DA in 

the obese group reveal several alterations compared to the expected response seen 

in lean individuals
49, 52, 53

. Under healthy conditions, circulating fatty acids 

decrease rapidly upon glucose-provoked insulin release
49

. More specifically, a 

faster decline has been observed for the monounsaturated fatty acids compared to 

the saturated counterparts
50

. Although, a delayed response of fatty acids was 

observed in the obese group (Figure 5). Additionally, the OGTT response of 

amino acids and their derivates has been studied and the BCAAs, among others, 

are also expected to decrease upon insulin release in healthy individuals
49, 52, 53

. 
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However, a delayed and/or lack of decrease was observed in the insulin resistant 

obese group (Figure 5 and paper I).   

 

 

 

 

 

 

 

 

 

 

 

 
 
 

 
Figure 5 Onset-decay-plots of metabolite levels during an OGTT in the obese group 
Alterations in metabolite profiles during an OGTT in the obese group. Two horizontal and two vertical lines (red) in the 
plot represent the relative significance border, i.e. metabolites in the center square have non-significant (n.s.) change 
during the OGTT. Fatty acid and amino acid clusters are highlighted by dashed and dotted circles, respectively. 
P(corr)[1]: loadings f0or the predictive component of assigned model scaled as correlations. α-KG; α-ketoglutarate, β-
HB; β-hydroxybutyrate, P; phosphate. 

When comparing the metabolite OGTT-response in the insulin resistant obese to 

the glucose tolerant lean group, 16 deviating metabolite profiles (out of the 32 

metabolites which were common in both datasets). These deviations were 

categorized into three groups. 1) Delayed reduction in levels of five fatty acids 

(including palmitic acid, lauric acid, oleic acid, pentadecanoic acid and stearic 

acid). 2) Increased levels at 30 minutes of five amino acids (including asparagine, 

glutamate, taurine, tyrosine, isoleucine and leucine). 3) A blunted increase at 30 

minutes of six metabolites (including pyrophosphate, threonic acid, phenylalanine, 

serine, glyceric acid and aspartate). The delayed responses indicate that insulin 

resistance in peripheral tissues affects many metabolites, either directly or 

indirectly. In addition, a delayed decrease in levels of β-hydroxybutyrate, glycerol, 

hypoxanthine and several amino acids may reflect a dysregulation of ketogenesis, 

lipolysis, nucleotide degradation and proteolysis
52, 53

. 
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Change in metabolite profiles during an OGTT after weight loss and 

weight maintenance (paper II) 

All 14 non-diabetic obese individuals (BMI=43.7±1.5 kg/m
2
) completed the 

weight loss and weight maintenance program, with a mean weight loss of 17% 

(BMI change from weight loss 36.2±1.7 kg/m
2
 to weight maintenance 34.9±1.8 

kg/m
2
). Insulin resistance and sensitivity (judged by fasting insulin, HOMA-IR, 

ISI) and β-cell function (judged by HOMA-β, CIR, IGI) improved during weight 

loss, reflecting improved hepatic insulin response. Furthermore, improvement of 

glucose tolerance (judged by IGT-status or 2-hour glucose levels, AUCGlucose and 

AUCInsulin), was first noticed after weight maintenance, thus reflecting improved 

peripheral insulin sensitivity.  

A total of 58 metabolite profiles during an OGTT (at fasting, 30 and 120 minutes) 

at baseline, weight loss and weight maintenance were analyzed in the obese group. 

In addition, the changes in the OGTT-elicited metabolite patterns occurred 

differentially during weight loss and weight maintenance. Metabolite OGTT-

response improvement was determined from the OGTT response reported in lean 

healthy individuals
49, 52, 53

. Out of the 16 altered metabolite profiles identified in 

paper I, roughly half of these improved towards a lean profile after the weight loss 

program. Table 1 shows groups of improved metabolite profiles, either after 

weight loss or weight maintenance, compared to the expected healthy profile. 

