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Synchrotron radiation is a powerful tool for many scientific application and it has 
greatly contributed to the progress in many fields of science. Storage rings produce 
synchrotron radiation with outstanding properties and dedicated optics is necessary 
to exploit these properties. In this work several concepts of optics are studied in 
order to better use the synchrotron radiation produced at storage rings
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[...] all our science, measured against reality,
is primitive and childlike—and yet it is the most

precious thing we have.
Albert Einstein





ABSTRACT

Synchrotron radiation sources have greatly contributed to the
progress in many fields of science. The development of the stor-
age ring technologies has made possible to obtain very low emit-
tance electron beams, which together with the use of undulators al-
low guiding a very high photon flux into a very small spot required
by the experiments.

Development of the sources has been accompanied with equally
strong progress in beamline optics, improving further experimen-
tal conditions and opening new possibilities in science. This follows
from the fact that beamlines have to transport the photon beam from
the source to the experiment while conserving the beam quality and
the photon flux of the source as good as possible.

This work uses basic concepts of X-ray optics to develop beam-
lines and beamline instrumentation. First, a beamline design that
uses astigmatism is discussed. This project takes advantage of the
low vertical emittance of the MAX II and MAX IV storage rings to im-
prove the flexibility of soft X-ray beamlines. Secondly a polarimeter is
introduced, a device that characterizes the polarization of the light at
the experimental station. In this part a new method is presented for
analyzing the polarimeter data. Finally, applying wave optics to X-
ray optics is presented and discussed. It is shown how new tools were
added into wave propagation modeling, taking into account surface
errors of the optical components used in grazing incidence.

For these studies the source properties, X-ray interaction with
matter together with many concepts in optics are needed and are
also presented here.
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POPULÄRVETENSKAPLIG

SAMMANFATTNING

Bland alla olika forskningsexperiment som utförs är ett vanligt sätt
att man låter en ljusstråle passera genom ett prov, och sedan stud-
erar man resultaten av denna växelverkan mellan ljus och prov.
Många ljuskällor har använts i detta syfte, till exempel glödlampor
och laserljus. En modern ljuskälla som används för detta ändamål är
de så kallade lagringsringarna. I lagringsringarna accelereras elek-
troner som sedan lagras, så att de kan cirkulera med en hastighet
nära ljusets egen. När elektronerna färdas i dessa hastigheter i en
krökt bana avger de en speciell typ av ljus - synkrotronljus. Den vik-
tigaste egenskapen hos synkrotronljuset är att det är mycket kon-
centrerat (ett högt flöde i ett litet område) och att det täcker mycket
höga energier, från ultraviolett ljus (UV) till röntgenstrålning (UV-
och röntgenstrålning är till sin natur samma som synligt ljus, men
har högre energi).

Innan UV-ljuset eller röntgenstrålningen når provet som skall
studeras måste deras egenskaper i de flesta fall ändras för att upp-
fylla kraven i experimenten. Detta görs med optiska element såsom
speglar, linser, gitter och kristaller. Grundtanken liknar det som görs
i experiment med synligt ljus, men UV-ljus och röntgenstrålning har
vissa egenskaper som ställer speciella krav på de optiska enheterna.
Exempelvis måste speglar för röntgenstrålning fungera vid extremt
små vinklar mellan ljusstrålen och spegelytan.

Detta arbete behandlar speciallösningar där man använder UV -
och röntgenoptik utvecklade för synkrotronljus. En av dessa är inrik-
tad på en optisk konstruktion som utnyttjar den höga kvaliteten hos
MAX II och MAX IV ljuskällor för att förbättra flexibiliteten i experi-
menten. Nästa del av arbetet beskriver en anordning för att mäta po-
larisationen hos ljus (en av ljusets egenskaper), som passerar genom
provet. I den sista delen undersöks hur vågegenskaper hos röntgen-
strålning påverkar optikens prestanda.
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POPULAR SCIENTIFIC INTRODUCTION

Among the large variety of experiments performed in science, a com-
mon one is to pass a light beam through a sample, the object to be
studied, and to study the outcomes of the light-sample interaction.
Many light sources have been used for this purpose, like light bulbs
and lasers. A modern light source used nowadays is the so-called
storage ring. In the storage rings electrons are accelerated and then
stored, so that they circulate at a speed close to the speed of light.
At these speeds the electrons emit a special kind of light when they
travel in a bent path: the synchrotron light. The main property of the
synchrotron light is that it is very concentrated (a high flux in a small
area) and that it covers very high energies, from the ultraviolet light
(UV) to the X-rays (UV and X-rays are in their nature just like visible
light, but with higher energy).

Before reaching the sample under study, the properties of the UV
light and of the X-rays must be modified to meet the requirements
of the experiments. This is done with optical elements like mirrors,
lenses, gratings and crystals. The concept is similar to what is done
in experiments with visible light, but UV light and X-rays have some
particularities which require operating the optical devices in differ-
ent manners. For instance, mirrors for X-ray need to operate at very
small angles between the light beam and the mirror surface.

This work discusses special solutions using UV and X-ray optics
developed for synchrotron light. One of them focuses in an optical
design that exploits the high quality of the light sources in MAX II and
in MAX IV in order to improve the flexibility of the experiments. The
second part of the work describes a device for measuring the polar-
ization of light (one of its properties) that passes through the sample.
The last part studies how the wave properties of light affects the per-
formance of the optics.

ix
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CHAPTER 1

INTRODUCTION

Synchrotron Radiation from the Storage Rings

The unique properties of synchrotron radiation makes it a powerful
tool for a wide variety of experiments in science. Synchrotron radia-
tion (SR) is produced by charged particles at relativistic speed when
they are accelerated [Jackson, 1997]. Several light sources have been
developed in order to exploit this phenomenon, for instance storage
rings, free electron lasers (FEL) and energy recovery linear accelera-
tors [Als-Nielsen and McMorrow, 2001].

In a typical synchrotron light source, electrons are first accel-
erated up to relativist speed by a linear accelerator (LINAC) and
then stored in a circular accelerator, the storage ring (see Fig. 1.1).
The stored electrons produce light when they are forced to oscil-
late (“wiggle”) around their main orbit by magnetic structures, since
change of direction is equivalent to acceleration. These magnetic
structures are based in a periodic assembly of magnetic poles which
are called wigglers and undulators, where the assignment depends
on the strength of the magnetic field of the poles. Light is also emit-
ted when the electrons pass by the dipoles magnets which keep the
electrons in the circular orbit of the storage ring. Light sources based
on the light emitted by the dipole magnets are called second gener-
ation light sources, while the third generation sources are based on
wigglers and undulators.

Third generation storage rings distinguish themselves when
compared to other kind of light sources (e.g.lasers and discharge
lamps) by the production of very high brilliance photon beams, i.e.,
a very intense beam of very small dimensions and divergences (typi-
cally≈ 1015 photons in a cross section of≈ 100µm2 with a divergence
≈ 100µrad2). In addition, the light generated in the storage rings cov-
ers a broad energy range from ultraviolet light up to hard X-rays (i.e.,
between≈10eV and≈100KeV). Further advances in storage ring and
undulator technologies, like the development of low emittance stor-
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Figure 1.1. General representation of a storage ring and of a beamline.
Electrons are first generated in the electron gun and then accelerated by
a linear accelerator. Many facilities use an intermediary circular accelera-
tor, the booster, to inject the electrons at the correct energy in the storage
ring. The electrons are then kept circulating in the storage ring, where they
emit radiation when they pass trough undulators and bending magnets (not
shown in the figure). The beamline optics collects and transports the light to
the experimental station. During this process the light is made monochro-
matic and refocused to a small spot. In the experimental station the light in-
teracts with the sample to be studied and dedicated instruments detect the
outcome of the light-sample interaction. Credit of the image: Synchrotron
SOLEIL.

age rings and the development of elliptically polarizing undulators,
added new possibilities like even higher brilliance and control of the
polarization of the light.

More recently new developments are made possible by a new
class of storage rings, so-called diffraction-limited storage rings
(DLSR) [Eriksson et al., 2014]. The light from the DLSRs has a high
degree of coherence, a feature that was earlier possible to obtain only
with FELs for the X-rays regime1. This new class of storage rings re-
lies on the multi-bend achromat lattice concept [Einfeld et al., 2014],
and MAX IV 3GeV storage ring is the first to be built based on such
concept [Tavares et al., 2014].

Optics for Synchrotron Radiation

To exploit the possibilities offered by synchrotron radiation from the
storage rings, a dedicated optical setup is needed to modify the light

1Although FELs and storage rings cover the same energy range, they produce light
with different characteristics. In the case of coherent flux, FELs have a higher peak
value while storage rings have a higher integrated flux. It is out of the scope of this
work to make a systematic comparison and it is enough to note that although similar,
the differences make them suitable to slightly different scientific applications.
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Introduction

so that requirements set by experiments are met, while keeping the
good properties of the radiation from source. Synchrotron light, al-
though well collimated, has nevertheless some natural divergence
and covers a broad energy range. Therefore, the primary functions
of the optical setup are to refocus the light and to select a specific
photon energy (i.e., to make the light more monochromatic). These
optical setups are called beamlines (also seen in Fig. 1.1) and con-
sist of optical devices for X-ray, for instance grazing incidence mir-
rors, grating and crystal-based monochromators, compound refrac-
tive lenses, multilayer mirrors and zone plates, among others.

The variety of scientific applications of synchrotron radiation
means that designing specific beamlines will focus in different as-
pects and properties of light. To list few examples, photoelectron
spectroscopy has high requirements regarding energy resolution;
diffraction and scattering techniques have stringent limits for beam
divergence; and X-ray magnetic circular dichroism requires circu-
larly polarized light. More recently, DLSRs have made possible the
advent of many techniques that profit from the coherence of the X-
ray beam, like coherent X-ray imaging. High brilliance is advanta-
geous for the majority of techniques, for instance by making possible
measurements at small regions (micro and nano probes).

The different properties of light are addresses by various topics of
optics. One can say that theory of optics is formed by few layers as
shown in Fig. 1.2. The outermost layer presents the most complete
optical model and includes all the other, less complete models. As
we move to inner layers, approximations are used and as we move to
the outermost layer the complexity of the models increases. Being

Figure 1.2. Schematic
representation of optic theory and its
sub topics.

more specific, the division between quantum optics and electromag-
netic (EM) optics is set by the limit between classical and quantum
optics. EM optics assumes light as EM waves subject to Maxwell’s
equation. It describes to a large extent the interaction of light with
matter2 and the vectorial properties of the EM wave, which in turn
gives rise to the description of polarization of light. In the cases
where these vectorial properties are not relevant, the vectorial wave
can be approximated by a scalar wave and this results in wave optics.
Wave optics describes the wave properties of light and some phe-
nomena like diffraction and interference. If the wavelength of light
is much smaller than the dimensions of the optical setups, light can
be treated as rays and the problem is treated within ray (geometric)
optics. An additional and important topic is statistical optics, which
can actually be described as part of wave optics: it describes the light
generated by an ensemble of sources (like the individual electrons
in the storage ring) and is necessary for modeling partially coher-
ent light, which is in fact the case of DLSRs at some photon energies.
It is important to note that there is actually no hard limits between
the layers and many problems can be discussed across them, for in-

2In the cases where a quantum physical description is not required.
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stance considering rays with EM properties.
This work discusses how these different layers of optics are ap-

plied to beamline optics and beamline instrumentation at MAX II
and MAX IV storage rings. More specifically, ray optics, polarization
(EM optics) and wave optics are used and the text is divided in three
chapters accordingly: first ray optics is used to model a soft X-ray
beamlines, secondly EM optics is used to understand and measure
polarization, and finally wave optics tools are used to study beam-
lines at DLSR in the coherent and partially coherent regime.
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CHAPTER 2

RAY OPTICS APPLIED TO PGM BEAMLINES

The geometric properties of the synchrotron radiation have a depen-
dence in the photon energy and as a consequence light has different
properties at the opposite ends of the energy spectrum. For hard X-
rays the wave effects due to the wave properties of light are very often
negligible. For this case geometric optics can be used to model very
accurately the performance of a beamline. For soft X-rays the wave
effects are more evident and they are indeed observed, but for many
applications they have only minor effects in the performance of the
beamline and they can be neglected. The cases where wave effects
are relevant will be discussed in Ch. 4. This chapter shows that many
soft X-ray beamlines can be modeled by ignoring wave effects and by
taking advantage of simpler and more efficient calculations provided
by ray optics.

The features of beamline optics are dictated by the properties of
the interaction of the X-rays with matter. In the soft X-ray regime this
has two main consequences: first, it is not practical to use optical
devices like lenses and gratings based on transmission of the radi-
ation due to the high absorption of materials at these photon ener-
gies. Therefore, the most common optical components in a soft X-ray
beamlines are based on reflection, like mirrors and reflecting diffrac-
tion gratings. Secondly, the refractive index in this energy range is
lower than but very close to unity, which requires mirrors and grat-
ings to be operated in grazing incidence. However, even then the ef-
ficiency is still relatively small, about 10% for the gratings and about
80% for the mirrors[Petersen et al., 1995].

Very often geometric optics makes use of paraxial approxima-
tion [Born and Wolf, 1999], which in general assumes a small angle
between the incoming light and the normal of the optical surfaces.
This approximation does not apply for grazing incidence optics, that
is, to X-ray optics. Most of the the results in literature apply for parax-
ial optics (for instance Born and Wolf [1999]; Fowles [1975]; Saleh and
Teich [2007]), which means that some caution is required when using
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these references for X-ray optics. However ray optics for grazing inci-
dence is a well developed topic, and analytical results are described
for instance in [Peatman, 1997]. In addition, computer simulations
based on ray tracing method make use of geometric optics without
assuming paraxial approximation. For these reasons ray tracing has
been a valuable tool in modeling beamlines for synchrotron radia-
tion, with very accurate results[Cerrina and del Rio, 2010; Peatman,
1997]. Ray tracing simulations are extensively used in this work and
the method is described in more details in pg. 30.

Gratings have been used for more than 200 years to disperse
spatially the photons of different wavelengths[Loewen and Popov,
1997] and nowadays they have a central role in synchrotron radia-
tion beamlines as a fundamental part of a soft X-ray monochromator.
A typical beamlines in the soft X-ray regime are based on spherical,
toroidal or plane gratings monochromators[Peatman, 1997] (referred
as SGM, TGM and PGM respectively), used in a variety of geometries
(e.g. Rowland and Petersen geometry)[Padmore, 1989].

Among the aforementioned monochromators, the PGM based on
the Petersen geometry[Petersen, 1982]has been very successful com-
pared to others because its ease of operation. This is due to a fixed
exit slit position and even more due to the possibility to cover a huge
energy range with a single grating. Moreover, high quality surfaces
are crucial to reach high energy resolution, and planar surfaces can
be manufactured to much higher quality than spherical or toroidal
surfaces required for SGM and TGM beamlines. Therefore, it is not
surprising that PGM beamlines in Petersen geometry have been ex-
tensively used in almost every synchrotron radiation facility in the
world, including MAX-lab.

As an extension to the PGM in Petersen geometry, the plane grat-
ing can be illuminated with collimated light instead of the naturally
divergent light from the synchrotron source, resulting in improve-
ments in flexibility. The original Petersen geometry has some con-
straints that fix the operation mode of the beamline, but the PGM
with collimated light (cPGM) in turn is free of such constraints, mak-
ing possible to change the operation mode of the beamline at any
time during the operation. This makes possible to operate for in-
stance in mode for high energy resolution, high grating efficiency or
effective suppression of higher order light[Follath, 1997].

In this chapter also the main features of the Petersen type plane
grating monochromator are presented and discussed. Then the
evolution of this concept up to a new geometry is discussed: the
cPGM with astigmatic focus. This new concept was first proposed in
Paper I and implemented at SPECIES beamline, which is described
in Paper II. The chapter begins with introducing the geometric prop-
erties of the source, since they will play an important role in the beam
profile at the experimental station.

6



Ray optics applied to PGM beamlines

2.1 Undulators

In the past the high emittance of the electron beam in storage rings
resulted that the geometric properties of the radiation were mostly
defined by the properties of the electron beam. However, at low emit-
tance storage rings, like the ones at the forthcoming MAX IV, the char-
acteristic dimensions of the radiation can be bigger than the electron
beam dimensions. This is due to the diffraction limit and this af-
fects the apparent source dimensions especially at the soft X-ray and
lower energies (the properties of diffraction limited sources will be
discussed in more details in Ch. 4.1). Therefore good understanding
of the emission process is necessary in order to evaluate the perfor-
mance of soft X-ray beamlines at low emittance storage rings.

Third generation synchrotron radiation sources are based on in-
sertion devices (undulators and wigglers) placed in storage rings
[Als-Nielsen and McMorrow, 2001]. Insertion devices are magnetic
structures that force the relativistic electrons in a storage ring to
oscillate around the main orbit, resulting in the emission of syn-
chrotron radiation. They play an important role as high brilliance
SR sources, since it is always the source that is imaged to the sample
location.

Due to their importance, undulators have been widely studied
and the literature is extensive ranging from general descriptions [as
in Als-Nielsen and McMorrow, 2001; Willmott, 2011] to detailed pre-
sentations [like Clark, 2004; Onuki and Elleaume, 2003; Wiedemann,
2003]. The analytical description of the emitted radiation from an
undulator leads to complicated results, which will not be completely
described in this work. However, the main concepts will be discussed
here making use of numerical calculations to demonstrate important
properties of undulators radiation.

General Aspects

Figure 2.1. Reference frame
related to the undulator. The
electrons propagate on the direction
+z.

Different kinds of undulators force the electrons to various oscilla-
tory trajectories. For instance, in planar undulators the electron tra-
jectory oscillates in a single plane (e.g. x z plane, coordinate system
shown in Figure 2.1) whilst in an elliptical undulator the electron tra-
jectory in the transverse x y plane forms an ellipse.

In order to fully describe the emitted radiation it is necessary to
know the electron beam trajectory passing through the undulator,
which in turn requires the full knowledge of the magnetic structure of
the undulator. However, the geometric properties and the resonance
energies of the radiation are a consequence only of the periodicity of
the magnetic field in the undulator and no other information is re-
quired [Onuki and Elleaume, 2003]. This implies that the various un-
dulator types have common properties that can be addressed before
analyzing the specific characteristics in each case. These common
properties are presented in this section.
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2.1 Undulators

The starting point is to consider the simplest case: radiation
emitted by a filament electron beam. In such case, the angular spec-
tral flux of the radiation in the direction θx ,θy with frequency ω is
given by [Onuki and Elleaume, 2003]:

dΦn

dΩ
(θx ,θy ,ω, û ) =α

I

e
N 2

�

�~hn (θx ,θy )û
�

�

2
�

sin (πN (ω/ωR −n ))
πN (ω/ωR −n )

�2

(2.1)
where the angles θx and θy are the angles related to the ẑ direction in
the planes x z and y z , respectively. n is the harmonic number and
the total angular spectral flux is the sum over the harmonics:

dΦ

dΩ
(θx ,θy ,ω, û ) =

∞
∑

n=1

dΦn

dΩ
(θx ,θy ,ω, û ). (2.2)

In these equations N is the number of magnetic periods in the un-
dulator, α the fine structure constant, I the electron beam current in
the storage ring and e the electron charge. The complex unit vector
û is perpendicular to the direction of light propagation and defines
the polarization state.

Although the vector term ~hn in equation (2.1) depends on the har-
monic number, the equation shows that actually all the energy de-
pendence is in the last term, inside the square brackets. This is the
well known sinc function of the form sinc(x ) = sin x

x that has a max-
imum value equal to 1 for frequencies ω = nωR (see Figure 2.2 and
Figure 2.3). ωR is called the resonance frequency and ωn = nωR is
the harmonic frequency of order n . The resonance frequency is given
by:

ħhωR (θx ,θy ) =
1.24 ·10−6

λU
2γ2

h

1+ K 2
x

2 +
K 2

y

2 +γ2θ 2
x +γ2θ 2

y

i [e V ]. (2.3)

where λU is the undulator period, c the speed of light and γ the
Lorentz factor of the electrons. The Kx and K y parameters depend on
the magnetic field and on the undulator period1, and by controlling
these parameters it is possible to tune one of the harmonics to the
desired energy. An important aspect is that the resonance frequency
ωR depends on the angles of observation. In terms of the resonance
wavelength equation (2.3) becomes:

λR (θx ,θy ) =
λU

2γ2

�

1+
K 2

x

2
+

K 2
y

2
+γ2θ 2

x +γ
2θ 2

y

�

. (2.4)

1At this point, with no details about the magnetic field, it is not possible to define
the K parameters in terms of other undulator parameters in the well know depen-
dence of the magnetic field described later in page 39. However, for this discussion of
the general aspects this is not necessary.
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Ray optics applied to PGM beamlines

An additional property of sinc function is that the value of the
function drops to zero when ω

ωR
= n ± 1

N (Figures 2.2 and 2.3) .

Figure 2.2. Plot of sinc function for
N=2.

Considering that sinc2(0.442π) = 1
2 , the FWHM (full width at half

maximum) of the distribution can be derived as

∆ω

ωR
=

0.884

N
≈

1

N
. (2.5)

Such behavior can be observed comparing numerical examples: the
width of the distribution for N = 2 is∆ω/ωR ≈ 1/2= 0.5 in Figure 2.2
and ∆ω/ωR ≈ 1/20 = 0.05 in Figure 2.3 when N = 20. Typical num-
ber of periods in an undulator is N = 100, which results in a value of
FWHM equal to∆ω/ωR = 0.01.

Regarding the term ~hn (θx ,θy ), it does not have any dependence
with photon energy, though it does depend on the harmonic number
n , the electron energy, the K parameters and the angles of observa-
tion. Therefore, for a single harmonic and fixed operation mode of
an undulator (fixed γ and K parameters), this vector depends only
on the observation angle through θx and θy and has no effect over

Figure 2.3. Plot of sinc function for
N=20.

the spectral profile of the harmonic.
Due to the geometry of the radiation process (emission on axis),

one should expect that eventually the resulting flux has peaks at the
on-axis resonance frequencies ωo = ωR (θx = 0,θy = 0) and its har-
monicsωno = nωo . However, due to the angular dependence ofωR

(equation (2.3)), the contribution of the out of axis resonance fre-
quencies results in a maximum photon flux at energies different of
the harmonics ħhωno . Since the off-axis energies are smaller than on-
axis, the resulting maximum is also smaller. To evaluate this effect we
need to study the energy dependence of the angle integrated flux, as
discussed next.

Angle integrated spectral flux

Following the discussion of the previous section, we must evaluate
the angular integral of equation (2.1). As discussed, the spectral
properties depend only on the term of the sinc function on equa-
tion (2.1). On the other hand, the angular beam profile depends both
on the sinc term and on the vector term ~hn (θx ,θy ). However, since
the sinc term depends on the angles of observation throughωR (eq.
2.3) and the value of N is in general large, the variation of the sinc
term with (θx ,θy ) is much faster than the variation of the vector term.
Therefore, the vector term can be assumed constant while study-
ing the angular profile of the radiation, leaving only the sinc term to
be considered. This assumption makes possible to approximate the
spectral flux in equation (2.1) for small angles θx and θy as

dΦn

dΩ
(θx ,θy ,ω, û ) =α

I

e
N 2

�

�~h (0, 0)û
�

�

2
sinc2Γ (2.6)

where
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2.1 Undulators

Γ =πN

��

ω

ωR (θx ,θy )

�

−n

�

. (2.7)

Some additional algebraic manipulation allows to rewrite Γ as

Γ =
πL

2λ
θ 2+πβ (2.8)

where L is the undulator length and λ the radiation wavelength; θ 2

is equal to θ 2
x +θ

2
y ; β is the detuning parameter defined through

ω

ωno
=
λno

λ
= 1+

β

nN
. (2.9)

For instance, for β = 0 the observed photon frequency ω is the on
axis harmonicsωno .

The result of this approximation is that all the angular depen-
dence is now in the sinc2Γ function, and then the angle integrated
flux Φ(ω, û ) is given by

Φ(ω, û ) =

∫ ∞

−∞

∫ ∞

−∞

dΦ

dΩ
(θx ,θy ,ω, û )dθx dθy ,

= α
I

e
N 2

�

�~h (0, 0)û
�

�

2
∫ ∞

0

sinc2ΓdΩ.

This means that the calculation of the integrated flux reduces to
solving the angular integral of sinc2Γ . Figure 2.4 shows the integral of
the sinc term of equation (2.6) as a function of the detuning param-
eter β . We can note that for β < 0 the integral value is higher than
that for β = 0. Moreover, at β =−1 the integral value is roughly twice
the value when β = 0. Regarding the integrated flux, it means that
the flux at β = −1 is two times the flux at the resonant energy ωn at
β = 0. Mathematically we have:

Figure 2.4. Angular integral of the
term sinc of the equation (2.6).

Φ(ω′, û )≈ 2Φ(ωn , û ). (2.10)

whereω′ is the frequency at β =−1 and given by

ω′ =ωno

�

nN −1

nN

�

(2.11)

As a result, to obtain the maximum flux at certain frequency ω′ the
undulator must be tuned (through the K parameter) to a resonance
frequency ωn slightly higher than ω′. For instance, equation (2.11)
shows that to generate radiation with ħhω′ = 100e V in the first har-
monic, an undulator with N = 39 periods must be tuned to ħhωn =
102.56e V .

This effect is illustrated in Figure 2.5 considering the undulator
recently installed for SPECIES beamline at MAX-lab [Schnadt et al.,
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Ray optics applied to PGM beamlines

Period λp 61mm

Number of
Periods Np

39

Ring Current 200mA

Electrons
Energy

1.5GeV

Minimum
Gap

17mm

Natural
Emmitance

9.726·10−9
m.rad

Coupling
Constant

0.1

Table 2.1. Undulator parameters
for SPECIES beamline.

