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Abstract—As a cost-effective option for Cloud consumers, spot
service has been considered to be a significant supplement for
building a full-fledged market economy for the Cloud ecosystem.
However, unlike the static and straightforward way of trading
on-demand and reserved Cloud services, the market-driven reg-
ulations of employing spot service could be too complicated for
Cloud consumers to comprehensively understand. In particular,
it would be both difficult and tedious for potential consumers
to determine suitable bids from time to time. To reduce the
complexity in applying spot resources, we propose to use a
feedback control to help make bidding decisions. Based on
an arccotangent-function-type system model, our novel bidding
mechanism imitates fuzzy and intuitive human activities to refine
and issue new bids according to previous errors. The validation
is conducted by using Amazon’s historical spot price trace to
perform a set of simulations and comparisons. The result shows
that the feedback control-based mechanism obtains a better
trade-off between bidding rationality and success rate than the
other five comparable strategies. Although this mechanism is only
for black-box bidding (price prediction) at this current stage, it
can be conveniently and gradually upgraded to take into account
external constraints in the future.

Keywords—Bidding Mechanism; Cloud Spot Price; Cloud Spot
Service; Control Theory; Feedback Control

I. INTRODUCTION

As a key role in the success of Cloud computing in industry
[1], various pricing techniques have been employed by Cloud
providers to attract consumers and sell Cloud services. In the
de facto Cloud market, the existing pricing schemes can be
generally distinguished between fixed pricing and spot pricing.
Particularly, the fixed pricing schemes for both on-demand
services and reserved services are dominant approaches to
trading Cloud resources nowadays [2], [3]. However, given
the normally unpredictable and stochastic demand, there would
always be unused resources in the virtually infinite compute
capacity of the Cloud. To further help and better utilize the
idle compute resources, spot pricing has been realized as
a promising scheme that could attract more demands with
toleration of service delay and interruptions [4], as launched
by Amazon in December 2009 [5].

Unlike the static and straightforward prices driven by the
fixed pricing schemes, the spot price varies based on the supply
and demand of available capacity of a Cloud spot service. For
Cloud consumers, such a spot pricing scheme would deliver
various benefits ranging from economic advantages for flexible

workloads to accelerations of small-scale jobs. For example,
the quantitative analyses of Amazon’s price trace show that
consumers can expect to save more than half the expense if
replacing on-demand instances with the spot ones [6], [7], [5].
The empirical studies deliver even more encouraging results:
with proper bids, the total cost of employing spot resources
can be maintained between 13% and 36% of using the equiv-
alent on-demand resources [8], [9]. Moreover, by employing
additional spot nodes in the MapReduce process, the speedup
for the overall MapReduce time of some workloads can exceed
200% with an extra monetary cost of 42% only [10].

Nevertheless, it seems that potential Cloud consumers are
still hesitating to enter the Cloud spot market. To employ a spot
service, Cloud consumers need to submit bids on particular
resources. The resource requests can be granted when the
corresponding bid exceeds the current spot price, while the
employed service will be interrupted when the spot price
exceeds the current bid. As such, the potential consumers have
to make trade-off decisions between availability and cost when
using the spot service [11], which could be both challenging
and tedious. For instance, by observing historical spot prices, a
natural thought could be using high-enough bids to reduce out-
of-bid situations and achieve low cost of using Cloud resources
[9]. However, on the one hand, Cloud providers would increase
spot prices to maximize profits if most consumers submit
high bids [12]; on the other hand, the essence of incentive-
compatible auction in the Cloud spot market would require
consumers to bid their true valuations so as to obtain maximum
utility [13]. Thus, the backend interactions between market
participants could be too complicated for Cloud consumers to
understand psychologically [3], and correspondingly coming
up with wise bids is clearly a nontrivial task for them. In fact,
it has been identified that a main reason of the aforementioned
consumers’ hesitation is the complexity in determining suitable
bids for obtaining spot resources [14].