Surprisingly, only three metabolites (tyrosine, malate and pyrophosphate) were 

identified to have a statistically significant improved profile after weight loss. It is 

probable though, that more early improvements would be significant in a larger 

cohort. In addition, phenylalanine was not grouped with weight loss improvement 

since it did not share the same profile as the primary lean reference group
49

, but it 

shares the same profile reported by Shaham et al
52

. Therefore, further investigation 

may clarify whether phenylalanine should be included in the weight loss 

improvement group. In addition, both phenylalanine and tyrosine, which are 

closely biologically linked, showed alteration during the first 30 minutes. IGI 

reflects the initial insulin response (during the initial 30 minutes). This motivated 

the analysis to determine if IGI was associated with change in the aromatic amino 

acids. Glucose-elicited suppression of the aromatic amino acids tyrosine and 

phenylalanine was enhanced after weight loss. The enhanced suppression 

(analyzed as AUC) of tyrosine and phenylalanine, respectively, was associated 

with improved IGI after weight loss (tyrosine: r=0.72, p=0.013; phenylalanine: 

r=0.63, p=0.039).   

The OGTT-elicited suppression and/or lack of increase in levels of nine 

metabolites, together with glucose and insulin, improved towards the lean profile 

after weight maintenance, paralleling an improvement in glucose tolerance (Table 

1). All identified fatty acids improved towards the lean profile first after weight 
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maintenance, except stearate, which did not improve during the course of weight 

loss treatment. Stearate, which is a saturated fatty acid, has shown a slower 

decrease during OGTT than its monounsaturated counterpart oleate
50

.   

Table 1 Metabolite OGTT-profiles at baseline, weight loss and weight maintenance 

Grey shadow represent metabolite profiles at baseline for obese individuals which was presented and published in 
paper I. *Pyrophosphate improves during weight loss, although return to baseline profile after weight maintenance.   

 

Recent reports have shown that a cluster of BCAAs, together with the aromatic 

amino acids (tyrosine and phenylalanine), were associated with HOMA-IR in 

overweight and obese humans
38

. Importantly, weight loss-mediated improvement 

of this cluster paralleled an improvement in HOMA-IR
66

. Furthermore, HOMA-IR 

has been reported to associate with hepatic insulin resistance regardless of glucose 

tolerance capacity
92

, and therefore, our results may indicate a connection between 

aromatic amino acids and hepatic insulin sensitivity. Likewise, the improved 

insulin-mediated deterioration of BCAAs and fatty acids may indicate increased 

insulin sensitivity in peripheral tissues after weight maintenance. This points 

towards careful consideration of metabolite markers during a weight loss program 

to determine when a metabolic improvement is expected to show.  Moreover, in 

paper I and II, we identified several altered metabolite responses during an OGTT 

to improve towards a healthier profile after participating in the weight loss 

program. A summary of the metabolic pathways that improved in the obese group 

after weight loss and weight maintenance, along with markers that were identified 

during the OGTT, are presented in Figure 6.  
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Figure 6 Summary of metabolites during an OGTT 
These metabolites (with specific markers pointed out) are expected to decrease in insulin sensitivity situation, but 
show altered response in obese insulin resistant humans and, more importantly, improve with weight loss treatment. 
These markers may therefore be used to evaluate improved energy metabolism after weight loss and weight 
maintenance. Tyrosine improved already after weight loss, whereas the others have a noticeable improvement after 
weight maintenance, when peripheral insulin sensitivity improved.  

Heterogeneity within the obese group (paper I-II) 

Metabolite analysis also revealed a larger heterogeneity in metabolite response 

during the OGTT in the obese group compared to lean (paper I). To illustrate this, 

we focused on the 2-hour decline of the BCAAs isoleucine and leucine, as well as 

FFAs (palmitatic-, lauric-, oleic-, pentadecanoic- and stearic acid). Concerning 

isoleucine and leucine, we observed a consistent decrease in lean of 51±2%, 

whereas in obese the response was scattered with an average of 19±13%. 

Considering the fatty acids, a strong decrease of 79±2% was noticed in the lean 

group and a weaker decrease of 55±3% in the obese group. A potential 

explanation may be that the β-cell function (assessed by HOMA-β) associated 

with levels of isoleucine and leucine at each time point (fasting: p<0.0001, 30 

minutes: p=0.016 and 120 minutes: p=0.02). This may indicate the ability to 

secrete compensatory insulin, is affecting the isoleucine and leucine levels. In 

addition, the 2-hour fatty acid level or the decrease of fatty acids were associated 

with HOMA-β (p=0.008), 2-hour glucose (p<0.0001), 2-hour insulin (p<0.001), 

HOMA-IR (p=0.001) and ISI (p<0.0001). This suggests that fatty acids, which are 

normally very responsive to insulin, are also strongly affected by insulin 

resistance. Recent studies have observed elevated BCAA levels together with a 

high-fat diet to be associated with development of obesity-related insulin 

resistance
26, 28

.  
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Consequently, we also investigated the heterogeneous response in the obese group 

after weight loss and weight maintenance in paper II. Interestingly, we observed a 

greater heterogeneity in the response after weight loss than at baseline in the 

obese, compared to lean subjects (from paper I). Despite this, the heterogeneous 

response was markedly reduced after weight maintenance (Figure 7).  