(a) (b)

Figure 2.5. Calculated Flux for SPECIES beamline. (a) Flux through an aper-
ture of 600x 600µr a d 2 for two different tunes of the undulator, at 100e V and
102.56e V . It can be noted that the flux at 100e V is higher when the undula-
tor is tuned to ħhωo = 102.56e V . (b) Flux at two different apertures when the
undulator is tuned to ħhωo = 100e V . Small apertures have a peak flux very
close to the on-axis resonance frequency ωo , while at bigger apertures the
peak of flux is at a lower energy. Parameters of the undulator listed at Table
2.1.

2012][Paper I]. Figure 2.5.a shows the flux when the undulator is
tuned to 100eV and to 102.56eV. It is clear that the flux at 100eV is
higher when the undulator is tuned to 102.56eV. Figure 2.5.b shows
that the peak flux is close to the resonant energy only for very small
apertures.

Angular Beam Profile

The knowledge of the angular profile of the radiation has two main
applications. Firstly, to determine the beam divergence, which is
an important parameter while designing the size of optical compo-
nents. Secondly, to determine the spatial distribution of the radia-
tion out of the focus (e.g. on the optical elements), since at these po-
sitions the beam profile is mostly defined by the angular profile.

By using again the approximation ~hn (θx ,θy ) ≈ ~hn (0, 0) for small
angles, this analysis reduces once more to study the behavior of the
sinc function. Considering the results of the former section, it is nec-
essary to analyze the beam profile for energies different from the on-
axis resonance energies ħhωno , i.e., for β 6= 0. For this reason we con-
tinue using the parameterization of equation (2.9). The behavior of
the sinc function for different values ofβ is shown in Figure 2.6 and in

Figure 2.6. sinc2Γ for some values
of β .

Figure 2.7. The graphs show that at the resonance frequency (β = 0)
the beam profile has its maximum value of 1 at the center of the dis-
tribution (θ = 0). For photon energies above the resonance energy
(β > 0) the profile looks similar but the peak value is smaller than
1. A different behavior is observed at energies below the resonance
(β < 0): the distribution shows a saddle like structure around the

11



2.1 Undulators

Figure 2.7. sinc2Γ in function of the angle of emission and photon energy
(implicitly through β ). The angle is in units of

p

λ/L . The two figures are
the same function seen from two different point of view.

center (θ = 0). This behavior can be clarified by analyzing the prop-
erties of the sincΓ function. Considering that it has a maximum value
of 1 when Γ = 0, and using equation (2.7) we can show that

θpeak =

√

√

−β
2λ

L
, (2.12)

where θpeak is the angle where the distribution has the maximum
value of 1(see Figure 2.8). Clearly forβ = 0 we have that θp e a k = 0 and
the maximum intensity is on the axis. For β > 0 the equation (2.12)
has no real roots, what means that the function is different from 1
and therefore has a smaller peak value. Finally, in the case of β < 0
the function has two roots (positive and negative), which results on
the observed two peaks.

With this analysis it is also possible to obtain the aperture ϑ and
the full width at half maximum (FWHM) ∆′ (Figure 2.8). The first is
used to know the minimum angular aperture that collects the whole
photon beam. It is given by the value of θ for what the value of Γ is
π, and then sincΓ = 0. This results in

ϑ =

√

√

(1−β )
2λ

L
. (2.13)

Finally, the FWHM value ∆′ is a measure of the beam natural diver-
gence, and is obtained by the value of θ when Γ ≈ 0.442π:

∆′ = 2

√

√

(0.442−β )
2λ

L
. (2.14)

Spatial Distribution

The spatial profile of the emitted radiation is obtained by using again
the former approximation of small angles, where we can approxi-
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Ray optics applied to PGM beamlines

(a) (b)

Figure 2.8. (a) Definition of θpeak, FWHM and ϑ for β > 0. (b) FWHM and
ϑ for β = 0

Figure 2.9. Spatial profile of the radiation in function of the parameter β .
The two figures are the same function seen from two different point of view.

mate ~hn (θx ,θy ) ≈ ~hn (0, 0). Using such approximation the spectral
flux per unit surfaceA is given by [Onuki and Elleaume, 2003]:

dΦn

dA
(r,ω, û ) =α

I

e
N 2

� ω

2πc

�2
|~hn (0, 0)|2×

×
�

�

�

�

∫ ∞

−∞
sinc

�

πN
�

ω

ωR (θ )
−n

��

J0

�

ωθ r

c

�

θdθ

�

�

�

�

2

(2.15)

where J0 is the Bessel function of zeroth order [Arfken et al., 2012] and
r is a radial coordinate r 2 = x 2 + y 2. Due to the Bessel function, the

Figure 2.10. Spatial distribution.

analytical analysis is complicated and a numerical method is more
informative. Figures (2.10) and (2.9) show the spatial distribution for
different energies (through the variation ofβ , equation (2.9)) around
the resonance energy given by β=0.

Although these distributions have a Gaussian-like shape, they are
not actually that. To obtain the values of FWHM a Gaussian func-
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2.1 Undulators

β ϑ ∆ ∆′ ∆ ·∆′

on-axis
resonance

0

√

√2λ

L
2.27

p
2λL

2π
1.33

√

√2λ

L
12.076 ·

λ

4π

max. ang.
int. flux

−1 1.414

√

√2λ

L
1.23

p
2λL

2π
2.4

√

√2λ

L
11.808 ·

λ

4π

Table 2.2. Numeric expressions for aperture, beam size and divergence.

tion is fitted to the spatial profile, as in Figure 2.11. Like in the an-
gular analysis, the most interesting energy values are at the ones for
on-axis resonanceωno and atω′, for which the values of FWHM are
listed on Table 2.2. We can note a clear decrease of the beam size
when tuning the undulators toω′.

Figure 2.11. Gaussian function fit
to the spatial distribution for β =−1.

Due to the similarity between the spatial distribution of the un-
dulator radiation and a Gaussian distribution, undulators radiation
is commonly approximated as a Gaussian beam2 For instance, the
emittance ε for Gaussian beams is defined as the product between
the standard deviation values of spatial and angular distributions3

(σ andσ′):

εx ,y =σx ,yσ
′
x ,y =

λ

4π
. (2.16)

In order to compare undulator radiation and Gaussian beam we
combine the values of Table 2.2 to obtain the undulators emittance.
This results

∆ ·∆′ = 12.076 ·
λ

4π
for β = 0 (2.17)

∆ ·∆′ = 11.808 ·
λ

4π
for β =−1. (2.18)

Since the difference between the two equations is small (≈ 2%), we
can assume that

�

∆ ·∆′
�

β=−1
.≈

�

∆ ·∆′
�

β=0
(2.19)

Assuming now that the undulator radiation can be approximated
by Gaussian distributions, where the standard deviationσ is equal to
∆

2.35 , results in a emittance given as [Onuki and Elleaume, 2003]

2It must be noted that Gaussian beam is not a simple beam with Gaussian distri-
bution of rays. Gaussian beam is a solution for the wave equation under paraxial ap-
proximation[Saleh and Teich, 2007] and describes a completely coherent beam. See
the definition and discussion about Gaussian beam at pg. 67, where the approxima-
tion for undulators radiation is also discussed.

3Remembering that for a Gaussian distributions the FWHM value ∆ is equal to
2
p

2 ln 2σ≈ 2.35σ.
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Ray optics applied to PGM beamlines

εx ,y =σx ,yσ
′
x ,y ≈

λ

2π
. emittance undulator

radiation
(2.20)

That is, two times larger than a Gaussian beam. This shows that some
caution is needed when using Gaussian beams as approximation for
undulator radiation.

As conclusion, the analysis of the sinc term shows an increase of
flux by a factor 2 when properly detuning the undulator. The draw-
back is that the angular profile will be non-Gaussian. At the reso-
nance, however, the angular profile is close to a Gaussian, as com-
monly assumed. Additionally, the FWHM value of the divergence
and of the aperture is changed. For instance detuning the undula-
tor to double the flux has the effect of increasing the FWHM of the
angular distribution by ca. 1.8 times and increasing the aperture by
ca. 1.4 (see Table 2.2).

Numerical Simulation and Discussion

The descriptions in the former sections are based in analytical mod-
els and assuming a filament electron beam. The next step for obtain-
ing a more realistic description is to include the profile of the mag-
netic field, in order to calculate the vector function ~hn (θx ,θy ), and to
consider the spatial and angular distributions of the (non filament)
electron beam.

In the present work, SPECTRA [Tanaka and Kitamura, 2001]
software is used for calculating numerically the properties of syn-
chrotron radiation. SPECTRA performs the calculation of the un-
dulator radiation either by using experimental results of the mag-
netic field or by assuming a sinusoidal magnetic field. In the simple
case of a planar undulator (electron oscillating on the x z plane, see
Figure 2.1), the magnetic field ~BPU (z ) in the sinusoidal approxima-
tion is given by:

~BPU (z ) = By (z ) · ŷ = By o sin(k z +φy ) · ŷ . (2.21)

where k = 2π/λu . By o is the peak value of the magnetic field and
depends only on the physical gap between the magnets. Many refer-
ences present the analytical equations for the planar undulator with
a sinusoidal magnetic field [as in Clark, 2004; Onuki and Elleaume,
2003] and these results are extensively used by SPECTRA during the
calculations.

To include the spatial and angular profile of the electron beam, it
is necessary to convolute the results obtained for the filament beam
with the geometric distribution of the electron beam in the storage
ring. As a first approximation, both the geometrical distribution of
the electron beam and of the radiation emission pattern are approx-
imated by Gaussian distributions with standard deviationsσx ,y and
σR , respectively. For Gaussian distributions, quadratic summation

15



2.1 Undulators

can be used to obtain the total size Σx ,y and total divergence Σ′x ,y of
the source as

Σ2
x ,y =σ

2
x ,y +σ

2
R , (2.22a)

Σ
′2
x ,y =σ

′2
x ,y +σ

′2
R . (2.22b)

However, as discussed previously, maximizing the flux results in a
non-Gaussian angular profile (Fig. 2.8), which means that equations
2.22 are only valid at some situations, namely when the Gaussian
electron beam divergence is much bigger than the angular distri-
bution of the radiation (i.e., σ′x ,y � σ

′
R ). In the past, with high(er)

emittance storage rings, this condition was very likely to be achieved.
However, as the emittance has reduced over the years this condition
is only achieved at very small wavelengths (∼1Å) and equations 2.22
are not necessarily valid anymore.

To illustrate the results presented so far, a set of calculation was
run with SPECTRA considering again the radiation at SPECIES beam-
line. The goal of these calculations is to maximize the flux through
different sizes of aperture by tuning the undulator. Later, the angular
distribution is evaluated at the maximum flux condition.

Figure 2.12. Photon flux at 100e V
when the K parameter is scanned at
different angular apertures. The
apertures have a squared shape with
the values on the legend.

Figure 2.12 shows how the undulator must be tuned towards
smaller K values when the aperture size is increased. In this case,
the 100eV photon energy on-axis is obtained with K =2.237. For the
largest considered aperture of 600×600µm 2 the K value must be re-
duced to K =2.2045, which is equivalent to an on axis resonant en-
ergy of 102.24eV, very similar to the value of 102.56eV obtained by the
analysis performed earlier using equation (2.11) and summarized in
Figure 2.5.

The angular distribution corresponding to different K values
and to different emittances are shown in Figure 2.13. First in
Figure 2.13.(a) the K parameter is tuned to the on-axis photon en-
ergy of 100e V and the angular profile is very close to a two dimen-
sional Gaussian distribution. However, when tuned to 102.63e V to
increase the integrated flux, the two peak structure is observed in the
vertical direction(Figure 2.13.b). The deviation from Gaussian distri-
bution is only observed in the vertical direction because the electron
beam divergence is very small in this direction and thus the radia-
tion profile dominates. On the other hand, in the horizontal direc-
tion the electron beam divergence dominates and thus we have a
Gaussian distribution in this direction. And finally, Figure 2.13.(c)
and Figure 2.13.(d) illustrate the effects of very small and very high
emittance electron beams, respectively. At small emittance condi-
tion the two peaks structure is dominant in both direction and re-
sults in a circular structure. On the other hand, at high emittance
condition the Gaussian profile of the electrons angular distribution
dominates, and the resulting radiation angular profile presents a two
dimensional Gaussian distribution.
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Ray optics applied to PGM beamlines

(a) (b)

(c) (d)

Figure 2.13. Angular photon distribution at 100e V simulated with
SPECTRA for the SPECIES beamline undulator. (a) and (b) MAX II param-
eters and K parameter tuned to 100e V and 102.63e V , respectively. (c) Low
emittance example: K for 102.63e V and MAX IV 3GeV ring parameters. (d)
High emittance example: K for 102.63e V and emittance value 10 times the
values of MAX II.

Concluding, the non-Gaussian profiles discussed above illustrate
the need to consider the angular emission of radiation by an undu-
lator in low emittance storage rings. The consequence is that for any
point out of the focus on the beamline a non-Gaussian profile will
be observed. For instance, this will result in a non Gaussian photon
distribution on the optical elements and on the diagnostic instru-
mentation (beam profilers and cameras, for example). Specially, it
will affect the beam spatial profile of any out-of-focus location, like
in the astigmatic focus proposed on the Paper I and on Chapter 2.4,
as we will see.

2.2 Petersen geometry

We now concentrate in the optical aspects of a beamline, in particu-
lar in the Petersen geometry. The central concept in the Petersen ge-
ometry is the focusing property of a plane grating [Murty, 1962]. For
synchrotron radiation beamlines this was first applied by Petersen
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2.2 Petersen geometry

Figure 2.14. PGM beamline at Petersen geometry. The light gray rays rep-
resent the virtual rays that form the virtual image S ′ at r ′.

[1982], who introduced the fixed focus concept and defined the stan-
dard configuration for a PGM beamline: a deflecting plane mirror, a
plane grating and a focusing mirror (Figure 2.14).

The plane mirror–plane grating pair forms the so-called SX700
monochromator [Petersen and Baumgärtel, 1980; Riemer and Torge,
1983]. The plane mirror is used to allow that the grating can always be
put in such orientation that the exiting beam has always the same di-
rection (e.g., along the horizont). In this geometry, the plane grating
is placed at fixed distance from the source and it rotates in the verti-
cal plane around an axis located at the center of the grating surface.
The plane mirror adjusts the angle of the incoming beam at the grat-
ing. This could be realized by moving and rotating the mirror, but
it can actually be done by a single rotation if only the rotation axis
is chosen properly (for details see [Petersen and Baumgärtel, 1980],
[Riemer and Torge, 1983] and [Petersen, 1985]) .

The focusing property of a plane grating can be studied by apply-
ing the Fermat’s principle4, as has been done for instance for optical
aberration analysis, but adding a term due to the diffraction on the
grating [Noda et al., 1974]. This has been done earlier for spherical
gratings [Namioka, 1959; Peatman, 1997] and these results were then
applied to plane grating[Murty, 1962; Peatman, 1997], since a plane
can be assumed as a spherical surface with infinite radius. Most im-
portantly, such approach results in the diffraction in the grating, de-
scribed by the grating equation as

mGλ= sinα+ sinβ , grating
equation

(2.23)

4Fermat’s Principle states that optical rays traveling between two points in space
must follow the trajectory where the optical path length between these two points is an
extremum relative to neighboring paths [Born and Wolf, 1999; Saleh and Teich, 2007].
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whereλ is the wavelength of the diffracted light, m is the order of the
diffraction and G the grating line density (in lines per meters). The
angles α and β are defined in Figure 2.15.

Figure 2.15. Definition of the
grating incidence angle α and
diffracted angles βm , where m is the
order of the diffraction. m = 0 is due
to specular reflection and contain all
wavelengths of the incidence beam.
The signs close to the grating normal
define the convention for the signs of
α and β .

Related to the focusing property, such analysis results that a
source of the size S at a distance r from the plane grating will be fo-
cused to a distance r ′ given by

r ′

r
=−

cos2β

cos2α
. plane grating

focus
(2.24)

The magnification MP G is defined as the ratio between the image size
S ′ and the source (object) size S and can be shown to be

MP G =
S ′

S
=

r ′

r

cosα

cosβ
. plane grating

magnification
(2.25)

The negative value of r ′ means that a virtual image is formed.
Moreover, the magnification is very different from a focusing mir-
ror or a focusing lens, as the magnification depends also on the inci-
dence angles α and β .

An additional result from this analysis is that the aberration terms
are non-zero[Petersen, 1982], where the most relevant term is the so-
called coma aberration[Murty, 1962]. These aberrations, however,
have not been found to be critical for the grating performance.

Equation 2.24 shows that the location of the virtual image
changes if the ratio cosβ/cosα changes. Moreover, the virtual im-
age of the plane grating is the virtual source of the focusing mirror
(see Figure 2.14), which means that the exit slit position also changes
for changes of the ratio cosβ/cosα. Movable exit slit has been used
in many geometries (e.g. SGM), but they have the drawback to re-
quire a bendable and/or movable mirrors on the refocusing system
in the downstream optics, in order to refocus the radiation into the
end station. Alternatively, the focusing mirror could be bendable or
movable in order to keep the exit slit and upstream optics at fixed
positions. However, optical elements at fixed position are easier to
operate and thus a virtual source at fixed position would make pos-
sible a setup with a higher performance.

In this sense, to keep the virtual source fixed, the plane mirror
can be used together with the grating in order to select the angles α
and β such that the ratio cosβ/cosα is fixed at a constant value for
different wavelengths. Mathematically we have[Petersen, 1982]

cosβ

cosα
= cff. fixed focus

condition
(2.26)

The constant cff is the so-called fixed focus constant, as it literally
fixes the virtual source location r ′ in equation (2.24) at

r ′ =−r · cff
2. focus location at

fixed focus condition
(2.27)
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2.2 Petersen geometry

The magnification in equation (2.25) is then given simply by the value
of cff:

Mff =−cff =−

√

√

√

�

�

�

�

r ′

r

�

�

�

�

. Magnification at
fixed focus condition

(2.28)

Therefore, by operating at the fixed focus condition it is possi-
ble to use a focusing mirror with fixed position and fixed radius of
curvature that focuses the dispersed radiation to a fixed exit slit lo-
cation. In addition, the downstream refocusing optics can also be
fixed. With the additional constraint given by the fixed focus con-
dition in equation (2.26) the angles in the grating equations can be
determined. This results for angle α

sinα=−
mGλ

cff
2−1

+

√

√

√

1+
�

mGλ · cff

1− cff
2

�2

, angle α at fixed focus
condition

(2.29)
and for β

sinβ =
mGλ · cff

2

cff
2−1

−

√

√

√

1+
�

mGλ · cff

1− cff
2

�2

. angle β at fixed focus
condition

(2.30)
As can be seen from these equations, the angles are defined by the
line density of the grating, the order of the diffraction m , the desired
wavelength and the chosen cff value.

Although equations 2.29 and 2.30 seem complicated, they can be
easily evaluated and an example is shown in Figure 2.16. We can see
that for higher energies and higher values of cff the incidence an-
gles are higher, i.e., the grating is operating at more grazing incidence
angles. This requires long gratings in order to collect all radiation
and hence the grating dimensions and geometric acceptance must
be carefully evaluated for high cff values.

Energy Resolution

The resolution ∆λ/λ of a Petersen PGM monochromator is defined
by many factors, but all of them are somehow related to a variation
(or “error”)∆α or∆β in the grating angles that results in a variation
of wavelength. Mathematically it is represented by contributions

∆λ

∆α
=
∂ λ

∂ α
and

∆λ

∆β
=
∂ λ

∂ β
. (2.31)

Applied to the grating equation, this results in the energy resolution
terms
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Ray optics applied to PGM beamlines

(a) (b)

Figure 2.16. Grating angles in function of photons energy at fixed focus
condition for N = 1221 lines/mm and m = 1.

�

∆λ

λ

�

α
=

cosα

mNλ
∆α and

�

∆λ

λ

�

β
=

cosβ

mNλ
∆β . (2.32)

There are many reasons for the variations ∆α and ∆β , namely
the finite source size, the slope errors5 of the mirrors, imaging aber-
rations like grating coma and the exit slit size. The effect of coma
is small and will not be considered, but all the other terms must be
studied in order to evaluate the resulting energy resolution of this
type of monochromator. The effects due to exit slit opening and fi-
nite source size can be evaluated quite easily. For example, using the
notation of Figure 2.14 the finite source size causes a variation of an-
gle∆α as

∆α=
S

r
, (2.33)

and the resolution term corresponding to the finite source size be-
comes

�

∆λ

λ

�

src
=

cosα

mNλ

S

r
contribution from
finite source size

(2.34)

To obtain the variation due to the exit slit opening sslit it is easier
to consider the variation on ∆β due to a virtual source size S ′ and
then use the magnification of the focusing mirror to relate it to sslit:

∆β =
S ′

r ′
=
(r ′+d )sslit

r ′r ′′
, (2.35)

5Slope errors are consequence of the manufacturing process of the mirrors and
of the grating. It is a deviation of the optical elements surface from the ideal surface
figure (plane, sphere, toroid, etc.). See [Peatman, 1997, Chap. 5.5] for more details.
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2.2 Petersen geometry

and by assuming r ′� d we obtain

∆β =
sslit

r ′′
, (2.36)

resulting

�

∆λ

λ

�

slit
=

cosβ

mNλ

sslit

r ′′
. contribution from

exit slit size
(2.37)

The effects of slope errors in the energy resolution are similar to
the contributions discussed earlier: the slope errors on the mirrors
and on the grating cause a variation∆α or∆β in the grating angles.
In the case of the grating, the slope error can be directly related to
the variations∆α and∆β . For the mirrors the slope errors cause an
enlargement of the images, which in turn has an effect similar of a
finite source size or of a slit opening. In this way, the derivations of
the effects in the energy resolution are similar to the derivations dis-
cussed above and results in the following equations[see e.g. Follath,
1997]

�

∆λ

λ

�se

po
=

cosα

mNλ
·2σpo, (2.38a)

�

∆λ

λ

�se

fo
=

cosβ

mNλ
·2σfo, contributions from

slope errors
(2.38b)

�

∆λ

λ

�se

gr
=

cosα

mNλ
·2σgr · (cff+1), (2.38c)

where the sub-indexes po, fo, and gr refer to the pre-optics, focus-
ing optics and grating, respectively. The slope errors are assumed to
obey Gaussian distribution with standard deviation value of σ and
therefore we can use quadratic summing to obtain the total contri-
bution of the slope errors as

�

∆λ

λ

�2

se
=

�

�

∆λ

λ

�se

po

�2

+
��

∆λ

λ

�se

fo

�2

+

�

�

∆λ

λ

�se

gr

�2

. (2.39)

The valuesσ in equations (2.38) are the effective values of slope error
at each optical element and have different values for the tangential
and sagittal directions. For the tangential direction it is equal to the
tangential slope error σ = σt . In the sagittal direction, however, it
has an additional dependence with the grazing incidence angle of the
mirrors θ (related to the surface) and is given by σ = θσs a g . Due to
the use of grazing incidence angles, the values of θ are typically small
(e.g. 2 deg= 35mrad), and as a result the effective value of slope error
is smaller in sagittal focusing[Cash, 1987; Petersen, 1982]. Sagittal fo-
cusing also shows smaller coma aberration and thus it has a smaller
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Ray optics applied to PGM beamlines

effect on the energy resolution. For these reasons, the sagittal focus-
ing is preferred over the tangential one, especially on the pre-optics
and in the focusing optics where they are directly affecting the energy
resolution.

By assuming that also the contributions of the source size and
exit slit follow Gaussian distribution, quadratic summing can be used
again to write the final resolution as

�

∆λ

λ

�2

T
=
�

∆λ

λ

�2

src
+
�

∆λ

λ

�2

slit
+
�

∆λ

λ

�2

se
. (2.40)

We know, however, from the discussion in Chapter 2.1 that the spa-
tial distribution of the source is not Gaussian. The exit slit cannot
be described by a Gaussian distribution either (a rectangular func-
tion would be more suitable). This means that for more realistic an-
alytical results it is necessary to convolute these different contribu-
tions, not simply to add them quadratically. Nevertheless, assuming
that these quantities convolute like Gaussian distributions (eq. 2.40)
we are able to provide a good estimation of the real values and also
a good description of how the energy resolution depends on indi-
vidual parameters (e.g. optical distances and slope error). Moreover,
much better results can be achieved with ray tracing simulations (to
be discussed later) and therefore the use of these analytical results is
a reasonable starting point.

In many practical situations the energy resolution is presented in
terms of the resolving power R , defined as the inverse of the energy
resolution: R = λ

∆λ . Eq. 2.40 becomes then

1

R 2
T

=
1

R 2
src

+
1

R 2
slit

+
1

R 2
se

. Total Resolving Power (2.41)

The analytical description of the total resolving power R 2
T can be

further simplified by introducing some additional approximations
when computing sinα in equation (2.29). The first step is to estimate
the maximum values of the quantities cff, grating line density G and
the wavelength λ. A typical grating has a line density of the order of
1000 lines/mm that results in a maximum wavelength of the order of
100nm (12.4eV).

The choice of cff value is done in order to optimize the grating
efficiency and the resolving power in a broad energy range. Petersen
[1982] determined that, for his setup and energy range, operating at
cff =2.25 provides a good performance. A more appropriate method
would be to analyze the grating efficiency for different gratings, but
this value is commonly accepted as a good condition and widely used
in operation. For the current analysis the important point is to define
an approximate value of cff and the value determined by Petersen
suggest values of the order of unity.
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2.2 Petersen geometry

Using these values results that in equation (2.29) the Gλcff term
is of the order of ≈ 10−8 and therefore the term inside the brackets
can be ignored. Assuming also that cff > 1, we can write sinα as

sinα≈ 1−
mGλ

cff
2−1

, (2.42)

resulting cosα as

cosα≈
√

√2mGλ

cff
2−1

. (2.43)

Combining now these approximations with the fixed focus condition
of equation (2.26) we obtain that the resolving power terms are given
by

Rsrc =
r

S
·T (cff), (2.44a)

Rslit =
r ′′

sslit · cff
·T (cff), (2.44b)

Rpo =
1

2σpo
·T (cff), (2.44c)

Rfo =
1

2σfo · cff
·T (cff), (2.44d)

Rgr =
1

2σgr · (cff+1)
·T (cff), (2.44e)

where the function T (cff) is defined as (following the notation of
[Follath, 1997])

Figure 2.17. Function T (cff) for a
grating with line density of 1221
lines/mm for typical values of cff.

