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Foreword 

The work presented in this thesis is the result of several pleasant years of 
attempting to apply previous skills, knowledge and intuition in a for me 
completely unknown domain: bottom-up mass spectrometry based 
proteomics. Coming from a masters degree in engineering physics, I am 
convinced that mass spectrometers are essentially simple and understandable 
machines, that have had the bad fortune of being very useful in the study of 
something vast, complex and chaotic: molecular biology. Further, mass 
spectrometers, no matter how accomplished and technically advanced, cannot 
answer questions about molecular biology. They merely limit the plausible 
subset of possible molecular mechanisms; interpretation and understanding 
will always remain the challenge of the scientist.  

My aim with this body of text is to highlight and communicate my current 
understanding of all aspects of computational proteomics, not as the 
analytical chemist or the pragmatic physician, but as the physics engineer and 
computer scientist that I label myself as. With this in mind, there should be 
ample amounts of misunderstandings for the informed reader to point out, 
given the writers tendency to draw early conclusions in areas where there is 
little experience. Still, some of the greatest revelations come with questions 
from an unexpected angle, and I therefore hope there is such a questionable 
angle hidden somewhere. 
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Chapter 1: Setting the Stage 

The universe is. Building from this most basic meta-physical observation, 
science tends to narrow down to increasingly specific statements. Of the 
infinite such statements available, life science focuses on the ones concerning 
life, namely matter that is organized into fat-enclosed µm-sized volumes, 
filled with DNA and other organic molecules. Cells, as these volumes are 
called, are the building blocks of all living things including plants and 
animals and humans, but also the minuscule things that are bacteria and 
amoeba.  

Human society has benefited greatly from life science. Through history many 
discoveries in breeding, medicine and brewing have been made that can now 
be beautifully explained using life science. But also later, using actual 
molecular biology techniques of studying specific types of organic 
molecules, great feats have been accomplished for the human good. 
Tuberculosis and Polio vaccination programs and small pox eradication have 
saved millions of lives, the fast development of HIV medicines has 
completely changed life expectancy and spread of this disease, and cancer 
has transformed from being utterly mortal to having several treatment 
options, at least for the most common cancer subtypes.  

With the great feats of past life science in mind, it must be stated that 
progress in the medical field seems to have stalled, or at least become 
increasingly difficult. Although the world population continues to show a 
wide array of diseases in need of treatment1,2, the rate of approved new drugs 
is exceedingly low3,4, while companies are reporting greater costs than ever 
for drug development5–7. It would seem that the low-hanging fruit in terms of 
treatable diseases and prognostic markers have been discovered, while safety 
requirements for population-wide approval have increased4,8. 

Apart from new treatment drugs, much money and brainpower is invested in 
developing biomarkers – essentially measurable patient properties that are 
informative regarding the patient health or disease status9. Biomarkers can be 
used to stratify patients into treatment or prognosis groups, or simply mark 
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for the presence of disease. For example, the presence of the BRCA1 gene in 
breast cancer tumors could be used to select patients for a specific treatment 
that is not as efficient in patients lacking this mutation10. Of further 
importance in biomarker discovery is the method of biomarker measurement, 
specifically in terms of patient inconvenience, why human plasma is a 
frequent target for biomarker discovery studies9,11,12.  

Progress has been very fast in life science in the last decades. Following the 
monumental completion of the sequencing of the human genome in 2001 
after more than a decade of work and at an estimated cost of $3 billion13–15, 
the cost of genome sequencing has reduced by 1 million times16, and much 
has been learned of human mutations and their relation to different diseases. 
Yet, genomes do not necessarily explain the mechanisms of any observed 
biological conditions, or offer new methods of pushing the biological system 
in a beneficial direction. From only the DNA we have so far no capability to 
simulate the entire cell to predict its behavior, let along multi-cell 
systems17,18. The next targets for study are therefore the downstream parts of 
the canonical cell production chain, the translated genes that are in transit for 
protein expression (RNA) and the proteins themselves.  

Some general principles of the cell are very useful to understand the contents 
of the work described in this thesis. In short, cells exist because they are self-
replicating: given reasonable conditions they will make more copies of 
themselves. Two primary things are needed to copy oneself: a blueprint, and 
a making-mechanism. The DNA is the blueprint in cells, and the making-
mechanism is a series of steps centered on the molecular structure called the 
ribosome. Essentially, the DNA is a long chain composed of 4 types of 
nucleic acids. Parts of the DNA, genes, are copied and transported to the 
ribosomes for translation into the primary components of the cell, the 
proteins (Fig. 1.1). Proteins are also long chains, but composed of amino 
acids rather than nucleic acids, and folded into complex 3-dimensional 
structures that are critical for the protein function. Proteins carry out most 
high-order functionality in cells, like propulsion, control of the intra-cellular 
molecular composition, release of signaling molecules, and tracking of 
whether to reproduce or gather resources.  
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Having drawn the basic picture of cell function, I must emphasize that in 
biology no rule is absolute, and all order has exceptions. In the above 
canonical model, DNA is translated into RNA that is expressed as proteins 
(Fig. 1.1). The DNA carries the information to describe all functions of the 
cell and proteins perform them. However, every word in the last two 
sentences is only true in the general sense, as a multitude of amendments are 
necessary to describe actual cell biology (Fig. 1.2). In fact, most genes in the 
DNA seem to have several possible translations depending on the translator 
molecules (RNA or protein) that are connected at the time of 
translation13,19,20, and some RNA is not expressed as proteins but carries out 
primary functions by itself21,22. To complicate things further, proteins are 
often modified by some of hundreds of possible post-translational 
modifications (PTMs)23,24. The exact setup of PTMs on a single protein can, 
but might not, completely change its function or location in the cell25. Protein 
location might in turn completely change the proteins function in the cell26. 
Finally, the same protein might be folded differently, resulting in different 
function27–29. All together, stochastic mutation processes and Darwinian 
selection, while very successful, seems to have made life highly complex and 
messyi.  

                                                        
 
i Divine intervention would probably have been preferable, from an engineering point of view. 

Figure 1.1 - The canonical model of protein expression. A gene in transcribed into an RNA sequence, 
which is translated into a protein. (The protein 3D image is from "Protein composite" by Thomas 
Splettstoesser (www.scistyle.com), CC BY-SA 3.0) 
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The great biological complexity points to a need for large amounts of diverse 
information to understand biological systems. Luckily, the large-scale study 
of transcripts and proteins seems to be evolving at paces close to the genome 
counterpart30 (Fig. 1.3), and the measurement of the majority of cell 
transcripts and proteins in simple cell systems is now commonly 
performed31,32. In the work presented here, proteins have been the exclusive 
targets of interest. The study of the protein contents of a sample is called 
proteomics. A biological sample is at any given time said to contain a 

Figure 1.2 - Actual protein expression. In real biology, genes might be translated into several 
alternative RNA sequences, while some RNA carries out primary functions such as silencing genes 
or inhibiting protein translation. A single gene-product might turn into different proteoforms by post-
translational modifications, with different cellular function. Finally, protein localization in the cell might 
completely change it's function. (The protein 3D images are from "Protein composite" by Thomas 
Splettstoesser (www.scistyle.com), CC BY-SA 3.0) 
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proteome, which is described by the exact listing of all proteins in the cell, 
including their quantities, modifications, and sub-cellular location. 
Proteomics presents some distinct challenges over it's gene and transcript 
counterparts, in that protein signal cannot be amplified, proteins are present 
at a large range of concentrations, and that the proteome is constantly 
adapting to the cellular environment and inner state.  

The research described in this thesis is ultimately driven by the desire to 
measure the proteome to provide insight in biological systems. This can be 
accomplished by mass spectrometry instrumentation, and my work revolves 
around automated interpretation and analysis of the sizeable data that mass 
spectrometers generate when challenged with biological samples. Before this 
analysis task and my results can be described however, a deeper foundation 
of the underlying technology is needed. 

Mass spectrometry proteomics 

Large-scale proteomics can be pursued by several measurement techniques, 
for example 2-dimensional separation followed by protein staining33,34, 
binding by fluorescently labeled antibodies35,36, or mass spectrometry37,38. 
Even though many considerations are shared between these techniques due to 
their similar goals of identification and quantification of large numbers of 
proteins, this work is focused exclusively on mass spectrometry based 
proteomics. Mass spectrometry proteomics builds upon the vastly increased 

a) b)

Figure 1.3 - The exponential progress of life science technology capability. a) Cost of sequencing a 
human genome (data from the NHGRI Genome Sequencing Program16). b) Mass spectrometry 
sensitivity (by NL Anderson, from the historical review Six decades searching for meaning in the 
proteome30. Reproduced with permission. ) 
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availability of sequenced genomes, including the human13,14, the soft 
ionization techniques electrospray ionization (ESI)39 and matrix-assisted laser 
adsorption ionization (MALDI)40, as well as several years of very rapid 
instrument performance increases30. 

In this work bottom-up mass spectrometry proteomics has been performed, 
which is one of the most common varieties of mass spectrometry proteomics. 
This workflow consists of protein digestion by some enzyme, online 
separation by hydrophobicity on a reversed phase chromatographic column, 
and electrospray ionization followed by mass spectrometry.  

The mass spectrometer is defined by one singular trait: the ability to separate 
gas-phase analytes based on their mass over charge ratio (m/z). To 
accomplish this target analytes are ionized, followed by subjection to highly 
controlled electro-magnetic fields41. In the quadrupole mass analyzer42,43 and 
different ion traps44,45, oscillating fields are utilized to create stable 
trajectories only for ions at a certain m/z46. In the time-of-flight instrument, a 
constant field is used to reverse ion trajectories46. Because heavier ions take 
longer to deflect, the time of flight in the field can be used to compute the 
m/z of the ion. In the Fourier transform ion cyclotron resonance (FTICR)47,48 
analyzer and the Orbitrap49,50, ions are subjected to a 3-dimensional or a 
mixed cylindrical field that puts them in different orbitals depending on their 
m/z. The induced current is measured in fixed detectors, where the specific 
cyclical motion at each m/z will generate signal at a specific frequency. The 
m/z values can then be obtained by the inverse Fourier transform. Naturally, 
these mass analyzers come with different strengths and weaknesses, and they 
all have uses in specific workflows37,41. 