 
 
Figure 7 Two-hour decline of fatty acids, isoleucine and leucine during an OGTT 
Weight loss decrease of fatty acids (laurate, oleate and palmitate: -56.0±4.1%) and scattered response of isoleucine 
and isoleucine (3.8±14.2%) is more variable than at baseline (reported in paper I). A larger decline of both fatty acids 
and the BCAAs isoleucine and leucine was observed after weight maintenance (fatty acids: -73.0±1.5%, isoleucine 
and leucine: -28.5±7.9%).    

Altered fasting metabolite levels improved with weight 

loss and weight maintenance treatment 

Change in fasting amino acid levels with weight loss and weight 

maintenance (paper III) 

Fasting amino acid levels were studied after the obese individuals participated in 

the weight loss and weight maintenance program. The obese participants lost on 

average 20% of their initial weight and sustained this weight during a six month 

weight maintenance phase (±3.9%). An improved amino acid profile was 

determined as change toward levels found in normal weight subjects. Out of the 18 

amino acids analyzed, improved levels of ten amino acids were observed after 

weight loss, and a total of eleven amino acids improved after weight maintenance. 

Lysine and valine improved after weight loss but then returned to baseline levels 

after weight maintenance.  
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Further evaluation of change in amino acid levels after participating in 

a weight loss program (paper IV) 

To validate our findings from paper III, fasting levels were analyzed in a larger 

obese cohort (n=84) before (BMI 42.6±5.6, mean±SD) and after participating in a 

weight loss program (BMI 36.1±6.5, duration 0.9 years [range: 0.3-3.1]). Over 70 

serum metabolites were identified in all subjects at baseline and follow-up, and 

58% metabolites changed with the average weight loss of 18.8±14 kg. Metabolite 

change from baseline to follow-up was observed for 42 metabolites (58%) and 30 

of these metabolites were unique for those with a weight loss greater than 10%. 

Due to the timespan and structure of the weight loss program, baseline and follow-

up in this paper are comparable with baseline and weight maintenance in paper III. 

Weight loss-induced change in levels of asparagine, alanine, aspartate, tyrosine, 

phenylalanine, glutamate, isoleucine and leucine were confirmed in this paper and 

consistent with other reports
65, 66, 68

. Even so, the decrease in levels of the BCAA 

valine, could not be confirmed in this report, compared to paper III, and has shown 

inconsistent change in other reports as well
64, 66-68

. A summary of metabolites that 

are modifiable with weight loss and weight maintenance is presented in Figure 8.     

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8 Metabolite changes with weight loss and weight maintenance in obese humans 

A schematic overview of some amino acids and general fatty acid involvement in energy metabolism. Bold font 
indicates that the metabolite was analyzed in this thesis. Red arrow indicates if we observed change during the weight 
loss treatment. *indicates if the altered metabolite levels have been reported in obese individuals, all except glycine 
and asparagine are elevated. The potential decrease of valine was not conclusive and needs to be further validated. 
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Amino acid levels predictive of weight loss treatment 

BMI-associated amino acid levels (paper III) 

Many studies have observed altered fasting metabolite levels in people with 

obesity and/or T2D, compared to healthy glucose tolerant individuals
27-29, 93

. 

Particularly the amino acids have been associated with metabolic disorders and, 

due to their diverse and important metabolic role, have recently received more 

focus
34-36, 94, 95

. In paper III, fasting amino acid levels were tested against obesity 

traits (BMI and waist circumference [WC]) in the MDC-CC cohort, an 

independent prospective study and separated from the obese cohort. After 

backward elimination, eight of 18 detected amino acids were associated with 

obesity (positive association: alanine, glutamate, isoleucine, phenylalanine, 

tyrosine and valine, and negative association: asparagine and glycine), and 

adjusted for age, gender, T2D, systolic blood pressure and anti-hypertensive 

treatment. The amino acids were also tested against categorical measures of 

obesity (BMI and WC, Figure 9).  