To address the challenge in employing Cloud spot services,
we decided to focus on practical bidding techniques. Inspired
by the Agile principle of gradual improvement, we started from
investigating possible price predictions without taking into
account consumer constraints or market competitions, and then
developed a feedback control-based bidding mechanism. This
paper introduces the whole work including both the mechanism
development and its validation. In brief, we model the bid-
ding system as an arccotangent function-based dynamics that
accepts control signals as input and generates corresponding



bids as output. Using a feedback loop, our bidding mechanism
is supposed to imitate intuitive and fuzzy human activities to
revise and issue new bids according to the previous errors.
Compared with a set of other straightforward bidding strate-
gies, this control-theoretical approach can achieve a relative
balance between the success rate and the rationality of bidding.

The contribution of this work is mainly threefold, as listed
below.

• The bidding system modeling work introduces a
lightweight mathematical model for dynamical sys-
tems within particular state spaces. Considering that
the possible bids have a limited space between a
price floor and a ceiling, the conventional state space
models for this bidding system would be ordinary
differential equations [15]. Our study shows that an
arccotangent function-based curve can match the real
bidding situations well, and such a model could also
be suitable for other similar systems.

• The feedback control-based mechanism suggests an
intuitive approach to deal with the spot service bidding
problem. Its essential idea is to imitate the fuzzy
process of decision making in our normal lives. In
addition to the convenience of implementation, this
mechanism allows flexible adjustments at three dif-
ferent stages to help make more aggressive bidding
(i.e. generating lower-than-normal bids) or more con-
servative bidding (i.e. generating higher-than-normal
bids).

• Two generic features of bidding strategies (namely
success rate and relative rationality) are defined and
used to facilitate “apple-to-apple” comparison between
different options. To our best knowledge, this is the
first study that considers these two features together to
measure and compare bidding strategies. Given more
consumer constraints and market conditions, they can
be conveniently combined with other features like
budget satisfaction for further trade-off comparison.

The remainder of this paper is organized as follows. Section
II summarizes the existing bidding strategies by roughly classi-
fying them into three groups: white-box, grey-box, and black-
box strategy types. Section III elaborates our development
details of this feedback control-based bidding mechanism.
In addition to a simulation study, Section IV compares our
bidding mechanism against five other straightforward bidding
strategies with respect to their features success rate and relative
rationality. Conclusions and some future work are discussed in
Section V.

II. RLATED WORK: A CLASSIFICATION OF BIDDING
STRATEGIES FOR EMPLOYING CLOUD SPOT SERVICE

The existing relevant studies have investigated mainly three
types of bidding strategies for employing Cloud spot service,
and we name them as white-box, grey-box, and black-box
strategies. This section explains these strategy types by giving
typical examples respectively.

A. White-box Bidding Strategies

We consider a bidding strategy white-box when the strategy
takes into account the interactions between different market
participants. In other words, by including different participants’
reactions, a white-box study would be concerned with the
influence of bidding on the resulting spot prices.

For example, Sowmya and Sundarraj [16] focused on the
competition between different bidders, and used a prisoner
dilemma game to model the bidding scenario in the Cloud spot
market. To facilitate analysis, they assumed only two bidders
in the game, and proved that rational and self-interested con-
sumers would converge on the Nash Equilibrium solution to
procure spot resources. By analyzing Amazon’s spot price data,
the authors believed that the major bidders played the single
shot classical prisoner dilemma game. Given the characteristics
of Cloud spot market that might require consumers to bid in
multiple rounds, the study proposed a co-operation bidding
strategy that matches an iterated prisoner dilemma game.

Zaman and Grosu [14] focused on the relationship between
Cloud provider and consumers, and used combinatorial auc-
tions to model the bidding activities in the Cloud spot market.
They defined that a combinatorial auction mechanism was
employed for Cloud providers to allocate spot resources. This
mechanism sorts the bids in descending order of density of
valuation, and greedily selects high-value bids to maximize the
social welfare (i.e. sum of valuation of all winning bidders).
Since the resource allocation mechanism is supposed to be
incentive-compatibility, the authors proposed a bidding strat-
egy to generate truthful valuation of a bundle of spot resources
within particular budgets, so as to satisfy Cloud consumers
with the maximum utility.

B. Grey-box Bidding Strategies

In contrast with white-box studies, grey-box strategies are
proposed usually from an independent bidder’s point of view,
without considering the interactions with the other market
participants. Instead, a typical focus of grey-box bidding is on a
given set of constraints, e.g., workload, cost and/or availability
criteria.