Protein digestion is performed for two main reasons in the MS proteomics 
workflow. First, proteins vary greatly in size and chemical properties such as 
ionic charge and isoelectric point, and thus any separation strategy at the 
protein level is likely to be incompatible with a substantial amount of 
proteins. Cleaving proteins into peptides increases the chances that at least 
one or a few peptides of each protein will be detectable, and therefore 
provide information about the protein. Second, digestion by for example 
trypsin results in peptides that are very suitable for ionization and mass 
spectrometric analysis. This suitability comes from the almost guaranteed 
presence of a lysine or argine amino acid at the C-terminus of the peptide, in 
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combination with a suitable size of 5-36 amino acidsii. The basic amino acids 
attract positive charge, resulting in peptides that are charge 2 or more, 
meaning that the peptide m/z will lie around 300-1000 m/z, which is a range 
where mass spectrometers are very capable.  

Chromatographic separation is performed because of limitations in 
electrospray and MS technology. No current instrumentation can 
concurrently ionize and analyze thousands of analytes. Limitation of the 
momental complexity is needed to properly ionize as many peptides as 
possible, and to allow their fragmentation and identification in the mass 
spectrometer. The retention time information can further be used to identify 
peptides by comparison to predicted hydrophobicity or previous empirical 
measurements.  

The bottom-up proteomics workflow provides increased probability of 
protein measurement by distributing risks over peptides, and strong 
separation of peptides by hydrophobicity and m/z. Still, this is not enough to 
tackle the full complexity of biological samples, and one additional 
component is commonly used for even higher specificity. 

Gas-phase fragmentation 

In the primary form of mass spectrometry, analytes are separated based on 
m/z and the intensity of each m/z is recorded, resulting in an array of m/z and 
intensity pairs, that is called a spectrum. A single m/z value though, is 
generally not specific enough to uniquely determine the corresponding 
molecule, because of the large amount of possible peptides in biological 
samples. Modern mass spectrometers are therefore in addition built to 
dynamically isolate a part of the analyte m/z range, subject this sub-range to 
fragmentation using some fragmentation technique, and collect a new 
spectrum of the generated fragment ions51–53. As this associates promising 
m/z values with complementary measurements of their fragment spectra, 
greatly increased specificity is achieved, due to the exceedingly small 

                                                        
 
ii 90% Confidence interval computed for unique peptides from in silico tryptic digest of 

Human proteome as downloaded from SwissProt / UniProt 2015-05. 
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likelihood of multiple peptide ions sharing both m/z, retention time and 
several fragment m/z values54. 

To differentiate between the fundamentally different types of chemical 
information in the intact peptide spectra and the fragment spectra, the 
primary intact analyte MS spectrum is called an MS1 spectrum, while MS 
spectra of analyte fragments are called MS2 spectra. 

The analyte of interest in bottom up proteomics is the peptide, which consists 
of a chain of amino acids (Fig. 1.4). Amino acids all share a backbone 
molecular motif, and are differentiated by the structure of their side chains. In 
gas-phase fragmentation, energy is carefully added to the peptide, to enable 
the dissociation of one bond of the peptides amino acid backbone. This 
stochastic process can generate many different types of fragments, which are 
mainly categorized by where the amino acid back-bone breaks, giving rise to 
a-, b- and c-fragments from the N-terminal end, and x-, y- and z-fragment 
from the C-terminal end55,56 (Fig. 1.4). As peptide fragmentation pathways 
are still not completely understood57–59, the probabilities of each fragment 
type and fragmentation site cannot be readily predicted although attempts 
have been made with some success60,61. Importantly, the fragments observed 
depend heavily not only on peptide length but also on amino acid 
composition62–64. Apart from the main terminal fragments, certain amino 
acids frequently give rise to internal fragments, and multiple losses such as 
deamidation can occur to vary the exact chemical composition of the 
fragment.  

Depending on the intentions of the analysis, optimal peptide fragmentation 
might consist of complete coverage of all the amino acids in the peptide, or 
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of fewer but more distinct fragments. In both cases, fast reactions times and 
high reproducibility are key properties. In pursuit of these goals many 
fragmentation techniques have been developed. The most employed 
fragmentation method, collision induced dissociation (CID)65,66, works by 
colliding analyte ions into an innate gas like argon, and primarily produces y- 
and b-fragments. The related higher-energy collisional dissociation (HCD)67 
generates mostly y-fragments, but also some b-fragments. The two methods 
have the moderate weakness of not generating complete fragment series, 
meaning that ambiguities will typically exist regarding the order of some 
neighboring amino acids. Electron capture dissociation (ECD)68 and electron 
transfer dissociation (ETD)69 are completely different fragmentation methods 
that enable fragmentation by low-energy electron donation, producing mainly 
c- and z-type fragments. The main benefit of ECD/ETD fragmentation is the 
very complete fragment series that is generated, while the drawback of the 
methods is the longer reaction times needed for the election transfer to occur, 
which can limit sequencing speed. Even though the exact mechanisms of 
fragmentation are unknown or unpredictable for a given peptide, publicly 
available data has been used to establish empirical knowledge about the 
probabilities of generating each fragment type for the common fragmentation 
techniques70–73. 

Optimizing information gain: different flavors of 
mass spectrometry 

Because of the complex complexion of biological samples, no current mass-
spectrometric method is capable of performing the ideal theoretical feat of 
identifying and quantifying all peptides that can be proteolytically derived 
from the sample. Therefore a number of mass spectrometry methods have 
been devised to optimize the sensitivity, specificity, parallelism, 
reproducibility or accuracy of quantification of the experiment performed37 
(Fig. 1.5).  

The classical MS method for cataloguing a sample of unknown composition 
is data-dependent acquisition (DDA) MS, also nicknamed shotgun MS74,75.  
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Here, the goal is to identify as many peptides as possible, sacrificing 
sensitivity and reproducibility for high parallelism. The method works by 
performing initial MS1 scans to characterize the composition of the currently 
injected ions in terms of their m/z and abundances. Acting upon this scan, the 
instrument selects the most abundant m/z values. Each such m/z precursor is 
isolated, and fragmented using for example HCD fragmentation, and 
scanned. These MS2 scans are performed sequentially, and the number of 
peptides that can be identified is heavily dependent on the speed of MS2 
scans, with modern mass spectrometers reaching 20 MS2 scans/s76,77. To not 
repeatedly scan the same analyte ion, instruments typically use a dynamic 

Figure 1.5 - Representative mass spectrometry proteomics workflows. All starting with liquid 
chromatography (HPLC) and electro spray ionization (ESI), the workflows diverge on the mass 
spectrometer side. In shotgun MS, the top-N measured MS1 peaks are selected for fragmentation. In 
DIA, the whole MS1 range is fragmented in fixed subsets, and in SRM, predefined precursor and 
fragment m/z values are used to hopefully only measure peptide ions of interest. 
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exclusion list; blacklisting m/z values from further MS2 scanning for a short 
period after being subjected to a MS2 scan.  

On the opposing end of the scale, selection reaction monitoring78–80 (SRM) 
and parallel reaction monitoring81 (PRM) provide high sensitivity, specificity, 
reproducibility and accuracy of quantification while limiting the measured 
targets to a predefined set of analyte ions (Fig. 1.5). Here the data-driven 
fragmentation and MS2 scanning of precursors is replaced with a pre-defined 
list of precursors of interest, which are measured continuously or in a 
scheduled fashion. In SRM, a triple-quadrupole instrument is employed, 
using the first quadrupole for precursor filtering, the second for CID 
fragmentation, and the third for fragment filtering, after which the signal 
intensity is measured using an ion detector. Because of the double filtering 
step, operation of the SRM workflow requires assays: prior information on 
the analytes to be measured. Assay information includes the precursor mass 
and charge, the collision energy to use, the expected retention time, and the 
fragments to be measured and their charges. The instrument uses this 
information to constantly measure m/z channels of interest, making it highly 
sensitive. Assays are slightly simplified in PRM, because the third 
quadrupole is replaced with some scanning mass analyzer like the Orbitrap, 
and therefore all fragments within a broad range will be measured and no 
fragment pre-selection needs to be made. 

In-between the parallel shotgun MS and the sensitive SRM/PRM are a 
number of compromising methods such as data-independent acquisition 
(DIA), where the benefits of both regimes are pursued for high general 
performance82–86. When involving DIA, this thesis describes work using the 
DIA method SWATH, as popularized by Gillet et. al.87 (Fig. 1.5). Here a 
scanning mass spectrometer performs an MS1 scan, followed by isolation, 
fragmentation and scanning of predefined subsets of the precursor m/z range. 
In the original formulation the precursor range 400-1200 m/z is scanned and 
then divided into 32 bins spanning 25 m/z. Each bin is isolated, fragmented 
and scanned in sequence. Because of the large amount of MS2 scans 
performed, SWATH cycle times on current instruments are long compared to 
chromatographic peak-widths in HPLC, as several MS2 spectra are needed to 
characterize the chromatographic peak88. Interestingly, too sharp 
chromatography could negatively affect the ability to analyze this data. 
Initially only the fast TOF instruments were capable of SWATH analysis, but 
quadrupole-Orbitrap instruments are also emerging as capable of SWATH-
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likeiii analysis88. In this work I will simply used the acronym DIA when 
referring to this type of analysis using any instrument.  

Aims of this thesis and results provided 

We study life science to improve and prolong life quality for those affected 
by disease, and to achieve others goals such as food production or waste 
water cleaning. To understand life we now have very strong capabilities to 
map genes and measure their transcripts, but for true understanding of 
biological systems we need to measure the first order actors, the proteins. 
Because of the proteomes great complexity this poses a great problem, even 
though substantial progress has been made by for example mass spectrometry 
proteomics.  

We are still not capable of measuring complete proteomes, partly because of 
primary limitations in the measuring techniques, but also because of 
difficulties in efficiently interpreting the large datasets generated by mass 
spectrometers when exposed to complex biological samples.  