 

 
Figure 9 Odds ratio for amino acids associated with obesity 
Amino acid levels were analyzed against categorical measures of obesity as either waist circumference (WC) or BMI 
(WC>88 cm for women and WC>102 cm for men, or BMI≥30 kg/m

2
). Analysis was adjusted for age, gender, systolic 

blood pressure, anti-hypertensive treatment and type 2 diabetes status. DM-AA; diabetes-predictive amino acids 
score (including isoleucine, tyrosine and phenylalanine).    

The same amino acids were significant in both the BMI and WC models, which 

included alanine, asparagine, glutamine, glutamate, glycine, isoleucine, ornithine, 
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phenylalanine, proline, threonine, tyrosine, valine and the DM-AA score. Since 

DM-AA score consists of isoleucine, tyrosine and phenylalanine, it is not 

surprising that this score showed strong significance. However, considering that 

this score was originally found to predict the risk of developing T2D
36, 41

, it may 

be that this score, and thereby also the individual amino acids, are linked to the 

insulin resistant part of the obese individuals. Others have previously reported 

association of these amino acids with BMI, however, some studies have also 

shown contradicting results
28-30, 96-100

. The most consistent findings have been 

regarding the BCAAs isoleucine and valine and their elevated levels are associated 

with increased BMI, as it was also observed in this report
28-30, 97

.  

Obesity and treatment-modifiable scores (paper III) 

By identifying BMI-associated amino acids, we could utilize these data to create 

scores informative of the potential benefit, or lack of benefit, of a weight loss and 

weight maintenance program based on the amino acid changes observed. Thus, the 

OB-BMI score represents the overall risk, whereas the WLWM-BMI score 

represents the treatment-modifiable risk. Both scores were adjusted for gender, 

age, systolic blood pressure (SBP), anti-hypertensive treatment (AHT) and T2D 

status. We tested the scores both for BMI and WC but since the association model 

for amino acids and BMI was higher (r
2
=0.54) than for WC (r

2
=0.31), further 

results are limited to the association with BMI. The amino acids included in the 

scores are alanine (Ala), asparagine (Asn), glycine (Gly), isoleucine (Ile), tyrosine 

(Tyr) and valine (Val).  

 

𝑂𝐵 − 𝐵𝑀𝐼 = 26.8 + 0.92[𝐴𝑙𝑎] − 1.40[𝐴𝑠𝑛] − 0.58[𝐺𝑙𝑦] − 0.61[𝐼𝑙𝑒] + 1.03[𝑇𝑦𝑟] + 1.01[𝑉𝑎𝑙]

+ 0.12[𝑠𝑒𝑥] − 0.061[𝑎𝑔𝑒] + 0.02[𝑆𝐵𝑃] + 0.98[𝐴𝐻𝑇] + 1.50[𝑇2𝐷] 

 

𝑊𝐿𝑊𝑀 − 𝐵𝑀𝐼 = 27.9 + 0.94[𝐴𝑙𝑎] − 1.62[𝐴𝑠𝑛] + 1.33[𝑇𝑦𝑟] − 0.22[𝑠𝑒𝑥] − 0.07[𝑎𝑔𝑒]

+ 0.02[𝑆𝐵𝑃] + 1.04[𝐴𝐻𝑇] + 1.84[𝑇2𝐷] 

Whether or not these scores are applicable for clinical evaluation needs to be 

tested in an independent study. However, to exemplify and compare the 

performance of the OB-BMI and WLWM-BMI scores before and after weight 

loss, we simulated different scenarios using realistic amino acid concentrations. 

We created two non-diabetic fictional persons, with same sex, age, systolic blood 

pressure and no hypertensive treatment. They were constructed to have equal pre-
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treatment OB-BMI score but containing different amino acid concentration 

compositions of the amino acids associated with BMI. Even though the amino acid 

levels are realistic, they were intentionally chosen to be highly modifiable by 

weight loss for one subject while only partly for the other. The post-treatment OB 

score differs depending on how these amino acid profiles are affected by treatment 

illustrating the differential benefit of weight loss over the other (Figure 10). When 

instead using the treatment-modifiable score, WLWM-BMI, this relative benefit is 

apparent already when evaluating the obese individuals prior to weight loss. 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 10 OB-BMI and WLWM-BMI before and after weight loss 
Hypothetical, but realistic, amino acid compositions for two individuals and their OB-BMI and WLWM-BMI scores 
before (pre) and after (post) a weight loss intervention. The OB-BMI score at baseline was set to be equal, although 
the specific amino acid concentrations were different.  