T (cff) =

√

√mGλ

2
(cff

2−1) . (2.45)

This behavior is plotted in Figure 2.17 for different cff values.
To illustrate these results, we now apply this analytical treatment

to a real case: beamline I511 at MAX II (main parameters listed in
Table 2.3)[Denecke et al., 1999]. Figure 2.18.a shows the individ-
ual terms and the total resolving power calculated using equations
(2.44), where we see that the behavior of the function T (cff) (shown
in Figure 2.17) dominates the general behavior of all the terms. In
addition, Figure 2.18.b shows the total resolving power for different
values of cff, where we observe that the resolving power has a strong
dependence on cff for values in the range 1 < cff < 3. For values of
cff > 3 the resolving power is less sensitive to cff, which make possible
the choose cff in order to optimize other parameters (e.g. flux).

Finally, from equation (2.41) is expected that eventualy one of the
terms Rsrc, Rslit or Rse will be the limiting term of the final resolving
power. The limiting term is actually chosen in the design phase of
the beamline, when requirements of flux (connected to the opening
of the exit slit) and resolution are evaluated considering constraints
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Ray optics applied to PGM beamlines

(a) (b)

Figure 2.18. Resolving power values for I511 beamline. Optical distances
on Table 2.3. (a) The values of the different components of the resolving
power: term due to source size, exit slit aperture, slope error due to pre-
optics (se po), slope error due to focusing optics (se fo) and slope error due
to the grating (se gr). In the inset a zoom on the total resolving power curve
showing the small difference with the term due to the exit slit size. (b) Total
resolving power calculated for different values of cff. The source size depen-
dence of the photon energy, caused by the diffraction limit, is also included.

like source size and quality limits for optical surfaces. Optical ele-
ments with good quality are commonly available nowadays and this
is not a limiting factor for ordinary beamlines. The quality of the op-
tical components is indeed specified based on the desired resolving
power by using equations (2.44). This means that eventually flux and
resolution requirements will define whether the resolving power is
limited by the source size or exit slit opening.

In this respect, due to a combination of source size and ring cur-
rent at MAX II, beamline I511 needs to operate at a relative big exit slit
opening (50µm) to reach high photon flux. This results in a resolving
power limited by the slit opening, as can be observed in Figure 2.18.a.
We can see in this figure that for I511 beamline the term Rslit has the
smaller value and thus it is the limiting factor. On the other hand,
beamlines at MAX IV will be able to take advantage of the smaller
source size and of the higher ring current to operate at very small
slit opening (e.g. 5µm) up to the limit where the resolving power is
source limited.

2.3 cPGM

It was mentioned in the previous sections that the cff values can be
optimized to different modes of operation of the beamline. This
means that for a flexible PGM setup it is necessary to be able to ad-
just the value of cff during the operation. However, a change in
cff changes the position of the virtual image created by the grating
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2.3 cPGM

I511 SPECIES HIPPIE

r [m] 15 12 24

r ′′ [m] 6.487 7 12

electron beam size
(FWHM) [µm]

110.73 110.73 9.389

Undulator
Length L [m]

2.6615 2.379 3.93

Table 2.3. Beamlines optical parameters used for the calculation of RT . The
source vertical sizes for I511 and for SPECIES are the size at MAX II and the
one for HIPPIE is the value of MAX IV 3GeV ring.

and thus the entrance arm of the focusing mirror (in the same way
as discussed on page 19). This results that at first sight a beamline
with variable cff requires bendable mirrors, or movable exit slit, or
both.

To overcome this problem different solutions have been devel-
oped. Beamline I311 at MAX-lab for instance uses an exit slit that can
be displaced by ca 1 meter along the beam in order to adapt to the dif-
ferent entrance and exit arms of the focusing mirror[Nyholm et al.,
2001; Petersen et al., 1995]. This makes possible to select cff in the
range between 1.7 and 10 and an optimal refocusing performance
was designed for cff=4.5 (i.e., the optical distances and the focus was
optimal only for this condition). To obtain an optimal focus at sam-
ple plane for different values of cff the properties of the focusing or
the refocusing mirrors need to be changed. This can be done by mov-
ing them or by changing the radius of curvature, the second solution
being easier to apply. Therefore, bendable refocusing mirrors were
installed in order to follow the focus for any value of cff. This solution
was then also used for beamline I511, although there are many draw-
backs related to the operation of bendable mirrors[Follath, 1997],
one of them being forced to use a tangential focusing, which is more
sensitive to slope errors and coma aberration[Peatman, 1997].

As a major improvement to the Petersen type monochromator,
Follath [1997] proposed illuminating the plane grating with colli-
mated light. By doing so, the source of the focusing mirror will always
be at infinity, making possible to have an exit slit at a fixed position
using a non-bendable focusing mirror. This new setup is normally
referred as cPGM and its design and performance are well reported
in [Follath et al., 1998] and [Follath, 2001].

The collimation of the light is done with an additional mirror
placed before the SX700 monochromator, as shown in Figure 2.19
(the collimating mirror, compare with Figure 2.14). Although this ad-
ditional optical element results in some reflection losses, it has some
advantages, namely the possibility for horizontal focusing and ab-
sorption of the high energy radiation, decreasing the thermal load at
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Figure 2.19. cPGM layout. The notation for the optical distances are de-
fined to make possible the use of the same equations of a Petersen geometry.

the monochromator [Follath, 1997].
The performance of this geometry is also evaluated in terms of

the energy resolution as done in Section 2.2 for the Pettersen ge-
ometry. Since there were no assumptions about the divergence of
the radiation, the equations 2.27 and 2.28 are still valid. There is
only one minor change in the calculation of∆α, where the entrance
arm must be changed from source-to-grating distance to source-
to-collimating mirror distance. However, by having the optical dis-
tances defined as in Figure 2.19, all the equations for the Petersen ge-
ometry in the Section 2.2 are also valid to a cPGM monochromator.
Therefore, we can conclude that the general behavior of the energy
resolution presented for the Petersen setup will be similar for a cPGM
monochromator.

To illustrate this, Figure 2.20 presents the total resolution cal-
culated with the optical parameters of beamlines I511 (Petersen
geometry), SPECIES (cPGM)[Schnadt et al., 2012] and HIPPIE
(cPGM)[Sankari, 2012]. The beamline parameters are listed in Table
2.3. It is evident that, besides the difference of performance of these
setups, the dependences with energy and cff are quite similar.

The cPGM has, however, the advantage of easily adjust the
cff value during the operation, with no need to move the exit slit
and/or adjust the mirrors properties to obtain a focus at a fixed po-
sition.

2.4 cPGM with astigmatic re-focusing

The flexibility of a cPGM can be further improved by combining this
monochromator geometry with a refocusing system that uses astig-
matism. In a normal (stigmatic) re-focusing the exit slit is imaged
into the sample position. This results that the vertical spot size has a
linear dependence with the exit slit opening, defined by the vertical
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(a) (b)

Figure 2.20. Total Resolution RT values due to source and exit slit size for
SPECIES, I511 and HIPPIE beamlines at (a) cff =2.25 and (b) 100eV. Optical
parameters in Table 2.3. Slit size of 25µm, grating lines density of 1221
lines/mm and m = 1. HIPPIE beamline is planned to MAX IV 3GeV ring,
but its performance is also calculated considering the electron beam size of
MAX II in order to show the improvement due to a low emittance source.
Other parameters in Table 2.3.

magnification of the refocusing system. This is, however, not true for
an astigmatic spot where the vertical focus is not at the sample posi-
tion.

It can be indeed shown that for this astigmatic spot the vertical
size is mostly defined by the vertical divergence. We show in Paper I
that as a consequence the vertical beam size at the sample position
is simply determined by the distances between the optical elements,
the vertical source divergence and by the cff value. In the next sec-
tions the astigmatism is described and the concept of using it as de-
scribed in Paper I is verified through ray tracing simulation. In or-
der to illustrate this here results for HIPPIE beamline, to be built at
MAX IV 3GeV ring, are presented.

Astigmatism

Astigmatism is characterized by having a focus at tangential plane
in a different position than in the sagittal plane [Hecht, 2002](see
Figure 2.21). It occurs mainly with spherical surfaces where the ob-
ject is out of the symmetry axis of the lens (as will be discussed soon).
It is in general a problem for image formation and focusing of light,
but the study of this effect makes possible to correct astigmatism
and, as done on this work, to use it to achieve specific goals.

Toroidal mirrors are often used to obtain stigmatic focus(i.e.,
both tangential and sagittal focus are at same position). The posi-
tion of the two focuses as a function of the torus radii R andρ can be
derived either by geometric optics[as done by Born and Wolf, 1999, in
section 4.6.2] or by using the Fermat’s principle[as done by Peatman,
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Figure 2.21. Graphical illustration of the astigmatism effect on a spherical
lens. For clarity’s sake a lens is used as example instead of a mirror. The rays
from an out of axis point source are focused on two different positions on
the tangential plane (light-gray) and sagittal plane (dark-gray).

Image edited from the original "Astigmatism" by I, Sebastian Kroch. Licensed under CC BY-SA 3.0 via Wikimedia

Commons, http://en.wikipedia.org/wiki/File:Astigmatism.svg

1997]. In both methods we get that

1

pt
+

1

qt
=

2

R cosθ
, tangential

focusing
(2.46)

1

ps
+

1

qs
=

2 cosθ

ρ
, sagittal

focusing
(2.47)

where p is the source to mirror distance and q the mirror to image
distance, θ is the incidence angle, R the tangential radius and ρ the
sagittal radius. In a spherical mirror we have R =ρ.

As an example, let us consider a spherical mirror operating at
θ = 88deg, with the source and image placed at 10m and 5m from
the mirror, respectively. Using this condition the tangential focus re-
sults in a radius of curvature of R = 191m. A sagittal focus with the
same radius of curvature ρ = 191m results in a image at r ′ ≈ −10m,
where the negative sign means that a virtual image is formed. This is
the same result as obtained for a plane mirror, which means that in
the sagittal direction the mirror has no focusing effect at all. To ob-
tain coinciding focuses (stigmatic focus) we can combine equations
2.46 and 2.47 by imposing that qt = qs . The stigmatic focus is ob-
tained for a radius of curvature ρ = R cos2θ , which in this example
results in a radiusρ = 0.232m, two orders of magnitude smaller than
the tangential radius R . Equations 2.46 and 2.47 can also be used to
deliberately obtain an astigmatic focus, as discussed next.
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2.4 cPGM with astigmatic re-focusing

Use of astigmatism in a cPGM beamline

Paper I and Paper II discuss the use and application of astigmatism to
improve the performance of a cPGM based beamline, in this case the
SPECIES beamline at MAX II. It is studied whether a single toroidal
mirror can be used as a refocusing system, rather than two bendable
mirrors in a KB configuration [Kirkpatrick and Baez, 1948; Peatman,
1997]. However, a conventional re-focusing system based on a single
mirror results in a very asymmetric spot, where the vertical dimen-
sion would be much smaller than the horizontal (see Paper I for a dis-
cussion about the advantages of a symmetric spot and about the ad-
vantages of a single toroidal mirror over a KB system). This asymme-
try is due to some hard constraints like the source properties, avail-
able space in the experimental hall and required exit slit opening to
reach the required resolving power, to name a few. Especially the rel-
atively large horizontal source size of MAX II and the small opening
of the exit slit have a big influence, since they are both imaged at the
sample position in a stigmatic focus.

In order to match the horizontal dimension of the beam, it was
evaluated how astigmatism increases the vertical size of the spot in
this single mirror geometry. It turned out that the vertical beam size
at the astigmatic focus has a linear dependence with the monochro-
mator operation mode through cff. It means that in this geometry
cff can be used to control the vertical beam size. This concept is de-
rived and described in details in Paper I, and Paper II shows the per-
formance of the astigmatic refocusing measured during the commis-
sioning of the beamline. The resulting geometrical model for the ver-
tical spot size and results from simulations for the SPECIES beamline
are also discussed. This idea was first developed for SPECIES beam-
line at MAX II and the concept has now been used in the design of
HIPPIE beamline to MAX IV [Sankari, 2012], having similar require-
ments for the spot size.

In the following, some additional results for HIPPIE beamline at
MAX IV obtained from ray-tracing simulations are presented, sup-
porting and further illustrating the concept of a cPGM with astig-
matic focus.

Ray-Tracing Simulation

Ray-tracing simulation is a powerful computational method for op-
tical design [Cerrina and del Rio, 2010; Peatman, 1997]. It consists
of using Monte Carlo technique[Bevington and Robinson, 2003] to
define a number of rays with specific spatial and angular distribu-
tion (the source), and then calculating the trajectory of each ray until
it reaches an optical element (mirror, lens, gratings, absorber, etc.).
The interaction with such an element will define a new spatial and
angular distribution that is then propagated further to the next el-
ement. By placing the source and the optical elements properly in
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Figure 2.22. Geometry of a cPGM beamline with astigmatic focus, as used
at beamlines SPECIES and HIPPIE. The position 1 (blue) is the position of
horizontal focus and of the sample. Position 2 (red) is the vertical focus po-
sition, displaced by∆ from the horizontal focus. The top and bottom figures
illustrate the monochromator geometry for high and low cff values, respec-
tively. We observe for instance that at an higher cff value a bigger length l
is projected on the focusing mirror, which results in a bigger vertical diver-
gence on the following optics and consequently in a bigger vertical size on
the astigmatic focus.

a reference frame, the trajectories of the rays are calculated through
this optical system from one element to the next.

One of the key points of ray-tracing simulation is that it needs
very few assumptions about the physical processes. For a typical
beamline composed by mirrors and gratings, the only needed as-
sumptions are: (a) a ray propagates in a straight line; (b) reflection
law; (c) and grating equation. The source and the optical elements
descriptions can be made more complex to have more realistic sim-
ulations, but there are no assumptions about geometric optics and
therefore the simulation is not limited by the paraxial approxima-
tion[Born and Wolf, 1999]. Due to these advantages, ray tracing sim-
ulations have been extensively used over the last 40 years in design-
ing synchrotron radiation beamlines [del Rio et al., 2011]. Eventually
two computing programs have stood out in this area: SHADOW [del
Rio et al., 2011] and RAY [Schäfers, 2008]. In this work SHADOW has
been used through a computational library for the Python program-
ing language [Canestrari et al., 2011].

HIPPIE beamline

HIPPIE beamline6 is designed for MAX IV 3GeV ring [Sankari, 2012]
for high pressure X-ray photoelectron spectroscopy (HP-XPS) and X-

6http://www.maxlab.lu.se/hippie
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2.4 cPGM with astigmatic re-focusing

ray absorption spectroscopy (XAS). It will permit experiments from
ultra high vacuum (≈ 10−9mbar) up to near atmospheric pressure
(≈ 10mbar). The optical design allows the beamline to operate in
the photon energy range from 263eV to 2000 eV with variable polar-
ization provided by an APPLE-II undulator[Sasaki, 1994]. The layout
of the beamline is the same as in Figure 2.22.

Some features of MAX IV 3GeV ring make possible to obtain very
high performance when compared to MAX II: smaller vertical source
size, higher ring current and possibility to build longer beamlines.
Longer entrance and exit arms (r and r ′′ on Fig. 2.19) in turn increase
the resolving power, as shown in equations 2.44.a and b. Higher elec-
tron beam current of MAX IV combined with the small source size
makes possible to operate at small exit slit apertures, obtaining a high
resolving power without compromising flux so much.

To be able to operate over the full energy range of the beam-
line, the astigmatic focus must be set at the minimum photon en-
ergy (maximum divergence due to the diffraction limit) and mini-
mum cff value, since from this condition it will be easy to compensate
the decrease of the divergence at higher energies by increasing cff.
The change on the energy resolution due to the change of cff can be
compensated by adjusting the exit slit aperture, since it has no effect
on the spot size of the astigmatic spot [Paper I]. Therefore, the design
condition for the astigmatic focus was to obtain a vertical spot size
of 50µm (FWHM) at photon energy of 263eV with cff=2.25. The value
of 50µm is determined by the spectrometer and this value maximizes
the efficiency of detection [Paper I].

Considering these requirements, the first step related to the astig-
matic refocusing is to define the distance∆ between the vertical and
the horizontal focus that results in a vertical spot size of 50µm at pho-
ton energy of 263eV and cff=2.25. Based on the geometric model pre-
sented in the Paper I we obtain that this condition is achieved for
∆= 25mm (see also Figure 2.23).

Figure 2.23. Calculated values
using the geometric model for the
vertical image size in function of the
distance∆ for HIPPIE beamline.

With all the optical distances defined, we can now use ray tracing
simulation to compare with the results of the analytical model and
to evaluate the beamline performance. The analysis is done in two
steps: the cPGM monochromator performance is evaluated by the
resulting resolving power; and the astigmatic refocusing is evaluated
in relation to the dependence of the vertical spot size on the values
of∆, cff and the slit opening.

Resolving power HIPPIE beamline is expected to reach a very high
resolving power, e.g. 40000 at 400eV and 20000 at 1000eV. This re-
quires very small exit slit apertures (≈ 5µm). The simulations re-
sults described here are performed with a slit size of 50µm for practi-
cal reasons, namely to increase the number of simulated rays reach-
ing the spot and to compare the results with beamlines I511 and
SPECIES. This results in a relatively high resolution for HIPPIE beam-
line when compared with SPECIES, even though this is not present-
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Figure 2.25. Resolving power for HIPPIE beamline at several cff values and
photon energy with exit slit aperture of 50µm. Each point represents the
result from ray-tracing simulation of one run with 1 million rays. The dashed
black line represents the calculated value for cff=2.25 based on the model of
Section 2.3, showing a very good agreement between model and simulation.

ing the top performance of this beamline.
The energy distribution with a slit opening of 50µm at the design

condition is shown in Figure 2.24. It is evident that it does not fol-

Figure 2.24. Photon energy
distribution at 263eV, cff= 2.25 and
exit slit opening of 50µm .
∆E =22meV (FWHM). Simulation
with 250.000 rays

low a Gaussian distribution, which indicates that the dominant term
in resolving power is the term due to the slit opening (eq. 2.44.b).
Operating at smaller apertures will eventually result in a Gaussian
profile, but since the beamline has high performance with this aper-
ture (resolving power of 12000) this condition is likely to be used and
thus this behavior needs to be considered on the data analysis of the
experiments (as done for instance by Jiang et al. [2004]).

Finally ray tracing simulation is used to evaluate the beamline
performance regarding energy resolution over the photon energy
range for different values of cff. Figure 2.25 shows the results from
the simulations, where we observe the features predicted by the
analytical models discussed in Section 2.3. In addition, the curve
based on the analytical models are also plotted for cff=2.25 and
shows a very good agreement with the ray tracing results.

Astigmatic re-focusing In order to check the geometric result, sev-
eral ray tracing simulations were performed with different values of
∆. In addition, different photon energies were simulated to examine
the energy dependence and the validity of the model.

The results are shown in Figure 2.26 where we can see that the
value of∆=25mm obtained by using the geometric model fulfills the
design criteria (i.e., vertical size of 50µm at 263eV). Additionally, we
observe that for all astigmatic conditions (∆ 6=0) there is a depen-
dence of roughly∝ 1/

Æ

Ep h with photon energy. This is a result of
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2.4 cPGM with astigmatic re-focusing

Figure 2.26. Ray-tracing simulation results for HIPPIE beamline. (a)
Vertical image size at several conditions of astigmatic focus in relation to the
photon energy for cff=2.25.

the linear dependence of the image size with the source divergence,
which in turn has direct dependence with photon energy when the
source is limited by diffraction.

Considering the layout with∆=25mm, we evaluate now the pos-
sibility of changing the cff value in order to obtain a constant ver-
tical spot size over the energy range. First, the geometric model
is used to calculate the cff values that results in a specific vertical
beam size. Experimental procedure is indeed more suitable to de-
termine the precise value of cff, but the calculated values are suit-
able for this analyzes too. The results of the calculation are shown in
Figure 2.27.a. Ray tracing simulations were then performed using the
calculated cff values for a vertical size of 50µm (the green curve on
fig. 2.27.a). The results of the ray tracing simulations are presented in
Figure 2.27.b. It can be seen that the vertical spot size have values of
50µm±10%. This variation is however due to statistical fluctuations,
a problem intrinsic to any Monte Carlo simulation. We can neverthe-
less conclude the feasibility of obtaining constant vertical beam size
over the energy range by adjusting the value of cff of the grating.

Finally, the independence of the image size from the slit size is
checked. The exit slit aperture is an important point in the approx-
imations used for modeling this geometry. The beam at the focus,
which is an image of the exit slit, is assumed to be a point (i.e., size
equal to zero) which means that the exit slit aperture is also assumed
to be zero. This approximation is based on the optical distances: the
entrance and exit arms are of the order of meters; the value of ∆ is
of the order of tens of millimeter; and the image size at the vertical
focus is of the order of≈ 100µm , that is, much smaller than the other
values and thus it validates the approximation. On the other hand,
it is expected that at some (large) exit slit opening this approxima-
tion will not be valid anymore. Moreover, the approximation is more
sensitive to the value of∆, in such way that bigger the value of∆ the
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(a) (b)

Figure 2.27. (a) Calculated values of cff that produce a vertical astigmatic
spot (∆=25mm) of 25µm, 50µm, 75µm and 100µm. (b) Vertical spot size
values from ray tracing simulation using the previous values of cff for 50µm.

better the approximation.
To conclude this analysis, figures 2.28 (a) and (b) present the sim-

ulated values of vertical beam size as a function of slit apertures. By
taking the aperture of 50µm as reference, we observe an increase of
≈ 20% when the slit aperture is increase five times from 50µm to
250µm. SPECIES beam line in turn presented the same relative in-
crease in image size when the slit opening increases 10 times. This
shows that HIPPIE beamline is more sensitive to the approximation
and consequently to the slit aperture. This is due to the smaller value
of ∆ used by HIPPIE beamline: ∆ = 25mm, whilst SPECIES has a
value of ∆ = 62mm. The size of this increase is, however, relatively
small and we can approximate that the image size does not depend
on the slit aperture. Moreover for HIPPIE beamline an opening of
50µm is relatively big and is unlikely to operate the beamline at big-
ger exit slit apertures, indicating that the insensitivity for the slit aper-
ture is even better.
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2.4 cPGM with astigmatic re-focusing

(a) (b)

Figure 2.28. (a)Vertical image size for different values of the exit slit aper-
ture. cff values values from Figure 2.27.a for beam size of 50µm. (b) Same
graph with the values normalized by the results of 50µm slit opening. We
observe that for an exit slit apertures smaller than 200µm the resulting im-
age size has a variation of less than 10% compared to the results at 50µm slit
opening.
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CHAPTER 3

POLARIMETRY

Polarimetry is a technique for measuring and determining the state
of polarization of the radiation[Goldstein, 2011]. Such information
has many applications for synchrotron radiation science, namely to
provide the actual state of polarization for the light meeting the sam-
ple in an experiment, to characterize the effects of the beamline op-
tics on the polarization, and finally to be able to tune the undulator
in order to obtain the desired polarization state at the sample, over-
coming the changes in polarization caused by the beamline optics.

Due to the energy dependence of the optical properties of materi-
als, different techniques are required to measure the polarization of
the light. At the visible and ultraviolet regime the classical method
uses a phase retarder1 based on an anisotropic crystal (e.g. mica),
and a polarizer2 based on dichroic materials (e.g. Polaroid H-sheet),
both elements in a transmission geometry [Saleh and Teich, 2007].
However, for higher energies like VUV radiation there are no trans-
parent materials and practically all the radiation is absorbed in trans-
mission geometry. Therefore mirrors with metal coating are used.
On the soft X-rays regime (≈100-2400eV) in turn, mirrors have low
reflectivity and designs using multilayers in reflection or transmis-
sion mode have been used [Schäfers et al., 1999].

This chapter discusses a reflection based VUV polarimeter man-
ufactured at MAX IV Laboratory that utilizes gold coated mirrors as
retarders and attenuators. It starts with a description of different
polarizations of light emitted by undulators in storage rings. Then,
concepts of electromagnetic optics are used to review the optical
properties of conducting materials and to introduce the formalism
of the Stokes parameters and the Mueller Matrices. All this is com-

1A retarder is an optical element that add a phase shift between the two orthogo-
nal components of the incident light.

2Also named attenuator and more precisely diattenuattor. It is an optical ele-
ment that attenuate the two orthogonal components of the incident light by different
amounts.
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3.1 Polarized light at synchrotron radiation sources

bined to understand how the Stokes parameters and Mueller matri-
ces are used in order to do polarimetry with the VUV polarimeter.
In addition, Paper III presents a new method for polarimetry, which
can be very advantageous for the VUV polarimeter due its particular
mechanical design. Finally, the commissioning of a soft X-rays po-
larimeter is described in Paper IV. This polarimeter is based on mul-
tilayers but it shares many basic concepts of the VUV polarimeter;
this is discussed in the end of the chapter.

3.1 Polarized light at synchrotron radiation sources

The ultimate goal of the polarimeter is to measure and define the
polarization of light at the end station. To achieve certain polariza-
tion it will be necessary to tune the undulator to compensate for the
changes of the polarization due to the beamline optics. For this rea-
son, it is also essential to know how to change the undulator param-
eters in order to obtain the desired polarization state.