In this thesis, I will describe the research I have been performing during the 
last five years. The overarching goal of this work has been to improve upon 
the computational tools available across the board of mass spectrometry 
based proteomics techniques, to solidify technical advances on the instrument 
side, and to improve data quality and allow better conclusions at the 
biological and medical level. The pursuit of this goal has resulted in 6 
scientific papers, which constitute the main contribution of my work. These 
papers describe a new tool and algorithm for data analysis of SRM data 
(Paper I), a workflow for standardized quality control of SRM instruments 
(Paper II), numerical compression algorithms for mass spectrometry data 
(Paper III), an algorithm and tool for detection of peptide isotopic envelopes 
(Paper IV), an algorithm and tool for analysis of DIA data (Paper V), and 
finally a workflow to generate assays for DIA analysis (Paper VI). 

                                                        
 
iii 'SWATH' is regrettably a proprietary term that can only be used for the application of the 

technique on Q-TOF instruments. The term SWATH-like has been suggested for the use 
with other instruments. 
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To put the scientific papers in context, the papers involving enabling 
technologies (Paper II, III and VI) are summarized along with a discussion of 
mass spectrometry proteomics data in Chapter 2. The papers presenting 
primary analysis algorithm of MS data (Paper I, IV and V) are described in 
Chapter 3, together with a general discussion of the common solutions 
employed by the field for such analysis tasks.  

Apart from the main research described in the 6 papers, some subjects and 
insights have been synthesized that did not fit into scientific publications. I 
believe these conceptual results should be considered secondary 
contributions of this thesis work, and they are presented in Chapter 4 and 5. 
From implementation and usage of computational proteomics software, I 
have come to identify problems with academic software programming and 
software quality, and these issues and how to potentially resolve them are 
discussed in Chapter 4, in the interest of improving software quality in 
proteomics. Finally, in Chapter 5, I attempt to identify what I believe to be 
the key instrumental and measurement-technical weaknesses of the currently 
used mass spectrometry workflow when considering the higher goals of life 
science and the biological complexity. These weaknesses are included to 
raise awareness and possibly contribute to their eventual removal. 

In the final chapter of this thesis, the full contributions of the presented 
papers and conceptual insights are summarized and evaluated for relevance. 
An outlook is provided on possible directions for future research building on 
the presented contributions, with the continuing goal of improving 
proteomics data quality to provide better and more powerful life science. 
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Chapter 2: Too Much 
Information 

We need to characterize mass spectrometry proteomics data to properly 
understand it and eventually create efficient algorithms for its analysis. Data 
can be described by amount and the tightly coupled redundancy, but also in 
terms of data complexity. In this chapter, I will also try to explain the 
instrumental causes of variation in the different properties of the data, which 
will highlight some difficulties that are encountered when designing analysis 
algorithms. Mass spectrometry proteomics data comes in many shapes 
depending on the used acquisition method (Fig. 2.1). In addition, an 
important type of meta-data required for SRM and targeted DIA analysis is 
the MS assay (Fig. 2.2), which is also presented here. Finally, this chapter 
ends by description of the studies I have performed to describe and compress 
MS data, and to generate MS assays (Paper II, III and VI).  

Data redundancy 

Mass spectrometry proteomics generates quite substantial amounts of data, 
even though talking about big data89,90 is stretching the buzzword too far. A 
typical proteomics mass spectrometer at the time of writing might generate in 
the order of 1 GB data/h when in productioniv, and a typical MS proteomics 
study could encompass between a few GB to a few TB raw data. Even 
though these data-sizes are by no means exceptional in size, they still require 

                                                        
 
iv Mass spectrometers are apparently highly complicated machines that exhibit ingenius ability 

to break in creative and costly ways including internal fires and unknown goo covering the 
transfer tube. 
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dedicated computational hardware for efficient production analysis, and are 
no longer manageable on personal laptops.  

Even though generating respectable data sizes, one should remember that MS 
proteomics data is highly redundant. Studies have estimated the expressed 
proteome of tissues or cell types to consist of roughly 10 000 gene 
products91–93, commonly identified by about 100 000 peptides91,93,94. Even 
adding the permutations of post-translational modifications23,24 and splice 
variants95,96, a reasonable guessv at the number of unique identifiable 
molecules in a bottom-up proteomics sample might be 10e6. Listing the 
quantities of these would constitute the optimal representation of the 
                                                        
 
v kudos, Enrico Fermi 

Figure 2.1 - Examples of raw data from shotgun MS, SRM and DIA 



31 

quantitative information in a sample, and would uncompressed only use tens 
of MB. Apart from high-level arguments, there is also local redundancy 
because of the sequential scanning that creates mass spectra. This local 
redundancy can, and should, be reduced by compression to simplify data 
handling and lower storage requirement, and to potentially even speed up 
computations97,98.  

Data complexity 

Containing millions of unique molecules, life science samples are commonly 
considered complex. How this sample complexity translates into MS 
proteomics data complexity is however non-trivial. In general, increasing the 
number of molecules subjected to analysis will increase the number of 
detectable and measured analytes, but the increase is non-linear and starts to 
saturate already at low sample complexity (Fig. 2.2). This is largely 
unexplored in complex proteomics samples, but ion competition should play 
a large part in limiting the observable molecules to only the ones most 
suitable for ionization99–101. Additional molecules of lower ionizability might 
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A Thermo Scientific Q-Exactive Plus interfaced with a 1000 bar Easy LC was used to measure the 
data for this figure. 
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not be observable at all, depending on their relative abundances. Another 
critical aspect limiting the MS-perceived complexity of samples is the limited 
number of ions that can be trapped concurrently. Most ion trap space will be 
filled by high abundant species, making rare species too few to be detectable. 
In summary, it would seem as if the current instrument setup is saturating at 
around 100 000 detectable species - regardless of sample complexity.  

Human blood is also related to data complexity. Blood plasma samples are 
one of the major targets of life science, and can readily be collected with low 
patient discomfort to provide systemic information of the patient health 
status. Unfortunately, plasma is also very challenging to analyze, and 
proteomics analyses of plasma detect substantially smaller numbers of 
proteins than other body samples like biopsies. This challenge originates in 
the enormous abundance range of plasma analytes, commonly cited as 10 
orders of magnitude11, with the top 14 most abundant proteins constituting 
98% of the molecules11. In individual eukaryotic cells protein abundances 
range 6 orders of magnitude31,102, with a much more even distribution.  

Variability in MS data 

In order to design effective algorithms for analysis of MS proteomics data, 
we need to understand how the processes and measurement technologies 
generating this data work. In particular, we need to know how analytes of 
interest behave under observation and what deviations from this behavior that 
should be expected. I will therefore elaborate on the sources of variability 
that are inherent to the used MS proteomics methodology. In short this 
amounts to variability in chromatographic elution time, signal intensity, mass 
accuracy and peptide fragmentation.  

One thing that is commonly considered less accurate is the hydrophobicity-
based retention time of peptides in nano-flow liquid chromatography103–105 
(Paper II). Linear shift can be seen because of differences in the exact 
configuration assembly of the current chromatography lines and also because 
of different column quality. However, even more troublesome are the non-
linear effects that occur with too high sample concentrations, where the most 
populated part of the hydrophobicity scale might be slowed down106.  

Signal intensity will depend on multiple aspects, such as instrument 
contamination and ion suppression107–111. As the instrument is used, 
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molecules will randomly attach to the electrospray tip or the walls of the 
mass spectrometer inlet. These contaminations will build up to eventually 
disturb ion flows and reduce signal intensity. Ion suppression will 
interestingly also depend on the chromatographic elution and sample 
composition. Because co-eluting peptides in complex samples are competing 
for ions, slight shifts in the momental composition of peptides might change 
the experienced ionization efficiency for all these peptides. Finally, low 
abundant ions will be measured by few individual molecules, and whether it 
is 3 or 5 molecules that hit the detector will have a big impact on the 
quantification of that ion. 

Mass accuracy is in general limited by the finite control of injected ions. In 
quadrupoles the m/z width of the transmission window is limited to roughly 1 
m/z since smaller windows severely reduce transmission43,112. For Orbitraps, 
limitations are the simultaneous injection of all ion trap ions, as well as the 
frequency resolution that is limited by the sampling speed113. These errors are 
typically normally distributed, but trickier is the m/z blurring that occurs due 
to space-charge effects when to large populations of ions are present in a 
small volume. This effect is caused by the electrostatic repulsion of same-
charged particles, and causes ions to come slightly of trajectory as the force 
of electrostatic repulsion becomes comparable with the induced force of the 
controlling fields.   

Fragmentation of peptide ions is a probabilistic process regardless of 
fragmentation method, where addition of energy to the ion allows breakage 
through one of many pathways. For individual ions the fragmentation 
pathway chosen depends on the position of an eventual mobile proton57, 
which cannot be known but has some probabilistic distribution over the 
peptide. Further influence could come from kinetic, rotational and vibrational 
energies of the whole ion114, as well as the concentration of collision gas or 
electron donors115. For calibrated experiments and for large populations of 
ions however, fragmentation seems to be highly conserved64 (Paper II).  

As in all scientific disciplines based on empirical measurement, it is apparent 
that MS proteomics must take into account small inaccuracies and unknowns 
in the data. In practice a substantial part of algorithm development circles 
around estimating the size of the expected variation in all dimensions, and 
constructing appropriate analysis steps to optimally separate inaccurately 
measured molecules from completely different molecules. In this task it is 
sometimes helpful with more detailed knowledge of the exact data pattern 
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that a specific molecule will cause, and the generation of such MS assays is a 
key step in targeted MS and targeted analysis workflows.    

MS assays: leveraging what we already know 

Many useful mass spectrometry workflows rely on the use of previously 
empirically observed behavior of analytes and peptides to re-identify them in 
the current data. One can refer to the information used to identify an analyte 
as an assay (Fig. 2.3). The MS proteomics assay to target one specific peptide 
ion typically contains, apart for the peptide sequence and the ion charge, the 
expected retention time of the peptide and information on how it fragments 
under the used fragmentation conditions. This fragmentation information 
contains the most common fragments, denoted by ordinal and fragment type, 
as well as the relative intensities at which they were observed. 