As this example illustrated, two individuals with the same OB-BMI score at 

baseline, but consisting of different amino acid concentrations, show an expected 

large score difference after weight loss. Due to this difference in the outcome of 

OB-BMI score (post), it is noticeable that the score is sensitive to difference in 

amino acid composition. Thus, due to different concentrations of the same amino 

acids, one individual (blue) is shown to benefit more over the other (red). When 

focusing on the amino acids that are expected to improve, i.e. WLWM score, then 

it is possible to see already before treatment which one who would benefit more 

from the weight loss program. The WLWM-score was different from the OB-score 

depending on the amount of modifiable burden. Hypothetically, the WLWM-

scores could be used in evaluating the treatment-specific likelihood of benefit for 

an individual, although this needs to be tested in a clinical trial. Previous 

prediction models of weight loss and weight maintenance have included fasting 

glucose, HOMA-IR, initial weight trajectories, circulating angiotensin-converting 

enzyme, inflammatory markers, psychosocial factors, leptin concentrations or first 

evaluating initial weight loss trajectories to predict the outcome
101-107

. However, no 

model has been successfully implemented in clinical praxis so far. There are 
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several factors that need to be improved for application of such model, like easier 

analysis tools, better prediction and individualized indicator
108

.  

Evaluation of the obesity scores in a different weight loss cohort (paper 

IV) 

In paper IV, we used this larger cohort to also evaluate the obesity scores, OB-

BMI and WLWM-BMI, from paper III. Neither the OB-BMI nor the WLWM-

BMI scores differed at baseline and follow-up when analyzing the complete cohort 

or when divided into the weight loss groups (≥10% and <10% weight loss). 

However, when looking at the change from baseline to follow-up in score level, 

then both scores showed a significant change (p<0.0001). There was no significant 

difference when comparing the OB-BMI and WLWM-BMI scores against each 

other, which may be due to that the scores only differ in a few amino acids, but it 

may also be due to lack of power. Nevertheless, when comparing the change in 

scores of an individual from 5 to 10 units decrease in BMI, a larger change was 

observed in the WLWM-BMI score, compared to the OB-BMI score (Figure 11). 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 11 The change in BMI against change in obesity score 
Scatter plot illustrating the change in obesity score i.e. OB-BMI (black) and WLWM-BMI (red), from baseline to follow-
up and the relative change in BMI. Scores were presented in a logarithmic scale. Shape is depending on weight loss: 
≥10% (triangles) and weight loss <10% (circles). Correlation coefficient was calculated for each analysis using 
Spearman’s rank correlation test. Correlation for OB-BMI score: r = 0.58, p<0.0001 and correlation for WLWM-BMI 
score: r = 0.55, p<0.0001. 
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The DM-AA score was also analyzed, but excluding participants with T2D 

(n=27). In paper III, we observed a decreased DM-AA score with weight loss 

treatment. In the current study, we saw a borderline significance (p=0.07) in DM-

AA decrease in the ≥10% weight loss group. On the contrary, a significant 

increased risk was observed in the <10% weight loss group. When including all 

participants, a correlation between the DM-AA score with decreased BMI (r = 

0.39, p<0.001) and with HOMA-IR (r ≥0.3, p≥0.01) was observed. The DM-AA 

score, which consists of isoleucine, tyrosine and phenylalanine, has been 

associated with insulin resistance, both in this report (paper IV) and by others
39, 66

. 