For example, benefiting from a Price Transition Probability
Matrix (PTPM) that characterizes different price transitions
as time goes on, Tang et al. [17] developed a Constrained
Markov Decision Process (CMDP) based bidding strategy to
both minimize the monetary cost and satisfy the available time
requirement. In particular, given the transition probability of
each bid option in PTPM, the CMDP is used to model the
computation of finding an optimal option with the predefined
constraints, and the stochastic computation process is formu-
lated as a linear programming and correspondingly solved in
polynomial time.

Based on a Markov model for spot price evolution, Zafer et
al. [18] defined spot resource employment as a cost minimiza-
tion problem in the field of discrete-time stochastic Dynamic
Programming, and utilized the relevant mathematical tools
to achieve optimal bids from the consumer’s perspective.
Similarly, given a semi-Markovian process price model, Song
et al. [19] designed a profit-aware dynamic bidding (PADB)
algorithm to make sequential bidding decisions for a job queue,
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Fig. 1. Feedback control-based mechanism for bidding to use Cloud spot service. This mechanism takes historical spot prices as the reference signal r, uses a
proportional-integral (PI) controller to transfer the output error e into the control signal u, and eventually delivers bid prices as the output y.

and each decision only required the current job size and the
current spot price. PADB is supposed to achieve a near-optimal
bidding solution to the profit maximization problem from the
service broker’s perspective.

C. Black-box Bidding Strategies

Similar to the grey-box work, the black-box studies are
not concerned with interactions between market participants
either. In addition, unlike white-box bidding strategies, black-
box bidding decisions are generally influenced by historical
spot prices; and unlike grey-box strategies, black-box bidding
does not take into account bidders’ constraints. In essence,
black-box bidding can be viewed as making straightforward
predictions about future spot prices, without necessarily being
aware of external conditions.

For example, Mazzucco and Dumas [20] treated spot price
as a random variable under a normal distribution model, used
the autocorrelation function (ACF) to measure the correlation
of historical spot price with itself at different time points,
and developed an ACF-based algorithm to realize spot price
prediction for bidding. In an extreme case of theoretical
discussion [12], five simple bidding strategies were proposed
and compared with each other, such as Minimum, Mean, High,
Current, and On-demand. We particularly highlight these five
strategies in Section IV-B for the purpose of validating our
study.

In fact, a black-box bidding strategy could play a funda-
mental role in the other types of strategies. Considering that
there is still a lack of a both convincing and practical bidding
mechanism, we start our investigation into bidding strategies
from a fundamental study, as described in the following
sections. Note that, as a black-box strategy at this current
stage, our feedback control-based bidding mechanism does not
include external constraints (or input signals, such as budget
limit, workload priority, bidder competition, etc.).

III. FEEDBACK CONTROL-BASED BIDDING FOR CLOUD
SPOT SERVICE

Our feedback control-based mechanism was initially de-
signed by modeling spot service bidding as an input-output
dynamical system. The system further employs a feedback loop
to enable automatic adjustment of its input. The essential logic
of the mechanism can be outlined into a block diagram, as
illustrated in Fig. 1. In brief, this mechanism takes historical

spot price as the reference signal r, uses a proportional-integral
(PI) controller to transfer the output error e into the control
signal u, and eventually delivers bid price as the output y.
Note that we are not concerned with any external disturbance
in this case. The following subsections particularly explain our
work on the system model and the PI controller followed by
a simulation discussion.

A. Modeling the Spot Service Bidding System

Inspired by the input/output view of dynamics from elec-
trical engineering [15], we focus on the input and output
behaviors when modeling the bidding system: It is supposed to
accept a control signal as input and output the corresponding
bid.

We start from considering the expected output. Firstly,
Cloud consumers would expect successful bids. When con-
suming a Cloud spot service, as specified by Amazon [21], the
requested spot resources can be granted only if the submitted
bid exceeds the current spot price, otherwise the consumer
has to resubmit new bids or wait for the request to be in-bid.
Secondly, the generated bids should be rational. Suppose the
activities in the Cloud spot market conform to the aforemen-
tioned incentive-compatible auction, the real spot price would
reflect the true value of spot resources at a particular time; the
accurate valuation of the spot service would then be equal to
its price; and accordingly the rational bids should be close to
the spot price.