Acquisition of MS assays can be done in multiple ways, depending on the 
target analytical platform. For SRM, acquisition of assays involves major 
effort. Suitable peptides first need to be selected based of empirical data from 
some other MS platform116–118 or by in silico prediction119–125. Then synthetic 
peptides are ordered, followed by several iterations of fragment selection on 
the target triple-quadrupole117,126. This selection process is needed because 

Figure 2.3 - The MS assay retains empirical information of the observed peptide ion charge state, 
chromatographic retention time, and most intense fragment ions, including their relative intensity. This 
information is used trace the peptide ion online in SRM experiments, or post-acquisition in DIA 
experiments. 
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peptide fragmentation can vary substantially between HCD and CID 
instruments64, and also many proteins of interest simply have no or few 
peptides that are detectable by shotgun MS. For DIA, assay generation is 
greatly simplified, as the same instrument is capable of shotgun MS as well 
as DIA analysis, and assays can thus be derived directly from shotgun data 
from the same instrument127. Still, critical assays should be validated by 
synthetic peptides to ensure full confidence.  

Contributions to MS data description, compression 
and MS assay generation 

As a secondary effect of our aim to improve computational proteomics tools, 
several studies have been performed to create enabling technology to 
understand MS data, to simplify MS data handling, and to generate MS 
assays. I summarize these scientific contributions here, while all details are 
described in the respective scientific paper. 

The operation of the quite expensive mass spectrometers requires a lot of 
maintenance and instrument performance constantly fluctuates because of the 
issues with keeping the hundreds of parameters in the instrumentation 
calibrated. In such an environment it is highly useful to keep track of 
instrument performance to determine when the instrument condition is 
suitable for analysis of rare or costly samples. In Paper II we investigated the 
magnitude of uncontrollable effectsvi in SRM. Here, a quality control sample 
was injected repeatedly 400 times over the course of 6 months, while 
following key parameters such as peptide retention time, signal intensity and 
fragmentation pattern. In this study, we find peptide retention times to vary in 
a mostly linear fashion, corroborating the idea of post-acquisition retention 
time normalization128,129. We also find that ion intensities are internally 
consistent, although they might vary from run-to-run, especially over long 
periods. 

                                                        
 
vi That is, effects of phenomena that were not forseen and can not be easily compensated by 

meta-data. 
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In the interest of reducing MS data size by reducing local redundancy, we 
developed a numerical compression package called MS-Numpress, 
consisting of 3 near-lossless numerical compression schemes (Paper III). 
This need arose from the voluminous data generated by DIA on the 
TripleTOF instrument, where data in the uncompressed text-based mzML-
format could require 46 GB of storage per injection, compared to 3 GB in the 
binary vendor format. The compression schemes leverage log transforms, 
fixed-point arithmetics, and m/z and retention time data smoothness to store 
MS data in a more compressed representation. These techniques and 
compression ideas have all been used from the onset of computers, but have 
to my knowledge not been employed on MS data previously. Using an 
extensive set of 10 different benchmarking files of different samples and 
measured using different instruments, we demonstrate the speed and 
compression ratios of these compression schemes when embedded in the MS 
proteomics community standard data format mzML.  

The process of extracting assays for DIA analysis from shotgun MS results is 
still quite unexplored, although it might seem very straightforward127,130. 
Essentially the MS2 spectra underlying shotgun MS peptide ion 
identifications are queried for quantitative information on how the peptide 
ion fragments, and this data is used to define MS assays for the DIA targeted 
analysis. We investigated assay extraction for DIA in Paper VI, with a focus 
on an upcoming instrument for DIA analysis, the quadrupole-Orbitrap88. 
Most importantly, we discover that assay quality plays a major role in this 
workflow, and suggest improvements for making high-quality libraries that 
increase the number of successful quantifications by 14-36% when employed 
in a DIA analysis, compared to low quality libraries of the same size. 
Embedded in this insight is the need to evaluate assay libraries in terms of 
DIA performance in addition to merely the number of assays.  

Our findings regarding DIA assay extraction offer a way to increase quality 
of assay libraries essentially without any additional costs or experimental 
complications. As assays represent a fixed resource to be used in many 
further studies, improvements to assay quality can exhibit positive influence 
over a large number projects and injections. 
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Wrap-up on MS data 

To summarize the chapter, mass spectrometry proteomics data is highly 
complex, although the measured complexity does not fully reflect the actual 
sample complexity. The discrepancy causes the data complexity to saturate, 
and likely comes from instrument limitations. Also due to instrument limits, 
variability can be expected in peptide elution time, signal intensity, mass 
accuracy and fragmentation. This variability needs to be considered by a 
successful computational proteomics tool to correctly separate true signals 
from noise. Finally, MS proteomics data is shown to be highly redundant. It 
turns out however, that reducing this redundancy actually is the same task as 
the primary task of analyzing the data: to find a more compact representation 
of the information we are interested in, the quantities of the peptides and 
proteins. 
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Chapter 3: Algorithms for 
Quantification in Raw MS Data 

Modern MS proteomics is not possible without the use of custom analysis 
algorithms. From no less than 5 independent reports of intact peptide mass 
matching algorithms in 1993131–135, mass spectrometry turned to automated 
analysis of MS2 spectra. The techniques of MS2 peptide interpretation51,52 
were adapted to the first modern MS2 search program by Eng in 1994, using 
a translated genome database to correlate all measured MS2 spectra with the 
theoretical spectra of all database peptides, and then select the best 
correlating peptide for each spectrum136. Many analysis improvements have 
been described since, and in particular novel MS workflows have further 
motivated new algorithms.  

In this chapter a number of common analysis steps are identified that are 
frequently performed to quantify data, regardless of originating mass 
spectrometry variant. These steps are preprocessing and peak detection, 
scoring, machine learning for target identification, and finally statistical 
confidence calculation. Following this general review, some specific 
considerations for analysis of shotgun MS, SRM and DIA data will be 
presented. Finally, I will summarize the 3 algorithms that we have developed 
for analysis of SRM, shotgun MS data, and DIA (Paper I, VI and V).  

Common themes of computational proteomics 
algorithms 

A number of themes are common to the analysis of almost every MS 
workflow. First, some form of preprocessing is performed to decrease the 
size of the raw MS data. This can be spectral centroiding, deconvolution and 
de-charging, or peak detection in targeted analyses. Second, data are scored 
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using one or multiple scores that are expected to differentiate the correct 
peptide ions from everything else. For example the probability of getting the 
observed degree of matching between the measured fragment pattern and the 
assay fragment pattern, retention time deviation from the assay retention 
time, or correlation between spectral peaks and theoretical fragments. Third, 
decoys are employed to normalize the scoring scale to the null hypothesis of 
not measuring the currently considered analyte. This phase also frequently 
includes some semi-supervised learning strategy to linearly combine scores 
and other parameters in an attempt to maximize analysis sensitivity. Fourth, 
the final decoy score distribution is used to calculate statistical confidence 
measures, such as the p-value, the q-value, and the posterior error 
probability137.  

Preprocessing of MS data in proteomics is perhaps not the most exciting task, 
but several studies have nonetheless bravely touched upon the subject, albeit 
mostly in the more mature shotgun proteomics field138–143. Spectra are 
typically centroided using either quadratic- or normal-matching to the most 
intense peaks or local maxima, or by template matching to some wavelet. 
The matching of full isotopic envelope templates to spectra seems to have 
fallen out of favor with the increasing prevalence of high-resolution spectra 
though, presumably because of too high computational costs. When 
performed, de-isotoping and de-charging is often done by simple heuristic 
rules where the typical isotope mass shift and considered charge states are 
compared to some user-defined threshold144, with some notable 
exceptions141,142. It is likely that some statistical method could remove several 
parameters here and slightly improve performance, analogous to the feature 
detection algorithm of MaxQuant145 and Dinosaur (Paper IV). In the targeted 
data format, assay traces and hills are smoothed by a wavelet transform, 
sliding window means or Savitzky-Golay smoothing146. For assay traces the 
initial preprocessing is followed by peak detection, meaning that improved 
performance might be gained by direct template matching on the raw data.  

In scoring MS proteomics data, chemical and physical properties of the target 
analytes are utilized to separate them from other analytes and noise (Fig. 3.1). 
Peptide-like molecules are separated from other molecules by correlating 
isotopic envelopes to that of the theoretical averagine147 at the same mass. 
Precursor and fragment intensity profiles can be correlated to each other to 
leverage their shared elution characteristics. An important score is the 
deviation from the expected retention time, which differentiates the target 
from other molecules. However, both in shotgun and targeted analysis the 



41 

doubtlessly most powerful score is the matching of experimental and target 
fragment m/z values. In the targeted setting the known relative intensities of 
fragment ions is also utilized for additional power148. Without this 
knowledge, shotgun analysis can use the statistical distributions of fragment 
m/z errors149 or prevalence of different fragment ion types150.  

Although highly powerful, scores merely prioritize the results internally. The 
use of one or multiple scores is therefore not enough to determine the 
absolute confidence in the analysis results. A statistical measure is needed to 

Figure 3.1 - Decoys, scoring and statistical analysis of MS proteomics data. a) Target peptide amino 
acids are permuted to generate decoys, while retaining amino acids specific to the used enzyme. b) 
The targets and decoys are scored by a number of orthogonal scores, c) that are combined into one 
final score, either by some fixed weighting or by an iterative optimizing approach. d) The decoy score 
distribution is assumed to approximate scores of targets that have not been detected, and is used to 
compute p-values for targets. 
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properly judge the validity of a result, meaning some model of a null 
hypothesis is necessary. In proteomics the decoy strategy is employed for this 
purpose151 (Fig. 3.1). Here, the target database or assay library is permuted in 
a way that ensures no permuted peptides/assays will be present in the actual 
data. The scores that result from analyzing the data based on the decoys are 
assumed to represent the score-distribution of false associations between 
peptide/assay and data. Under this assumption, scores from targets can be 
tested against the decoy score distribution to attain p-values describing the 
likelihood of targets being false associations.  

Several studies have shown that multiple scores can be combined for 
increased analytical power, including scores from different analysis tools152–

155. Such a combination is usually a linear weighted sum of the sub-scores, 
where an iterative process selects the weights. The decoy null score 
distribution is used to specify a set of high-confidence target results, which 
are in turn used to update the weights of the sub-score combinator156. With 
the new weights, decoy and target scores are recomputed, giving new p-
values and a new set of high-confidence targets. This procedure is repeated 
until saturation or detection of overfitting. Finally, the number of false 
matches in the result set can be estimated by utilizing the by definition 
uniform distribution of false matches157. 