Weight loss-associated metabolite levels  

Baseline metabolites associated with change in BMI (paper IV) 

Disturbed energy metabolism is a common trait of pre-diabetic obese individuals, 

although the mechanisms behind it are not yet fully understood. Fortunately, 

weight loss has shown to improve several obesity-related complications
9, 45, 56, 57

. It 

would therefore be profitable to identify metabolites alterations that are already at 

baseline associated with weight loss success, and thereby provide important 

information about how to guide treatment options on an individual level. In paper 

IV, we found decreased BMI to be associated with 13 baseline metabolite levels 

(Figure 12). Several of these, including glucose, myo-inositol, malate, fumarate, 

xylitol and heptanoic acid are involved in energy metabolism. Out of these 

metabolites, 2-aminobutyric acid, glyceric acid and xylitol were significantly 

associated with categorical separation of weight loss (defined as limit of 10% 

weight change). We further looked only at xylitol and found that those subjects 

that had lower levels of xylitol (split by half) had a 5.5-fold larger chance of 

belonging to the group with ≥10% weight loss. How xylitol is absorbed from food 

and metabolized in humans is not well known, but due to their low calorie count 

and weak insulin stimulation, it is used as a sweetener. In other words, subjects 

that eat these food additives were less likely to benefit from this type of weight 

loss program in this report. However, more research needs to be further conducted 

to learn more about the metabolic route of xylitol. Since the metabolic regulation 

and implication of xylitol is largely unknown, it is not possible at this point to 

determine if xylitol is mainly reflecting dietary habits or metabolic processes. For 

this reason, it is too preliminary to conclude whether xylitol is involved in a 

complex phenotype where sweetened food, other than carbohydrates, has a 

negative influence on energy metabolism, or if it rather reflects at a dietary pattern. 
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Figure 12 Baseline metabolites associated with change in BMI 
Significant metabolites at baseline that was associated with change in BMI. Loadings from the first principal 
component obtained from multivariate data analysis. Positive loadings reflect higher baseline levels and negative 
loadings reflect lower baseline levels. Negative change in BMI reflect a decrease from baseline for follow-up. 

Weight-loss induced change in metabolite levels associated with 

decrease in BMI (paper IV) 

We also analyzed the association between change in metabolite levels and weight 

loss (Figure 13). In this model, we identified 15 metabolite levels that changed 

with weight loss and were associated with a decrease in BMI. These metabolites 

included the three BCAAs and tyrosine, all of which were also associated with 

improved insulin resistance (data not shown), and are in accordance with a report 

by Shah et al
66

.   

 

 

 

 

 

 

 

 
 
Figure 13 Change in metabolite levels associated with change in BMI  

Change in metabolite levels that were significantly associated with change in BMI. Loadings from the first principal 
component obtained from multivariate data analysis. Positive loadings reflect increased levels and negative loadings 
reflect decreased levels from baseline to follow-up. Negative change in BMI reflect a decrease from baseline for 
follow-up.  
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Major conclusions 

In this thesis, I have used a metabolomics technique to explore relative metabolite 

levels found in glucose intolerant obese individuals after a weight loss regime. 

With the aim to identify altered levels typical for obesity traits, and those which 

may improve with non-surgical treatment, might lead to better understanding and 

evaluation of the heterogeneity normally seen in metabolic disorders. By 

combining our results, we hope to provide a more comprehensive insight into the 

metabolite changes in obese humans. Furthermore, we identified over 70 

metabolites that are present in the obese state, as well as how it may, or may not, 

change with weight loss treatment. With our findings, we have been able to 

glimpse into the metabolic processes occurring after weight loss, which may thus 

reflect a person’s metabolic health. 

 

A summary of the major conclusions: 

 Metabolite profiles during an OGTT in obese individuals compared to lean 

individuals revealed 16 deviating metabolite profiles. These deviations were 

categorized into three groups; 1) delayed reduction of five fatty acids, 2) 

increased levels at 30 minutes for five amino acids, and 3) a blunted 

increase at 30 minutes of six metabolites (aim I). 

 Roughly half of the 16 deviating metabolite profiles at baseline improved 

towards the lean profile after the weight loss program (aim II). 

 Differential OGTT improvement of metabolite profile during an OGTT 

after weight loss compared to weight maintenance. Specifically, aromatic 

amino acids improved after weight loss when hepatic insulin sensitivity 

increased. On the other hand, BCAAs and several fatty acids improved first 

after weight maintenance, concomitant with increased peripheral insulin 

sensitivity (aim II). 

 We found that the heterogeneity observed in the OGTT response at baseline 

was surprisingly even more deteriorated after weight loss and distinctly 

improved after weight maintenance. Specifically, we observed an improved 

decrease of 34% for isoleucine and leucine, and of 17% for FFA from 

weight loss to weight maintenance. 
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 Ten fasting amino acids were associated with categorical obesity 

measurements, i.e. BMI and WC (aim III).  