To achieve both successful and rational bids, we assume
that the bidding system wants to use a control signal to
correct its previous output errors. Intuitively, the system would
decrease its bid in next round if the previous output is too
high (for the purpose of rational bidding), while bidding higher
if the previous bid is lower than the real spot price (for the
purpose of successful bidding). In extreme cases, however, it is
unacceptable to bid higher than the price of on-demand service,
because Cloud consumers would rather directly employ on-
demand resources if the spot service is too expensive; and it
does not make sense to set a bid infinitely low either, because
the Cloud provider could have a reserved price for the cost of
developing and maintaining the spot service. In fact, Amazon’s
spot price traces have shown that there always exists a band
in which the price fluctuation happens most of the time [9].

Overall, given the intuitive discussion, it is possible to
consider an arccotangent type of curve to satisfy the afore-
mentioned constraints between control signal and bid price. On
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TABLE I. AMAZON’S INSTANCE TYPE G2.8XLARGE

Feature
GPUs vCPU Mem (GiB) Storage (GB)

4 32 60 2 x 120 SSD

OS Usage Linux/UNIX usage

Region US East (N. Virginia)

Hourly Price On-demand: $2.600; Lowest Spot: $0.256

the other hand, it would be hard to fit those constraints with
other functions like disrete steps or linear curves. Therefore,
we formulate the bidding system into an arccotangent function-
related model, as shown in Equation (1).

y = a+
b− a
π
× arccot(u) (1)

where u is the control signal, y is the generated bid price,
while a and b are the price floor and ceiling respectively for a
particular Cloud spot service. By transferring the range from
arccotangent’s π − 0 to b − a, this model never allows bids
beyond the band from a to b.

As such, the influence of control signals on bid prices can
be plotted as illustrated in Fig. 2. Here we take Amazon’s EC2
spot instance type g2.8xlarge for example (cf. Table I), its low-
est historical price is used as the price floor (i.e. a = 0.256),
and the corresponding on-demand service price is defined as
the price ceiling (i.e. b = 2.600).

B. Using a PI Controller to Generate Control Signal

As mentioned previously, the control signal is supposed
to help correct the past bidding errors. Naturally, we consider
the control signal to be generated according to those errors.
An error is defined as the difference between the output bid
and the real spot price at a particular time, i.e., e = r − y
following the notations in Fig. 1.

Firstly, we are concerned with the influence of the present
error on the potential control signal. Recall that the bigger
positive value of the error indicates the lower previous bid
than it should be. Given the arccotangent-curve relationship
between the control signal and the bid price (cf. Fig. 2), a
bigger negative value of the control would then be expected
in order to bid higher in the next round. Similarly, the bigger
negative error would expect the bigger positive control for the
lower bid next time.
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Fig. 3. An example proportional control with the proportional gain −10.
Given the bidding for Amazon’s spot instance type g2.8xlarge, the proportional
band is (−2.344, 2.344).
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Fig. 4. The shaded portion is the integral of bid errors up to time t, which
indicates the historical information that can be used for the integral component
ui of the overall control u.

Thus, it is clear that there is a negative correlation between
the bid error and the control signal, and a proportional control
can then fit in this case. We formulate this proportional control
into Equation (2).

up = kp × e (kp < 0, a− b < e < b− a) (2)

where kp is the proportional gain for this control up, and
its negative value guarantees the abovementioned error-control
correlation. Moreover, considering that all the bids are in the
interval (a, b) constrained by the system model (cf. Equation
(1)), the bid error e has a proportional band (a − b, b − a)
correspondingly. Following the example of the instance type
g2.8xlarge, we show a typical proportional control with the
gain −10 and the band (−2.344, 2.344) in a linear graph in
Fig. 3.

Secondly, we are concerned with the influence of the
historical errors on the potential control signal. In fact, given
the discussions in the system modeling work (cf. Section
III-A), the proportional control essentially issues intuitive
trials, because it is impossible to predetermine to what extent
we can match a new spot price by fixing the previous error.
Consequently, we would have to track the consecutive past
errors to observe the effects of the existing proportional control
trials. For example, the gradually increasing value of the
integral of errors may indicate that the historical trials have
been too conservative. In other words, the historical errors all
together could comprise further information to help improve
new bidding for Cloud spot service.