Because of the large amount of hypotheses tested in proteomics, using the 
raw target p-values for assigning confidence is of limited value due to the 
considerations of multiple hypothesis testing. The preferred measure of 
statistical confidence in proteomics is rather the false discovery rate (FDR), 
which denotes an estimate of the percentage of false positives in the reported 
results. Alternatively, the posterior error probability denotes the probability 
of an individual result being false. In practice, the FDR, which is computed 
for a set of results, is achieved by computation of q-values158, that for any 
score represents the lowest fraction of false positives that can be included 
while also including this score in the results.  

Having listed some common steps of proteomics quantification algorithms, it 
must be noted that countless variants and ingenious solutions have been 
omitted for brevity, including specific techniques for MS2 identification, de 
novo sequencing, PTM identification and localization, label-free retention 
time alignment and isotopic/isobaric labeling quantification. To frame the 
new MS data algorithms presented in this thesis however, I need to elaborate 
on a few specific subjects relating to analysis and quantification of SRM, 
shotgun MS, and DIA data. 
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Analysis of shotgun MS, SRM and DIA data 

As the above computational steps are applied to specific MS workflows, 
characteristics of the target workflow will raise particular difficulties to 
overcome in a successful algorithm. To understand the significance of the 
research presented in Paper I, IV and V on primary MS proteomics analysis 
algorithms, some specific difficulties in analysis of shotgun MS, SRM and 
DIA data must be outlined.  

While MS proteomics has been obsessed with protein identifications, the 
importance of accurate quantification is increasingly recognized. In low-
resolution shotgun MS, where analyte isotopes are not resolved, spectral 
counting is a suitable method for pseudo-quantification of proteins. Here the 
number of peptide identifications of a protein is used as an abundance proxy. 
This works well for abundant proteins and is easily computed from a list of 
identifications, but the method is sharply limited by the very finite amount of 
identifications per injection, which are spread over all identified proteins. As 
changed protein abundance will affect both the number of peptides identified 
and the number of identifications per peptide, spectral counting suffers from 
non-linear response, and since few identifications support most proteins, 
spectral counting has low accuracy for medium- and low-abundant 
proteins159,160. Because of its limitations, one could argue that spectral counts 
should only be employed with low-resolution data or when aggregated over 
groups of proteins such as pathways, where the drawbacks of spectral 
counting are mitigated by increased numbers of proteins. Studies using 
spectral counts are none the less continuously published, even though 
instruments typically have high resolution, and several quantification 
alternatives exist161,162, like isobaric labeling163, label-free MS1 
quantification164, and metabolic labeling165.  

For more accurate label free MS quantification, ion counts are used rather 
than spectral counts, either on precursor or fragment level. In SRM and DIA 
fragment ions are used because of their higher specificity, while shotgun MS 
uses precursor ions since the MS2 event might occur far from the 
chromatographic apex of the peptide, and thus poorly represent the peptide 
abundance. Precursor based quantification has been hindered though by the 
complexity of MS1 data, which complicates feature detection, as well as the 
difficulty of correctly matching features to the MS2 spectra and matching 
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features between samples. Still, precursor based quantification of shotgun 
data has been demonstrated to work well in a large number of studies166–169.  

In SRM, the relatively small amount of data has so far limited the number of 
developed analytical tools compared to shotgun MS. The overwhelmingly 
most used tool is Skyline170, which relies heavily on manual curation through 
a well-implemented graphical user interface. One clear challenge in SRM 
data analysis, compared to analysis of data from scanning MS instruments, is 
the lack of noise data that can be used to model the null hypothesis. Reiter et. 
al. took the pragmatic approach of solving this for their tool mProphet by 
purposefully measuring decoy assays on the instrument148. While statistically 
ideal, this has the drawback of further reducing the already limited SRM 
multiplexity. In the database solution DDB128, Malmström et. al. used the 
shotgun inspired approach of modeling the null distribution of assay-data 
matches by scoring all assays against all data. This approach allows full SRM 
throughput, but comes with the requirement of a substantial MS assay 
database to compute accurate null distributions.  

Finally, the analysis of DIA data has only lately seen a number of algorithms 
appear. In essence, two strategies are pursued for this purpose, targeted 
analysis and shotgun-like analysis. In the initially proposed targeted analysis, 
MS assays are used to in silico-trace the target fragments and precursor so 
that some SRM-like analysis can be employed. This was initially described 
by Gillet et. al.87 and implemented by Röst et. al. in the OpenSWATH 
algorithm171. In the shotgun-like analysis, different strategies are employed to 
deconvolute the multiplexed DIA MS2 spectra into simpler versions, to be 
analyzed by conventional shotgun analysis and identification pipelines172. 
Here MS1 features might be used and correlated with MS2 traces to separate 
MS2 information from different analytes172. Because of the youth of the DIA 
method, it can be expected that multiple algorithmic advances remain to be 
discovered, even though the pioneering solutions clearly already utilize 
several key wisdoms from shotgun MS and SRM algorithms. 

Contributions to the analysis of shotgun MS, SRM 
and DIA data  

With the explicit goal of improving data quality from MS proteomics 
workflows to allow better and more accurate biological conclusions, we have 
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developed 3 algorithms for identification and quantification of peptide ions in 
MS data from SRM, shotgun MS, and DIA (Paper I, VI and V). As with the 
enabling research studies, the results are summarized here, and described in 
detail in the respective scientific paper.  

In Paper I, we developed the Anubis algorithm for SRM data analysis. This 
algorithm contributes 3 novel concepts to targeted data analysis. First, a new 
peak detection procedure is designed that detects chromatographic peaks 
directly by the expected ratios between fragments in the assay. This 
procedure utilizes the very stable fragmentation pattern of peptide ions, 
meaning that it is very robust to chromatographic or signal intensity 
aberrations. The drawback of this procedure might be difficulties in 
differentiating differently modified peptide versions when the measured 
fragments do not capture the modification site. Second, the constructed 
fragment ratio model is used to detect interference in individual data points 
and fragments, and to correct such interference based on the expected 
fragmentation pattern. This interference correction is discussed further 
below. Third, we propose computational resampling of the assay traces as a 
novel way to create a null model for evaluating the statistical quality of the 
reported assay results. The main properties that distinguish true assay-peak-
matches are the correlation of the measured fragments and the agreement 
between their relative intensities and that of the assay. A random permutation 
of each channel will break these properties in the resampled data, and thus 
simulate noise with similar frequencies and intensity in each channel, but 
lacking the composite pattern. This method of null hypothesis estimation 
avoids the reduction of instrument throughput of mProphet148 and also avoids 
the DDB need for large assay databases128, thus providing an attractive 
alternative for null hypothesis modeling.  

Paper IV revolves around creating a robust algorithm and tool for detecting 
precursor ions and their isotopic envelopes in MS1 data. Precursor ion 
isotopic envelopes are commonly called features, and the task of specifying 
the exact retention time, intensity profiles and isotopes of all features is 
called feature detection. The algorithm described in Paper IV, implemented 
in the tool Dinosaur, provides an improved method of feature detection. 
Dinosaur is shown to find a larger proportion of expected features, while 
maintaining quantification accuracy and feature quality when compared to 4 
alternative feature detection tools. We also demonstrate faster runtimes 
compared to other algorithms, and include a visual quality control strategy. 
The primary use of features is quantification of peptide ions, but features can 
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also enable identification of chimeric MS2 spectra - meaning MS2 spectra 
where multiple peptide ions have been fragmented together. Although a 
majority of spectra are estimated to be chimeric to some degree94, this has 
been largely ignored, discarding up to 35% of identifiable peptides144,173–176. 
In summary, improved feature detection can potentially aid several MS 
proteomics applications, making the Dinosaur results a highly attractive 
outcome. 

The final scientific contribution to MS data analysis in this thesis is a targeted 
analysis tool for DIA called DIANA. DIANA explores concepts from 
Anubis, focusing on detecting expected fragment ratios in the assay trace. 
However, the algorithm was completely reworked because of the increased 
noisiness of DIA data compared to SRM, which stems from the wider 
precursor isolation window. The major conceptual novelty of DIANA lies in 
the procedure to statistically estimate the significance of measuring a found 
number of data points matching the expected fragment ratio for each 
fragment, and then combining these probabilities in a statistically sound way. 
Benchmarking DIANA we show levels of sensitivity and specificity similar 
to the only alternative algorithm, OpenSWATH, but with a different spread 
of detected assays, providing a complementary option for DIA analysis. In 
the development of DIANA a joint effort was also made to create the tool 
PyProphet, reimplementing the semi-supervised learning module of 
mProphet, but with drastically improved computational performance.  

The targeted MS technologies, both SRM and targeted analysis of DIA data, 
share the trait of explicitly looking for multiple fragments with a known 
relative pattern. This pattern is highly conserved for a single peptide on the 
same instrument64 (Paper II). In fact, the information offered by each 
additionally added fragment grows increasingly smaller, as the intensity of 
the n:th fragment is highly predictable from the known fragmentation pattern 
and the n-1 previous fragments. We have therefore in both Anubis and 
DIANA employed a method of interference correction, where internal 
consistency of the known fragmentation pattern is checked at each trace data 
point. By this method, fragment trace data points that are of higher intensity 
than expected can be identified and adjusted by the internally correct 
fragments. This might sound like a dangerous path to tread; when intensities 
are adjusted to "expected" values we are very close to a self-fulfilling 
algorithm. Indeed, caution is advised, and this correction is only employed 
for deviations of more than two-fold above the expected value. Empirical 
data show interference corrected quantities to be very close to raw quantities, 
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but display higher correlation with the theoretical levels in a dilution series 
(Paper V). I have also manually checked the interference correction of 
hundreds of trace peaks, and verified that the corrected signals appear valid.  

The performed projects on algorithms for MS data analysis were selected and 
prioritized based on a combination of need and opportunity. Anubis was 
fuelled by a need for large scale SRM quantification with low manual 
intervention. With the Anubis concepts in place, targeted analysis of DIA 
data was a natural next application that initially appeared straightforward, as 
no automated tool was yet published on the topic. Dinosaur finally was 
driven by frustration of the first few feature detection tools tested for an MS1 
quantification workflow. Together these 3 tools can assist life scientists in 
achieving higher quality measurements across the palette of mass 
spectrometry proteomics methods, from broad discovery experiments to 
focused biomarker or pathway validation studies.  