The polarization of the radiation emitted by a charged particle
is defined by the particle’s trajectory when it is accelerated [Jackson,
1997]. In the case of storage rings, the radiation emitted by the
charged particles has a well defined polarization profile. In bend-
ing magnet based synchrotron radiation sources (second generation
sources), this polarization profile was used to obtain specific polar-
ization by selecting part of the beam with the desired polarization.
This method, however, has no control of the polarization and actu-
ally it is possible to obtain only elliptically polarized light (but not
circularly polarized) [Clark, 2004].

For this reason, several types of exotic insertion devices have
been developed with the aim to force the electrons into specific
trajectories to generate specific states of polarization [Clark, 2004;
Onuki and Elleaume, 2003; Walker, 1998]. Among them, a variation
of the planar undulators, the APPLE II undulator, has stood out and
nowadays it is the standard device for generating polarized light in
storage rings. For this reason, we start with a general discussion
about undulators and then we concentrate in the APPLE II charac-
teristics.
Accelerated Charged Particles and Generation of Polarized Light

Considering the light propagating in the vacuum in the ẑ direc-
tion, the electric field ~E (z , t ) is described as a plane wave of the form

~E (z , t ) = Ex (z , t )x̂ +Ey (z , t ) ŷ , (3.1)

Ex (z , t ) = Ex o exp (k z −ωt +δx ) ,

Ey (z , t ) = Ey o exp
�

k z −ωt +δy

�

,

whereω and k are the frequency and wavenumber of the radiation,
and c = k/ω, the speed of light in vacuum. The state of polariza-
tion of the light is then determined by the amplitudes Ex o and Ey o ,
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and by the relative phase δ = δy −δx of these two orthogonal com-
ponents of the electric field [Born and Wolf, 1999]. Considering now
the synchrotron radiation emitted by accelerated electrons, in a first
order approximation the electric field of the emitted radiation has a

dependence with the electrons acceleration ~̇β = (β̇x , β̇y , β̇z ) given by
[Walker, 1998]

Ex ∝ β̇x −θx β̇z , Ey ∝ β̇y −θy β̇z , (3.2)

where θx y are the angles relative to the ẑ axis. Applying these equa-
tions to an electron traveling in a storage ring, these equations ex-
plain, for instance, the fact that there is no linearly vertical polarized
light emitted on axis (θy = 0) from a bending magnetic, since in that
device we have β̇y = 0.

Equations (3.2) can be used in order to obtain the polarization of
the light emitted in an undulator. To this end, the electron trajectory
on the undulator must be derived from the magnetic field therein,
as done below using a sinusoidal approximation for the magnetic
field.

Planar Undulators - Sinusoidal Magnetic Field
Using sinusoidal approximation, the on axis (i.e., for x and y ≈ 0)

magnetic field of a undulator ~B (z ) is given by

~B (z ) =
�

Bx (z ), By (z ), 0
�

, (3.3a)

Bx (z ) = Bx o sin(ku z +φx ), (3.3b)

By (z ) = By o sin(ku z +φy ), (3.3c)

where ku = 2π/λu and λu is the undulator period. Note that un-
like earlier, the undulator field is not limited to one plane, which was
the case in equation (2.21). Using this sinusoidal approximation, the
trajectory of the electrons ~r (t ) = (x (t ), y (t ), z (t )) can be shown to be
[Walker, 1998]

x (t ) =
K y c

γΩ
sin(Ωt +ϕx ), y (t ) =

Kx c

γΩ
sin(Ωt +ϕy ), (3.4)

where Ω = β̄z 2πc /λu and β̄z is the mean speed in the ẑ direction.
The parameters ϕx ,y are temporal phases related to the magnetic
fields. For the sinusoidal magnetic field the K parameters are given
by

Kx =
e Bx oλu

2πm c
= 93.4 ·Bx o [T ]λu [m ] and K y =

e By oλu

2πm c
. (3.5)

The acceleration in the ẑ direction β̇z is much smaller than the
acceleration β̇x and will not be considered here [Walker, 1998]. This
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3.1 Polarized light at synchrotron radiation sources

allows assuming the electron position at the ẑ axis to be z (t ) = β̄z t
and this makes possible to convert the spatial dependence of the
magnetic field to temporal dependence. With this assumption we
obtain that the electron acceleration and the magnetic field are pro-
portional as

β̇x (t )∝ By (t ) and β̇y (t )∝ Bx (t ). (3.6)

Therefore, the electric field of the radiation, as given by equa-
tion (3.2), is directly proportional to the magnetic field of the undu-
lator

Ex ∝ β̇x ∝ By and Ey ∝ β̇y ∝ Bx . (3.7)

From this we can conclude that the amplitude of the electric field
of the emitted radiation can be modulated by the amplitude of the
magnetic field of the undulator. Furthermore, it can be derived that
the difference of phase between By (z ) and Bx (z ) defines the phase
between the electric fields Ex x̂ and Ey ŷ [Walker, 1998].

For a planar undulator, using the reference frame of Figure 2.1,
there is no acceleration in ŷ direction and thus the radiation is lin-
early polarized in the plane of oscillation, in this case the horizontal
plane. Although the magnitude of β̇z is small, vertical components
of the electric field are still produced out of the axis, which causes an
inclination in the plane of oscillation of the resulting electric field.
In other words, off-axis the plane of polarization is tilted and has
a dependence with the angle of observation3. However, this does
not generate circularly or elliptically polarized light since there is no
phase difference between the electric field components.

Some experiments, on the other hand, require circularly and el-
liptically polarized light and also the possibility to control the state of
polarization. For this, many variations of the undulators have been
developed with the purpose of controlling both the amplitudes and
the phase between the magnetic fields Bx (z ) and By (z ) [Carr, 1993;
Hwang and Yeh, 1999]. Among these, the device known as APPLE-II
[Sasaki, 1994] has become popular due to the high peak fields for the
circular mode and due to the possibility to generate all states of po-
larization in a relative simple way when compared to other devices,
as is discussed next.

APPLE-II Undulators

APPLE-II type undulators are based in four rows of magnets arranged
in two rows above and two rows below the electron orbit (Figure 3.1).
The magnets in the rows are assembled in a Halbach configuration

3For a detailed description of the observation angle dependence of polarization
in a planar undulator see Fig. 4.14 in [Clark, 2004] and [Kitamura, 1980].
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(a)

(b)

Figure 3.1. APPLE-II Undulator type. (a) No phases, the Undulator emits
horizontally linear polarized light. (b) Two row displaced by D on the −ẑ
direction (symmetric mode).

(Figure 3.2) [Halbach, 1981], and actually can be considered as an or-
dinary planar Halbach undulator where the upper and lower rows are
split into two.

Figure 3.2. Halbach undulator,
where the magnetic period is based
on 4 poles with the magnetic field
pointing in different direction. Note
that the up and bottom rows are
assembled in different manners.

Using the sinusoidal description of the magnetic field, the field in
the x̂ and ŷ directions is described as [Hwang and Yeh, 1999; Schmidt
and Zimoch, 2007]

By (z ) = By o (g )
�

sin(ku z +φ1) + sin(ku z +φ2)+

sin(ku z +φ3) + sin(ku z +φ4)
�

, (3.8a)

Bx (z ) = Bx o (g )
�

− sin(ku z +φ1) + sin(ku z +φ2)+

− sin(ku z +φ3) + sin(ku z +φ4)
�

. (3.8b)
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The amplitudes Bx o (g ) and By o (g ) depend on the gap opening g
(i.e. the distance between the upper and lower plane of magnets)
and will be discussed in more detail later. The undulator phases
φi = 2πDi /λu are related to the displacement Di in −ẑ direction of
each row. The number of the quadrant is used as the index i : index
1 for the upper back row, 2 for upper front, 3 for lower front and 4 for
lower back (see Figure 3.1).

It can be seen from equations (3.8) that it is indeed possible to
modulate the strength and phase between the two components of
the magnetic field by moving the individual rows. Regarding equa-
tions (3.7), it means that it is possible to change the energy and po-
larization of the emitted photons by moving the rows individually.

Therefore, to generate linearly or circularly polarized light the
rows must be placed properly in order to obtain the correct phase
and amplitude ratios ρ. There are two simplified ways to operate an
APPLE-II undulator in order to generate these different polarization
states: the circular and linear polarization modes, as discussed next.

Circular Polarization Mode (Symmetrical movement)

Circularly polarized light (CPL) can be obtained in an APPLE-II
undulator by moving a pair of opposite rows (1 and 3 or 2 and
4, Figure 3.1.b) in the same direction with the same displace-
ment(symmetrical movement), while keeping the other pair fixed
(the CP mode). Arbitrarily choosing the rows 1 and 3 to move while
keeping rows 2 and 4 fixed, we have

φ1 =φ3 =φ and φ2 =φ4 = 0
(CP mode)

(3.9)

and equations (3.8) reduce to

By (z ) = 4By o (g )cos
�

φ

2

�

sin
�

ku z +
φ

2

�

,
(CP mode)

(3.10a)

Bx (z ) = 4Bx o (g )sin
�

φ

2

�

cos
�

ku z +
φ

2

�

. (3.10b)

These equations can be rewritten as

By (z ) = B̃y sin
�

ku z +
φ

2

�

,
(CP mode)

(3.11a)

Bx (z ) = B̃x sin
�

ku z +
φ

2
+
π

2

�

, (3.11b)

where B̃x ,y are the peak of the magnetic field when operating in the
CP mode.
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From these equations4 we conclude that the phase between the
fields By (z ) and Bx (z ) in the CP mode is π/2. By recalling the lin-
ear dependence of the emitted electric fields on the magnetic fields
(equations 3.7), we have the result that the phaseδ between the elec-
tric field components of the light is also π/2.

The remaining parameter to be determined for the polarization
of the light is then the amplitude ratio ρ = Ey /Ex . Recalling again
equations 3.7, we can relate the ratioρ to the peak values of the mag-
netic field B̃x ,y by

ρ =
Ey

Ex
=

B̃x

B̃y
=

Bx o (g )
By o (g )

tan
�

φ

2

�

.
(CP mode)

(3.12)

Hence the ratioρ can have values from−∞ to∞, and the differ-
ent values of ρ are related to different polarization states as follows

ρ
rows
phaseφ Polarization

0 0 horizontal linear

±∞ ±π vertical linear

0<ρ <∞ −π<φ < 0 left-handed elliptical

0>ρ >∞ 0<φ <π right-handed elliptical

By solving equation (3.12) forφ we obtain the rows phase necessary
to produce a specific state of polarization with a certain value of ρ

φ = 2 ·arctan

�

ρ
By o (g )

Bx o (g )

�

.
(CP mode)

(3.13)

For circular polarized light it is necessary that ρ = ±1 (left or right
hand CPL) and then

φC P L =±2 ·arctan

�

By o (g )

Bx o (g )

�

.
(CP mode)

(3.14)

Finally, it must be noted that the main axis of the elliptically
polarized light is limited to the directions x̂ or ŷ , and then it is not
possible to produce inclined (tilted) elliptically polarized states with
symmetric displacement.

Defining the row phase and gap values By equation (3.12), we have
that the polarization state is determined by both the row phaseφ and
the undulator gap g . However, the resonant energy of the undulator

4There are two equivalent ways to read these equations: first, the peaks of the
magnetic field B̃x and B̃y are positives and the phase can assume values+π/2 or−π/2;
in the second way, the phase is +π/2 and the peaks B̃x and B̃y can assume negative
values. In this work the later way is used.
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is also a function of the amplitudes of the magnetic field components
B̃x ,y (equations 2.3 and 3.5), and hence it is also a function of the gap
and the rows phase5 φ.

To make this relation clear, we start by writing the deflection pa-
rameter K in equation (3.5) as a function of the gap opening

Ko (g ) =
eλu

2πm c
·Bo (g ).

With this definition we use the peak of the magnetic field when oper-
ating on the CPL mode in equation (3.10) to obtain the photon energy
as

E1[e V ] =
2 ·1.24 ·10−6 ·γ2

λu

�

1+8K y o (g )2 cos2
�

φ
2

�

+8Kx o (g )2 sin2
�

φ
2

�� .
(CP mode)

(3.15)
We have then that two quantities, photon energy E and the am-

plitude ratio ρ, depend on the same two parameters, gap opening g
and rows phase φ. Mathematically we have E (g ,φ) and ρ(g ,φ). It
means that to tune the undulator to a specific polarization state and
photon energy is necessary to find the proper values of gap g and
rows phaseφ.

Figure 3.3. Dependence of the
magnetic fields Bx o (g ) and By o (g )
with the gap for an APPLE-II
undulator.

The proper way to determine the gap dependence of the mag-
netic field functions Bx o (g ) and By o (g ) is by experiment. However,
Elleaume et al. [2000] presented an analytical function that can be
used to estimate the peak magnetic field for several models of undu-
lators as:

Bp e a k = a exp

�

b
g

λu
+ c

�

g

λu

�2
�

. (3.16)

The parameters a , b and c depend on the direction of the magnetic
field in the undulator. The results obtained using this model for an
APPLE-II undulator are plotted in Figure 3.3. Figure 3.4 shows the

Figure 3.4. (CP Mode) Photon
Energy in function of the gap
aperture and the phaseφ. (λu = 5c m
and electron energy 1.5G e V )

photon energy as given by equation (3.15), using the model for the
magnetic field Bx o (g ) and By o (g ) as given by equation (3.16).

In practice the interest lays in finding out the correct gap open-
ing and rows phase for producing certain polarization state at certain
energy, i.e. φ(Ehν,ρ) and g (Ehν,ρ). Solving these parameters ana-
lytically is complicated but numerical methods can be used for that.

The graphs of Figure 3.5 show the values of gap and phase re-
quired to obtain different polarization states. The graphs are pro-
duced with numerical calculation by using the undulator parame-
ters, the magnetic field of equation (3.16), the photon energy and

5In fact it is possible to tune the resonant photon energy in a APPLE-II undula-
tor by using the row movement instead of changing the gap opening, making use of
the Adjustable Phase Undulator concept. The concept is described by Lidia and Carr
[1994] and an application is reported for instance by Schmidt et al. [2007].
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(a) (b)

(c) (d)

Figure 3.5. Gap and row phase φ in function of the photon energy and
different state of polarization: elliptically (defined by different values of ρ),
horizontally (HPL), vertically (VPL) and circularly (CPL) polarized light. (a)
and (b) CP mode. (c) and (d) LP mode.

rows phase equations (equations 3.12 and 3.15). For instance, as an
illustrative example, we can see that to generate circular polarized
light at 200e V it is necessary to have a gap of 20mm and a phase of
0.67πrad. This shows the feasibility of using numerical calculation
to obtain the values of gap and row phase for a specific set of photon
energy and polarization.

Linear Polarization Mode(Antisymmetric movement)

In the CP mode discussed above it is possible to generate linearly
polarized light only in the vertical or horizontal directions. As the
row phase changes in the interval 0 < φ < π, the polarization of the
light changes from horizontal linearly polarized to elliptically polar-
ized (passing by circularly polarized) and finally ending up to vertical
linearly polarized light.

However, by moving the rows in opposite directions (antisym-
metric movement) it is possible to obtain inclined linearly polarized
light. In this case, as will be discussed, the inclination of the linearly
polarized light can also be adjusted.

Similarly to the CP mode, when operating in the linear polariza-
tion mode (LP mode) is necessary to move two opposite rows by the
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same displacement, but now in opposite directions (i.e., antisym-
metric movement). Having again rows 1 and 3 to be moved, we have
that

φ1 =−φ3 =φ and φ2 =φ4 = 0.
(LP mode)

(3.17)

These conditions in equations 3.8 yield

By (z ) = 4By o (g )cos2
�

φ

2

�

sin(ku z ),
(LP mode)

(3.18a)

Bx (z ) = 4Bx o (g )sin2
�

φ

2

�

sin(ku z ), (3.18b)

which becomes

By (z ) = B̃y sin (ku z ) ,
(LP mode)

(3.19a)

Bx (z ) = B̃x sin (ku z ) , (3.19b)

and now the components of the magnetic field are in phase, which
means that only linearly polarized light is produced. Again, the peak
values of magnetic field components B̃x and B̃y depend on the phase
φ, though the dependence is different compared with the CP mode.

Since the fields are in phase in the LP mode, the ratioρ = Ey o/Ex o

of the amplitudes of the electric field defines the angle of inclination
Ψ of the polarization plane

ρ =
Ey

Ex
= tanΨ.

Using again equation (3.2) we have

ρ =
B̃x

B̃y
=

Bx o (g )
By o (g )

tan2
�

φ

2

�

.
(LP mode)

(3.20)

Solving this equation forφ, we obtain the row phase necessary to
produce linearly polarized light with an inclination angle Ψ:

φLP L = 2 ·arctan





√

√

√

tanΨ ·
By o (g )

Bx o (g )



 .
(LP mode)

(3.21)

Similarly to the CP mode, the change of phase changes the am-
plitude of the magnetic field, which in turns changes the resulting
photon energy. Carrying on the calculation for the on-axis photon
energy for the LP mode gives
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E1[e V ] =
2 ·1.24 ·10−6 ·γ2

λu

�

1+8K y o (g )2 cos4
�

φ
2

�

+8Kx o (g )2 sin4
�

φ
2

�� .
(LP mode)

(3.22)
It can be seen that although the results are different from the CP

mode (equation (3.15)), we face the same problems in analytically
defining the proper gap opening and row phase. Again a numerical
method is used to define these parameters. The results are shown in
Figure 3.5. For the parameters considered here, we have for instance
that to generate LPL of 200e V inclined at 45deg it is necessary to have
a gap of 20mm and an asymmetric row phase of 0.58πrad.

The limitation in this case is that tanΨ in equation (3.21) must
be positive, limiting the angle of inclination to the interval 0 ¶ Ψ ¶
90 deg. That means that the plane of oscillation is restricted to the
first and third quadrant. To obtain linearly polarized light inclined on
the other quadrants it is necessary to move rows 2 and 4, instead of
the 1 and 3 as assumed here. Thus, to be able to rotate the oscillation
plane of the radiation in all direction, it is necessary that all the rows
are movable [Schmidt et al., 2007].

It must be pointed out that some approximations are used in the
development of these models. The main approximations are related
to the magnetic fields of the undulator: a sinusoidal approximation
was used, only the on-axis magnetic fields were considered (x and
y ≈ 0), the magnetic field on ẑ direction was assumed to be zero,
and it was assumed that the gap dependence of the magnetic field
is as given by equation (3.16). In principle, all deviations from these
approximations must be considered when applying the models de-
scribed here to real undulators.

The better way to overcome the problems due to the use of these
approximations is by determining experimentally the polarization of
the light emitted by the undulator. This, together with the change of
polarization of the light due to optical effects (as will be discussed in
Section 3.2), motivated us to develop a polarimeter to be operated at
the MAX IV laboratory, discussed in the next sections.

3.2 Optical properties of metals

The study of the optical properties of the materials starts by devel-
oping a model for the response of the material to an external electric
field and then solving the Maxwell’s equation for the corresponding
electromagnetic wave [Born and Wolf, 1999].

In the case of metals, the common approach is to consider the
medium with both dielectric and conductive properties with a linear
dependence on the electric field [Saleh and Teich, 2007]. Such media
are called linear media, and by assuming additionally that they are
homogeneous and isotropic, one derives that the resulting electro-
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magnetic wave can be described by a harmonic field with a complex
wave number k̃ .

Such result is equivalent to assuming a dielectric material (non-
conducting) with a complex permittivity. Therefore, some results
from dielectric materials can be applied to metals by simply replac-
ing the real value of the wave number and permittivity by corre-
sponding complex values. Regarding the optical phenomenon, this
means that some well known descriptions for the dielectrics can also
be used for metals just by adding a complex term to the refractive in-
dex ñ as

ñ = (1−δ) + iβ , (3.23)

where the parameters δ and β are energy dependent. The real part
is written as 1−δ for practical reasons since it is very close to unity in
the X-ray range. The imaginary term β is the attenuation index and
is related to the absorption effect. Figures 3.6 and 3.7 show the values
of δ and β for gold obtained from tabulated data [Palik, 1985].

Figure 3.6. Values of −δ for gold
as a function of photon energy [Palik,
1985].

One of the results for dielectrics that can be extended to metals
is the Snell’s law (law of refraction). Considering an electromagnetic
wave propagating from the vacuum into a metal with an incidence
angle θ , the Snell’s law becomes

Figure 3.7. Values of β for gold as
a function of photon energy [Palik,
1985].

sinθ = ñ sinφ̃. Snell’s law for
metals

(3.24)

Since the refractive index ñ is complex, the quantity φ̃ needs also
to be complex, and cannot be interpreted as the angle of refraction
anymore [Born and Wolf, 1999]. It must be recalled that also the wave
number k̃ is complex, which in turn results in a complex propagation
vector. Considering these complex quantities and carrying on the
calculation for the refracted beam actually results in an inhomoge-
neous wave6, which requires a special interpretation of the quantities
ñ , φ̃ and k̃ [Born and Wolf, 1999]. However, since we are interested
in the reflected radiation only, the properties of the inhomogeneous
wave inside the metal can be ignored and all the properties of the
reflection can be studied based only on the parameters δ and β .

The next step is to derive the Fresnel’s law for metal surfaces. The
derivation of the Fresnel’s law are omitted here but it is described in
details for instance by Fowles [1975] and Born and Wolf [1999]. The
Fresnel’s law considering a complex refractive index is given by

6By inhomogeneous waves one means waves in which the surfaces of constant
amplitudes do not coincide with the surfaces of constant phase. In particular on the
metals the surfaces of constant amplitude are normal to the metal-dielectric interface
whereas the surfaces of constant phase are not [Fowles, 1975].
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r̃s =
cosθ −

p

ñ 2− sin2θ

cosθ +
p

ñ 2− sin2θ
,

r̃p =
−ñ 2 cosθ +

p

ñ 2− sin2θ

ñ 2 cosθ +
p

ñ 2− sin2θ
.

Fresnel’s
law

(3.25)

Here r̃s is the complex coefficients of reflection of the incident waves
with the electric field parallel to the optical surface (direction x2 in
Figure 3.8), named as transverse electric (TE) waves. The r̃p in turn
is the complex coefficients of reflection for transverse magnetic (TM)
waves, which have the magnetic vector of the field parallel to the sur-
face. These results are the same for dielectric except by the fact that
the refractive index is complex. Furthermore, for β = 0 these equa-
tions reduce to the results for dielectrics, as expected.

Figure 3.8. Coordinates system for
the reflection on mirror. TE waves
have the electric field oscillating on
x1 direction, whilst TM waves the
electric field oscillates on z1
direction.

It can be seen directly from equation (3.25) that due to the com-
plex value of refractive index also the coefficients of reflection are
complex, i.e.

r̃s = rs e iδs and r̃p = rp e iδp . (3.26)

A direct result of these coefficients being complex is that the elec-
tromagnetic wave is subject to a change of phase when reflected.
Reflection on dielectrics also causes a change in phase but, except
in a total internal reflection, the phase shift is always equal to zero
or π [Saleh and Teich, 2007]. The change of phase due to reflection
on metals has a more complicated behavior and there is no simple
analytical function for it. However, by using tabulated values and
the Fresnel’s equations for metals, a numeric computational soft-
ware(e.g. MATLAB [2013]) can be used to calculate the phase shifts
in reflection.

This method is now used to illustrate the energy and angular de-
pendence of the reflectance Rs ,p = |r̃s ,p |2 = r 2

s ,p for gold. The energy
dependence is shown in Figure 3.9 for θ = 80deg. Figure 3.10 shows
the dependence of angle of incidence for three different energies. We
can see that in general Rs increases for larger values of θ (i.e. grazing
incidence) and that Rp has a minimum value at some angle, called
the principal angle of incidence, which corresponds to the Brewster
angle of the dielectrics [Fowles, 1975].

From these figures it becomes clear that we can calculate the re-
flectivity coefficients and the phase shifts due to reflection just by
using the Fresnel’s law for metals and tabulated data for the optical
constants of materials. This information is essential to study the per-
formance of the polarimeter and also to optimize the instrument and
its mode of operation. Moreover, analyzing the values of reflectance
and phase shift it is clear that a beamline consisting on many reflec-
tive optical elements at grazing incidence (e.g. θ = 88deg) changes
the polarization state of the light. Indeed the same concepts used to
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study the polarimeter can be used later on to study the beamlines
influence in polarization, as done e.g. by Bahrdt et al. [2010].

3.3 Stokes Parameters and Mueller Matrices

There are several ways to represent and study the polarization state
of the light, namely the polarization ellipse, Jones matrices, Stokes
Parameters and Poincaré sphere [Born and Wolf, 1999; Goldstein,
2011]. For the present work the Stokes parameters and the Mueller
matrices are well suitable since they represent the polarization state
in terms of measurable quantities and can be applied also for unpo-
larized and partially polarized light.

For an electromagnetic wave described by a plane wave the
Stokes parameters are defined by

S0 =E 2
x 0+E 2

y 0, (3.27a)

S1 =E 2
x 0−E 2

y 0, (3.27b)

S2 =2Ex 0Ey 0 cos(δy −δx ), (3.27c)

S3 =2Ex 0Ey 0 sin(δy −δx ), (3.27d)

where Ex 0 and Ey 0 are the amplitudes of the two orthogonal compo-
nents Ex (t ) and Ey (t ) of the electric field ~E (t ) of the light, which in
turn are given by equations 3.1. The coordinate system is the same
as already shown in Figure 3.8. The derivation is omitted here, but
the Stokes parameters are extensively discussed in the literature and
a formal derivation can be found for instance in Goldstein [2011,
Chapter 5].

Besides the polarization of the light itself, it is necessary to de-
scribe how an optical element affects the polarization. For the ma-
jority of the optical elements this interaction can be assumed to be
linear (linear optics), i.e., the resulting electric field that comes out
of an optical system can be described as a linear combination of the
electric field that comes into the element. This can be written as

E ′x = T11Ex +T12Ey ,

E ′y = T21Ex +T22Ey ,

where Ex ,y and E ′x ,y are the two components x and y of the elec-
tric field of the incoming and outgoing waves respectively. T11, T12,
T21 and T22 are (complex) constants. In the case of a mirror oriented
such that the x̂ direction is on the mirror surface (as in Figure 3.8),
we would have that T12 = T21 = 0, T11 = r̃s and T22 = r̃p , where r̃s ,p are
the complex coefficients of reflection (equations 3.25).