Therefore, we decided to employ an integral control to
further utilize the historical information, as visualized in the
shaded portion in Fig. 4. Following the similar discussion
for the proportional control, the integral control action would
also be proportional to the integral of errors, as formulated in
Equation (3).

ui(t) = ki ×
∫ t

0

e(τ) dτ ≈ ki ×
t∑

j=0

ej

(ki < 0, a− b < ej < b− a)
(3)

where ki is the integral gain for the control ui, and its
negative value also implies the negative correlation between
the control signal and the integral of errors. Considering that
Amazon tends to hold a period of time between different price

points [22], we replace
∫ t

0

e(τ) dτ with
t∑

j=0

ej to calculate

the integral of discrete-time errors up to time t, and clearly
each historical error ej must have been in the aforementioned
interval (a− b, b− a).

Overall, based on these two types of control, a PI
controller with the input-output relation between bid error
and control signal can be defined as:

u = up + ui ≈ kp × e+ ki ×
t∑

j=0

ej (4)

The summary control action is thus composed of the pro-
portional and integral feedbacks. In particular, the proportional
feedback can be viewed as the fine tuning to adjust bidding
based on the present error, while the integral feedback can be
viewed as the coarse tuning to adjust bidding based on the
accumulated past errors.

C. Simulation of the Feedback Control-based Bidding Mech-
anism

In addition to the previous qualitative discussion about
designing the feedback control-based bidding mechanism, we
now use a simulation to quantitatively demonstrate how this
mechanism works. To facilitate the simulation, we implement
the bidding mechanism into executable codes, as specified
in Algorithm 1. This straightforward algorithm also shows
that the deployment of our bidding mechanism would not be
difficult. Note that although Algorithm 1 is for simulation, the
last element in the output array of bid prices can be directly
used for the new round of bidding at time t+ 1.

When it comes to the input parameters, we take into
account the instance type g2.8xlarge that is recently available
in the Cloud spot market. In detail, we set the price floor
a and ceiling b as 0.256 and 2.600 respectively (cf. Fig. 2);
for the conciseness of this simulation, we assign 10 to both
the proportional gain kp and the integral gain ki without
sophisticated parameter tuning; and the half price of the
corresponding on-demand service is used for the initial random
bidding.

As for the historical spot prices, we use Amazon’s Com-
mand Line Interface (CLI) tool ec2-describe-spot-price-history

Algorithm 1 Feedback Control-based Bidding Mechanism
Input: Array of historical spot prices P = (p1, p2, p3, ..., pt), price floor a,
price ceiling b, proportional gain kp, integral gain ki, random bid price bid1.
Output: Array of bid prices BID = (bid2, bid3, ..., bidt, bidt+1).

1: procedure INITIALIZATION

2: Present output error e← 0

3: Summary output error esum ← 0

4: Control signal u← 0

5: Bid for next round bid← bid1
6: Array of bid prices BID← ∅
7: end procedure
8: procedure BID GENERATION LOOP

9: for j = 1, 2, 3, ..., t do
10: e← pj − bid
11: esum ← esum + e

12: u← kp × e+ ki × esum

13: bid← a+ (b− a)× arccot(u)/π

14: BID← BID ∪ bid
15: end for
16: end procedure
17: return BID

[23] to collect spot price traces of the instance type g2.8xlarge.
Without loss of generality, we select 1001 consecutive spot
price records (with the timestamp between 2015-05-03 and
2015-05-14) as the input array for this simulation.1

The simulation result of our feedback control-based bid-
ding is plotted together with the corresponding spot price
trace in Fig. 5. Recall that this bidding mechanism essentially
imitates human activities to issue intuitive trials according
to the previous errors. Since the bidding errors would never
disappear due to spot price variations, the intuitive trials should
also reflect the changes in spot prices. Driven by the feedback
control signals, the simulation shows that the bid trajectory
roughly follows the spot price trace. It is then reasonable to
assume that the bidding mechanism works, at least to some
intuitive extent. To better validate this feedback control-based
bidding mechanism, we compare it against a set of other
bidding strategies, as specified in the following section.