Wrap-up on algorithms 

In the grand scheme of MS proteomics, computational tools have come very 
far in the last decades. One could argue that analysis of discovery MS data is 
essentially a solved problem, but considering the recent renaissance of 
chimeric spectral analysis and the gains from it144,173–176 (Paper IV & VI), 
there still appears to be undiscovered improvements to make177. The 
continuous adaptation of algorithms to new instrumentation and MS 
techniques will also uphold a steady need for computational proteomics 
development.  

One dimension that has not been utilized in any of the studies presented in 
this thesis is the integrative analysis of raw-data from multiple samples. Such 
analysis can yield substantial statistical strength, but I would advice caution. 
While the target signal should be reproduced, so will most of the noise, as 
most noise is simply signal from other molecules! Further caution is also 
advised upon later statistical testing for quantitative differences based on 
these results, because for such a test samples usually are assumed to be 
independent.    
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Chapter 4: On Algorithm 
Implementation 

When one set of lenses is employed, computational proteomics can be 
viewed as just another application domain to apply computer science and 
software programming, along social media applications, toaster controllers 
and word processors. By this viewpoint, it appears as if the computational 
proteomics field is very ample at devising complicated algorithms178, but 
quite poor at providing robust implementations of these. A fragile 
implementation might reveal itself by unnecessarily slow execution time, 
unexplained failures to analyze apparently valid input, or inability to handle 
standard data formats. There are naturally many counter-examples to this 
rather pessimistic picture, particularly the most used programs and pipelines 
display higher implementation quality, but when considering published 
algorithms without weighting for popularity of the tool I maintain the 
position that proteomics software holds a generally low level of 
implementation quality.  

With the omnipresent need of software in all modern MS proteomics labs, I 
perceive software quality to be a hidden problem, partly for computational 
proteomics scientists, but mostly for biological and medical applications. In 
this chapter I will seek explanations to the experienced poor proteomics 
software quality by comparing academic and commercial software 
development. I will also describe some selected programming techniques that 
I have found useful for improving software quality, and finally make a 
proposal or wish for how global MS software quality might be improved. 
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Academic and commercial software development 

It is easy to list differences in software development strategies between the 
commercial and academic spheres. Pair programming is the default mode of 
operation at many software development companies, along with test-driven 
programming, agile development when suitable, automated daily tests and 
builds, and other quality-oriented techniques. Meanwhile, a lone Ph.D. 
student (like myself) or post-doc programs the typical proteomics tool, while 
lacking large-scale programming experience and maybe also formal 
education in software programming. The comparison falters though; the 
money involved in academic software is orders of magnitude less than that of 
the commercial actors. Still, we should expect companies competing for 
customers to settle on processes that deliver the greatest quality software at 
the lowest cost. Application of these processes should therefore be even more 
urgent with the lesser funding available in academia.  

Development resilience is the second major difference between the academic 
and commercial software practices.  In computational proteomics the primary 
unit of merit, the publication, motivates focused development up until 
publication, followed by low-priority development post-publication as the 
next project is pursued. This is a poor strategy to achieve high-quality 
software; very few users will test the implementation pre-publication, when 
development is focused, while development is low-priority post-publication 
during the main exposition of the software to users. By contrast, companies 
commonly employ both alpha and beta test phases pre-launch, and maintain 
dedicated teams of bug-fixers during the entire lifetime of a product.  

To finally demonstrate the difference in software quality that can be achieved 
with better development techniques and experience, consider the 
computational proteomics software with the hands down highest 
implementation quality: Skyline170. Skyline is backed by a team of 
developers with decades of accumulated industry experience, funded by 
grants and instrument vendor support, and presumably measures success in 
downloads and program launches rather than publications.   
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Programming techniques for improved software 
quality 

In the following section, programming techniques will be discussed that have 
proven useful in the software development backing this thesis. They have 
been subjectively selected based on their frequency of use, and their ability to 
produce high quality software in short development times.  

Code packaging. One extremely important stepping-stone for fast software 
development is code reuse179,180. This can be performed by factorizing code 
with similar purpose into libraries, that are versioned and can be embedded or 
used from multiple applications and other libraries181,182. For example, code 
related to modeling molecules and amino acids for computing their exact 
masses could be suitably packaged into one library, but should not be co-
packaged with code for parsing command line argumentsvii. Although this 
might be perceived as trivial, code packaging is complicated, and commonly 
boils down to minimizing risks. When source code errors are detected, and 
they always are183, the bug fix in a library will affect all depending libraries 
and programs, potentially causing a massive need for down-stream fixes. 
Therefore the most general libraries that are frequently used benefit from 
being the most well tested and well defined, and from not containing any 
unnecessary functionality.  

Error messages. The sign of mature software is software that communicates 
with its user184. When an error occurs, especially when program input is 
violating program assumptions, error messages benefit from being infinitely 
precise in describing the problem185. Achieving this is relatively easy from 
the programmers view, and frequently turns programs from unusable into 
merely slightly annoying. 

Data standards. The spread of data standards is the greatest software quality 
achievement in computational proteomics this far. Use them if possible and 
applicable.  

Premature optimization. All optimization should be performed after 
bottlenecks have been pinpointed by measuring elapsed computation time, 

                                                        
 
vii Beware of the library called util. 
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and the program as a whole was deemed to be too slow186. However, program 
execution time must be evaluated based on user needs for real input data, not 
on programmer needs for test data. 

Sort-merge. One recurrent task in 
this work has been the merging of 
two lists based on proximity in a 
shared property. The lists could 
for example contain MS1 features 
and MS2 identifications. Although 
the initial solution of comparing 
units in the first list with all units 
in the second is easy to program, 
sorting both lists and walking 
through them simultaneously will 
asymptotically speed up 
performance, if the data is 
reasonably sparse.  

Reactive parallelization. For 
larger computational tasks, 
currently meaning several 
gigabytes of input data, it is 
worthwhile to provide parallel 
implementations for faster and 
scalable operation. This can be 
accomplished without introducing 
overly complicated concurrent and 
stochastic bugs by using some 
reactive programming technique187 
that allows function computation 
in an asynchronous way without 
introducing massive threading 

overhead. Using reactive parallelization, logical subunits of the data, like 
individual features or DIA assay traces, can be isolated and processed as soon 
as computational cycles are available. I have employed this strategy in Paper 
I, IV and V.  

Analysis transparency and traceability. Proteomics datasets are constantly 
growing, since long passing the point where complete manual analysis is 
feasible. Current workflows therefore use highly powerful automated 

Figure 4.1 - Conceptual overview of the plot trail 
quality control functionality 
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computational analysis tools. Herein lies a hidden potential drawback 
however: scientists could suffer reduced understanding of the analytical and 
computational steps actually performed. When data analysis is treated like a 
black box of unknown internal workings, the ability to determine if the data 
analysis is performing as intended might be compromised. We have focused 
some work at preventing this, and developed a visual quality control strategy 
that we call the plot trail (Fig. 4.1). The plot trail borrows its goal from 
economical auditing, meaning to minimize the risk of any large mistakes 
having been made. Because the proteomics data volume is too large for 
complete manual control, we need to subsample it. In the plot trail strategy, 
the results of each computation step are therefore randomly subsampled, and 
this subsample is visually plotted and written to disk for retrospective 
control. This achieves a two-fold goal. First, the program user is allowed 
suitably limited but highly relevant information of the details of algorithm 
execution, and might therefore detect sub-standard performance before heavy 
investment is made in down-stream analysis and interpretation of the results 
(Fig. 1.4). Second, the program user is subtly given understanding of the key 
elements of the algorithm used, and might become better at predicting 
effectiveness of the program or at localizing errors.  

Wrap-up on implementation 

Although perhaps a slightly unconventional topic in a Ph.D. thesis on 
computational proteomics, it is my sincere opinion that software 
implementation is important, and should receive more focus in the scientific 
world. It is important even though it's barely publishable, because it saves 
you and everyone else time, money and mindboggling bugs in the long run. It 
is the explicit hope that the described programming techniques could be 
adapted by others to help them improve their software quality, and that they 
in turn would share experience and techniques so that computational 
proteomics as a field might improve. 

With the current motivational structures of computational proteomics 
scientists, it will be hard to achieve greatly improved software quality. But in 
essence, software quality is mostly a problem for software users, meaning the 
vast bulk of mass spectrometry proteomics scientists who do not publish 
algorithms or tools, but rather leverage these to draw biological conclusions. 
My suggestion to this community is to pool resources globally and create a 
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new executive software development unit. This unit would be funded and 
mandated with the task of maintaining decent-quality implementations of 
proven computational proteomics algorithms. A secondary task would be to 
create new implementations of niche algorithms to make them available for 
general use. The development team should be composed of a mix of industry 
and research background developers. In essence, this could be seen as a form 
of translational computational proteomics, where computational results are 
refined to a level where they can be applied for biological studies. 
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Chapter 5: Key Weaknesses in 
MS Proteomics of Today 

Considering once more the goal of providing high quality quantitative data to 
enable comprehension of biological systems, it must be considered that even 
todays advanced mass spectrometry might not be the ideal technology. It 
should be of major importance for proteomics scientists to regularly review 
the main weaknesses of their platforms, and think about how these could be 
resolvedviii. This chapter will be devoted to weaknesses in mass spectrometry 
proteomics that are not directly studied in the included scientific papers, but 
that appear as unmovable obstacles that are circumvented time and time 
again. Four weaknesses have been selected: the decoupled peptides, the 
unknown specific electro-spray function, the non-use of available ions, and 
the limited sequencing speed (Fig. 5.1). These weaknesses hinder us from 
doing label-free absolute quantification, from correctly detecting proteoforms 
rather than gene-products, and from achieving the speed and sensitivity that 
is needed to truly match the sample complexities of biological tissues. 