 Eleven fasting amino acids improved with weight loss and weight 

maintenance (aim III), and eight out of these amino acids were validated in 

a larger cohort, including asparagine, alanine, tyrosine, phenylalanine, 

glutamate, isoleucine and leucine (aim IV). In total, we observed changed 

levels of 30 metabolites in the ≥10% weight loss group in paper IV. 

 Calculated obesity scores, both for baseline and modifiable with weight loss 

were constructed in paper III (aim III) and were further analyzed in the 

larger cohort in paper IV (aim IV). In paper IV, we observed that even 

though both scores were associated with weight loss, the WLWM-BMI 

score indicated a higher responsiveness to weight change. Nevertheless, it is 

possible that a larger cohort and/or additional variables are necessary for a 

stronger prediction. 

 We identified 13 metabolites at baseline that were associated with weight 

loss, among which xylitol showed a strong and interesting association (aim 

IV). Since many of these 13 metabolites are also frequently used 

sweeteners, these findings may indicate that dietary habits prior to weight 

loss can influence weight loss success. 

 Finally, weight loss was associated with change in 15 metabolite levels, 

including amino acids such as BCAAs, tyrosine and lysine (aim IV). 

 

Collectively, an increased understanding of circulating metabolite changes 

associated with weight loss, as well as sustained weight maintenance, was 

presented in this thesis. This knowledge is useful to evaluate beneficial weight loss 

treatment in the future. 
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Summary in Swedish –  

Populärvetenskaplig sammanfattning 

Fetma – ett (över)viktigt problem  

Förr i tiden ansåg man att övervikt och fetma var ett tecken på rikedom och god 

hälsa då det visade att man hade god tillgång till mat. I takt med människans 

livsstil har förändrats genom att den är mindre fysiskt krävande och att mat med 

hög kalorihalt ofta är både lättillgänglig och billigare, har energiförbrukning 

minskat och energiintaget ökat. År 2014 var 1,9 miljarder (39%) vuxna personer 

överviktiga i världen, varav 600 miljoner (13%) var diagnostiserade med fetma. 

Denna fetmaepidemi förutspås att öka så att upp till 50% av jordens befolkning 

kommer att vara feta år 2030. Normalvikt, övervikt och fetma definieras genom att 

man räknar ut ett kroppsmasseindex (eng. body mass index [BMI], med enheten 

kg/m
2
). Övervikt klassas om man har ett BMI mellan 25,0 – 29,9 kg/m

2 
och fetma 

om man har ett BMI över 30,0 kg/m
2
. Studier har visat att personer med fetma har 

ökad risk för att utveckla följdsjukdomar så som typ 2 diabetes (T2D), hjärt-

kärlsjukdomar och sömnapné.   

Metabolomik 

Metabolomik är en analysmetod då man kan studera mängder med substanser, så 

kallade metaboliter (små molekyler) som finns i vävnader, blod och celler. Detta 

gör det möjligt att studera ämnen som medverkar i biologiska processer som sker i 

kroppen. Vi har använt denna metod för att mäta metaboliter i blodet och för att 

studera metabolismen (ämnesomsättningen) hos individer med fetma. 

Bristfällig ämnesomsättning och glukosbelastning 

Ett ökat energiintag och otillräcklig energiförbrukning, som kombinerat är den 

största bidragande faktorn till fetma, resulterar i att fettvävnad lagrar 

energiöverskottet som fett. Många med fetma får som konsekvens en bristfällig 
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ämnesomsättning då kroppen inte kan ta upp och omsätta överskottet av energi 

från mat. De näringsämnen som främst används som energi är kolhydrater (som 

bryts ner till glukos), protein (bryts ner till aminosyror) och fett (fettsyror). Mat tas 

upp från magsäcken och tarmen till blodet för att förse kroppen med näring och 

samtidigt frisätter så kallade β-celler i bukspottskörteln insulin. Detta hormon får 

vävnader att ta upp glukos från blodet och lagra det som glykogen i lever. 