IV. VALIDATION OF THE FEEDBACK CONTROL-BASED
BIDDING MECHANISM

Instead of implementing practical applications, we validate
our bidding mechanism by contrasting it with other comparable
bidding strategies. Note that, to be compatible with the descrip-
tions in the existing studies (e.g., [12]), we also treat “bidding
mechanism” and “bidding strategy” as interchangeable terms
in this paper.

A. Two Generic Features of a Bidding Mechanism

To make “apple-to-apple” comparison, following the dis-
cussion in Section III-A, we focus on two features of a par-
ticular bidding mechanism, namely success rate and relative
rationality.

1The complete spot price trace with 3849 records of the spot instance
type g2.8xlarge has been shared online: https://docs.google.com/spreadsheets/
d/18iL2qYCpqsYyx-2hgzp950Fi8nP7K8xQhse 0gP8xjU/
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The success rate refers to the percentage of in-bid events
among all the bid trials during a period of time. An in-bid
event indicates that the bid price is greater than or equal to
the corresponding spot price at a particular time. In fact, in the
Cloud spot market, a consumer’s request can be satisfied if and
only if the consumer’s bid price exceeds the current spot price.
Since it is natural for Cloud consumers to expect successful
bids, we claim that a better bidding strategy should have higher
success rate than another. The calculation of success rate is
formulated into Equation (5).

sr =

t∑
i=1

(ith bid price ≥ ith spot price ? 1 : 0)

t
× 100%

(5)

where sr is the abbreviation for “success rate”, and t represents
the times of spot price variations. Note that for the purpose of
validation we suppose each spot price variation triggers a bid
trial for the next round of bidding, without considering the fact
that the successfully requested spot resources can be allocated
until either the consumer intentionally terminates the service
usage or the spot price increases above the previous bid price.

As for the rationality, recall that the economics principles
would constrain rational bids to be close to the spot price
(cf. Section III-A). We naturally consider that the rationality
of a bidding strategy is inversely proportional to the distance
between the generated bid trajectory and its related spot price
trace. Given the discrete-time variations of spot price, a simple
way to calculate the aforementioned distance can be defined
as shown in Equation (6).

d =

t∑
i=1

∣∣ith bid price− ith spot price∣∣ (6)

Correspondingly, the rationality can simply be defined as
r = 1/d for instance. An assumption here is that the ideal
bidding strategy with zero distance (d = 0) does not exist in
practice. Then, as discussed previously, we claim that a better
bidding strategy should have higher rationality than another.

To facilitate comparison within an appropriate scale, we

further come up with using relative rationality to measure a
group of bidding strategies, as expressed in Equation (7).

rrj =
min
di∈D
{di}

dj
(i, j = 1, 2, ..., n) (7)

where rrj refers to the relative rationality of the jth bidding
strategy among n ones, dj is the distance between the jth

bid trajectory and the same spot price trace, and D indicates
the distance set with respect to those n bidding strategies. By
transforming rationality into relative rationality, the bidding
strategy with the shortest distance obtains the score 1, while
the others have scores over the interval (0, 1). It is notable that
the comparison condition is still the same, i.e. a better bidding
strategy should have higher relative rationality than another.

B. Comparison between Different Bidding Mechanisms

As introduced in Section II, five black-box bidding strate-
gies have been proposed in the existing study [12]. Here we
briefly rephrase them as follows.

• Minimum: The bid price is set as the minimum value
observed in the spot price history.

• Mean: The bid price is set as the mean of all values
in the spot price history.

• High (Maximum): The bid price is set as a value
higher than any price observed. To distinguish from
the On-demand strategy, we define the high value as
the maximum value observed in the spot price history.

• Current: The bid price is set as the value of the current
spot price.

• On-demand: The bid price is set as the value of the
corresponding on-demand service price.

By applying these bidding strategies to the same spot price
trace, we simulate their bidding activities and generate bid
trajectories, as illustrated in Fig. 6. Note that the On-demand
bidding result is invisible in this figure due to its far location
from the others.
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Fig. 7. Comparison between different bidding strategies in terms of Success
Rate and Relative Rationality. The calculation is based on Amazon’s spot
price variation trace between 2015-05-03 00:20:06 and 2015-05-14 23:36:44
(instance type: g2.8xlarge, OS type: Linux/UNIX, zone: us-east-1b).