 

                                                        
 
viii Each proteomics scientist will, in confidence after a few beers, reveal the main drawback 

and weaknesses of their favorite proteomics technology. There will be some discussion on 
the order of said drawbacks, but nothing that can't be resolved by another round. I assume 
that I have already shared one or two with most of the readers at this point, but if I haven't 
and you continue reading, you owe me one. 
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The decoupled peptides 

Unfortunately, the most used MS proteomics workflow, where proteins are 
digested into peptides prior to MS analysis, bears a weakness that cannot be 
compensatedix. Many refer to this as the protein inference problem188,189, 
where the question is: given a set of identified peptides of which some are 
unique to a theoretical protein and others not, what proteins are in the 
sample? The inherent problem is that the peptides from a protein are no 
longer connected during measurement, but are intermingled with peptides 
from all the other millions of unique proteins. This carries greater 
implications than simply detecting what gene that is expressed and present 

                                                        
 
ix The decoupled peptide problem could alternatively be solved by extensive protein 

fractionation in for example 2D-gels, at least theoretically. This technique has fallen out of 
favour though because of the large amount of manual work required. 

Figure 5.1 - Selected MS proteomics weaknesses. Key instrumental and methodological areas to 
study are a) peptide decoupling due to digestion, b) the mechanics of electro-spray ionization of 
thousands of peptides, c) the under-usage of ionized analytes, and d) the ability to sequence these in 
a timely manner. (The protein 3D images  from "Protein composite" by Thomas Splettstoesser 
(www.scistyle.com), CC BY-SA 3.0) 
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though, the peptide decoupling also means that we cannot discover or 
quantify the protein PTM configurations and proteoforms that exist in the 
sample. Many biological components define their function and state by a 
specific combination of modifications, located in different parts of its 
proteins. This information is by design not accessible after digestion, unless 
modifications are situated locally on the protein. 

The only way to avoid peptide decoupling is to not digest proteins, and rather 
perform mass spectrometry of intact proteins, so called top-down proteomics. 
Initially ridden with a small ocean of childhood problems, the technique 
seems to be maturing lately, with one study detecting 1034 gene products and 
more than 3000 protein isoforms upon top-down analysis of extensively 
fractionated cell line material190. Some issues of MS analysis of whole 
proteins are the large range of protein sizes, the large number of observed 
charge states for such big organic molecules, the number of ions needed for 
complete fragment series, and the lack of algorithms for analysis of top-down 
data. Nevertheless, top-down proteomics will no doubt become the method of 
choice once enough advances in chemistry, instrumentation and algorithms 
have made the technique robust and reliable. 

The unknown specific electro-spray function 

For systems biology, the biggest weakness of MS based proteomics is the 
inability to perform native absolute quantification at the peptide level. The 
weakness can be circumvented with different labeling strategies, by adding 
isotopes of the target analytes at known concentrations, and assuming linear 
response. This is however greatly unsatisfactory, as the primary MS strength 
of massive parallelization is heavily impaired. The key reason that absolute 
quantification is not possible is the complexities of electro-spray ionization. 
It is not known in detail how amino acid backbone molecules are ionized 
during electro spray, and in particular how the degree of ionization depends 
on the amino acid configuration. The process is clearly deterministic, but the 
current inability to compute peptide response factors or adjusting for matrix 
effects makes practical label-free absolute quantification at the peptide level 
impossible. 

Putting costly labeling protocols aside, there is actually a known solution for 
drastically reducing the effect of the electro-spray response, so that most 
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peptides have very similar responses. By reducing the nano electro-spray 
flow rate from 300 nl/min to ~1 nl/min, the electro-spray droplet size is 
greatly reduced, and the ionization efficiency enhanced - resulting in the 
almost complete ionization of all analytes191,192. Initial demonstrations used 
pump-free chromatography which requires constant expert managing, but 
later studies have demonstrated multi-spray solutions that manage to achieve 
small droplets while staying at optimal chromatography speeds193. These 
techniques would be expected to greatly benefit proteomics, and it is not 
clear why their uptake by mass spectrometry vendors has been so slow. 
Peptide responses could be expected to vary within an order of magnitude 
even with these miniaturized droplets however, why a model to explain and 
predict the electro-spray function would remain valuable. 

Solving the electro-spray function will require two main components. First 
and absolutely crucial is the acquisition of a sizeable learning dataset, 
containing the measured signal responses of a large number of peptides at 
exact known concentrations. Second, a powerful framework is needed to 
represent the function. This could come either from increased understanding 
of the electro-spray chemistry through a large number of basic well-
controlled experiments of increasing complexity, or from modern machine 
learning approaches.  

The acquisition of a large dataset of exactly known peptide composition is 
non-trivial or expensive. Ordering a pure and accurately quantified synthetic 
peptide might cost $1000, and because of a need for 10 000 - 100 000 
peptides this price tag become prohibitive. Crude synthetic peptides have 
been utilized as a more affordable alternative, with the trade-off of an 
approximated 5-fold spread in peptide concentration125, which clearly limits 
the maximal achievable algorithm accuracy. Basing the dataset on 
proteins194,195 is an attractive alternative to collect peptides at increased rates 
while maintaining a known concentration of the protein. Here protein 
digestion needs to be accurately controlled though, as not to introduce 
unknown variation in the MS input. Further, the protein expression system is 
very important: it should minimize post-translational modification and 
protein cleavage. Regardless of synthesis method, the sample peptides should 
reflect the relevant peptide-space in terms of amino acid compositions and 
measured peptide responses. 

Although the electro-spray function has been provocatively labeled unknown 
here, this is not entirely true. Multitudes of papers describe the ESI droplet 
formation and their size at different flow rates196, how droplets are iteratively 
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dispersed197–201, and what properties of peptides and other chemicals that 
influence their response factors107,202–204. To complement, several machine-
learning studies have been completed with the aim of predicting high-
responding peptides for inclusion as targets in targeted proteomics 
workflows120–124,195. These display increasing success at this binary 
classification task, and also indicate peptide properties that influence peptide 
responses. Still, the knowledge of the mechanisms behind electro-spray 
ionization has never been scaled above 10 parallel analytes, far from 
proteomics production samples of millions of analytes. Meanwhile, machine-
learning approaches require large data sets, but employ a typically naïve 
model, where the response factor is guessed to be a function of peptide 
properties that are summed from the individual amino acids. No machine-
learning study has so far been able to analyze the specific sequence of amino 
acids in the peptides, which likely plays a key part in the ionization, or 
attempted to predict the actual response factor as opposed to mere 
classification or ranking of response.  

The under-usage of available ions 

In all proteomics mass spectrometry, the percentage of ionized analytes that 
are actually subjected to any mass analysis is minusculex. To support this 
statement, consider the following estimations. During typical 300 nl/min 
electrospray on a common instrumentxi a voltage of ~3 kV is applied, 
resulting in a current during analysis of a ~200 nA, which translates to 
roughly 1.2e12 charge units/s. During successful sample acquisition the total 
ion count measured by the instrument is about 3e9 ions/s. If we assume all 
ions to be of charge 1, this would entail that about 1 out of 400 electro-
sprayed charge units is deposited on a target molecule that enters the 
instrument and is successfully measured. After entry into the instrument, 
further ions are lost. For MS1 spectra, ions are typically accumulated in the 
ion trap for 5 ms, followed by a MS1 scan taking 200 ms, leaving the ion trap 
unused for 195 out of 200 ms. Even worse, for MS2 spectra a few percent of 

                                                        
 
x Or as amply put by Andrew Krutchinsky: It's like holding a bucket in the Niagara falls. 
xi A Thermo Scientific Q-Exactive Plus. 
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the mass range is collected for 5-100 ms, followed by a 100 ms scan event. 
During MS1 events all ions are discarded 97.5% of the time, and during MS2 
events approximately (800 - 2) / 800 = 99.75% of ions are not used, if we 
naively assume a uniform spread of ions over the m/z range. Therefore, 
commercial instruments could theoretically gain around a 100-fold sensitivity 
by better transmission and distribution of charges following ionization, and 
another 100-fold by better utilization of the ions that do arrive in the 
instrument. As there are papers claiming ~50% transmission efficiency205, 
future improvements here seem plausible. 

Scanning instruments all rely on ion traps for collecting populations of ions, 
which are then subjected as a group to scanning mass analyzers. Drastic 
improvements to ion trap capacity by several orders of magnitude have been 
proposed as a means to increase ion usage, but this does not solve the 
essential problem: how do we analyze such huge amounts of ions in a 
meaningful way? Already with current ion trap capacities, mass analyzers 
experience reduced transmission and resolution due to space charge effects, 
where ions of similar charge push each other outwards because of electrical 
repulsion, meaning that the m/z - intensity distribution gets blurred. This 
leads up to the last selected weakness, the MS sequencing speed, which 
needs to be addressed simultaneously to the under-usage of ions. 

Sequencing speed 

Sequencing speed used to be the limiting factor in the number of peptides and 
proteins that could be identified in a proteomics study. However, sequencing 
speed is lately reaching levels where it is no longer the single key bottleneck 
of the workflow. For example, ion transmission into the mass spectrometer 
can be more important206, as could dynamic range or ion trap capacity. An 
estimated 16-25 peptide ions/s are injected into the MS by current 
chromatographic setups94 (Paper V), which matches closely the ~20 MS2/s of 
reported high-resolution sequencing speed for two top-of-the-line 
commercial instrument of today76,77. Performing one MS2 per injected 
peptide ion will most likely not be enough however, even for discovery MS, 
as suboptimal real-time sampling often necessitates several MS2 scans per 
peptide. In DIA analyses specifically, increased sequencing speed would 
allow increased chromatography performance. Targeted analysis of DIA data 
requires several MS2 over the elution of a peptide, which no mass 
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spectrometer can deliver when interfaced with the best chromatography of 
today. With increased sequencing speed, sharper DIA chromatography would 
be possible, giving improved ionization and increased sensitivity in return. 

Achieving increases in sequencing speed might not be easy, since 
instruments are already highly concurrent. In modern instruments, most 
subcomponents perform their tasks simultaneously in an assembly line 
fashion. Even so, recent instrument releases seem to always include 
improvements in sequencing speed, why the practical limit is probably still 
not reached. In particular, no MS vendor has yet attempted parallel 
sequencing using more than two mass analyzers207, which would be a natural 
way of scaling performance similar to how multi-core computers have 
improved computation power once processor speeds reached their practical 
limit around 3 GHz. 