Linear equations as the ones shown above can be presented in
simpler way by using matrices, and thus the equations above can be
written as
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(a) (b)

Figure 3.9. (a)Reflectance R and (b) phase shifts due to reflection on gold
in function of the photon energy. Incidence angle 80deg.

(a) (b)

(c) (d)

(e) (f)

Figure 3.10. Reflectance and phase shifts in function of the incidence angle
for 5eV (a-b), 10eV (c-d) and 100eV (e-f).
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�

E ′x
E ′z

�

=

�

T11 T12

T21 T22

�

·
�

Ex

Ez

�

,

J1 = T · J2,

where in the context of optics the vectors J1 and J2 are called the Jones
vectors and T the Jones matrix. In this case, the Jones matrix R for
reflection is given by

R=

�

r̃s 0
0 r̃p

�

.

The same reasoning applies to the Stokes parameters: for an optical
system that is linear regarding the electric fields Ex ,y , the Stokes pa-
rameters are also subjected to linear transformations like [Goldstein,
2011]







S ′0
S ′1
S ′2
S ′3






=







m11 m12 m13 m14

m21 m22 m23 m24

m31 m32 m33 m34

m41 m42 m43 m44






·







S0

S1

S2

S3







S′ =M ·S0

where the vectors S′ and S0 are called Stokes vectors and are related to
the outgoing and incoming light, respectively. M is called the Mueller
matrix and it describes the optical element.

The derivation of the Mueller matrices for the different optical
elements is slightly more complicated than that of the Jones matrices
and is done elsewhere (e.g. in Goldstein [2011]). Additionally, Azzam
and Bashara [1987] discuss how to make the conversion from a Jones
matrix to a Mueller matrix.

In the present case the main interest is in the Mueller matrix for
a metal coated mirror, or in other words, a Mueller matrix for the
Fresnel’s law for metals, which is given by [Goldstein, 2011]

M(rs , rp ,δ) =
1

2
×









r 2
s + r 2

p r 2
s − r 2

p 0 0
r 2

s − r 2
p r 2

s + r 2
p 0 0

0 0 2rs rp cosδ 2rs rp sinδ
0 0 −2rs rp sinδ 2rs rp cosδ









,

(3.28)
where δ = δs −δp . By comparing this matrix with the Mueller ma-
trices for a polarizer and a retarder (as described in Chapters 6.2 and
6.3 of Goldstein [2011]), we conclude that a mirror has the same ef-
fect than a polarizer-retarder pair.

It is assumed in equation (3.28) that the reflective surface is in
the orientation shown in Figure 3.8: the mirror is orientated so that
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the x2 axis of the mirror coincides with the x1 axis of the incoming
wave. To obtain other orientations the reference frame must be ro-
tated. Considering the reference frame presented in Figure 3.11, we
have that the reflection happens on the y z plane at each mirror. To
obtain the orientation of the second mirror, the reference frame must
be rotated around the z3 axis, and in this particular example the ref-
erence frame must be rotated by 180deg. Regarding the Stokes pa-
rameters, a rotation is done by applying a Mueller matrix of rotation
MR(η) given by

MR(η) =







1 0 0 0
0 cos(2η) sin(2η) 0
0 −sin(2η) cos(2η) 0
0 0 0 1






(3.29)

where η is the rotation angle. The particular way that vectors and
matrices transform due to rotation must be recalled: a rotated Stokes
vector S(η) is given by7

Figure 3.11. Geometry of two
mirrors of the retarder unit. To obtain
this geometry the second mirror must
be rotated by 180deg around the ŷ
axis (see text for details).

S(η) =MR(η) ·S

whilst a rotated matrix M(η) is

M(η) =MR(−η) ·M ·MR(η).

3.4 Polarimeter

The Mueller matrices and Stokes parameters are now used to eval-
uate the performance of the polarimeter and to study how it can
be used for polarimetry. The discussion is focused in a polarimeter
based on reflectors, like the one presented in Figure 3.12. The op-
tical design of the polarimeter is based on two main units like any
other polarimeter: the retarder, consisting on three mirrors, and the
analyzer unit, consisting on a single mirror and a light detector. The
measurement of the polarization of the incoming light is done by ro-
tating the units in proper manner and measuring the transmitted in-
tensity with the detector.

The function of the first unit is to introduce different phase shifts
to the different components of the electric field (s and p ). Such func-
tion could be performed by a single mirror, but then the beam that
comes out of this unit would be deflected in different directions dur-
ing the rotation η1. With this three mirrors assembly it is possible to
place the mirrors in such a way that the outgoing beam is always at
the same axis as the incoming light, and consequently the final de-
sign and operation of the polarimeter is made simpler. The analyzer

7For the present case geometric arguments can be used to prove these relations,
as done e.g. by Goldstein [2011, Chapter 6.5]. A formal and general derivation can be
found for instance in Arfken et al. [2012, Chapter 5.6 - Transformations of Operators].
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Figure 3.12. Optical scheme of the polarimeter. The two units can be ro-
tated independently by angles η1 and η2 around a main axis determined by
the incoming light. In this configuration the angles η1 and η2 are defined as
zero.

unit has the function of introducing a (further) attenuation to the s
and p components of the light. Finally, the intensity of the light is
measured with a photon detector.

It must be noted that the retarder unit also attenuates the s and p
components of the light and this actually decreases the final perfor-
mance of the polarimeter. The ideal situation is not having any at-
tenuation at all in this unit. The analyzer unit in turn also introduces
phase shifts, but that has no effect on the polarimeter performance.

In order to describe the performance of the polarimeter, we can
now make use of the Stokes and Mueller formalism discussed in the
former section. By describing the incoming light by the Stokes vector
S0 and the light that reaches the detector as S′ we have

S′ =Mpol(η1,η2) ·S0 (3.30)

where Mpol is the Mueller matrix that describes the polarimeter and
is a function of the optical constants and the angles η1 and η2. The
detector measures the total intensity of the light reaching it, which
correspond to the first Stokes parameters S ′0 of the vector S′.

To obtain the matrix Mpol(η1,η2)we need to consider the Mueller
matrices of every mirror M1, M2, M3 and M4 as defined by equa-
tion (3.28). Additionally, it is necessary to consider the rotation an-
gles between each element related to the optical axis,η1 andη2. This
gives

Mpol(η1,η2) = MR(−η2)·M4 ·MR(η2)·
·MR(−η1)·M3 ·MR(η1)·

·MR(−180o ) ·MR(−η1)·M2 ·MR(η1) ·MR(180)·
·MR(−η1)·M1 ·MR(η1)

(3.31)

where MR is the Mueller matrix of rotation (eq. 3.29).
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As shown in Appendix B, the 3 mirrors assembly of the retarder
unity can be treated as a single element due to the fixed rotation an-
gle of 180deg between the mirrors. This reduces equation (3.31) to

Mpol(η1,η2) =MR(−η2) ·M4 ·MR(η2) ·MR(−η1) ·Mret ·MR(η1). (3.32)

where Mret is the Mueller matrix of the retarder unity defined in
Appendix B.

Before calculating this matrix, rearranging some variables will
simplify the Mueller matrix of a mirror. Namely, defining the param-
eterψ such that

tan(ψ) =
rp

rs
δ=δs −δp (3.33a)

cos(ψ) =
rs

q

r 2
s + r 2

p

sin(ψ) =
rp

q

r 2
s + r 2

p

(3.33b)

cos(2ψ) =
r 2

s − r 2
p

r 2
s + r 2

p

sin(2ψ) =
2 · rs · rp

r 2
s + r 2

p

(3.33c)

the matrix in equation (3.28) becomes

M(rs , rp ,δ) =
r 2

s + r 2
p

2
×

×







1 −cos(2ψ) 0 0
−cos(2ψ) 1 0 0

0 0 sin(2ψ)cosδ sin(2ψ)sinδ
0 0 −sin(2ψ)sinδ sin(2ψ)cosδ






.

(3.34)
This reduces the number of parameters inside the brackets from
three (rs , rp and δ) to two (ψ, δ).

Now we have all the tools to perform the matrix multiplication
presented in equation (3.30). However, the result is complicated and
only the relevant result will be discussed, which in this case is the
result for the parameter S ′0, because it is related to the intensity mea-
sured on the detector. Solving the matrix multiplication for the term
S ′0 yields

S ′0 =
1

4
·
�

rs 3
2+ rp 3

2
� �

rs 4
2+ rp 4

2
�

(c0 ·S0+ c1 ·S1+ c2 ·S2+ c3 ·S3) (3.35)

where the parameters c0, c1, c2 and c3 are given as

c0 =

+1

+ cos
�

2η2−2η1

�

×cos
�

2ψ3

�

cos
�

2ψ4

�

,
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− cos
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− sin
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2η2−2η1
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For the sake of clarity, the equations have the terms which de-
pend on the rotation angle written on the left-hand side of the mul-
tiplication symbol “×”. The terms that depend only on the optical
parameters are written on the right-hand side.

Finally, normalizing the equation by the incoming intensity
S0 results in the polarimeter equation (following the notation of
Appendix B)

S̄ ′0 =
1

4
·
�

rs 3
2+ rp 3

2
� �

rs 4
2+ rp 4

2
� �

c0+ c1 · S̄1+ c2 · S̄2+ c3 · S̄3

�

,

polarimeter
equation

(3.36)

where the terms with bar are normalized by S0 as S̄i = Si /S0.

Performance of the VUV Polarimeter

Considering the performance of a polarimeter based on retarder and
attenuator, an ideal retarder would present a phase shift δ such that
sin(δ) = ±1 and no attenuation resulting that sin(2ψ) = 1. An ideal
attenuator in turn would totally absorb one component of the ra-
diation and be transparent to the other, resulting in cos(2ψ) = ±1.
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Figure 3.13. Optical constants of the gold mirrors calculated with Fresnel’s
equations and data from Palik [1985]. Incidence angles for mirrors M1 to M4
are: 80o , 70o , 80o and 45o , respectively.

Using the previous notation for the current case, an ideal polarime-
ter would have optical parameters such that

sin(2ψ3) = 1,

sin(δ3) =±1,

cos(2ψ4) =±1.

optical parameters
of an ideal

polarimeter

(3.37)

The value of δ4 is not relevant since it does not appear in equa-
tion (3.36). Further analysis shows that these conditions would
greatly simplify equation (3.36) and would maximize the sensitivity
of the instrument to circularly polarized light by maximizing the am-
plitude of the c3 parameter. With this we assume that the figure of
merit for the polarimeter performance is a high value of the product
�

�sin(2ψ3)cos(2ψ4)sin(δ3)
�

�, which has a maximum possible value of
1.

Figure 3.13 shows the values of these optical parameters for gold
for the incidence angles of the polarimeter that has been manufac-
tured. We observe that the best performance occurs around 50e V
and a good performance is expected in the range of 10-100e V .

In addition, it is also possible to use equation (3.36) to study
the behavior of the polarimeter for different states of polarization.
Noting that the current I measured by the detector is linearly propor-
tional to the photon intensity, we have I (η1,η2) = Efficiency ·S ′0, where
Efficiency is the detector efficiency. Therefore it is possible to use tab-
ulated optical constants to estimate the polarimeter response to dif-
ferent states of polarization. The dependence of I (η1,η2) as a func-
tion of the rotation anglesη1 andη2 is shown in Figure 3.14. It can be
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observed for instance that linearly polarized light (from fig. 3.14.b to
f ) results in a multi-peak surface. A completely different behavior is
obtained for circular polarized light (fig. 3.14.g and h), which in turn
is similar to unpolarized light (fig. 3.14.a ).

3.5 Determination of the polarization state of the
light

From the analysis shown in the previous sections we know that the
intensity measured by the polarimeter has a linear dependence of the
Stokes parameters of the incoming light, though it has a complicated
dependence with the rotation angles η1 and η2 and with the optical
constants.

Although the equations have been derived to a polarimeter
based on mirrors, they are still quite general and very similar to
the corresponding equation for different devices built by others,
e.g. Gaupp and Mast [1989] using mirrors and Schäfers et al. [1999]
and MacDonald et al. [2009] using multilayers.

This theory can now be used to determine the polarization of the
light, i.e. by measuring I (η1,η2)we can determine the Stokes param-
eters S1, S3 and S3. Over the years two methods for measuring the po-
larization of the light have been used. The first combines measure-
ments at specific pairs of anglesη1 andη2 where the equation can be
simplified, as done for instance by Koide et al. [1991], Schledermann
and Skibowski [1971] and Hamm et al. [1965]. This method is also
shown in Appendix C.3 where it is applied to the present polarimeter
with the notations used in this work. The second method is in turn
based on measuring the intensity while scanning the angles η1 and
η2 and performing the least square fitting procedure to the data using
equation (3.36) (or other similar, depending on the device) to obtain
the Stokes parameters and the optical constants of the polarimeter.
The later method has been used for instance by Schäfers et al. [1999]
and by Nahon and Alcaraz [2004].

The first method has the advantage of being fast, since it requires
fewer measurements, but it is more sensitive to experimental errors,
like misalignment. It can however be very useful for preliminary
analysis and determination of initial values for the fitting method.
The second methods is less sensitive to errors but due to the fit-
ting process it is difficult to estimate the error in determination of
the Stokes parameters, since this is generally done by statistical esti-
mations [Bevington and Robinson, 2003; Nahon and Alcaraz, 2004].
Furthermore, due to the complicated function, it is difficult to reli-
ably estimate the fitting convergence, existence of local minimums
when minimizing χ2 and existence of a unique solution.

In respect to that, Paper III describes a new method, where the
angles η1 and η2 are scanned under certain conditions. These con-
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 3.14. Plot of equation (3.36) for different polarization states (Stokes
parameters on the titles of each figure): (a) Unpolarized light. (b) Elliptically
polarized light. (c-f) Linearly polarized light. (g-h) Circular polarized light.
Photon energy 20e V . Incidence angles for mirrors M1 to M4 are: 80o , 70o ,
80o and 45o , respectively. Gold data from Palik [1985].
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ditions are discussed in the paper and derived in more details in the
Appendix C.2.

The initial motivation to develop this method was to simplify the
data analysis by seeking rotation angles that simplify equation (3.36).
It turned out that fixing the angular differenceη2−η1 to mπ

4 , with m =
−1, 0, 1, 2 results in four special cases where the measured intensity
I (η1,η2) = I (η,η+ mπ

4 ) can be always reduced to the form

I (η) = Ī
�

1+V · sin(2η+Ψ)
�

,

where Ī , V andΨ are the experimental quantities mean value of I (η),
visibility V = (Ima x − Imi n )/(Ima x + Imi n ) and phase Ψ, respectively.
Therefore, these special cases greatly simplify the intensity equation
and link the analysis to the experimental quantities Ī , V and Ψ that
can be easily measured.

Moreover, it can be shown [Paper III] that these three experimen-
tal quantities of the four special cases can be used to fully determine
the Strokes parameters of the incoming light. These direct relations
between the Stokes parameters and the experimental quantities Ī , V
and Ψ have the further advantage of avoiding any fitting procedure
and allowing to study the effects of the experimental errors to the er-
rors for the Stokes parameters.

Multilayer based polarimeter

Figures 3.9 and 3.13 show that the gold mirrors have poor perfor-
mance for energies above 100eV. This is the case for most of the
materials since the refractive index in general behaves as shown in
Figure 3.6. To overcome this limitation, alternative optical devices
are required for doing polarimetry, and the most common solution
for the energy range above 100eV and up to ca 1500eV is to use reflec-
tion and transmission multilayers [Gaupp et al., 2010; Schäfers et al.,
1999].

For this energy range a second polarimeter based on multilayers
has been commissioned at MAX-lab and it is described in Paper IV.
The motivation for using multilayers is discussed elsewhere, for in-
stance by Schäfers et al. [1999]. The discussion here is based on
the fact that the polarimeter equation (eq. 3.37) is also valid for the
multilayer-based polarimeter, where only minor changes are neces-
sary, the most important being to interpret some optical parameters
as transmission coefficients when working with transmission multi-
layers. Regarding the new method on Paper III, some caution is nec-
essary when applying it for the multilayer based polarimeter. The
reason for this are assumptions made, for instance that cosψ > 0,
which very likely is not true for the working conditions of the trans-
mission multilayer. Nevertheless, the same reasoning of Paper III
can be applied to a multilayer-based polarimeter and a new set of
equations can be derived, and only minor changes are expected.
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CHAPTER 4

WAVE OPTICS APPLIED TO SR

The Diffraction Limited Storage Rings (DLSR) put new challenges in
beamline modeling as the light has a high degree of coherence. The
models must provide information about how this kind of light be-
haves when propagating trough the beamline and eventually the de-
gree of coherence of the beam at the experimental station. There
are various strategies for modeling beamlines at DLSR, but in gen-
eral they all have two main steps in common: first, the light emitted
by a single electron is propagated trough the optical elements of a
desired optical system; secondly, the light from many electrons are
summed up. This latter step can be done either by properly convo-
luting the electron beam size with the light beam dimensions, or by
propagating the light emitted by each electron in the bunch and then
summing up the light in the end (brute force method). The propaga-
tion of the light emitted by a single electron is completely based on
wave optics and is referred as wavefront propagation. The rules for
summing up the resulting light is dictated by statistical optics, which
also provides information about the degree of coherence.

This chapter will start with a brief discussion about diffraction
limited sources and the motivation to use wavefront propagation.
Then the main concepts of wave optics are introduced in order to un-
derstand the main tools in modeling optical system, namely Fourier
optics and the stationary phase approximation method. Finally,
statistics optics will be introduced in order to understand the mod-
eling of partially coherent beam.

4.1 Diffraction Limited Storage Rings

Synchrotron radiation from storage rings is an outstanding light
source due to the high brilliance of the produced photon beam.
Brilliance is defined as the photon flux divided by the photon beam
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4.1 Diffraction Limited Storage Rings

area and divergences1. Using the statistical root-mean-square (rms)
values for the photon beam size σx y and divergence σ′x y , we have
that the brillianceB (ω) can be written as (following notation of Ch.
2)

B (ω) =
Φ(ω, û )

σxσ′xσyσ′y
,

Brilliance

where the sub indexes x and y refer to the horizontal and vertical di-
rections respectively. The product of the rms values of size and diver-
gence σσ′ can be interpreted as the area in the phase space, which
is referred as emittance, ε,

ε =σσ′,
Emittance

(4.1)

and thus the expression for brilliance becomes

B (ω) =
Φ(ω, û )
εx εy

.
Brilliance

(4.2)

Since the brilliance is the main quality of light generated at stor-
age rings, this means that improvements are either done by increas-
ing flux or by decreasing the beam emittance. Third generation stor-
age rings provided an increase in brilliance by using undulators to
increase the flux. Since the flux from the undulators scales with the
square of the number of periods (Φ(ω, û )∝N 2, see Section 2.1) and
N ≈ 10− 30 periods, undulators provided a increase of brilliance of
the order of≈ 100−1000 times compare to second generation storage
rings.

Another obvious way to increase flux, and thus brilliance, would
be by simply increasing the number of electrons circulating in the
storage ring (ring current). However this has some limitations, since
operating at high currents will lead to beam instabilities, which even-
tually increases emittance and decreases the life time of the electron
beam [Skripka et al., 2014]. Therefore, since the flux increases only
linearly with the number of electrons, this option is not very attrac-
tive. For instance, MAX IV rings will operate with 500mA, only two
times higher than the 250mA previously used at MAX II (updated val-
ues for other facilities are listed by Hettel [2014]).

More recently the strategy has been to decrease the beam emit-
tance, since it is more effective than increasing the flux, as the bril-
liance scales as 1/ε2. For a storage ring with electron energy E , the
emittance scales as E 2/N 3

d , Nd being the number of dipoles in the
ring. Therefore an increase in the number of dipoles Nd by a factor
two contributes alone to a decrease in the emittance almost by a fac-
tor of ten, and thus an increase in brilliance by a factor of circa 100.

1In the literature there are some confusion with the terms brilliance and bright-
ness, and often they are used to refer to the same quantity as discussed in Mills et al.
[2005], Peatman [1997] and Clark [2004].
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This is the main idea in the so-called multi-bend achromat concept
[Einfeld et al., 2014] that is used for the first time at MAX IV, where
the 3GeV ring uses 140 dipoles compared with only 20 used at MAX II
[Tavares et al., 2014].

There is, however, a limit for decreasing the emittance of the pho-
ton beam. This is called diffraction limit, which has origin in the un-
certainty principle and is derived in the context of quantum optics
[Mandel and Wolf, 1995; Saleh and Teich, 2007]. This limitation gives
the minimum value of the emittance for a photon beam εr , and it is
given by2

εr (λ) =σσ
′ ≥

λ

4π
.

Diffraction Limit
(4.3)

where λ is the wavelength of the radiation. This means that even a
source of negligible dimensions (like a single electron orbiting a stor-
age ring) produces radiation with dimensions dictated by the diffrac-
tion limit in Eq. 4.3.

It must be noted that this is a lower limit that is reached for in-
stance for a Gaussian beam [see discussion in Saleh and Teich, 2007,
Section 12.3]. However, since the value of emittance is defined in
terms of rms values of size and divergence, the emittance of the ra-
diation will actually depend on the spatial and angular distribution
of the radiation in question, which in turn depends on the emission
process. This can be seen explicitly for the case of undulators in Eq.
2.17, where the resulting undulator emittance is bigger than the min-
imum value provided by Eq. 4.3. In addition, we can see in Eq. 2.18
that out of the resonance frequency the emittance can be slightly dif-
ferent 3.

Due to the finite emittance of the electron beam, in order to ob-
tain the real dimensions and divergences of the source it is necessary
to take into account both the emittance of electron beam and the
diffraction limited emittance of the photon beam. This can be done
by convolution of the two emittances. However, the diffraction lim-
ited emittance is energy dependent, and at some low photon ener-
gies that will be much larger than the electron beam emittance, that
is εr (λ) � εe . At the photon energies where εr (λ) is dominant, the
source is said to be diffraction limited.

For instance MAX IV 3GeV and NSLS-II storage rings have both
a design goal to be diffraction limited in the vertical direction up

2The term diffraction limited system is also used to described aberration free op-
tical systems, where the only limit for spatial resolution is given by the response func-
tion of this system, which in turn depends on the diffraction of light by the apertures
of such system. An illustrative example is a circular lens imaging a point source. The
image size will be defined by the diffraction on the lens aperture and it will result in an
Airy pattern. Such (idealized) image is said to be diffraction limited [Goodman, 2005;
Saleh and Teich, 2007].

3Strictly speaking, as argued by Bazarov [2012], this mean that undulators radia-
tion is not diffraction limited. In this sense, concerning storage rings, diffraction lim-
ited actually means limited by the properties of undulators radiation.
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4.1 Diffraction Limited Storage Rings

to λ = 1Å [MAX IV Facility, 2010] [Brookhaven National Laboratory,
2006], and therefore they are said to be diffraction limited storage
rings4. This also means that not all the beamlines in the same storage
ring operate in the diffraction limited regime, since not all of them
operate at wavelengths where the source is diffraction limited.

Coherence at DLSR

Statistical optics provides the proper tools for discussing coherence,
and such approach is discussed in details later (Section 4.4). A sta-
tistical approach is necessary since the source is an ensemble of in-
dividual point sources, that is, the ca. 1018 electrons at each bunch
circulating in the ring.

The degree of coherence can be interpreted as the correlation be-
tween the radiation in two different points in space or in time (or
both). Mathematically, degree of coherence is the normalized value
of the correlation function of the EM field in those two points (see
eq. 4.29). The degree of coherence assumes the form of a distribu-
tion and the rms value corresponding to this distribution is called
the coherence length. Within this length the degree of coherence is
high and close to the maximum value of 1 (which means completely
coherent radiation).

This degree of coherence depends on the correlation between
the different points of the source. If these source points are com-
pletely uncorrelated and emit radiation randomly, then this source
is said to be completely incoherent. On the other hand if the point
sources are emitting radiation in an ordered manner, then the source
is coherent (or partially coherent) with some degree of coherence.
In a storage ring there are roughly ≈ 1018 electrons in a volume
of about 100µm × 10µm × 10mm (approximated rms values of a
electron bunch), and thus they are assumed to behave as incoher-
ent source. However, one important result from statistical optics is
that the light from a completely incoherent source can gain coher-
ence trough propagation in free space. This is a consequence of the
van Cittert-Zernike theorem [Born and Wolf, 1999; Mandel and Wolf,
1995; Wolf, 2007], which is discussed later in pg. 82. In this case the
coherence length lc is proportional to

lc ∝
λdz

σ
(4.4)

where λ is the wavelength of the radiation, σ the source size and dz

the propagating distance between the source and the observation

4The definition of diffraction limited storage ring is a bit arbitrary. First of all, it
is commonly used the diffraction limit relation for Gaussian sources, instead of real
undulators distribution. Secondly, there is no definition of a reference wavelength.
And finally, often the horizontal and vertical electron emittance are quite different
(εe y /εe x ® 100) and thus for many cases the source is diffraction limited in only one
direction (in general in the vertical). Hence, this definition may be used only as a guid-
ing parameter.
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plane. Therefore, the larger the propagation distance and the smaller
the source size, the bigger the coherence length.

This means that storage rings produce light with a certain coher-
ence length, even though the electrons are randomly distributed in
the electron bunch and that they form an incoherent source. Further
on, a diffraction limited beam that has propagated a distance dz will
produce a beam with size Σ given by

Σ= dz ·σ′ =
λdz

σ4π
(4.5)

and thus of the order of the coherence length presented in Eq. 4.4.
In other words, for a diffraction limited source the coherence length
lc is of the order of the (propagated) beam size Σ and therefore the
beam has a high degree of coherence (See Figures 4.1 and 4.2).