Ett sätt att undersöka glukosregleringen efter en måltid är att göra ett s.k. 

glukosbelastningstest då man efter en natts fasta dricker en sockerlösning och 

därefter mäter blodsocker- och insulinnivåen i blodet. I normala fall ökar nivån av 

insulin då sockernivån ökar, vilket får kroppen att ta upp socker från blodet till 

vävnader, så den ökade blodsockernivån sjunker tillbaka till grundnivån (sker 

oftast inom två timmar). Det är vanligt att personer med fetma har försämrad 

förmåga att reglera glukosnivån till en normal nivå och de har då utvecklat 

insulinresistens. Detta kan med tiden utvecklas till T2D. Vi har under 

glukosbelastningstestet studerat andra metaboliter än glukos i blodet hos personer 

med fetma. Det är nämligen känt sedan tidigare att även nivåerna av aminosyror 

och fettsyror sjunker vid frisättning av insulin hos friska individer, men det är 

mindre känt hur de beter sig vid fetma. Vi har jämfört resultatet från 

glukosbelastningen vid fastande, och efter 30 samt 120 minuter mellan individer 

med eller utan fetma. Vi kunde då se att de personerna med fetma hade en 

halvtimmes försenad sänkning av fem fettsyror jämfört med friska personer. Hos 

de överviktiga personerna ökade aminosyranivån de första 30 minuterna innan de 

började minska. Medan hos de friska personerna inte fanns någon ökning, bara 

sänkning. Dessa skillnader ger en inblick hur en rubbad metabolism ser ut vid 

fetma efter en måltid. Vi har härmed identifierat metaboliter med försämrad 

respons som är relaterat till den metabolt komplexa åkomman fetma.   

Viktnedgångsbehandling  

Dagens hjälp för att gå ner i vikt är väldigt generaliserad och inga tydliga riktlinjer 

finns. Viktuppgång efter avslutad behandling är vanligt. Vår forskargrupp har 

därför studerat olika metaboliter så som aminosyror, fettsyror och kolhydrater efter 

viktnedgång, samt efter cirka sex månaders viktstabilitet. Syftet med att studera 

detta är att få en ökad förståelse över potentiell förbättring i ämnesomsättning. 

Glukosbelastning efter viktnedgång 

När vi tittade på metaboliternas respons under en glukosbelastning hos personer 

med fetma efter att de gått ner mer än 10% av sin initiala vikt såg vi att 
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aminosyran tyrosin och potentiellt fenylalanin, en relaterad aminosyra till tyrosin, 

hade en förbättrad profil efter 30 minuter. Även insulinresistensen verkade vara 

förbättrad i levern efter viktnedgångsfasen. Något förvånande såg vi att fler 

aminosyror så som isoleucin och leucin, samt några fettsyrors profil förbättrades 

först efter viktstabilitetsfasen. Då verkade även insulinkänsligheten i övrig vävnad 

(så som muskler och fettvävnad) förbättras.  

Aminosyror relaterade till BMI och förändring vid viktnedgång 

Vi och andra forskare har sett att vissa aminosyror är associerade med BMI. 

Exempelvis så har ökad blodkoncentration av isoleucin, tyrosin och fenylalanin 

observerats i personer med fetma. Dessa aminosyror har även associerats till 

insulinresistens och T2D. I vår studie kunde vi se att viktminskning resulterade i 

minskade nivåer i dessa aminosyror, och de bibehölls lägre även vid viktstabilitet. 

Genom att studera aminosyror relaterade till BMI och vilka som förbättrades med 

viktnedgång kunde vi konstruera en ekvation med aminosyror som var relaterad 

till BMI. Denna ekvation inkluderade även status på högt blodtryck och T2D och 

därmed även fångade andra fetmarelaterade riskfaktorer. I en annan 

viktnedgångstudie, kunde vi testa ekvationen och såg att risknivån sänktes med 

viktnedgångsbehandling. Dock är det för tidigt att utvärdera om ekvationen är 

tillräcklig för att kunna användas på individuell nivå.  

Sammanfattning 

Vår forskning har identifierat en förbättring i flera fetma-relaterade aminosyror 

och fettsyror hos personer med fetma efter en viktnedgångsbehandling som även 

inkluderade en viktsabilitetsfas. Vi såg att förbättringen sker i olika faser, 

sannolikt relaterat till när insulinkänsligheten förbättras vid viktnedgång. Slutligen 

kan vi bekräfta att metabolomik är en användbar metod för att studera metaboliter 

hos personer med fetma för att få ökad förståelse över vilka metaboliter som kan 

tänkas användas för utvärdering av försämrad, men även förbättrad, 

ämnesomsättning.  
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