Given the generated bid trajectories over the same time
span, we respectively calculate the success rate and relative
rationality for the five bidding strategies together with our bid-
ding mechanism respectively. The comparison result is shown
in Fig. 7. In detail, if employing the Minimum strategy to try to
take advantage of the cheapest spot service, the success rate of
bidding could be extremely low. On the contrary, if employing
the High or even On-demand strategies to pursue 100% success
rate, the bidding rationality would be unacceptably low. In fact,
as modeled by using the Prisoner Dilemma game [16], no one
can always win the bidding if every consumer tries to bid high.
On the other hand, although the Mean and Current seem to
be more reasonable bidding strategies, both of them still suffer
from the relatively significant imbalance between success rate
and rationality. In contrast, the feedback control essentially
delivers a trade-off mechanism that gives consideration to both
bidding rationality and success rate.

More importantly, our feedback control-based bidding
mechanism is more flexible than the existing fixed bidding
strategies. As a matter of fact, without significantly violating
rationality, Cloud consumers can adjust their bidding at three
different stages when employing this mechanism.

• Pre-adjustment: The bidding can be adjusted by mod-
ifying reference signals (i.e. changing the historical
spot prices). For example, a consumer can increase
the reference signal by adding two more cents to
the historical spot prices, so as to make conservative
bidding to enhance the success rate; or the consumer
may use aggressive bidding to enjoy cheaper spot
service by decreasing reference signals.

• Control Adjustment: The bidding can be adjusted
by modifying the controller gains. For example, a
consumer can increase the proportional and integral
gains (i.e. kp and ki) to improve the PI controller’s
sensitivity about present and historical errors respec-
tively, or vice versa.

• Post-adjustment: The bidding can be adjusted by di-
rectly modifying the output bids. It is clear that the
post-adjustment is also suitable for the other bidding
strategies. For example, a consumer can give two more
cents top-up to the generated bid to make conservative
bidding, or reducing the suggested bid price to conduct
aggressive bidding.

Considering the combination explosion of available pa-
rameters, we do not illustrate the detailed effects of different
adjustments.

V. CONCLUSIONS AND FUTURE WORK

The current Cloud providers largely use three types of
pricing schemes to sell their on-demand, reserved and spot ser-
vices respectively. In particular, spot pricing has been claimed
to be the most cost-effective scheme among all the options
for Cloud consumers. Unfortunately, the existing Cloud spot
services seem not to be popular yet in practice, and one of
the main reasons has been identified to be the complexity and
difficulty in determining suitable bids. Therefore, we focused
on practical bidding strategies and developed a feedback
control-based mechanism to facilitate bidding for Cloud spot
service.

By using Amazon’s historical spot price trace to perform
a set of simulations, we show that our mechanism obtains a
better trade-off between bidding rationality and success rate



than the other five comparable strategies. Moreover, since the
feedback control here has been designed to conform to the
bidder’s natural and fuzzy intuition, this bidding mechanism
would be easily comprehensible for Cloud consumers. Ben-
efiting from a straightforward algorithm, the simulation also
indicates that this mechanism is deployment friendly.

In addition to the bidding mechanism itself, this whole
work has enlightened us about the possibility and feasibility
of using control-theoretical approaches to deal with different
problems in the Cloud spot market. For example, Cloud spot
pricing could also be modeled as a control problem from the
provider’s perspective, because the spot market has granted
Cloud providers the power of intentionally terminating spot
services through controlling spot prices. In other words, we
suggest using this study as an inspiration to reveal further
research opportunities.

As for the near future, our potential work will be unfolded
along two directions. The first, we plan to refine this feed-
back control-based bidding mechanism by tuning the system
parameters and improving the controller. In particular, the
controller could be improved by optimizing its sensitivity about
bid errors, and by changing its PI control into a proportional-
integral-derivative (PID) one. The second, we plan to gradually
upgrade our bidding mechanism by taking into account con-
sumer constraints and market competitions. Recall that black-
box bidding strategies can not only work alone, but also play a
fundamental role in other types of strategies. It would then be
natural and logical to extend this work into more sophisticated
bidding mechanisms to cover more external conditions.
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