This means that the beam generated at a DLSR has a high de-
gree of coherence for the wavelengths where the source is diffraction
limited. Based on equation (4.3), one sees that this happens at long
wavelength (low photon energies). In case of short wavelengths (high
photon energies) the source produces radiation that is incoherent
(i.e., it has low degree of coherence), and for wavelengths between
those extremes the radiation is said to be partially coherent.

Coherent X-rays brings new opportunities in science mostly due
to the previous lack of sources for coherent X-rays [Eriksson et al.,
2014]. This also put new challenges in beamline modeling, where
the most important challenge is the propagation of coherent beam
trough grazing incidence optics, a particular feature of X-ray optics.
This means that most of the theory developed for visible light optics
needs to be revised. For instance, propagation of coherent light in
visible optics relies heavily in the concepts of Fourier optics, which
extensively makes use of paraxial approximations and also assumes
that optical elements are thin. These two approximations alone put
serious restrictions for the use of Fourier optics for X-ray beamlines.

4.2 Wave Optics

Although geometric optics is very powerful in explaining many phe-
nomena in optics, it cannot explain for example diffraction and in-
terference of light. These two phenomena are a consequence of the
wave nature of light, the light being constituted by electromagnetic
waves [Born and Wolf, 1999]. Electromagnetic waves are described
by the Maxwell’s equations, but many properties of light are resulting
of the wave properties alone and can be studied even if the electro-
magnetic properties are ignored (or put aside). Wave optics assumes
this and light is then described by a complex scalar wave function,
subject to the wave equation5.

5The scalar approximation of the vectorial waves is discussed in [Born and Wolf,
1999, Ch. 8.4], [Goodman, 2005, Ch. 3.2] and [Jackson, 1997, Ch. 10.7]
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MAX II - 100eV

MAX IV 3GeV - 100eV

Figure 4.1. Comparison of photon beam size (light blue) and coherence
length (dark blue) after propagation in free space, where actual values for
MAX II and MAX IV 3GeV are used to compare a typical 3rd generation source
and a DLSR (values given in Figure 4.13). At low energy (≈100eV) the prop-
agated beam size is mostly defined by the divergence of the photon beam,
and it results in an almost round beam. (a) MAX II: The coherence length in
vertical is about 50% of the vertical size but only about 10% of the horizontal
dimension. (b) MAX IV 3GeV: there is a small decrease in the beam size due
to the smaller emittance of the electron beam. In addition, the coherence
length increases to 63% and 57% in the vertical and horizontal direction, re-
spectively. The values are calculated 10m from the undulator and they are
obtained by using van Cittert-Zernike theorem.

MAX II - 1KeV

MAX IV 3GeV - 1KeV

Figure 4.2. Same as above, but for photon energy of 1keV. (a) MAX II: beam
size is mostly defined by emittance of the electron beam and the fraction
covered by the coherence length is ca 20% in the vertical and only about 2%
in the horizontal direction. (b) MAX IV 3GeV: in vertical direction the fraction
is still around 62% whereas in the horizontal it is 32%, a decrease compared
to low energy cases but a big improved compared to MAX II.
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As mentioned earlier, wave effects manifest themselves when the
wavelength of the radiation is of the order of the geometrical dis-
tances involved or when the degree of coherence is high. This makes
wave optics essential for studying some beamlines at DLSR, since the
low emittance makes possible to obtain high coherent flux in a wide
energy range. In addition, only a combination of wave and statistical
optics can estimate the degree of coherence of the beam at the end
station, which is crucial in some projects.

It is not the goal of this work to make an extensive review of wave
optics, that is extensively done in the literature [e.g. Born and Wolf,
1999; Goodman, 2005; Saleh and Teich, 2007]. Instead, the following
sections will discuss some concepts of wave optics and how they ap-
ply in modeling a X-ray beamlines. Special attention is given to how
some concepts of visible/paraxial optics have limited applicability
for X-ray optics.

Wave Equation

The main postulate of wave optics is that light waves must satisfy the
wave equation:

∇U (~r , t )−
1

c

∂ 2U (~r , t )
∂ t 2

= 0, Wave
Equation

(4.6)

where U is a scalar complex function, ~r is a spatial coordinate, t is
time and c is the speed of light.

Different symmetries, approximations and boundary conditions
will produce different results for U (~r , t ), the most elementary ones
being a plane wave and a spherical wave. Wave optics studies the ef-
fects in propagating waves caused by the optical elements like mir-
rors, lenses and prisms (for a list of examples see [Saleh and Teich,
2007, Chap. 2]). For visible optics one can take advantage of paraxial
approximations and the usual circular symmetry of lenses. In addi-
tion, the optical elements are usually in the same optical axis, which
simplifies any change of coordinates.

Wave optics with these approximations for visible light is exten-
sively studied in the literature. However these approximations are
not valid for X-ray optics, which is mainly based on using curved
grazing incidence mirrors. There one can not use paraxial approxi-
mation, change of coordinates is not simple and the curved surfaces
have a complicated mathematical description in a generic reference
system. Lack of coherent X-ray sources also contributed to a lack of
interest in finding analytical solutions, and for this reason there are
not many examples in the literature.

Gaussian beam

Most of the results in wave optics can be derived by using planar and
spherical waves. However, this kind of waves are not appropriate for
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4.3 Diffraction Theory

describing a beam of light, that is, a spatially confined light.
There are alternatives for describing a light beam6, and the most

common one is the so-called Gaussian beam. Gaussian beam is a so-
lution of the paraxial wave equation (wave equation under paraxial
approximation) and its main properties are that the beam power is
concentrated around the beam axis (see Fig. 4.3) and that when it

Figure 4.3. Representation of
Gaussian beam of λ=100nm and
beam waist FWHM equals to 80nm
propagating in z direction. r is radial
direction. Red dashed lines show
FWHM values as the beam
propagates

is propagated trough an optical system it remains a Gaussian beam.
In addition, Gaussian functions work in a well known manner under
Fourier transform, making some studies in Fourier Optics straight-
forward for the Gaussian beams7.

Gaussian beams is very often used as approximation for undula-
tor radiation in the diffraction limited regime, as done by Kim [1986],
Onuki and Elleaume [2003]and Bazarov [2012], to cite a few. However
we can note from Section 2.1 that this is not always true and many
of the above mentioned authors have actually mentioned this fact
[e.g. Bazarov, 2012; Kim, 1986]. Gaussian beam has smaller emit-
tance than undulator beam, which means that an undulator beam
and a Gaussian beam of same size will have different divergences.
Nevertheless Gaussian beams provide, in general, a useful approx-
imation but that requires caution when studying undulator based
beamlines at low emittance storage rings (see also the discussion in
Onuki and Elleaume [2003, Chapter 3 Section 2.6]).

4.3 Diffraction Theory

Diffraction is any deviation of light that cannot be interpreted as re-
flection or refraction (following the definition by Sommerfeld [1949]),
and it is caused by a transverse confinement of a wave [Goodman,
2005]. From a physical point of view there is no difference between
diffraction and interference: diffraction is seen simply as a superpo-
sition of a large number of waves [Hecht, 2002].

Calculating rigorous solutions for a diffracted wave is one of the
most difficult problems in optics [Born and Wolf, 1999; Hecht, 2002]
and general analytical solutions do not exist. Therefore, approximate
models limited to certain conditions are necessary. Of such models,
the most commonly used are [Born and Wolf, 1999; Goodman, 2005]:
the Huygens-Fresnel theory, which was first derived based on intu-
itive assumptions; the Kirchhoff ’s diffraction theory, which has some
internal theoretical inconsistencies; and the Rayleigh-Sommerfeld
diffraction theory, which is restricted to the diffraction by a aperture
in a planar screen.

6For instance Hermite-Gaussian and Laguerre-Gaussian beams [Saleh and Teich,
2007], where the Gaussian beam is a particular case of both kinds of beam.

7There are additional advantages in laser optics that make Gaussian beams even
more useful. For instance it is the fundamental mode of light in a spherical mirror res-
onators, which in turn is present in many kinds of lasers and for this reason Gaussian
beam is a very good description of this kind of laser beam.
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(a) (b)

Figure 4.5. Representation of Huygens principle. In this example each
point source emits a spherical wave in phase with each other (a) Point
sources and their related wave fronts (associated by the color). The resulting
wave is the envelop of these wavefronts. (b) In addition, Huygens principle
states that each point in the wavefront can be treat as a new secondary point
source that generates secondary spherical waves, the wavelets (represented
by dashed lines). Similarly, the final wave is the envelop of the wavelets.

The Huygens principle is illustrated in Figure 4.4 and Figure 4.5
and it states that each point of a wavefront acts as a secondary point
source for secondary spherical waves (wavelets, see Figure 4.5.b).
As these wavelets propagate further, the total wavefront is the en-
velope of all wavelets. Although it was first derived based on some
incorrect concepts, as that light propagates in the ether [Huygens,
1690], it can actually be derived from the Kirchhoff’s and Rayleigh-
Sommerfeld diffraction theories [Goodman, 2005]. Eventually, it can
be shown that Huygens principle is a consequence of the wave equa-
tion [Hecht, 2002; Sommerfeld, 1949] and therefore a consequence of
the wave nature of light (see for instance [Goodman, 2005, ch. 3.7]).

Figure 4.4. Huygens principle
states that each point of a light
source, like A, B or C , can be
assumed as an individual point
sources that radiate a spherical wave.
Figure from the original by Huygens
[1690].

Diffraction can be described with reasonable accuracy by using
Huygens principle and assuming interference of the waves, which
is called Huygens-Fresnel principle. A mathematical description of
diffraction based on the Huygens-Fresnel principle is discussed by8

Born and Wolf [1999]. Besides the accuracy, Huygens-Fresnel prin-
ciple is an important model as it offers a physical interpretation of
otherwise complex mathematical results.

More formal mathematical descriptions of diffraction are pro-
vided by the Kirchhoff’s and Rayleigh-Sommerfeld diffraction theo-

8Once more there is no agreement about conventions in the literature. Goodman
[2005]uses the term Huygens-Fresnel principle to refer to the first solution of Rayleigh-
Sommerfeld diffraction theory, while Born and Wolf [1999] treat them as different de-
scriptions despite the similar results. Here the results of Rayleigh-Sommerfeld diffrac-
tion theory are regarded separately of Huygens-Fresnel principle.
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Figure 4.6. Geometry for the Fresnel-Kirchoff and Rayleigh-Sommerfeld
theory of diffraction. A point source in P2 will generate a field U (Po ) at Po .
The radiation is diffracted when passing trough the aperture Σ in the plane
screen. This planar geometry of the screen is a requirement for the Rayleigh-
Sommerfeld solution, but not for the Fresnel-Kirchoff description.

ries. Both of them are based on Green theorem and wave equation
[Goodman, 2005]. In fact, the main difference between them is the
choice of the auxiliary Green’s function: while the Kirchhoff’s theory
uses a spherical wave, Rayleigh-Sommerfeld description is based on
a combination of two spherical waves. The reason for the difference
is to fulfill different boundary conditions. The choice of the Green
function in the Kirchhoff theory contradicts the boundary conditions
used to derive the result [Goodman, 2005, Ch. 3.5]. This is solved in
the Rayleigh-Sommerfeld model by using different Green’s function
and different boundary conditions. However, these later calculations
are valid only for diffraction of light by apertures in plane surfaces,
as in Figure 4.6 [Goodman, 2005, Ch. 3.6] [Born and Wolf, 1999, Ch.
8.11.2]. Mathematically both theories shows that a point source at P2

in Figure 4.6 will generate a field Uo (P0) given by [Goodman, 2005]

Uo (Po ) =
A

iλ

∫∫

Σ

exp
�

j k (r21+ r01)
�

r21r01
Ψd s (4.7)

where A, λ and k are the amplitude, wavelength and wavenumber
of the radiation from the point source, respectively. The other geo-
metric factors are defined in Figure 4.6. The parameter Ψ is known
as obliquity factor and, depending on the model, is given by

Ψ =











1
2 [n̂ · r̂21− n̂ · r̂01] Kirchhoff,

n̂ · r̂01 Rayleigh-Sommerfeld I,

−n̂ · r̂21 Rayleigh-Sommerfeld II.

(4.8)

The dot (·) in equation (4.8) is used to note the scalar product of
vectors. The first solution is known as Fresnel-Kirchoff integral.
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Rayleigh-Sommerfeld theory derives two solutions based on two dif-
ferent Green’s functions9.

If we consider now a source that is not a point but rather a distri-
bution given by U (P2), then the field U (Po ) is a sum of the field gener-
ated by each point in the source plane containing P2. Mathematically
this results in

Uo (Po ) =
1

iλ

∫∫

2

¨

∫∫

Σ

exp
�

j k (r21+ r01)
�

r21r01
Ψd s

«

U (P2)d x2d y2, (4.9)

where
∫∫

2
d x2d y2 represents integration over the source plane.

The discussion of the validity of these models is extensive and
done elsewhere, for instance in the papers by Wolf and Marchand
[1964] and by Lucke [2006], and in the books by Goodman [2005, Ch.
3.6] and Born and Wolf [1999, pg. 516]. There is however a consensus
that all of them produce accurate results far away from the diffrac-
tion screen (i.e., a distance of many wavelengths far from the plane
Σ).

Rayleigh-Sommerfeld is favored for solving problems involving
diffraction in paraxial optics since it is simpler than Fresnel-Kirchoff
and the limitation of planar diffracting screen is not serious in parax-
ial optics, as it is actually almost always the case. Additional parax-
ial approximations simplify the equations even further and results in
the so-called Fourier optics, to be discussed soon.

On the other hand the plane screen limitation of Rayleigh-
Sommerfeld is a serious constraint for grazing incidence optics and
for this reason Fresnel-Kirchoff is more appropriate for X-ray optics.
However the calculation of the field by using Fresnel-Kirchoff is still
very complicated to be done analytically and also very demanding
to be done numerically, and an additional approximation is used,
namely the Stationary Phase Approximation.

Fourier Optics

An alternative form for Rayleigh-Sommerfeld solution is given by

Uo (Po ) =
z

iλ

∫∫

Σ

U1(P1)
exp(k r01)

r01
d s Rayleigh-

Sommerfeld
(4.10)

where U1(P1) is the field in the aperture Σ. Note that substituting
U1(P1) by a spherical wave one gets equation (4.7). In a rectangular
coordinate system the distance r01 is then given by (see Figure 4.6)

r01 =
Æ

z 2+ (x −ξ)2+ (y −η)2 .

9Hereafter Rayleigh-Sommerfeld is used to refer only to the first Rayleigh-
Sommerfeld solution.
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This allows rewriting equation (4.10) as

Uo (x , y ) =

∫∫

Σ

U (ξ,η)h (x −ξ, y −η)dξdη Rayleigh-
Sommerfeld

(4.11)

where

h (x , y ) =
z

iλ

exp(k r )
r

, r =
p

z 2+ x 2+ y 2 . Response function
Rayleigh-Sommerfeld

(4.12)
The previous manipulation allows interpreting equation (4.11) as

a convolution integral where h (x , y ) is the response function (also
called point spread function). By applying the Fourier convolution
theorem one obtains [Voelz, 2011]

U (x , y ) =F−1
�

F
�

U (x , y )
	

F
�

h (x , y )
		

, (4.13)

where F and F−1 are the Fourier and inverse Fourier transforms,
respectively. For a generic function g (x , y ) the Fourier Transform is
defined as

G ( fX , fY ) =F
�

g (x , y )
	

=

∫∫ ∞

−∞
g (x , y )exp

�

− j 2π( fX x + fY y )
�

d x d y .

(4.14)
This is the basis of the Fourier optics and in fact this applies not

only for problems in diffraction but also to any wave propagation
problem with a geometry similar to the one presented in Figure 4.6.
There are many advantages in this approach: diffraction and wave
propagation can be understood as a convolution problem; the an-
alytical Fourier transform of many functions are well known, which
make easier to obtain analytical solution for many problems in op-
tics; the problem can be studied in the frequency domain; and finally,
when performing numerical integration one can take advantage of
the Fast Fourier Transform (FFT) algorithm[Brigham, 1988], which is
much more efficient10 than simple integration (more about numeri-
cal integration at the discussion about practical issues on 78).

Concerning paraxial optics, Rayleigh-Sommerfeld theory is the
most accurate model that is usually used. Two additional approxi-
mations simplify the problem for analytical analysis and will be dis-
cussed next, but it must be noted that for computational purposes

10The efficiency in the calculation (also known as time complexity) of a compu-
tational problem is how the computational running time grows related to the num-
ber of entries. For instance, the computational running time of a problem with n en-
tries can be proportional to n or n 2 . There are formal definitions of how to express
the complexity of a computational problem based on asymptotic notation, where the
so called (big) O -notation is used to express the worst case running time of an algo-
rithm[Cormen, 2009]. For instance the Fourier Transform of a vector with n entries
runs in O (n log n ) time when calculated by the Fast Fourier Transform algorithm, op-
posite to O (n 2) in a simple (naive) numerical integration [Brigham, 1988].
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the above description is enough, since further approximations will
not improve the efficiency of the computational calculation (the run-
ning time will still be O (n log n ) , see below10), but only simplify the
analytical results.

Fresnel and Fraunhofer Approximations

Fresnel approximation often appears when applying paraxial ap-
proximations to problems in optics, for instance when using
parabolic waves as approximations to spherical waves [Saleh and
Teich, 2007]. Following Figure 4.6, Fresnel approximation assumes
that the wave propagates at distances close to the main axis ẑ (the
paraxial approximation per se) but for a distance z long enough so
that

p

x 2+ y 2 � z . The paraxial approximation is then applied to
the terms 1/r 2

01 and k r01 in equation (4.10). The term 1/r 2
01 becomes

1/z 2. Then the binomial expansion

p

1+ b = 1+
1

2
b −

1

8
b 2+ · · ·

can be used and when applied (up to the first order in b ) one gets:

k r01 ≈ k z

�

1+
1

2

�

x −ξ
z

�2

+
1

2

� y −η
z

�2
�

.

The above approximation (up to the first order in b ) is the
so called Fresnel approximation and for the values of z where
this approximation is valid Fresnel diffraction applies. Rayleigh-
Sommerfeld solution under this approximation can be reduced to
the convolution form of equation (4.11), where the response func-
tion is given by

h (x , y ) =
e i k z

iλz
exp

�

i k

2z
(x 2+ y 2)

�

Response Function
Fresnel Diffraction

(4.15)

and equation (4.13) also holds.
In the region where we can also ignore the linear term of the ex-

pansion (linear term in b ), Fraunhofer diffraction applies. This sim-
plification reduces equation (4.10) to

Uo (Po ) =
e i k z

iλz
exp

�

i k

2z
(x 2+ y 2)

�

F
�

U1(η,ξ)
	

. Fraunhofer
Diffraction

(4.16)

That is, besides phase factors, the Fraunhofer diffraction results in
the Fourier transform of the source field.

In order to these approximations to hold, it is necessary that the
distance z respect the relations given by

z 3
Fresnel�

π

4λ

�

(x −η)2+ (y −ξ)2
�2

max Fresnel
Diffraction

(4.17a)
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and

zFraunhofer�
π

λ

�

η2+ξ2
�

max
, Fraunhofer

Diffraction
(4.17b)

where the subscript max means the maximum value assumed by the
therm inside the brackets. We note that zFraunhofer � zFresnel, which
means that for short distances (near field) we have Fresnel diffrac-
tion11 and for longer distances (far field) we have Fraunhofer diffrac-
tion (See Figure 4.7).

An alternative definition in commonly used in terms of the
Fresnel number, which is give by

NF =
a 2

λz Fresnel Number
(4.18)

where a is the aperture of the diffracting screen. Fresnel number is
defined in the context of the Huygens-Fresnel theory [Born and Wolf,
1999] but it is commonly used in other areas of optics. In terms of the
Fresnel number, equation (4.17).b becomes

NF � 1.
Fraunhofer Diffraction

(4.19)

Figure 4.7 shows how the diffraction profile changes as NF → 0.
By comparing the response function in the Rayleigh-Sommerfeld

and Fresnel diffraction one sees that the first one is a spherical
wave while the second one is a parabolic wave. The convolution
of the field with the response function can then be interpreted
as a mathematical description of the Huygens principle, where in
the Rayleigh-Sommerfeld case we have spherical waves and in the
Fresnel diffraction we have parabolic waves. An additional advan-
tage of Fraunhofer diffraction is that the same result is obtained for
some geometries using lens, and thus it can be used when thin lens
approximation is in place, like for compound refractive lenses, zone
plates and also when some computations use thin lens approxima-
tion for representing grazing incidence mirrors.

Stationary Phase Approximation

The method of stationary phase approximation (SPA) uses asymp-
totic solution to the Fresnel-Kirchhoff integral, with the goal to solve
problems of diffraction and wave propagation trough optical ele-
ments [Bahrdt, 2007a][Paper V]. The method is based in a asymptotic
approximation in solving the following type of integrals [Born and
Wolf, 1999; Mandel and Wolf, 1995]:

11It can be shown that actually Fresnel diffraction works well for values smaller
than zFresnel [Goodman, 2005; Southwell, 1981], but the expression presented here is
used as reference.

74



Wave Optics Applied to SR

Figure 4.7. Representation of near and far field diffraction for a plane
wave diffracting in a rectangular aperture. (Top) The blue area represents
the result predicted by ray optics, which is only the shadow of the aperture.
(Middle and bottom rows) Beam intensity profile at the different observa-
tions screens, illustrating how the diffraction pattern changes as light prop-
agates from the near to the far field. Values of Fresnel’s number, NF , are also
noted. The profile at the screen e approaches th condition of Fraunhofer’s
diffraction and the profile resembles a Fourier transform of the aperture.
Profiles are obtained by numerical calculation assuming aperture of 50µm
and wavelength of λ=1nm.
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(a) (b)

Figure 4.8. Plots of the real and imaginary part of e i k x 2
for k = 2π/10−9. (a)

Re(e i k x 2 ) = cos k x 2. (a) Im(e i k x 2 ) = sin k x 2.

F (k ) =

∫ b

a

f (x )e i k g (x )d x , (4.20)

where k , x , a , b , f (x ) and g (x ) are real.
The basic idea is that for large values of k the integrand oscillates

so fast between positive and negative values that there is only minor
contribution to the value of the integral. Figure 4.8 shows a plot of the
real and imaginary part of the integrand for f (x ) = 1 and g (x ) = x 2,
showing that after few oscillations the function oscillates very fast
(related to the x coordinate) between -1 and 1. Figure 4.9 shows the
numerical integration and the asymptotic value obtained by the SPA,
and again, after few (≈10) oscillations the value of the integral be-
come very close to the asymptotic value.

The asymptotic solutions depend on the values of the functions
f (x ) and g (x ) at the so called critical points of first and second kind.
Critical points of the first kind, x 1

i , are the values of x where the first
derivative of g (x ) is zero, that is g ′(x 1

i ) = 0. Critical points of the sec-
ond kind are the limits of integration, a and b .

The condition of validity is that f (x ) is continuous and g (x ) is
twice continuously differentiable in the interval a < x < b . In ad-
dition, the second derivative of g (x )must be different to zero in the
critical points of first kind, that is g ′′(x 1

i ) 6= 0.
The contribution to the integral by the critical points of the first

kind is given by [Mandel and Wolf, 1995]

F (1)(k )≈

√

√2π

k

n
∑

1

e ± jπ/4

p

|g ′′(xi )|
f (xi )e

i k g (xi ), (4.21)

where the signal ± follows g ′′(xi ) ≷ 0. The critical points of the sec-
ond kind, in turn, have a contribution of the form:

F (2)(k )≈
1

i k

�

f (b )
g ′(b )

e i k g (b )−
f (a )
g ′(a )

e i k g (a )
�

, (4.22)

and the asymptotic solution of equation (4.20) is then given by
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(a)

(b)

Figure 4.9. (a) Re(e i k x 2 ) = cos k x 2. (a) Im(e i k x 2 ) = sin k x 2. The red
curves are the numerical integration from 0 to x . Pink curves are the value
of asymptotic solution obtained by the SPA.

F (k )≈ F (1)(k ) + F (2)(k ). (4.23)

It is important to note that F (1)(k ) scales with 1/
p

k while F (2)(k )∝
1/k , and for this reason the contribution of F (2)(k ) can be ignored for
large values of k .

The application of SPA in the Kirchhoff integral requires a two di-
mensional treatment, which uses asymptotic solutions to solve the
double integral given by

F (k ) =

∫∫

D

f (x , y )e i k g (x ,y )d x d y . (4.24)

For the sake of simplicity the discussion about SPA is limited here
to the one dimensional case. The properties of the two dimensional
functions f (x , y ) and g (x , y ) are the same as for the functions f (x )
and g (x ) discussed above12.

12Two dimensional case is discussed by Born and Wolf [1999, Appendix III.3] and
Mandel and Wolf [1995, Ch. 3.3.3], where the respective asymptotic values are pre-
sented.
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The SPA can then be applied to the Fresnel-Kirchoff integral of
the form shown in equation (4.9). More precisely, SPA is applied to
the integration over Σ (term inside curly brackets), where

f (ξ,η) =
Ψ

r21r01
and g (ξ,η) = r21+ r01 = PL(ξ,η), (4.25)

and in the above equation PL stands for the path length.
The fact that g (ξ,η) is the path length PL(ξ,η) has an interest-

ing physical interpretation: following the discussing above, we know
from the SPA that the main points which contribute to the integral
are the critical points of first kind ξ1

i ,η1
i , where the first derivative of

g (ξ,η) is equal to zero. Substituting g (ξ,η) by PL(ξ,η) results that
the main contribution to the Fresnel-Kirchoff integral are the points
where

∂ PL(ξ,η)
∂ ξ

�

�

�

ξ=ξ1
i

= 0 and
∂ PL(ξ,η)
∂ η

�

�

�

η=η1
i

= 0 (4.26)

which is nothing else than the Fermat principle [Born and Wolf, 1999]
(see also footnote on page 18). In other words, for a given point in the
source plane and one point in the image plane, the main contribu-
tion to the field in the image plane is (only) due to the points in Σ
that fulfill the Fermat principle. This provides a physical interpreta-
tion to the stationary phase approximation that is very useful when
choosing the propagation planes and to understand the method for
considering figure errors developed in Paper V.