Wrap-up on weaknesses 

One thing that is intriguing with mass spectrometry proteomics is that the 
technology is very powerful and capable of multiplexed measurement of the 
complex proteome, yet it still lacks some properties that would be considered 
fundamental in other analytical technologies. The listed weaknesses have in 
common that they limit the feasibility of interpretation and understanding of 
the biological mechanisms at play. The ability to measure the absolute 
concentrations of peptides or relative concentrations of proteins would 
greatly simplify detection of proteoforms and PTMs. The improved 
sensitivity and multiplexing from better ion usage and parallel sequencing 
would increase proteome coverage, in particular for the low abundant 
proteins and small proteins where data is scarce. Acquiring these abilities 
should greatly increase the likelihood that mass spectrometry proteomics 
measurements are interpretable at a biological level, and therefore increased 
efforts could be warranted in this direction in future research. 
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Chapter 6: Conclusions and 
Relevance 

With the currently low rate of new drug and biomarker approvals, along with 
increasing costs of drug development, it is clear that a change is needed if the 
overall global health and wellbeing should continue to improve. Still, life 
science has acquired exponentially more powerful tools to acquire genomic, 
transcriptomic and proteomic data. How can this discrepancy in the amount 
of available data, and number of new therapeutics be explained? As a last 
resort, one could argue that we have reached the end of what's possible to 
achieve in terms of human health - at some point the magnificent machine 
that is the human body will inevitably fail. I do not believe we have reached 
this point. Rather, I argue that life science is either asking the wrong 
questions, or failing to interpret the enormous amounts of data it generates. 
Indeed, we are living in an age when acquiring data is easy and cheap, while 
understanding the biological processes that the data reflect is as hard as ever. 
To make use of the current voluminous data sets, we need to extend our 
capability of data interpretation in terms of speed, quality and robustness. 

This thesis has been aimed at improving the computational tools for mass 
spectrometry based proteomics, to enable higher quality data for improved 
ability to draw biological and medical conclusions. In this pursuit I have 
created enabling technology for better instrument control and better data 
handling, and algorithms for direct MS data analysis to quantitate peptides. 
As a secondary effect of these projects, I have come to several conclusions 
regarding the states of computational software quality and the mass 
spectrometry technology, which are also presented as results and discussion 
points.  

The work here described is not merely a set of algorithms for analysis of MS 
proteomics data. It embodies a strategy to tackle key weaknesses in MS 
methodologies, to mature the technology for greater robustness and 
performance. I have developed algorithms that I have demonstrated to 
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improve the analytical power of the major MS methodologies DDA, SRM 
and DIA, in terms of quantitative accuracy (Paper I & V), improved recall 
(Paper IV), and ease of application (Paper I & IV). However, the primary 
goal of a computational platform is to maximize the total amount of 
knowledge it allows the mass spectrometry lab to produce. I have therefore 
equally focused on speed of execution and standardization (Paper I, III-VI), 
and practical issues related to instrument performance (Paper II) and data 
storage (Paper III), so that the mass spectrometry lab as a whole might 
function efficiently.  

The ultimate test of new academic algorithms and programs is whether they 
are used in later studies. Anubis has been used in a few published 
studies208,209, and is a part of additional projects that are still under 
investigation. I am proud to note that the Numpress algorithms have a quite 
substantial uptake with support in most maintained proteomics tools and 
pipelines210 (Paper III). DIANA is used frequently in our lab, for protein-
protein interaction studies and regular quantitative profiling, and coupled to 
this usage we are replacing the previous MS assay pipeline with the one 
described in Paper IV to give faster and better performance. 

There are of course unlimited possible investigations that can be performed 
to follow up the presented studies. To name a few, I believe that application 
of the MS techniques and the quantitative algorithms in protein-protein 
interaction experiments such as affinity purification MS or cross-linking MS 
could greatly facilitate biological understanding. There could also be gains in 
performing online feature detection, or more advanced feature/peak detection 
in DIA analysis compared to the DIANA implementation. To completely 
change the game of MS proteomics however, the main instrumental 
weaknesses need to be tackled, in particular the electro-spray function and 
the decoupled peptides.   

To improve proteomics analytical power and allow deeper understanding of 
the biological processes underlying life science data, the exposed mass 
spectrometry proteomics weaknesses and poor proteomics software quality 
will be key points to address. Therefore the continuous discussion, study and 
resolution of the instrumental and implementational issues should be a 
ongoing relevant task for the community, so that the increased technical 
ability might finally allow comprehensive understanding of the complex 
biological systems. Although many problems remain to be solved in mass 
spectrometry based proteomics, we should take heart from the fact that the 
technique has taken us so far even with such limitations. No doubt resolving 
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these weaknesses will be the goal of substantial effort the coming decades, 
and then we might finally see systems biology that can model human cells or 
even tissues, and perhaps fuel continued advancements in life science for 
better health and human wellbeing. 
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Populärvetenskaplig 
sammanfattning 

Inom livsvetenskaperna studerar man det som i dagligt tal benämns som 
levande. Det betyder i praktiken att man studerar celler, de små byggstenar 
som allt liv består av. Först under de senaste 20 åren har man insett hur 
otroligt komplicerade celler är, med hjälp av omfattande framsteg inom gen-
sekvensering och andra analytiska verktyg. Hastigheten på den tekniska 
utvecklingen inom livsvetenskaperna är jämförbar med dator-
kraftutvecklingen.  

I framkanten av dagens forskning i livsvetenskap försöker många forskare 
förstå och mäta cellens proteiner. Proteinerna är en stor grupp molekyler som 
utför majoriteten av cellens funktioner, som reproduktion, energiproduktion 
och kommunikation med andra celler. För att studera cellens proteiner 
används ett mycket känsligt instrument, masspektrometern, som kan mäta 
proteinmängden av tusentals proteiner i så lite som 1 µl av ett biologiskt 
prov. Med masspektrometri kan man bland annat förstå skillnader mellan 
livshotande infektioner och vanlig halsfluss eller detektera prostatacancer 
direkt i ett blodprov (Fig. P1), men man kan också t.ex. kvalitetskontrollera 
livmedelsproduktion. 

En svårighet med masspektrometri är att tekniken genererar stora mängder 
mätdata, eftersom instrumenten är känsliga och celler komplicerade. En 
modern masspektrometer producerar ungefär 1 GB mätdata i timmen, och för 
att tolka datan krävs specialiserade algoritmer och datorprogram. Den 
forskning som jag presenterar här beskriver flera algoritmer för analys av 
olika typer av masspektrometridata. Vi kan visa att dessa i flera fall ger bättre 
resultat än de alternativ som tidigare beskrivits, exempelvis med avseende på 
hur många proteiner som detekteras, eller vilken beräkningstid som krävs.  
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Inom masspektrometri skiljer man på explorativ och riktad analys, där den 
explorativa analysen (discovery MS) antar väldigt lite om provet och kan 
hitta många proteiner, medan den riktade analysen (SRM) letar efter 
fördefinierade proteiner men i gengäld mäter dessa med större känslighet och 
precision. Det finns också hybridmetoder, där man försöker uppnå fördelarna 
med både den explorativa och riktade metoden. Vi har utvecklat olika 
program för analys av både explorativ och riktad masspektrometridata, samt 
för den relativt nya hybridmetoden Data-Independent Acquisition (DIA). 

Utöver direkta analysverktyg har vi genomfört tre studier som förenklar 
hantering och drift av masspektrometerlabb. I den första studien undersöker 
vi hur skicket på en masspektrometer ändras under ett halvår av vanlig 
användning. För att genomföra detta utvecklades ett automatiskt verktyg för 
kvalitetskontroll. Det visar sig att speciellt det första steget av analysen, då 
provet delas upp baserat på hydrofobicitet, ger något olika resultat beroende 
på normal användning. Den uppmätta signalen i masspektrometern varierar 
också, eventuellt beroende på slumpmässig kontaminering. I den andra 
studien utvecklade vi nya kompressionsalgoritmer som är speciellt anpassade 
till masspektrometridata för att förenkla hanteringen av den stora 
mätdatamängden (MS-Numpress). Dessa komprimerar informationen, d.v.s. 
viker ihop den, så att den tar mindre plats att lagra. Slutligen beskriver den 

Figur P1 - Konceptuell skiss på avhandlingen i kontext. 
För att diagnostisera patienter tas ett blodprov, där ett 
protein finns i olika mängd beroende på om patienten är 
sjuk eller frisk. Blodprovet analyseras m.h.a. 
masspektrometri (MS) vilket ger MS-data. Avhandlingen 
behandlar tolkning och förädling av sådan MS-data, så att 
den mätning som levereras är så exakt som möjligt. 
Mätning skall kunna användas till t.ex. diagnos eller 
utökad förståelse av sjukdomen. I riktiga prover mäts 
tusentals proteiner. 
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tredje studien ett nytt förbättrat sätt att definiera hur proteiner skall mätas i 
riktade analysmetoder och hybridmetoder. Vi visar att vi genom att öka 
kvalitén på våra mätkoordinater (MS assays), kan öka mängden identifierade 
proteindelar med 30%. 

Utöver de vetenskapliga studierna innehåller avhandlingen diskussion kring 
två ämnen som inte resulterat i publikationer: brister i akademisk 
mjukvarukvalité, och svagheter med MS-proteomik, d.v.s. mättekniken 
masspektrometri tillämpat på proteiner. Tyvärr är en stor risk med akademisk 
mjukvara att den faller i glömska p.g.a. praktiska problem vid användning - 
akademisk mjukvara utvecklas i allmänhet med mycket mindre finansiellt 
stöd än kommersiell mjukvara. Detta diskuteras i avhandlingen, liksom 
eventuella lösningar. I MS-proteomik identifierar jag 4 brister som framtida 
forskning bör sträva efter att åtgärda för att drastiskt förbättra kvalitén på 
masspektrometridata och öka möjligheten att dra relevanta biologiska 
slutsatser från den. 

De forskningsresultat och program som vi utvecklat är ämnade att hjälpa 
livsvetenskaperna - och förhoppningsvis i förlängningen sjukvården - genom 
att möjliggöra känsligare, snabbare och tillförlitligare analys av 
proteinnivåerna i biologiska prover. Bättre analyskvalité kan i sin tur bidra 
till ökad förståelse av biologiska system, eller upptäckten av nya läkemedel 
eller diagnosmetoder, och även om vägen dit kan verka oändligt lång så 
hoppas jag att denna avhandling åtminstone går i rätt riktning. 
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