Wave optics modeling - practical issues

When modeling X-ray beamlines by wave optics, two programs have
been preferred to run computational simulations [Bowler, Bahrdt,
and Chubar, 2008]: Synchrotron Radiation Workshop (SRW) [Chubar
et al., 2011] and PHASE [Bahrdt, 2007b][Paper V]. It is not the goal
here to compare the programs, but rather to discuss the methods and
their accuracy. SRW makes use of thin lens approximations and of
the first Rayleigh-Sommerfeld solution, which is restricted to planar
geometry. PHASE is based on the SPA, which means that it can treat
grazing incidence optics, and it uses a 2nd order expansion of the
path length.

As we can see (and mentioned earlier) there is no existing method
for rigorous calculation of diffraction and wave propagation, and any
present method makes use of further approximations, in addition
to the approximations already used to obtain Fresnel-Kirchoff and
Rayleigh-Sommerfeld solutions.

For evaluating the calculation performance of the programs we
follow the notation of Figure 4.6 and define a source plane as a mesh
of nx 1 × ny 1 points, an image plane with nx 2 × ny 2 points, and an
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optical device with nξ ×nη points. SRW propagates the field in two
steps: first from the source to the optics, then from the optics to the
image plane. SRW then profits from the performance of the FFT al-
gorithm and therefore its calculation time is, following the big-O no-
tation, equal to O (nx 1×ny 1 log(nx 1×ny 1)

�

(considering that there
is no rescaling in the two steps propagations). PHASE on the other
hand scans the plane Σ for each point in the image plane, which re-
sults O (nx 2×ny 2×nξ×nη).

However in SRW the source and image plane have the same size
and spatial resolution, and some re-scaling techniques are necessary.
In the cases of high demagnification (when the beam size changes
too much), this requires high spatial resolution and thus a large num-
ber of points. At the same time, PHASE can have a faster computa-
tional time by using a smaller number of points in the image plane,
without loss of spatial resolution.

In case of PHASE, 2nd order expansion of the path length is a
good approximation if the critical points are well separated. A proper
choice of image and source plane ensure that the critical points are
well spaced (see Paper V), but on the other hand this requires a two
steps calculation (for instance, by first propagating from the source
to an intermediary plane, and then from the intermediary to the im-
age plane).

4.4 Statistical Optics and Coherence

Statistical optics deals with fluctuations in the optical (electromag-
netic) field and their propagation trough an optical system [Wolf,
2007]. The fluctuations of the field may be completely random or,
alternatively, described by some probabilistic distribution. They can
be either intrinsic to the process of emission of radiation or due to
instabilities of the source. For instance in case of thermal light (like
light from lamps or from stars) the fluctuations are a consequence
of the spontaneous emission of radiation by the atoms in the source.
On the other hand, in the stimulated emission in lasers the atoms
or molecules produce light in a ordered manner, with small(er) ran-
dom fluctuations [Goodman, 2015]. Even when the fluctuations are
random, the EM field still follows the wave equation and Maxwell’s
equations [Saleh and Teich, 2007], which makes possible to derive
some properties of the light as a function of statistical properties of
the source.

In general the fluctuations of the EM field are too fast to be per-
ceived and directly detected. Real detectors make measurements in
a finite area and in a finite time interval and in practice the final mea-
surements are average measurements which are in fact also affected
by the fluctuations of the field. Therefore one can say that the fluctu-
ations are observable, but only under a proper statistical approach.

The statistical properties of the field also determine the response
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of the optical systems, and eventually these properties can be ex-
ploited to achieve varying goals, for instance in coherent and in in-
coherent imaging techniques [Goodman, 2005].

Second Order Coherence

Coherence is a second order property of the EM field in the sense that
it depends on the properties of two points in time or space13. The ba-
sic geometry for this kind of problem is shown in Figure 4.10. In the
case where the individual points of the source emit radiation with
random fluctuation we have that the radiation at the points P1 and
P2 are also subject to random fluctuations. However, if the sources
of the radiation at P1 and P2 are is same degree correlated (for in-
stances if they emit in phase) then the fluctuations in the two points
are in some way correlated. If the fields are completely correlated the
light is said to be coherent, and the degree of coherence is a value that
quantifies the correlation between the fields at these two points. In
the case where the radiation at P1 and P2 is completely uncorrelated
the light is said to be incoherent.

Figure 4.10. Second order
coherence studies the relation
between two points P1 and P2. In this
case the fields are generated from a
common source.

Therefore the study of coherence relies strongly in the correlation
of the fields, and one of the basic quantities is the correlation of the
field at two points in space, P1 and P2, and two points in time, t and
t +τ. Mathematically14 we have [Wolf, 2007]

Γ (P1, P2,τ) = Γ12(τ) = 〈V (P1, t )V ∗(P2, t +τ)〉 , (4.27)

where 〈 〉means time average defined as




f (t )
�

= lim
T→∞

1

T

∫ T /2

−T /2

f (t )d t . (4.28)

The function Γ12(τ) is the so-called mutual coherence function,
a key concept in the study of second order coherence. We identify
Γ11(0) =

∑

m=1 V 2
m1 = I1, that is, Γ11(0) is equal to the sum of the fields

Vm1 at the point P1, which results in the total intensity I1. Similarly
we have Γ22(0) = I2.

When we have that P1 = P2 and τ= 0, the fields are the same and
completely correlated, and the correlation Γ12(τ) reaches its maxi-
mum value. As the points move apart from each other, a decrease in
the value of Γ12(τ) is expected due to the fluctuations of the field and
eventually that Γ12(τ) vanishes. For the distance lc = |P1 −P2| where
Γ12(0) is equal to zero15 we define as coherence length. The same ap-
plies for time: considering Γ11(τ) = Γ (P1, P1,τ)we have that Γ11(τc ) = 0
for the coherence time τc .

13Previous discussions were part of what is labeled first order properties, that is,
properties of a single point in space and time. Similarly, higher-order properties are
related to properties at three or more points in time or space [Goodman, 2015; Mandel
and Wolf, 1995; Wolf, 2007].

14The notation here closely follows [Wolf, 2007] and [Mandel and Wolf, 1995].
15Alternative definitions based on FWHM or RMS values are also used.
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Another useful concept is the normalized value of Γ12(τ) given by

γ12(τ) = γ(P1, P2,τ) =
Γ12(τ)

p

Γ11(0)
p

Γ22(0)
. (4.29)

It can be shown that 0 ¶ |γ12(τ)| ¶ 1 and, since it scales with Γ12(τ),
then |γ12(τ)| is a quantitative value of the correlation of the fields. For
this reason γ12(τ) is referred as the complex degree of coherence and
the modulus value |γ12(τ)| is used as a quantitative description of the
degree of coherence.

Coherence in the frequency Domain

For optical simulations it is useful to have these quantities in the fre-
quency domain. By using the Fourier Transform of the mutual coher-
ence function one obtains the cross-spectral density function [Wolf,
2007]:

W12(ω) =W (P1, P2,ω) =
1

2π

∫ ∞

−∞
Γ (P1, P2,τ)e iωτdτ. (4.30)

Similarly to equation (4.29) we have the normalized value of
W (P1, P2,ω) as

µ12(ω) =µ(P1, P2,ω) =
W12(ω)

p

I1(ω)
p

I2(ω)
. (4.31)

I j (ω) is equal to Wj j (ω) and is the spectral intensity. The normal-
ized valueµ12(ω) is called spectral degree of coherence and it holds the
same properties than γ12(τ), which have been discussed previously.
Therefore the modulus |µ12(ω)| also describes the degree of coher-
ence [Wolf, 2007], and the use of either γ12(τ) or µ12(ω) depends on
which domain such properties are being discussed.

One important property of the mutual coherence function and
the cross-spectral density function is that in free space they obey the
wave equation [Wolf, 1955, 2007]:

∇2
1Γ12(τ) =

1

c 2

∂ 2Γ12(τ)
∂ τ2

, ∇2
2Γ12(τ) =

1

c 2

∂ 2Γ12(τ)
∂ τ2

, (4.32)

∇2
1W12(ω) =−

ω2

c 2
W12(ω) and ∇2

2W12(ω) =−
ω2

c 2
W12(ω).(4.33)

where the operators∇2
1 and∇2

2 are the Laplacian with respect to the
points P1 and P2.

This means that the mutual coherence propagates similarly to a
plane wave, reducing a problem in statistical optics into a problem
of partial differential equations.

This also offers some insights about how Γ12(τ) or W12(ω) propa-
gate in space. For instance, we know that in a divergent light beam
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two points in the wavefront move apart as the beam propagates. By
analogies we can expect that with certain conditions the coherence
length will also increase as the beam propagates. This will be de-
scribed under the Gauss Schell approximation discussed later, and
it is the base for deriving the van Cittert–Zernike theorem discussed
next.

van Cittert–Zernike theorem

Figure 4.11. Geometry for the VCZ
theorem.

Equations 4.32 and 4.33 can be further developed to describe the
propagation of the correlations in free space (as done for instance
in [Mandel and Wolf, 1995, Ch. 4.4]). Such results are used to obtain
the propagated function Γ12(0)of a completely incoherent source. For
this case the source is assumed to have mutual coherence function
of the form:

Γ ′12(0) = I (P1)δ(P2−P1), (4.34)

where the prime symbol means that the quantities are at the source
plane Σ (see Figure 4.11). It can actually be shown that for a propa-
gating wave the coherence length need to be at least one wavelength
long in any direction [Goodman, 2015, Ch. 5.5.2]. This means that
completely incoherent beam is actually a limiting case and that prop-
agating light has some degree of coherence at least in a very short
range.

For an incoherent source as described in equation (4.34), the
propagated mutual coherence function Γ12(0) results in [Mandel and
Wolf, 1995, Eq. 4.4.34] [Mandel and Wolf, 1995, Eq. 3.2.11]

γ12(0) =
1

p

I (P1)
p

I (P2)

∫

σ

I (S )
e i k (R2S−R1S )

R2S R1S
d S (4.35)

and

I (Pj ) = Γ
′
12(0) =

∫

σ

I (S )
R j S

d S , (4.36)

where R1S and R2S are the distances from points at the source to the
points P1 and P2, respectively. k is the wavenumber equal to 2π/λ, λ
being the wavelength.

Equation 4.35 is the mathematical form of the van Cittert–Zernike
theorem (VCZ) [Mandel and Wolf, 1995; Wolf, 2007]. Applying far field
approximations, the VCZ theorem becomes [Wolf, 2007, Eq. 3.2.20]

|γ12(0)|=

�

�

�

�

�

∫ ∫

σ
I (ξ,η)e −i k (pξ+qη)dξdη
∫ ∫

σ
I (ξ,η)dξdη

�

�

�

�

�

. (4.37)

where

p =
X2−X1

R
, and q =

Y2−Y1

R
. (4.38)
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Equation 4.37 is the far field form of VCZ16. Note that the right
hand part can be identified as a (normalized) Fourier transform, and
thus the intensity distribution in the source I (ξ,η) and the mutual
coherence function are related though a Fourier transform. From
the properties of the Fourier transform we know that two intervals
∆ξ and ∆p are reciprocal and therefore inversely proportional as
[Goodman, 2015, Ch. 5.7.2]

k∆p ∝
1

∆ξ
. (4.39)

If we identify now ∆ξ as source size σ and ∆p as lc /R , where lc

is the coherence length, we obtain that

lc ∝
λR

σ
, (4.40)

which is the result shown without derivation as equation (4.4) in the
beginning of this chapter.

Figure 4.12. Example of
application of VCZ theorem, where in
the observation planA is ploted the
value of |γ12(0)| resulting from a
circular incoherent source of radius
a .

To illustrate the VCZ theorem we consider the radiation gener-
ated by a circular and completely incoherent source of radius a at a
distance R (see Figure 4.12). The degree of coherence is then given
by [Wolf, 2007]

|γ12(0)|=
�

�

�

�

2J1(
k a d

R )
k a d

R

�

�

�

�

, (4.41)

where J1 is the Bessel function of the first kind and of the first order
[Arfken et al., 2012], and d =

p

(X2−X1)2+ (Y2−Y1)2 is the distance
between the two points in the observation plane A . Figure 4.12
shows the behavior of |γ12(0)| for P1 at the optical axis.

If we define now the coherence length lc as the distance d when
|γ12(0)| is zero, we obtain that for the current case the coherence
length is

lc =
0.61Rλ

a
, (4.42)

which resembles equations 4.4 and 4.40, but now it has been derived
in a more formal manner.

Equation 4.42 can be used to estimate the coherence length of a
propagated beam originating from an undulator. Figure 4.13 shows
this result for MAX II and MAX IV storage rings. This is of course an
estimation since undulators radiation is very different of the radia-
tion assumed here (circular aperture illuminated by a planar wave).
In Figure 4.13.b it is shown how the coherence lengths compare to
the beam size by plotting the ratios qx and qy defined as

16Besides the name far field, the far field approximation here is less restrictive than
the Fraunhofer approximation and it is valid also in the Fresnel regime [Goodman,
2015, Ch. 5.7.2].
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(a) (b)

Figure 4.13. Values of the ratio q obtained by the VCZ theory. Results for
MAX II, MAX IV 1.5GeV and MAX IV 3GeV rings. Undulator lengths are as-
sumed to be the maximum length of the straight section.

qx =
lc x

σx
and qy =

lc y

σy
. (4.43)

These results shows that at low photon energies MAX II is fairly co-
herent in the vertical direction, but the small horizontal coherence
length results that only a small fraction of the beam is inside the co-
herence area of Ac = lc x × lc y (see also Figures 4.1 and 4.2). When
comparing the curves we see that MAX IV 3GeV ring has much larger
fraction of the beam inside the coherence area, and that there is a
big improvement in the horizontal coherence length compared to
MAX II ring.

It must be noted that in fact a generalized van Cittert–Zernike
theorem can be derived for partially coherent light by using a mu-
tual coherence functions different from equation (4.34) [Goodman,
2015, Ch. 5.8]. Goodman [2015, eq. 5.8.10] for instance derives the
analytical solution for a Schell-model beam (to be discussed next).
However other kind of analytical solutions are complex and when ap-
plied to undulators it results in complicated solutions. Geloni et al.
[2005]makes a formal derivation of the coherent properties of undu-
lators and it discusses that van Cittert–Zernike produces satisfactory
results in the far field, despite the fact that undulator radiation do
not satisfy the assumptions of the theorem. However, deviations are
expected between the experimental values and the ones predicted
by van Cittert-Zernike theorem, and for realistic comparison results
from Geloni et al. [2005]must be considered.

Gaussian Schell-model Field

Schell-model fields are characterized by a spectral degree of co-
herence µ(P1, P2,ω) that depends only on the distance between the
points P1 and P2, and therefore µ(P1, P2,ω) = µ(P2 − P1,ω) [Mandel
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and Wolf, 1995; Wolf, 2007]. Using equation (4.31) we obtain that the
cross-spectral density of a Schell-model field is given by

W12 =
p

I (P1)
p

I (P2)µ(P2−P1), (4.44)

where the dependence withω is omitted.
A Gaussian Schell-model (GSM) beam is obtained by also assum-

ing that the spatial profile of both I (P ) and µ(P2 − P1) are described
by two dimensional Gaussian functions:

I (P ) = exp

�

−
x 2

2σ2
x

−
y 2

2σ2
y

�

, (4.45)

and

µ(P2−P1) = exp

�

−
(x2− x1)2

2σ2
c x

−
(x2− x1)2

2σ2
c y

�

, (4.46)

whereσx andσy are the beam sizes in x and y directions. The quan-
titiesσc x andσc y are the rms (root mean square) values of the spec-
tral degree of coherence µ(P2−P1), and thus in the GSM context they
are defined as the coherence lengths.

The use of GSM beam simplifies the calculation of the propa-
gated beam and makes possible to correlate the coherence length
and beam size of the source and of the propagated beam. The math-
ematical result is omitted here (see for instance [Mandel and Wolf,
1995, eq. 5.6-95]), but one important result of the GSM model is that
the ratios qx and qy are constant as the beam propagates. If we use
these ratios as measurements of the degree of coherence of the beam,
then we have that the degree of coherence is invariant in propagation
[Mandel and Wolf, 1995].

We can use the results of the GSM theory in order to estimate the
coherence properties of the beam in a storage ring (as done for in-
stance by [Vartanyants and Singer, 2010]). The ratio qx y can be writ-
ten in function of the electron beam emittance ε and it is given by

qx y =
2

q

4k 2ε2
x y −1

, (4.47)

that is, in the GSM model the ratio qx y depends only on the elec-
tron beam emittance and wavelength of the radiation. Moreover, it
reaches its maximum value qx y → ∞ when 4k 2ε2

x y → 1, which is
exactly the diffraction limit condition of equation (4.3).

Similarly to van Cittert–Zernike, Gaussian Schell-model beams
have limited application for undulator radiation, the most obvious
problem being due to the different expressions for diffraction limit
of Gaussian beam and undulator radiation. Hence, once more this
results are used to study general properties and to provide some in-
sights about the physics of partially coherent beam. Nevertheless,
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4.4 Statistical Optics and Coherence

Figure 4.14. Values of the ratio q obtained when using Gaussian Schell-
model to describe undulator radiation. Results for MAX II, MAX IV 1.5GeV
and MAX IV 3GeV rings. Undulator lengths are assumed to be the maximum
length of the straight section.

under certain conditions it can produce satisfactory results that
are in agreement with results obtained with SRW [Vartanyants and
Singer, 2010] and with analytical results obtained for undulator, as
the ones derived by Geloni et al. [2005].

Discussion

This final discussion focuses now in how the codes for modeling
beamline optics make use of wave and statistical optics.

As discussed before, PHASE uses the stationary phase approxi-
mation to calculate the Fresnel-Kirchoff integral and for this reason it
can treat grazing incidence optics. The code was limited to a second
order expansion of the path length but this expansion, combined
with the method for considering surface errors, can produce accu-
rate results. This is discussed in Paper V and in special it is quantified
by equation (25) in the same paper.

SRW on the other hand makes use of thin lens approximation,
which can be used only as rough approximation for grazing inci-
dence optics. This restricts the use of the code for many situations
but it can produce satisfactory results for some geometries, for in-
stance for (over illuminated) zone plates. In addition, SRW has inte-
grated in the same program simulations of real sources, i.e., undu-
lators. It can also perform simulations for partially coherent light,
where the radiation generated by many electrons is propagated indi-
vidually as coherent light and then the radiation is summed up inco-
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herently (that is, sum of intensities rather than the electric field). At
present this is the only method available to estimate the coherence
length in the experimental station (apart from analytical approxima-
tive studies). In principle PHASE is also suitable for this kind of cal-
culations, but as today, it does not have this integrated into the code
in a easy way.

With this, SRW was the program of choice when performing ini-
tial studies for SoftiMAX beamline, as discussed in Paper VI. By using
SRW it was possible to evaluate the degree of coherence at the co-
herent imaging end station. The degree of coherence can be quan-
tified in several ways, one of them being the spectral degree of co-
herence, described in equation (4.31). SRW can calculate this, as
done for instance in [Laundy et al., 2013] and [Laundy et al., 2014].
However the results are difficult to interpret and, more importantly,
difficult to compare with experimental results. For this reason, it is
quite common to evaluate the degree of coherence by simulating a
Young’s double slit experiment, which can actually be used experi-
mentally to quantify the degree of coherence. This method has been
used by many authors[Chubar et al., 2010, 2011; Fluerasu et al., 2011;
Shapiro et al., 2011], which means that the simulation of double slit
experiment provides a good way to compare performance of differ-
ent beamlines.

The same approach was used for the coherent X-ray imaging
branch of the beamline SoftiMAX. The results of such simulations
are shown in Figure 4.15 and they are discussed in more details in
Paper VI.
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4.4 Statistical Optics and Coherence

(a)

(b)

(c) (d)

Figure 4.15. Results of simulations of the double slit experiment for the
CXI branch of SoftiMAX beamline [Paper VI]. (a) and (c) Intensities measured
on the observation screen. (b) and (d) Center profile showing the visibility
measured at each peak. Double slit consists of two 1µm rectangular slits
spaced by 10µm (measured from the center of the apertures). The observa-
tion screen is placed 100 mm from the slits. Photon energy is 700e V .
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CHAPTER 5

CONCLUSION

In this work the concepts of X-rays optics and synchrotron radia-
tion emission are used to develop and study optical devices for syn-
chrotron radiation beamlines. The projects described here and in the
papers include many areas of optics, namely geometric optics, X-ray
optics, ray tracing simulations, polarization of the light, Stokes pa-
rameters, Mueller matrices, optical properties of metals, wave optics,
diffraction and statistical optics. Though not being an exhaustive de-
scription, this work aims to give a general view of optics applied to
synchrotron radiation and how it distinguishes from other results in
optics, mainly those for visible light and paraxial optics. The con-
tributions of this work can be summarized as follows: a new concept
for refocusing system of cPGM beamlines has been developed, which
is already in use at SPECIES beamline and it will be used at forth-
coming HIPPIE beamline at MAX IV; a soft X-ray polarimeters have
been commissioned, the commissioning of the VUV polarimeter is
in progress and a novel method for data analysis for X-ray polarime-
try has been proposed; a method for considering surface errors of
optics elements has been proposed and included in the PHASE code
for wave optics simulations.

More specifically, Chapter 2 together with Paper I give a detailed
description of a cPGM beamline with an astigmatic focus, which
adds two additional flexibilities to cPGM beamlines: possibility to
control the vertical beam size through cff and independence of the
image size from the slit opening size. This makes possible to adjust
the beam size to optimize geometric requirements (e.g. geomet-
ric detector efficiency) and freely adjust the exit slit aperture con-
sidering only energy resolution requirements. It must be noted that
the astigmatic focus can be implemented on existing beamlines by
displacing and/or changing the angle of incidence of the refocusing
mirrors. It can easily be done in refocusing system based on cylin-
drical or toroidal mirrors. The cPGM with astigmatic focus concept
is already in use at SPECIES beamline at MAX II (later on the beam-
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line will be transferred to MAX IV) and a description of the beamline
performance is done in Paper II. This concept will also be used for
HIPPIE beamline at MAX IV and it is expected that other beamlines
take advantage of this concept in the near future.

Chapter 3 described polarimetry for the energy range of vacuum
ultraviolet. The particular case of a polarimeter based on metal
coated mirrors, as the one being commissioned at MAX IV labora-
tory, is discussed. The theoretical background covered the topics of
reflection on metal surfaces, the Stokes parameters and the Muller
Matrices. This basic information made possible to derive the po-
larimeter equation (eq. 3.36 in Ch. 3.4) for the MAX IV polarime-
ter and to estimate the performance for different polarization states
(Fig. 3.14). Similar calculations were then developed for a multilayer
based polarimeter, providing information about performance and
eventually being part of the data analysis, as described in Paper IV.
In addition, a new method for data analysis is developed in Paper III,
which directly links the Stokes parameters to the experimentally ob-
served quantities and as a consequence it does not rely in any fitting
procedure. This makes possible to determine the experimental error
of the Stokes parameters in the measurements in a straight forward
manner.

Chapter 4 review the concepts of wave and statistical optics
and discuss their application for synchrotron radiation beamlines.
Special attention was dedicated to diffraction and to coherence in
diffraction limited storage rings. Distinction was made between the
methods used by SRW and PHASE, the most widely used computa-
tional programs for wave optics simulations of beamlines. The un-
derstanding of the physics behind PHASE made possible to propose
and implement a method for considering the surface errors of opti-
cal elements, as described in Paper V. This was previously missing
in PHASE and in the paper it is discussed how the method provides
accurate results. Finally, SRW was used to study the degree of coher-
ence at the experimental station of SoftiMAX beamline; that is in-
cluded in Paper VI.
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APPENDIX A

Stokes parameters and partially polarized light

This appendix gathers some useful relations of the Stokes parameters
that are used in this work, mainly in Chapter 3. The goal is to use
Stokes parameters to fully describe the state of polarization of the
light as well as the fraction of linear, circular and unpolarized light.

Considering a polarized electromagnetic wave propagating in ẑ
direction (coordinate system of Figure 3.8), the two orthogonal com-
ponents Ex (t ) and Ey (t ) of the electric field ~E (t ) are given by

Ex (t ) = Ex 0 exp[i (k z −ωt +δx )],

Ey (t ) = Ez 0 exp[i (k z −ωt +δy )],
~E (t ) = Ex (t )x̂ +Ey (t ) ŷ .

Ex 0 and Ey 0 are the corresponding amplitudes of the fields, k is the
wave number,ω is the angular frequency whereas δx and δy are the
phases. The Stokes parameters are given by

S0 =E 2
x 0+E 2

y 0,

S1 =E 2
x 0−E 2

y 0,

S2 =2Ex 0Ey 0 cos(δz −δy ),

S3 =2Ex 0Ey 0 sin(δz −δy ),

S 2
0 =S 2

1 +S 2
2 +S 2

3 .

Polarized
light

(A.1)

These definitions apply for a completely polarized light. It has been
shown experimentally that the Stokes parameters for completely un-
polarized light are1

S0 > 0,

S1 = S2 = S3 = 0.
Unpolarized

light

(A.2)

It can also be shown that the Stokes parameters of two completely in-
dependent beams can be summed to yield the Stokes parameters of

1The experimental motivation is discussed in Goldstein [2011, Chapter 5.5].
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the combined beam [Goldstein, 2011]. Therefore, the Stokes param-
eters of partially polarized light can be described as a combination
of the Stokes parameters of a polarized and an unpolarized beam.

By using the Stokes vector notation (Ch. 3.3), the vectors for com-
pletely polarized S(p ) and unpolarized light S(u ) are given by

S(p ) =







P ·S0

S1

S2

S3






and S(u ) =







Pu ·S0

0
0
0






(A.3)

where P and Pu = (1−P ) are the fractions of polarized and unpolar-
ized light of the beam. The sum is simply

S= S(p )+S(u ) =







S0

S1

S2

S3






. Partially

polarized
light

(A.4)

It must be noted that the parameter S0 is now the total intensity,
i.e. the sum of the polarized and unpolarized light, and hence is no
longer defined by equation (A.1). For the partially polarized light this
parameter must be redefined, and the four Stokes parameters be-
come

P ·S0 =E 2
x 0+E 2

z 0,

S1 =E 2
x 0−E 2

z 0,

S2 =2Ex 0Ez 0 cos(δz −δx ),

S3 =2Ex 0Ez 0 sin(δz −δx ),

S 2
0 ¾S 2

1 +S 2
2 +S 2

3 ,

P 2 ·S 2
0 =S 2

1 +S 2
2 +S 2

3 .

Partially
polarized

light

(A.5)

Some further relations are also useful: the parameters S1 and S2 are
related to the amount of linearly polarized light while the parameter
S3 is related to the amount of circularly polarized radiation. With this
respect, the degreed of linearly (PL ) and circularly (PC ) polarized light
are defined as

PL =
q

S 2
1 +S 2

2 and PC = S3,

which, using equation (A.5), results in

P 2 ·S 2
0 = P 2

L +P 2
C . (A.6)

Normalizing this by the total intensity S0 yields
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P 2 =P̄ 2
L + P̄ 2

C ,

P̄L =

Æ

S 2
1 +S 2

2

S0
=
q

S̄ 2
1 + S̄ 2

2

P̄C =
S3

S0
= S̄3

where the parameters with the bar are normalized by S0. By using
the normalized Stokes parameters it is not necessary to determine
the parameter S0, requiring an absolute measurement (i.e., requiring
the use of a detector with known efficiency).

Finally, to be able to describe the polarization ellipse [Goldstein,
2011]of the polarized fraction of the light, it is necessary to normalize
the Stokes parameters by P , resulting in

1=
S 2

1 +S 2
2 +S 2

3

P 2 ·S 2
0

,

1=s̄ 2
1 + s̄ 2

2 + s̄ 2
3 ,

1=p̄ 2
L + p̄ 2

C ,

where the parameters normalized by P are written in lowercase.
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Mueller Matrix applied for the three mirror unit

This appendix shows that the three mirrors of the retarder unit of the
polarimeter can be treated as a single mirror, with effective optical
parameters dependent on the three original mirrors.

Defining the Mueller matrix of the mirror i as Mi, the Mueller ma-
trix of the retarder unit Mret is given by:

Mret(η1) = MR(−η1)·M3 ·MR(η1)·
·MR(−180o ) ·MR(−η1)·M2 ·MR(η1) ·MR(180)·

·MR(−η1)·M1 ·MR(η1)

where MR is the Mueller matrix of rotation given by equation (3.29).
It is also assumed that the mirror 2 is rotated by 180deg related to the
first mirror, as discussed in Chapter 3.3 (see Figure 3.11).

Calculating the rotation matrices for the angles 180deg and
−180deg results MR(180) =MR(−180o ) = I, where I is the identity ma-
trix. Additionally, we have that MR(−η) ·MR(η) = I. These two results
simplify the former equation to

Mret(η1) =MR(−η1) ·M3 ·M2 ·M1 ·MR(η1),

=MR(−η1) ·Mret ·MR(η1),

where Mret =M3 ·M2 ·M1.
We must recall that all the mirrors are of the same material (gold)

and that the light has the same incidence angle θ on mirrors 1 and 3.
That means that mirrors 1 and 3 have the same values of reflectivity
and phase shift, and as a result M1 =M3. Therefore we can write

Mret =M1(rs 1, rp 1,δ1) ·M2(rs 2, rp 2,δ2) ·M1(rs 1, rp 1,δ1),

resulting
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Mret =







m11 m12 0 0
m12 m11 0 0

0 0 m33 m34

0 0 −m34 m33






.

The non-zero matrix elements above are given by

m11 =
rs 1

4rs 2
2

2
+

rp 1
4rp 2

2

2
,

m12 =
rs 1

4rs 2
2

2
−

rp 1
4rp 2

2

2
,

m33 = rs 1
2rs 2rp 1

2rp 2 cos (2δ1+δ2) and

m34 = rs 1
2rs 2rp 1

2rp 2 sin (2δ1+δ2) .

Then, by defining

rs 3 = r 2
s 1 · rs 2,

rp 3 = r 2
p 1 · rp 2 and

δ3 = 2δ1+δ2

we can simplify the former matrix to

Mret =
1

2
×







rs 3
2+ rp 3

2 rs 3
2− rp 3

2 0 0
rs 3

2− rp 3
2 rs 3

2+ rp 3
2 0 0

0 0 2rs 3rp 3 cos (δ3) 2rs 3rp 3 sin (δ3)
0 0 −2rs 3rp 3 sin (δ3) 2rs 3rp 3 cos (δ3)






.

This is exactly the same form as the matrix for a single mirror (see
eq. 3.28). It means that the three mirrors of the retarder can be con-
sidered as a single mirror with effective reflectivity parameters and
phase shift rs 3, rp 3 and δ3 as given above.
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APPENDIX C

Special Cases for Polarimetry

The so-called special cases are discussed in Chapter 3 and Paper III.
They are special conditions for measuring the Stokes parameters
with the polarimeter. To derive the functions used in these special
cases it is necessary to perform some repetitive algebraic calculation
and for the sake of clarity these calculation are done in this Appendix.

C.1 Useful identity

We will soon see that with certain conditions the polarimeter equa-
tion 3.36 reduces to

I (η) =α
�

B +a · cos(2η) + b · sin(2η)
�

. (C.1)

A particular trigonometric identity is extremely useful in simplifying
this equation. We start by noting that the function A ·sin(2η+Ψ) can
be expanded as

A · sin(2η+Ψ) = A sin(Ψ)cos(2η) +A cos(Ψ)sin(2η). (C.2)

Then, by defining

A sin(Ψ) = a , A cos(Ψ) = b , (C.3a)

A2 = a 2+ b 2, and tan(Ψ) =
a

b
(C.3b)

we can rewrite equation (C.2) as

A · sin(2η+Ψ) = a · cos(2η) + b · sin(2η). (C.4)

Using this identity we can write I (η) in equation (C.1) as

I (η) =α
�

B +A · sin(2η+Ψ)
�

. (C.5)
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C.2 Special cases

Considering the application of this identity to the polarimeter, we
can show that by fixing the angular difference η2 −η1 to some spe-
cific values the polarimeter equation (eq. 3.36) can be reduced to the
form of equation (C.1), and thus to the form of equation (C.5). The
advantage of equation (C.5) is that it can be easily written in terms of
experimental, measurable values. By writing

Ī =αB and V = A/B , (C.6)

we obtain

I (η) = Ī
�

1+V sin(2η+Ψ)
�

. (C.7)

From an experimental point of view, the function I (η) in equa-
tion (C.7) can be interpreted either as light intensity, or electric cur-
rent at the detector, depending on the definition of the parameter α.
The parameter Ī is the mean intensity (or current) and is defined as

Figure C.1. Example of a
(simulated) experimental curve I (η)
where are shown the experimental
parameters used on the special cases.

(see Figure C.1)

Ī =
1

2π

∫ 2π

0

I (η) ·dη=
1

N

i=N
∑

1

I (ηi ), (C.8)

where the last identity corresponds to the case where N discrete
measurements I (η) are performed at angles η = ηi , i = (1, 2, .., N )
and 0≤ηi ≤ 2π. The parameter V is called visibility2 of the resulting
data and can be written as a function of the experimental values for
the maximum and minimum values of I (η):

V =
(Ima x − Imi n )

2Ī
. (C.9)

Next, we will demonstrate how the Stokes parameters can be de-
termined from the mean current Ī , the visibility V and phaseΨmea-
sured at different conditions.

C.2 Special cases

As explained above, choosing the angles η1 and η2 properly allows
to simplify the polarimeter equation (eq. 3.36) to the form of equa-
tion (C.5). Consequently, both the data analysis and determination
of the polarization become simpler. Common to all these choices is

Figure C.2. Simulated values of
I (η1,η2) for horizontally polarized
light, where the white line represents
the geometric interpretation of
special case 1: on this special case the
intensity is measured over the line
η1 =η2.

that the angle between the retarder and analyzer are kept constant,
although the absolute values change from case to case. These con-
ditions reduce I (η1,η2) from a two variables function to one variable
function I (η). The geometric interpretation is shown in Figure C.2,

2Named visibility due to the similarity with the equation for fringe visibility used
on the study of wave interference, as given for instance in Eq. 3.19 of [Fowles, 1975].

98



Appendix C

where instead of mapping the function I (η1,η2) by measuring at all
the possible angle pairs (η1,η2), the measurement is only done for
example along the line η2 =η1.

To completely determine the polarization of the light four special
cases are necessary:

case 1: η2 =η1,

case 2: η2 =η1+π/2,

case 3: η2 =η1+π/4,

case 4: η2 =η1−π/4.

In general we have that the special cases have an angular difference
η2 −η1 = mπ/4 for m = −1, 0, 1, 2. The geometric interpretation of
the four cases are shown in Figure C.3 for the four values of m at dif-
ferent polarizations: linearly (Figure C.3.a) and circularly polarized
light (Figure C.3.b). Figures C.4 show the expected curves I (η) for
the different special cases shown in Figure C.3.

We can see from the intensity curves in Figure C.4 that the inten-
sity oscillates with a periodπwhen measuring linearly polarized light
in these special cases. For circularly polarized light the measure-
ments will result in constant intensities with different values. Based
on Figure 3.14.a, we note that completely unpolarized light will also
present the same feature. The derivation of the analytical functions
and the method to determine the Stokes parameters from these four
cases is done next, case by case.

Case 1: η=η1 =η2

First of all, we must recall that the intensity registered by the detector
is proportional to the intensity of the light, i.e.

I (η1,η2)∝ S̄ ′0

where S̄ ′0 is the Stokes parameter of the light that hits the detector, fol-
lowing the notation in Chapter 3. If we assume that I (η1,η2) is elec-
tric current measured from a photodiode, there is an efficiency factor
Efficiency connecting electric current and light intensity (Ampere per
Watt) so that

I (η1,η2) = Efficiency · S̄ ′0.

From now on we use a constant

E f =
Efficiency

4
·
�

rs 3
2+ rp 3

2
� �

rs 4
2+ rp 4

2
�

,

which combined with the polarimeter equation (3.36) allows to write

I (η1,η2) = E f S0 ·
�

c0+ c1 · S̄1+ c2 · S̄2+ c3 · S̄3

�

. (C.10)
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(a) (b)

Figure C.3. Intensity map expected for (a) horizontal linearly and (b) cir-
cularly polarized light. The white lines represent the values of η1 and η2 that
are measured for each special case. They are labeled by the respective value
of m . Cases 1, 2, 3 and 4 have values m = 0, 2, 1,−1, respectively.

(a) (b)

Figure C.4. Expected intensity curves as measured along the lines in
Figure C.3. a) horizontal linearly and (b) circularly polarized light. The red
crosses are the points A, C, F and E discussed in section C.3

The constant E f can be eliminated by simply applying normaliza-
tions, as will be shown soon, and thus it will not be discussed any
further. We can now apply the condition η = η1 = η2 of special case
1 into equation (C.10), resulting

I1(η) = I (η,η) = E f S0

�

1+ cos(2ψ3)cos(2ψ4) (C.11)

−
�

cos(2ψ3) + cos(2ψ4)
��

S̄1 cos(2η) + S̄2 sin(2η)
�	

.

Here we can use the identity of equation (C.2) to write

I1(η) = Ī1

�

1+V1 sin(2η+Ψ1)
�

. (C.12)
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Using further equations C.3 and C.6 we obtain that

Ī1 = E f S0

�

1+ cos(2ψ3)cos(2ψ4)
�

, (C.13a)

V1 =

�

cos(2ψ3) + cos(2ψ4)
�

P̄L

1+ cos(2ψ3)cos(2ψ4)
, (C.13b)

tanΨ1 =
S̄1

S̄2
. (C.13c)

where the term P̄L is the degree of linear polarization, Ī the mean
current and all the terms with bar (besides Ī ) are normalized by the
first Stokes parameter, S0(as in Appendix A).

It is actually simpler to use the product Ī ·V instead of only the
visibility V , which results in

Ī1 ·V1 = E f S0

�

cos(2ψ3) + cos(2ψ4)
�

P̄L . (C.13d)

We can see therefore that equations C.13 provide a link between the
experimental quantities Ī1, V1 and Ψ1 with the Stokes parameters S̄1

and S̄2 and the optical constants (through cos(2ψ3) and cos(2ψ4)). It
is still necessary to study the cases 2, 3 and 4 which, together with
equations C.13, make possible to determine the three Stokes param-
eters and the (relevant) optical constants directly.

Case 2: η=η1 =η2+π/2

The derivation of the cases 2, 3 and 4 is very similar to case 1, and
thus they are presented here in a streamlined manner.

Let us start by applying the condition η = η1 = η2 +π/2 to equa-
tion (C.10), yielding

I2(η) = I (η,η+π/2)

= E f S0 ·
¦

(1− cos(2ψ3)cos(2ψ4))

−
�

cos(2ψ3)− cos(2ψ4)
��

S̄1 cos(2η) + S̄2 sin(2η)
�

©

. (C.14)

This results in

Ī2 = E f S0

�

1− cos(2ψ3)cos(2ψ4)
�

, (C.15a)

Ī2 ·V2 = E f S0

�

± cos(2ψ3)∓ cos(2ψ4)
�

P̄L , (C.15b)

tanΨ2 =
S̄1

S̄2
, (C.15c)

where the symbols ±,∓ are valid either for the case cos(2ψ3) >
cos(2ψ4) or for the case cos(2ψ3) < cos(2ψ4), respectively. The de-
termination of which of the two term, cos(2ψ3) or cos(2ψ4), is bigger
is for clarity discussed in the end of the section C.3, as derivation re-
quires some arithmetic.
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Using Case 1 and Case 2 to determine S̄1, S̄2, cos(2ψ3) and cos(2ψ4)

Combining now equations C.13 and C.15 we get

P̄L =

√

√

√
(V 2

1 Ī 2
1 −V 2

2 Ī 2
2 )

(Ī 2
1 − Ī 2

2 )
(C.16a)

cos(2ψ3) =
1

P̄L
·

V1 Ī1±V2 Ī2

Ī1+ Ī2
(C.16b)

cos(2ψ4) =
1

P̄L
·

V1 Ī1∓V2 Ī2

Ī1+ Ī2
. (C.16c)

S̄1 = P̄L sin(Ψ1,2), (C.16d)

S̄2 = P̄L cos(Ψ1,2). (C.16e)

where Ψ1,2 means that either of the phases Ψ1 and Ψ2 can be used.
Therefore we are able to directly determine the Stokes parame-
ters S̄1 and S̄2 of the incoming light and the optical constants of
the polarimeter cos(2ψ3) and cos(2ψ4) by measuring the intensities
I (η1,η2) in the conditions of the cases 1 and 2 and using the quan-
tities mean currents Ī1 and Ī2, visibilities V1 and V2, and phases Ψ1

and Ψ2. Furthermore, it is not necessary to use any tabulated val-
ues or to use any fitting procedure, and it is possible to evaluate the
experimental error of the Stokes parameters directly from the experi-
mental errors. The discussion about the advantages of these features
is presented in more details in Paper III. We observe that so far it is
not possible to determine the Stoke parameter S̄3 related to circularly
polarized light. For this we need to study the cases 3 and 4.

Case 3: η=η1 =η2−π/4

Condition η=η1 =η2−π/4 in equation (C.10) produces

I3(η) = I (η,η+π/4),

= E f S0

¦

1− S̄3 cos(2ψ4)sin(2ψ3)sinδ3

− cos(2η)
�

S̄1 cos(2ψ3) + S̄2 cos(2ψ4)sin(2ψ3)cosδ3

�

− sin(2η)
�

− S̄1 cos(2ψ4)sin(2ψ3)cosδ3+ S̄2 cos(2ψ3)
�

©

,

and again using the identity in equation (C.2) we obtain

Ī3 = E f S0

�

1− S̄3 cos(2ψ4)sin(2ψ3)sinδ3

�

, (C.17a)

Ī3 ·V3 = E f PL

q

cos2(δ3)sin2(2ψ3)cos2(2ψ4) + cos2(2ψ3) , (C.17b)

tanΨ3 =
S̄1 cos(2ψ3) + S̄2 cos(2ψ4)sin(2ψ3)cosδ3

−S̄1 cos(2ψ4)sin(2ψ3)cosδ3+ S̄2 cos(2ψ3)
. (C.17c)
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Case 4: η=η1 =η2+π/4

Finally we apply η=η1 =η2+π/4 in equation (C.10):

I4(η) = I (η,η−π/4),

I4(η) = E f S0

¦

1+ S̄3 cos(2ψ4)sin(2ψ3)sinδ3

− cos(2η)(S̄1 cos(2ψ3)− S̄2 cos(2ψ4)sin(2ψ3)cosδ3)

− sin(2η)(S̄1 cos(2ψ4)sin(2ψ3)cosδ3+ S̄2 cos(2ψ3))
©

,

and obtain

Ī4 = E f S0

�

1+ S̄3 cos(2ψ4)sin(2ψ3)sinδ3

�

, (C.18a)

Ī4 ·V4 = E f PL

q

cos2(δ3)sin2(2ψ3)cos2(2ψ4) + cos2(2ψ3) , (C.18b)

tanΨ4 =
S̄1 cos(2ψ3)− S̄2 cos(2ψ4)sin(2ψ3)cosδ3

S̄1 cos(2ψ4)sin(2ψ3)cosδ3+ S̄2 cos(2ψ3)
. (C.18c)

We observe that in cases 3 and 4 we have an additional dependence
with the parameters S̄3 and δ3. This will make possible to determine
their values, as is shown next.

Using Case 3 and Case 4 to determine S̄3 and cosδ3

Although the Equations C.17.c and C.18.c seem complicated, all pa-
rameters except δ3 can be determined by the analysis of cases 1 and
2. Therefore, by measuring Ψ3 or Ψ4 it is possible to determine δ3 by

cosδ3 =
cos(2ψ3)

cos(2ψ4)sin(2ψ3)
·
−S̄1+ S̄2 tanΨ3

S̄2+ S̄1 tanΨ3
(C.19a)

or

cosδ3 =
cos(2ψ3)

cos(2ψ4)sin(2ψ3)
·

S̄1− S̄2 tanΨ4

S̄2+ S̄1 tanΨ4
. (C.19b)

Finally, from equations C.17.a and C.18.a we have that

Ī4− Ī3

Ī4+ Ī3
= S̄3 cos(2ψ4)sin(2ψ3)sinδ3,

allowing to obtain Stokes parameter S̄3 by

S̄3 =
1

cos(2ψ4)sin(2ψ3)sinδ3
·

Ī4− Ī3

Ī4+ Ī3
. (C.20)
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C.3 Method of measuring at specific pairs η1 and η2

The values for P̄L , S̄1 and S̄2 can also be determined based on equa-
tions C.17 and C.18, resulting in

P̄L =
Ī4 ·V4

Ī3+ Ī4

2
Æ

cos2(δ3)sin2(2ψ3)cos2(2ψ4) + cos2(2ψ3)
(C.21a)

=
Ī3 ·V3

Ī3+ Ī4

2
Æ

cos2(δ3)sin2(2ψ3)cos2(2ψ4) + cos2(2ψ3)
, (C.21b)

S̄1

S̄2
=

cosΨ3+ cosΨ4

sinΨ3+ sinΨ4
. (C.21c)

In summary, by measuring the special cases 1, 2, 3 and 4 it is pos-
sible to determine the Stokes parameters and the optical properties
with the use of equations C.16, C.19, C.20 and C.21. The use and ad-
ditional discussion about this method is presented in more details in
Paper III.

C.3 Method of measuring at specific pairs η1 and η2

The strategy for determining the polarization of the light with this
polarimeter is by doing the measurements I (η1,η2) at specific pairs
of angles η1 and η2. Variations of this method were used with differ-
ent purposes for instance by Koide et al. [1991], Schledermann and
Skibowski [1971], Hamm et al. [1965] and Cubric et al. [1999]. These
relations are derived here to adapt the results of these authors to the
current case and notation.

The initial motivation is to choose proper angles pairs η1,η2 that
simplify I (η1,η2) in equation (C.10). It is indeed the same goal as
for the method discussed previously in section C.2, but instead of
measuring along the lines shown in Figure C.3, the current method is
based on measuring at specific points of the intensity map I (η1,η2).

Due to the presence of many terms including cos(2η12) and
sin(2η12) in equation (3.36), the function I (η1,η2) can be made sim-
pler at angular values η1,η2 equal to 0, ±π/4 , π/2 or ±3π/4. In ad-
dition, it can be made even simpler by using angles which make the
term c3 of equation (3.36) equal to 0 or to 1. Using this, by combining
the intensities I (η1,η2) at different values ofη1,η2 we obtain that the
desired Stokes parameters and optical constant are obtained from
the following equations
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cos(2ψ3)cos(2ψ4) =
A+C − F −E

A+C + F +E
,

cos(2ψ3)
cos(2ψ4)

=
−A+C + F −E

−A+C − F +E
,

S̄1 =
1+ cos(2ψ3)cos(2ψ4)
cos(2ψ3) + cos(2ψ4)

·
C −A

C +A
,

S̄2 =
1+ cos(2ψ3)cos(2ψ4)
cos(2ψ3) + cos(2ψ4)

·
D −B

D +B
,

S̄3 =
1

sin
�

2ψ3

�

cos
�

2ψ4

�

sin (δ3)
·

M +Q − J −N

M +Q + J +N
,

cos (δ3) =
1

S̄1 sin
�

2ψ3

�

cos
�

2ψ4

� ·
O + L −K −P

O + L +K +P
,

where the points A to Q are the intensity values I (η1,η2) measured
at specific values of η1,η2 as following

A = I (0, 0),

B = I (π/4,π/4),

C = I (π/2,π/2),

D = I (3π/4, 3π/4),

E = I (0,π/2),

F = I (π/2, 0),

J = I (0,π/4),

K = I (π/4, 0),

L = I (π/4,π/2),

M = I (π/2,π/4),

N = I (π/2, 3π/4),

O = I (3π/4,π/2),

P = I (3π/4,π),

Q = I (π, 3π/4).

It is indeed possible to make many other combinations and to use
other values of η1 and η2, but the discussion here is limited to the
cases above. In figures C.4.(a) and (b) we can see the points A, C , F ,
E for these measurements as red crosses.

This method shows that is possible to determine all the desired
parameters with fourteen measurements of intensity I (η1,η2). It has
a smaller number of experimental points and it is more sensitive
to misalignment and experimental errors compared to the method
shown in Section C.2 or the full mapping of the intensity I (η1,η2).
On the other hand it can be an easy and fast way to estimate all the
experimental quantities of interest. In particular, it can be used to
determine whether cos(2ψ3)> cos(2ψ4) or cos(2ψ3)< cos(2ψ4), and
thus the correct sign in equation (C.16).
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COMMENTS ON THE PAPERS

I Use of astigmatic re-focusing at HP-XPS end-station
In this paper I present the astigmatic refocusing optics for
the new high pressure photoelectrons spectroscopy (HP-XPS)
branch line of SPCEIES beamline at MAX-lab. In the text I de-
rived a geometric model for the vertical beam size and present
some results from ray-tracing simulation. Moreover, the moti-
vation for the project and the discussion about the advantages
of the astigmatic focus are discussed. I performed all the sim-
ulations and wrote most of the article.

II The SPECIES beamline at MAX-lab: a facility for soft-X-ray
RIXS and HP-XPS experiments
This paper reports the structure and performance of the
SPECIES beamline, including the performance of the astig-
matic re-focusing, which I studied theoretically in Paper I.
Main contribution is in the comparison of experimental results
to the theoretical predictions; I am also working in relevant
parts of the manuscripts regarding the astigmatic refocusing.

III Simplification of data analysis and experimental error
propagation for a VUV polarimeter
This manuscript is in preparation. It presents a novel data
analysis of the polarimeter data and a straightforward way for
error estimation. I developed the method and I worked in get-
ting experimental confirmation of these ideas. This is also part
of the commissioning of the VUV polarimeter, which I have
been in charge. I am the main author of this manuscript and I
have wrote most of it.
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IV Multilayer based EUV polarimeter at MAX IV laboratory
This paper presents the EUV polarimeter, its performance, and
possibilities for defining polarization with high precision. I ac-
tively participated in the commission phase of the instrument
and experiments at beamlines I411 and I1011 at MAX II. I was
also in charge of analyzing the results. I have contributed to the
whole article and my main contribution is in the experimental
part and discussion of the results.

V Propagation of coherent light pulses with PHASE
The paper describes the development of the PHASE code
which is one of the available codes for wave front propagation
dedicated for synchrotron light sources. My main contribution
here was about developing a method for inclusion of the figure
errors of optical elements in the simulations. I describe this
method in section 4 of the article and I have wrote the most of
this section.

VI Design for a coherent imaging beamline SoftiMAX at MAX IV
Laboratory
This paper describes the proposed design of the first MAX IV
soft-X-ray beamline utilizing the high coherence of the low
emittance storage ring. Here the coherence is the key-factor
and I studied its effects on image forming by using wavefront
propagation simulations. I am also contributing in the prepa-
ration of the manuscript.
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